JP2000160304A - Manufacture of grain oriented silicon steel sheet with high magnetic flux density and low iron loss - Google Patents

Manufacture of grain oriented silicon steel sheet with high magnetic flux density and low iron loss

Info

Publication number
JP2000160304A
JP2000160304A JP10331174A JP33117498A JP2000160304A JP 2000160304 A JP2000160304 A JP 2000160304A JP 10331174 A JP10331174 A JP 10331174A JP 33117498 A JP33117498 A JP 33117498A JP 2000160304 A JP2000160304 A JP 2000160304A
Authority
JP
Japan
Prior art keywords
slab
annealing
steel sheet
flux density
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10331174A
Other languages
Japanese (ja)
Other versions
JP3885391B2 (en
Inventor
Kazuaki Tamura
和章 田村
Mitsumasa Kurosawa
光正 黒沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP33117498A priority Critical patent/JP3885391B2/en
Publication of JP2000160304A publication Critical patent/JP2000160304A/en
Application granted granted Critical
Publication of JP3885391B2 publication Critical patent/JP3885391B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To increase the integration degree of crystal orientation and to obtain stabilized high magnetic flux density and low iron loss by subjecting a continuously cast slab containing specific amounts of C, Si, Mn, B, N, S, Se, and Al and having specific columnar crystal ratio, to specific heating and soaking and then applying hot rolling and cold rolling to it. SOLUTION: A continuously cast slab for silicon steel sheet which has a composition containing, by weight, 0.03-0.10% C, 2.5-4.5% Si, 0.05-1.5% Mn, 0.0010-0.0060% B, 0.0030-0.010% N, and 0.010-0.040% of S and/or Se within the range satisfying Mn/(S+Se)>=2.5, further containing 0.0010-0.0080% Al, and further containing, if necessary, 0.005-0.30% each of Cu, Sb, Sn, Bi, and Mn as inhibitor elements, is cast, and its columnar crystal ratio is regulated to >=40%. This cast slab is subjected to temperature-raise and heating from 1250 deg.C up to a temperature T not lower than 1350 deg.C within 1 hr and soaked for (t) min, where 1/5(1450-T)<=t<=2/5(1500-T) is satisfied. Then the cast slab is hot rolled, cold rolled, and subjected to decarburizing annealing and to final finish annealing.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、変圧器や発電機
の鉄心に利用される方向性電磁鋼板の製造方法、なかで
も磁束密度が特に高く、鉄損が極めて低い方向性電磁鋼
板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented electrical steel sheet used for an iron core of a transformer or a generator, and more particularly to a method for producing a grain-oriented electrical steel sheet having a particularly high magnetic flux density and extremely low iron loss. About.

【0002】[0002]

【従来の技術】Siを含有し、かつ、結晶方位が{11
0}〈001〉方位や{100}〈001〉に配向した
方向性電磁鋼板は、優れた軟磁気特性を有するため商用
周波数域での各種鉄心材料として広く用いられている。
かかる電磁鋼板に要求される特性としては、50Hzの周波
数で1.7 Tに磁化させた場合の損失であるW17/50(W/k
g)で表される鉄損が低いことが重要である。
2. Description of the Related Art Si-containing material having a crystal orientation of # 11
Grain-oriented electrical steel sheets oriented in the 0 ° <001> direction and the {100} <001> direction have been widely used as various iron core materials in the commercial frequency range because of their excellent soft magnetic properties.
The characteristic required for such an electrical steel sheet is W 17/50 (W / k), which is the loss when magnetized to 1.7 T at a frequency of 50 Hz.
It is important that the iron loss represented by g) is low.

【0003】一般に、電磁鋼板の鉄損を低減するには、
渦電流損を低下させることが有効であり、そのためSiの
含有量を増加し電気抵抗を高める方法、鋼板板厚を低減
する方法、製品の結晶粒径を低減する方法、更に結晶の
集積度を高めて磁束密度を向上させる方法が知られてい
る。このうち、Si含有量を増加させる方法については、
Siを過度に含有させると圧延性や加工性を劣化させるた
め限界があり、また、鋼板板厚を低減する方法、結晶粒
径を低減させる方法も極端な製造コストの増大をもたら
すので好ましくない。
[0003] Generally, to reduce the iron loss of an electromagnetic steel sheet,
It is effective to reduce the eddy current loss, so that the method of increasing the Si content to increase the electrical resistance, the method of reducing the steel plate thickness, the method of reducing the crystal grain size of the product, and the degree of crystal integration There is known a method for increasing the magnetic flux density by increasing the magnetic flux density. Among them, about the method of increasing the Si content,
If Si is excessively contained, rollability and workability are deteriorated, so that there is a limit. Further, a method of reducing the thickness of a steel sheet and a method of reducing the crystal grain size are not preferable because they extremely increase manufacturing costs.

【0004】残る結晶方位の集積度を高めて磁束密度を
向上させる方法については、従来多くの研究がなされて
おり、例えば、特公昭46−23820号公報には鋼中
にAlを添加し熱間圧延後、1000〜1200℃の高温の熱延板
焼鈍とそれに伴う急冷処理によって微細なAlN を析出さ
せた後、80〜95%という高圧下率の圧延を施す技術が開
示され、これによってB10 にして1.95Tの極めて高い磁
束密度の値を得ている。この方法は、微細に分散析出し
たAlN が一次再結晶粒の成長を抑制するインヒビターと
しての強い作用を有することを利用し、結晶方位の優れ
た核のみを二次再結晶させることにより、方位の優れた
製品の結晶組織を得るものである。しかしながら、この
方法では一般に製品の結晶粒径が粗大化するため、鉄損
を低くすることが難しく、高磁束密度かつ低鉄損である
製品を安定して得難いという問題がある。更に、酸化し
易いAlの含有は、脱炭焼鈍でのサブスケール生成、仕上
焼鈍でのフォルステライト被膜の生成を著しく困難にし
ている。
[0004] Many studies have been made on a method of improving the magnetic flux density by increasing the degree of integration of the remaining crystal orientations. For example, Japanese Patent Publication No. 46-23820 discloses a method in which Al is added to steel and hot working is performed. after rolling, after precipitating fine AlN by quenching and accompanying hot hot-rolled sheet annealing of 1000 to 1200 ° C., discloses a technique for performing rolling under high pressure rate of 80% to 95%, whereby B 10 As a result, an extremely high magnetic flux density of 1.95 T is obtained. This method makes use of the fact that AlN that has been finely dispersed and precipitated has a strong effect as an inhibitor that suppresses the growth of primary recrystallized grains, and only secondary nuclei with excellent crystallographic orientation are recrystallized, whereby the orientation is improved. An excellent product crystal structure is obtained. However, in this method, since the crystal grain size of the product is generally coarse, it is difficult to reduce the iron loss, and there is a problem that it is difficult to stably obtain a product having a high magnetic flux density and a low iron loss. Furthermore, the inclusion of Al, which is easily oxidized, makes it extremely difficult to form subscales in decarburizing annealing and to form a forsterite film in finish annealing.

【0005】また、特公昭58−42244号公報、特
公昭60−55570号公報には、重量比で0.0003%か
ら0.0035%のBと0.0030%から0.0070%のNとを含有す
る鋼を用いて、それぞれMn/Sを1.8 以下あるいは2.1
以下とすることにより、B8で1.85Tから1.92Tの磁束密
度を得る技術が開示されている。このBNをインヒビタ
ーとする方法は、高い磁束密度が得られる可能性はある
が、Mnを低くするためコスト上昇に繋がるばかりか、熱
延工程において熱間割れを引き起こすため工業化が困難
であった。
In Japanese Patent Publication No. 58-42244 and Japanese Patent Publication No. 60-55570, a steel containing 0.0003% to 0.0035% of B and 0.0030% to 0.0070% of N by weight is used. Mn / S of 1.8 or less or 2.1 respectively
With less, a technique for obtaining a magnetic flux density of 1.92T from 1.85T in B 8 is disclosed. The method using BN as an inhibitor may provide a high magnetic flux density, but not only leads to an increase in cost due to lowering Mn, but also has a difficulty in industrialization because it causes hot cracking in the hot rolling process.

【0006】更に、特公平7−68581号公報には、
必要B量を0.0018%以下まで低減することにより、Mn/
Sを1.8 以上あるいは2.5 以上とする技術が開示されて
いるが、磁束密度は低下した。更に、特開昭57−11
4615号公報ではBがBNとして析出するのに必要な
等量分のNを除いた残りのN量を溶解N量と定義し、こ
れを0.0020%以下とすることにより、Mn/Sを2.1 以上
としても高磁束密度が得られることが開示されている
が、なお良好な二次再結晶組織を有する方向性電磁鋼板
を安定して得ることはできなかった。
Further, Japanese Patent Publication No. Hei 7-68581 discloses that
By reducing the required B amount to 0.0018% or less, Mn /
Techniques for increasing S to 1.8 or more or 2.5 or more are disclosed, but the magnetic flux density is reduced. Further, JP-A-57-11
In Japanese Patent No. 4615, the remaining amount of N excluding an equivalent amount of N necessary for B to precipitate as BN is defined as the amount of dissolved N, and by setting this to 0.0020% or less, the Mn / S becomes 2.1 or more. However, it is disclosed that a high magnetic flux density can be obtained, but it has not been possible to stably obtain a grain-oriented electrical steel sheet having a good secondary recrystallization structure.

【0007】これを解消すべく特開平10−14024
3号公報では、熱間仕上圧延での圧下率及び圧延終了温
度をB含有量に基づき制御することにより、インヒビタ
ーの析出を均一微細化することが開示されているが、実
際の操業においては、製品全体にて高磁束密度を安定し
て得ることは困難であった。
To solve this problem, Japanese Patent Laid-Open Publication No.
No. 3 discloses that by controlling the reduction ratio and the rolling end temperature in hot finish rolling based on the B content, the precipitation of the inhibitor can be made uniform and fine, but in actual operation, It has been difficult to stably obtain a high magnetic flux density throughout the product.

【0008】[0008]

【発明が解決しようとする課題】この発明は、上記BN
を主としたインヒビターとして含有する方向性電磁鋼板
の磁束密度の向上における優位性に着目し、更に結晶方
位の集積度を高めて高磁束密度かつ低鉄損の電磁鋼板を
安定して得ることのできる製造方法を提案することを目
的とする。
The present invention relates to the above BN
Focusing on the superiority in improving the magnetic flux density of grain-oriented electrical steel sheet containing mainly as an inhibitor, further increasing the degree of integration of crystal orientation to obtain a stable magnetic steel sheet with high magnetic flux density and low iron loss The aim is to propose a possible manufacturing method.

【0009】[0009]

【課題を解決するための手段】発明者らは、BNをイン
ヒビターとした場合に生ずる二次再結晶の不安定性を解
消すべく、鋼スラブ中のBN及びBNを含有する析出物
の状態の二次再結晶への影響を鋭意研究した。その結
果、二次再結晶に有効とは考えられないほど極微量かつ
適量のAlをBとともに含有させ、かつ、該鋼スラブを連
続鋳造で製造する際、冷却速度等の制御により柱状晶の
比率を40%以上とし、その後に1350℃以上の高温で加熱
した上で、昇温時間及び均熱時間を制御することによ
り、析出物の固溶とそれに続く焼鈍による微細析出が促
進され、一次再結晶粒の粒成長抑制効果を維持すること
ができ、二次再結晶の成長に対し極めて有利な抑制力を
獲得し、高度の磁気特性を安定して達成することが可能
であるという従来とは全く異なった着想を得て、これを
利用してこの発明を完成させたものである。
In order to eliminate the instability of secondary recrystallization which occurs when BN is used as an inhibitor, the inventors of the present invention have studied the use of BN and precipitates containing BN in steel slabs. The influence on secondary recrystallization was studied diligently. As a result, a very small amount and an appropriate amount of Al are contained together with B so as not to be considered effective for secondary recrystallization, and when the steel slab is manufactured by continuous casting, the ratio of columnar crystals is controlled by controlling the cooling rate and the like. After heating at a high temperature of 1350 ° C or more and then controlling the heating time and soaking time, solid solution of precipitates and fine precipitation by subsequent annealing are promoted. Conventionally, it is possible to maintain the effect of suppressing the growth of crystal grains, to obtain an extremely advantageous suppressing force for the growth of secondary recrystallization, and to stably achieve high magnetic properties. The inventors obtained a completely different idea and used it to complete the present invention.

【0010】具体的には、 C:0.03〜0.10wt%、 Si:2.5 〜4.5 wt%、 Mn:0.05〜1.5 wt%、 B:0.0010〜0.0060wt%、 N:0.0030〜0.010 wt%、 S及びSeの1種又は2種:0.010 〜0.040 wt%、 を含み、かつMn、S、Se量につき次式 Mn (wt%)/(S(wt%) +Se(wt%) )≧2.5 を満足する電磁鋼板用連続鋳造スラブを鋳造し、この連
続鋳造スラブを加熱均熱してから熱間圧延を行った後、
1回又は中間焼鈍を挟む2回以上の冷間圧延を施して最
終板厚の冷延板を得、該冷延板に一次再結晶を兼ねた脱
炭焼鈍を施した後、二次再結晶及び純化処理をする最終
仕上焼鈍を行う方向性電磁鋼板の製造方法において、前
記連続鋳造スラブの鋳造までに、更にAl:0.0010〜0.00
80wt%を含有させておき、かつ、該連続鋳造スラブにお
ける柱状晶比率を40%以上とし、更に、スラブ加熱温度
を1350℃以上としたうえで、1250℃から該加熱温度域ま
での昇温時間を1時間以内とし、引き続くスラブ均熱時
間t(min )を次式 1/5×(1450−T)≦t≦2/5(1500−T) (T:スラブ加熱温度(℃))を満たす範囲とすること
によって、高磁束密度で低鉄損の方向性電磁鋼板を製造
するものである。
Specifically, C: 0.03 to 0.10 wt%, Si: 2.5 to 4.5 wt%, Mn: 0.05 to 1.5 wt%, B: 0.0010 to 0.0060 wt%, N: 0.0030 to 0.010 wt%, S and 1 or 2 types of Se: 0.010 to 0.040 wt%, and the following formula is satisfied for the amounts of Mn, S, and Se: Mn (wt%) / (S (wt%) + Se (wt%)) ≧ 2.5 After casting a continuous cast slab for electrical steel sheets, and then hot-rolling the continuous cast slab,
Cold rolling is performed once or two or more times with intermediate annealing to obtain a cold-rolled sheet having a final thickness, and the cold-rolled sheet is subjected to decarburizing annealing also serving as primary recrystallization, and then to secondary recrystallization. And in a method for producing a grain-oriented electrical steel sheet which performs a final finish annealing for purifying treatment, further comprising: Al: 0.0010 to 0.00
80% by weight, the columnar crystal ratio in the continuous cast slab is 40% or more, and the slab heating temperature is 1350 ° C or more, and the heating time from 1250 ° C to the heating temperature range Is set within 1 hour, and the subsequent slab soaking time t (min) satisfies the following formula: 1/5 × (1450−T) ≦ t ≦ 2/5 (1500−T) (T: slab heating temperature (° C.)) By setting the range, a grain-oriented electrical steel sheet having a high magnetic flux density and a low iron loss is manufactured.

【0011】また、連続鋳造スラブにはインヒビター元
素として、更にCu、Sb、Sn、Bi、Moから選ばれた1種又
は2種以上を各々0.005 〜0.30wt%の範囲で含有させる
ことによって、更に安定して高磁束密度低鉄損方向性電
磁鋼板を製造するものである。
The continuous cast slab further contains one or more selected from Cu, Sb, Sn, Bi, and Mo as an inhibitor element in the range of 0.005 to 0.30 wt% each. It is intended to stably produce a high magnetic flux density, low iron loss oriented magnetic steel sheet.

【0012】更に、この発明においては、最終冷間圧延
を行うに当たり、その少なくとも1パス以上を100 〜35
0 ℃での温間圧延とするか、100 〜350 ℃において10〜
60min のパス間時効処理を施すことにより、一層高い磁
束密度と低い鉄損を有する方向性電磁鋼板を得ることが
できる。
Further, in the present invention, in performing the final cold rolling, at least one or more passes thereof are carried out at 100 to 35
Warm rolling at 0 ° C or 10 to 100 ° C to 350 ° C
By performing the inter-pass aging treatment for 60 minutes, a grain-oriented electrical steel sheet having higher magnetic flux density and lower iron loss can be obtained.

【0013】[0013]

【発明の実施の形態】微量に存在するAlについて、鋼ス
ラブ中の析出物に対する微細化効果及びAlの適正範囲
が、以下の実験から明らかになった。
BEST MODE FOR CARRYING OUT THE INVENTION With respect to Al present in a trace amount, the following experiment revealed the effect of refining precipitates in a steel slab and the appropriate range of Al.

【0014】(実験1)BNを含む鋼において微量に存
在するAlが一次再結晶粒成長抑制効果及びスラブ組織に
及ぼす影響を明らかにする目的で、次の実験を行った。
(Experiment 1) The following experiment was conducted in order to clarify the effect of Al, which is present in a trace amount, on the primary recrystallized grain growth and the slab structure in steel containing BN.

【0015】実験材の組成は次のとおりである。 実験材a. C:0.070 wt%、Si:3.25wt%、Mn:0.07
wt%、B:0.0020wt%、N:0.0085wt%、Se:0.018 wt
%、Sb:0.023 wt%を含有し、残余は不可避的不純物と
鉄からなる基本成分、及びこの基本成分にAl:0.0010wt
%、0.0030wt%、0.0060wt%、0.0080wt%、0.0100wt%
とそれぞれ変化させて含有させた鋼を用いた。
The composition of the experimental material is as follows. Experimental material a. C: 0.070 wt%, Si: 3.25 wt%, Mn: 0.07
wt%, B: 0.0020 wt%, N: 0.0085 wt%, Se: 0.018 wt
%, Sb: 0.023 wt%, with the balance being a basic component consisting of unavoidable impurities and iron, and this basic component containing Al: 0.0010 wt%
%, 0.0030wt%, 0.0060wt%, 0.0080wt%, 0.0100wt%
And steels which were respectively changed.

【0016】上記各組成を有する鋼スラブを連続鋳造す
る際、溶鋼温度の変更及び鋳造時の冷却の制御により柱
状晶率が30%及び60%になるスラブを作製した。このそ
れぞれのスラブを1300℃及び1400℃に加熱後、熱間圧延
を行って板厚2.2 mmの熱延板とし、次いで900 ℃で2 mi
n の熱延板焼鈍を行ってから、1.5 mm厚に冷間圧延し、
1000℃で1 min の中間焼鈍後、最終冷間圧延を行って0.
22mmの冷延板とした。
When continuously casting steel slabs having the above-mentioned compositions, slabs having columnar crystal ratios of 30% and 60% were produced by changing the temperature of molten steel and controlling cooling during casting. After heating each of the slabs to 1300 ° C and 1400 ° C, hot rolling was performed to form a hot-rolled sheet having a thickness of 2.2 mm, and then 2 mm at 900 ° C.
n hot-rolled sheet, cold-rolled to a thickness of 1.5 mm,
After the intermediate annealing at 1000 ° C for 1 min, final cold rolling was performed.
A 22 mm cold rolled sheet was used.

【0017】上記各素材について、830 ℃で2 min の脱
炭焼鈍を施し、C:0.002 wt%以下に脱炭した。次に、
かかる脱炭焼鈍を行ったそれぞれの試料にMgO を主成分
とする焼鈍分離剤を塗布して、850 ℃から1200℃までを
20℃/hの昇温速度で加熱して最終仕上焼鈍を行った。得
られた電磁鋼板の磁気特性及び二次再結晶の状況を表1
及び表2に併せて示す。
Each of the above-mentioned materials was subjected to decarburizing annealing at 830 ° C. for 2 minutes, and decarburized to C: 0.002 wt% or less. next,
An annealing separator containing MgO as a main component was applied to each of the decarburized annealing samples, and the temperature was increased from 850 ° C to 1200 ° C.
The final finish annealing was performed by heating at a heating rate of 20 ° C./h. Table 1 shows the magnetic properties and the state of secondary recrystallization of the obtained magnetic steel sheets.
And Table 2 together.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】まず、柱状晶比率が30%の場合、一部で二
次再結晶が起こっているが、いずれもB8は1.9 T未満で
ある。次に、柱状晶比率が60%となったときにおいても
加熱温度が1300℃の場合は二次再結晶は完全ではなく、
磁束密度B8は低くなっている。柱状晶比率が60%で加熱
温度が1400℃の場合は、1300℃での加熱の場合に比較し
て、いずれもB8は上昇している。しかしながら、Alを含
まない場合は二次再結晶は起こっているが、一部が二次
再結晶が不完全となっているためB8は1.9 Tに達せず低
い値となっている。ところが、Alが0.001 〜0.008 wt%
の範囲にある場合には二次再結晶も完全となってB8は1.
9 T以上が得られることがわかった。
[0020] First, if the columnar crystal ratio is 30%, although some secondary recrystallization has occurred, both B 8 is less than 1.9 T. Next, even when the columnar crystal ratio becomes 60%, if the heating temperature is 1300 ° C, the secondary recrystallization is not complete,
The magnetic flux density B 8 is low. When the columnar crystal ratio is 60% and the heating temperature is 1400 ° C., B 8 is higher than in the case of heating at 1300 ° C. However, although when not containing Al is going secondary recrystallization, B 8 because some secondary recrystallization becomes incomplete has a low value does not reach the 1.9 T. However, the content of Al is 0.001 to 0.008 wt%
When it is in the range, secondary recrystallization is also complete and B 8 is 1.
It turned out that 9 T or more was obtained.

【0021】更に、これらの脱炭焼鈍板を用いて、900
℃でそれぞれ24hの等温焼鈍をAr雰囲気中で行った。上
記試験の結果得られた試料のそれぞれについて、(1) 脱
炭焼鈍後の一次再結晶粒径(円近似による。以下同
様。)、(2) 900 ℃で24hの等温焼鈍後の一次再結晶粒
径(これは二次再結晶開始直前の一次再結晶粒に相当す
る。)を測定・調査した。その結果を図1に示す。
Further, by using these decarburized annealing plates, 900
Each was subjected to isothermal annealing at 24 ° C. for 24 hours in an Ar atmosphere. For each of the samples obtained as a result of the above test, (1) primary recrystallized grain size after decarburization annealing (approximately to a circle; the same applies hereinafter); (2) primary recrystallization after isothermal annealing at 900 ° C for 24 hours. The particle size (this corresponds to primary recrystallized grains immediately before the start of secondary recrystallization) was measured and investigated. The result is shown in FIG.

【0022】まず、柱状晶率を60%とした試料につい
て、熱延前に1300℃に加熱した場合の脱炭一次再結晶後
の一次再結晶粒径(折線c)は、基本成分に対してAlの
含有量が増加しても結晶粒径に大きな変化は認められな
かった。これら脱炭焼鈍板を900 ℃で24h保持した後の
粒径、すなわち二次再結晶開始直前の一次再結晶粒径
(折線d)は、いずれのAl含有量においても同様に粒径
が粗大化した。
First, for a sample with a columnar crystal ratio of 60%, the primary recrystallized grain size (line c) after decarburization primary recrystallization when heated to 1300 ° C. before hot rolling is based on the basic component. No significant change in crystal grain size was observed even when the Al content was increased. The grain size after holding these decarburized annealed sheets at 900 ° C. for 24 hours, that is, the primary recrystallized grain size (line d) immediately before the start of the secondary recrystallization, was also increased at any Al content. did.

【0023】これに対し、熱延前の加熱を1400℃とした
場合は、脱炭一次再結晶後の一次再結晶粒径(折線a)
はAlの含有量が増すとともに小さくなり、Alが0.006 wt
%を超えるあたりから、再び大きくなった。また、Alを
含有していない場合は900 ℃で24h保持した後の粒径が
粗大化しているが、Al含有量が0.001 wt%から0.008wt
%の範囲では粒径の粗大化が抑えられていることがわか
った。
On the other hand, when heating before hot rolling was performed at 1400 ° C., the primary recrystallized grain size after decarburization primary recrystallization (line a)
Decreases as the content of Al increases, and
%, It grew again. When Al is not contained, the particle size after holding at 900 ° C. for 24 hours is coarse, but the Al content is 0.001 wt% to 0.008 wt%.
%, It was found that the coarsening of the particle size was suppressed.

【0024】次に、柱状晶率が30%のものについては14
00℃で加熱した試料のみ図1に示した。これらの試料
は、加熱温度を1400℃と高くしたにもかかわらず24hの
焼鈍後にかなり一次再結晶粒径が粗大化してしまってい
る。
Next, when the columnar crystal ratio is 30%, 14%
Only the sample heated at 00 ° C. is shown in FIG. In these samples, the primary recrystallized grain size became considerably large after annealing for 24 hours, even though the heating temperature was increased to 1400 ° C.

【0025】上記のような結果を生じる原因について発
明者らは鋭意研究した結果、二次再結晶直前の一次再結
晶粒径の粗大化が抑えられた柱状晶率が60%でかつ、Al
含有率が0.001 〜0.008 wt%の場合においては、熱延前
の加熱時の固溶が良好になっていることが明らかになっ
た。これについて以下に詳細を記す。
The inventors of the present invention have conducted intensive studies on the causes of the above-mentioned results. As a result, the columnar crystal ratio in which the coarsening of the primary recrystallized grain size immediately before the secondary recrystallization was suppressed was 60% and the Al
It was found that when the content was 0.001 to 0.008 wt%, the solid solution during heating before hot rolling was good. This is described in detail below.

【0026】上述した実験材aの各組成を有する各スラ
ブを1300℃及び1400℃にそれぞれ加熱した後、水焼き入
れを行った。この加熱前後のスラブについて光学顕微鏡
及び電子顕微鏡で詳細に調査した結果、多数の析出物が
確認された。これら析出物の構成成分を分析したところ
インヒビター成分であるB及びNが検出された。表1,
2に、熱延前のスラブ加熱条件及び素材へのAl添加量を
変えた場合の加熱後析出物の有無を観察した結果を併せ
て示す。
Each slab having each composition of the experimental material a described above was heated to 1300 ° C. and 1400 ° C., respectively, and then water-quenched. The slab before and after the heating was examined in detail with an optical microscope and an electron microscope, and as a result, a large number of precipitates were confirmed. When the components of these precipitates were analyzed, B and N as inhibitor components were detected. Table 1,
FIG. 2 also shows the results of observing the presence of precipitates after heating when the slab heating conditions before hot rolling and the amount of Al added to the material were changed.

【0027】この結果より、加熱温度が1300℃のとき及
び柱状晶率30%で加熱温度が1400℃のときは、いずれの
Al含有量においても残存析出物が確認されている。ま
た、柱状晶率を60%とし加熱温度を1400℃としたときに
は、Alを含有していない場合では残存析出物が確認され
たが、Alが0.001 〜0.008 wt%含有されているときに
は、残存析出物は観察されなかった。
From these results, when the heating temperature was 1300 ° C. and when the columnar crystal ratio was 30% and the heating temperature was 1400 ° C.,
Residual precipitates were confirmed also in the Al content. When the columnar crystal ratio was 60% and the heating temperature was 1400 ° C., residual precipitates were confirmed when Al was not contained. However, when Al was contained at 0.001 to 0.008 wt%, residual precipitates were observed. Nothing was observed.

【0028】次に、上記aの組成のスラブのうち、Alを
含有していない素材及びAlを0.006wt%含有した素材に
ついて、加熱前に観察された析出物それぞれを画像解析
装置により粒径を計測し、析出物粒径の分布と析出物の
平均粒径を求めた。これを図2に示す。まず、柱状晶率
60%の素材について、Alを含有しない鋼(図2a)は、
析出物粒径の分布が広く、かつ10μm を超える粗大な析
出物が多く、その平均粒径も7.74μm と大きくなってい
る。これに対し、Alを含有した鋼(図2b)は、10μm
を超える粗大な析出物が少なく、平均粒径も5.65μm と
なっており、析出物が比較的細かくなっていることが明
らかになった。
Next, among the slabs having the composition a, the precipitates observed before heating of the raw material containing no Al and the raw material containing 0.006 wt% of Al were subjected to particle size analysis by an image analyzer. Measurement was performed to determine the distribution of the precipitate particle size and the average particle size of the precipitate. This is shown in FIG. First, the columnar crystal ratio
For 60% of the material, the steel without Al (Fig. 2a)
The distribution of the precipitate particle size is wide, and there are many coarse precipitates exceeding 10 μm, and the average particle size is as large as 7.74 μm. On the other hand, the steel containing Al (FIG. 2b) is 10 μm
The average particle size was 5.65 μm, indicating that the precipitates were relatively fine.

【0029】次に、柱状晶率が30%の素材では、Alを0.
006 %含有した場合(図2c)であっても10μm を超え
る粗大な析出物が多く、その平均粒径も7.16μm と大き
くなっている。このスラブ内の析出粒子に関して、柱状
晶部では10μm 以下の粒子が多数を占めるが、等軸晶部
では10μm 以上の粒子が多くなり、これにより平均粒径
値が引き上げられていることがわかった。
Next, in the case of a material having a columnar crystal ratio of 30%, Al is added in an amount of 0.1%.
Even when it contains 006% (FIG. 2c), there are many coarse precipitates exceeding 10 μm, and the average particle size is as large as 7.16 μm. Regarding the precipitated particles in this slab, a large number of particles of 10 μm or less occupy in the columnar crystal part, but more particles of 10 μm or more in the equiaxed crystal part, thereby increasing the average particle diameter value. .

【0030】よって表1のNo. 20〜23の試料では柱状晶
率を高くする、すなわち冷却を強化して急冷し、更にAl
を0.001 〜0.008 wt%の範囲で含有させることによって
初めてインヒビター成分が細かく析出し、更に加熱温度
を1400℃の高温としたことにより、析出物の固溶が促進
され、結果として残存析出物が観察されなかったものと
考えられる。
Therefore, in the samples of Nos. 20 to 23 in Table 1, the columnar crystal ratio was increased, that is, the cooling was strengthened and the quenching was performed.
The inhibitor component was finely precipitated for the first time by containing 0.001 to 0.008 wt% of, and the heating temperature was increased to 1400 ° C to promote the solid solution of the precipitate. As a result, the remaining precipitate was observed. Probably not.

【0031】このように比較的細かく析出したインヒビ
ター成分が一旦完全に固溶し、後の工程で更に微細に再
析出することにより、二次再結晶直前の一次再結晶粒の
粗大化が抑えられ、強い粒成長抑制の効果が発現された
ものと考えられる。
As described above, the inhibitor component precipitated relatively finely forms a complete solid solution once and re-precipitates more finely in a later step, thereby suppressing the coarsening of the primary recrystallized grains immediately before the secondary recrystallization. It is considered that the effect of strong grain growth suppression was exhibited.

【0032】(実験2)実験1において、B及びNを含
有した鋼にAlを含有させることにより、二次再結晶の安
定化及び良好な磁気特性が得られた。そこで、Bを添加
せずに実験1と同様な範囲のAlを含有させた場合の磁気
特性を調査した。
(Experiment 2) In Experiment 1, by adding Al to the steel containing B and N, stabilization of secondary recrystallization and good magnetic properties were obtained. Therefore, the magnetic properties when Al was contained in the same range as in Experiment 1 without adding B were investigated.

【0033】実験材の組成は下記のとおりである。 実験材b. C:0.070 wt%、Si:3.23wt%、Mn:0.07
wt%、N:0.0080wt%、Se:0.020 wt%、Sb:0.025 wt
%を含有し、残余は不可避的不純物と鉄とからなる基本
成分、及びこの基本成分にAl:0.0010wt%、0.0030wt
%、0.0060wt%、0.0080wt%、0.0100wt%とそれぞれ変
化させて含有させた鋼を用いた。
The composition of the experimental material is as follows. Experimental material b. C: 0.070 wt%, Si: 3.23 wt%, Mn: 0.07
wt%, N: 0.0080 wt%, Se: 0.020 wt%, Sb: 0.025 wt
%, The balance being a basic component consisting of unavoidable impurities and iron, and this basic component containing Al: 0.0010 wt%, 0.0030 wt%
%, 0.0060 wt%, 0.0080 wt%, and 0.0100 wt%, respectively.

【0034】上記各組成を有する連続鋳造スラブを製造
する際、柱状晶率を60%とし、これを1400℃に加熱後、
熱間圧延により板厚2.6 mmの熱延板とし、950 ℃で2 mi
n の熱延板焼鈍を行ってから、1.8 mm厚に冷間圧延し、
1050℃で1 min の中間焼鈍後、最終冷間圧延を行って0.
34mmの冷延板とした。この冷延板について、840 ℃で3
min の脱炭焼鈍を施し、C:0.002 %以下に脱炭した。
このそれぞれの試料にMgO を主成分とする焼鈍分離剤を
塗布して、850 ℃から1200℃まで15℃/hの昇温速度で加
熱して仕上焼鈍を行った。得られた電磁鋼板の磁気特性
及び被膜外観の状況を表3に示す。
When manufacturing a continuous cast slab having each of the above compositions, the columnar crystal ratio was set to 60%, and after heating this to 1400 ° C.
Hot rolled sheet with a thickness of 2.6 mm by hot rolling, 2 mi at 950 ° C
n, and then cold rolled to a thickness of 1.8 mm.
After the intermediate annealing at 1050 ° C for 1 min, the final cold rolling was performed.
A 34 mm cold-rolled sheet was used. For this cold rolled sheet at 840 ° C
After decarburizing annealing for min, C: 0.002% or less.
Each of the samples was coated with an annealing separator mainly composed of MgO and heated at a rate of 15 ° C./h from 850 ° C. to 1200 ° C. for finish annealing. Table 3 shows the magnetic properties and coating appearance of the obtained magnetic steel sheets.

【0035】[0035]

【表3】 [Table 3]

【0036】以上の結果より、Alの添加のみでは二次再
結晶が起こらず、磁気特性も劣化することが確認され
た。また、Al含有量が多くなると被膜外観が白っぽく変
化し劣化することがわかった。
From the above results, it was confirmed that secondary recrystallization did not occur and the magnetic characteristics were deteriorated only by adding Al. Further, it was found that when the Al content was increased, the appearance of the coating film changed to whitish and deteriorated.

【0037】(実験3)C:0.068 wt%、Si:3.24wt
%、Mn:0.07wt%、B:0.0040wt%、N:0.0075wt%、
Se:0.019 wt%、Sb:0.025 wt%、Al:0.0060wt%を含
有し、残余は不可避的不純物と鉄とからなる鋼につい
て、連続鋳造により製造した柱状晶率45%となるスラブ
を用意した。これを1300〜1425℃の範囲において80min
までの様々な加熱時間によるスラブ加熱後、熱間圧延に
より板厚2.2 mmの熱延板とし、900 ℃で2 min の熱延板
焼鈍を行ったのち、1.5 mm厚に冷間圧延し、1000℃で1
min の中間焼鈍後、最終冷間圧延を行って0.22mmの冷延
板とした。これらの冷延板について、830 ℃で2 min の
脱炭焼鈍を施し、C:0.002 %以下に脱炭した。このそ
れぞれの試料にMgO を主成分とする焼鈍分離剤を塗布し
て、850 ℃から1200℃まで20℃/hの昇温速度で加熱して
仕上焼鈍を行った。得られた電磁鋼板の磁気特性の良否
を図3に示す。図3において○印は磁束密度B8が1.9 T
以上のものを表し、×印は磁束密度が1.9 T未満となっ
たものを表している。
(Experiment 3) C: 0.068 wt%, Si: 3.24 wt%
%, Mn: 0.07 wt%, B: 0.0040 wt%, N: 0.0075 wt%,
A slab containing 0.019 wt% of Se, 0.025 wt% of Sb, and 0.0060 wt% of Al and the balance consisting of unavoidable impurities and iron was prepared by continuous casting to have a columnar crystal ratio of 45%. . 80min in the range of 1300 ~ 1425 ℃
After the slab was heated for various heating times up to 2.2 mm, a hot-rolled sheet with a thickness of 2.2 mm was formed by hot rolling, annealed at 900 ° C for 2 min, cold-rolled to a thickness of 1.5 mm, 1 in ° C
After the intermediate annealing of min, final cold rolling was performed to obtain a cold-rolled sheet of 0.22 mm. These cold rolled sheets were subjected to decarburizing annealing at 830 ° C. for 2 minutes to decarbonize C: 0.002% or less. Each sample was coated with an annealing separator containing MgO as a main component, and was subjected to finish annealing by heating from 850 ° C. to 1200 ° C. at a rate of 20 ° C./h. FIG. 3 shows the quality of the magnetic properties of the obtained magnetic steel sheet. ○ marks in FIG. 3 is a magnetic flux density B 8 is 1.9 T
In the above, the crosses indicate those where the magnetic flux density was less than 1.9 T.

【0038】この図より、スラブ加熱時間t(min )が
加熱温度T(℃)で決定される次式、 1/5×(1450−T)≦t≦2/5×(1500−T) を満足する範囲内で高磁束密度の材料が得られることが
明らかとなった。
From this figure, the following equation, in which the slab heating time t (min) is determined by the heating temperature T (° C.), is given by: 1/5 × (1450−T) ≦ t ≦ 2/5 × (1500−T) It was found that a material having a high magnetic flux density can be obtained within a satisfactory range.

【0039】上記にこの発明に係わる重要ポイントにつ
いて発明したが、以下、この発明の実施形態を具体的に
説明する。 (化学成分) C:0.03〜0.10wt% C量が0.10wt%を超えると、γ変態量が過剰となり、熱
間圧延中のBの分布が不均一となりBNの分布の均一性
を阻害する結果となり有害である。また、脱炭焼鈍の負
荷も増大し脱炭不良を発生し易くなる。一方、0.03wt%
未満では二次再結晶が不完全となり、同じく磁気特性が
劣化する。したがって、Cは0.03〜0.10wt%の範囲に限
定される。
Although the important points relating to the present invention have been invented above, the embodiments of the present invention will be specifically described below. (Chemical component) C: 0.03 to 0.10 wt% When the C content exceeds 0.10 wt%, the amount of γ transformation becomes excessive, the distribution of B during hot rolling becomes uneven, and the uniformity of the distribution of BN is hindered. It is harmful. Further, the load of decarburization annealing also increases, and decarburization failure easily occurs. On the other hand, 0.03wt%
If it is less than 2, the secondary recrystallization is incomplete, and the magnetic properties are similarly deteriorated. Therefore, C is limited to the range of 0.03 to 0.10 wt%.

【0040】Si:2.5 〜4.5 wt% Si は電気抵抗を増加させ鉄損を低減するために必須の
成分であり、このため2.5 wt%以上含有させることが必
要であるが、4.5 wt%を超えると加工性が劣化して、圧
延や製品の加工が極めて困難になるので2.5 〜4.5 wt%
の範囲とする。
Si: 2.5-4.5 wt% Si is an essential component for increasing electric resistance and reducing iron loss. Therefore, it is necessary to contain 2.5 wt% or more, but it exceeds 4.5 wt%. And workability deteriorates, making rolling and product processing extremely difficult.
Range.

【0041】Mn:0.05〜1.5 wt% Mnも電気抵抗を高め、また、製造時の熱間加工性を向上
させるので必要な成分である。この目的のためには0.05
wt%以上の含有が必要であるが、1.5 wt%を超えて含有
させた場合にはγ変態を誘起して磁気特性が劣化するの
で0.05〜1.5 wt%の範囲とする。
Mn: 0.05 to 1.5 wt% Mn is also a necessary component for increasing electric resistance and improving hot workability at the time of production. 0.05 for this purpose
It is necessary that the content is not less than 1.5% by weight. However, if the content exceeds 1.5% by weight, γ transformation is induced to deteriorate magnetic properties.

【0042】B及びN:この発明においては、主たるイ
ンヒビター成分としてサブスケールの安定生成と、それ
による良好な下地被膜の生成のためBNを用いる。特
に、最終冷間圧延圧下率が80%以上の場合、二次再結晶
温度が非常に高くなるため、鋼中には高温で安定なイン
ヒビター成分としてB及びNを含有させることが必須で
ある。このうちBは0.0010〜0.0060wt%の範囲で含有さ
せる。Bの含有量が0.0010wt%未満の場合、析出するB
Nの量が不足し良好な二次再結晶を得ることができず、
0.0060wt%を超える場合、固溶温度が増加し、通常の加
熱では熱延前にBNを完全に固溶させることが不可能と
なるためである。Nの含有量は0.0030wt%以上が必要で
あり、N量が0.0030wt%未満では析出するBNの量が不
足する。また、N量が0.010 wt%を超えると鋼中でガス
化し、フクレなどの欠陥が生ずるので0.0030〜0.010 wt
%の範囲とする。
B and N: In the present invention, BN is used as a main inhibitor component for the stable generation of sub-scale and the formation of a good undercoat film thereby. In particular, when the final cold rolling reduction is 80% or more, the secondary recrystallization temperature becomes extremely high. Therefore, it is essential to include B and N as high-temperature and stable inhibitor components in steel. Of these, B is contained in the range of 0.0010 to 0.0060 wt%. If the B content is less than 0.0010 wt%, B
Insufficient amount of N could not obtain good secondary recrystallization,
If the content exceeds 0.0060 wt%, the solid solution temperature increases, and it is impossible to completely dissolve BN before hot rolling by ordinary heating. The content of N must be 0.0030 wt% or more, and if the N content is less than 0.0030 wt%, the amount of precipitated BN becomes insufficient. If the N content exceeds 0.010 wt%, gasification occurs in the steel and defects such as blisters occur.
% Range.

【0043】補助インヒビター成分:B及びNを補助す
るインヒビター成分として、Se、Sを単独もしくは複合
して含有させることが必要である。これらの成分は鋼中
にMn化合物あるいはCu化合物として析出するので、抑制
効果を維持するには合計で0.010 wt%以上が必要である
が、0.040 wt%を超えるとスラブ加熱温度を極めて高温
にしても完全に固溶させることができず、粗大な析出物
のまま残留するのでかえって有害である。したがって、
0.010 〜0.040 wt%の範囲とする。なお、Mn量との関係
で、Mn (wt%)/(S (wt%)+Se (wt%))の値が2.5 より
小さいと熱間圧延中に粒界割れや耳割れが著しく増加す
るためMn/(S+Se)≧2.5 とすることが実用上必要で
ある。
Auxiliary inhibitor component: It is necessary to contain Se or S alone or in combination as an inhibitor component for supporting B and N. Since these components precipitate as Mn compounds or Cu compounds in steel, a total of 0.010 wt% or more is required to maintain the suppression effect. However, if it exceeds 0.040 wt%, the slab heating temperature becomes extremely high. However, they cannot be completely dissolved and remain as coarse precipitates, which is rather harmful. Therefore,
The range is 0.010 to 0.040 wt%. If the value of Mn (wt%) / (S (wt%) + Se (wt%)) is smaller than 2.5 in relation to the amount of Mn, grain boundary cracks and edge cracks increase significantly during hot rolling. It is practically necessary that Mn / (S + Se) ≧ 2.5.

【0044】その他のインヒビター元素:Cu、Sb、Sn、
Bi及びMoは、インヒビターとして抑制力を強化する補助
的役割を有するので、必要に応じて添加することができ
る。これらの添加量の好適範囲は0.005 〜0.30wt%であ
る。その他、NiやCoの添加も鋼板の表面性状を改善する
ので、適宜添加すればよい。
Other inhibitor elements: Cu, Sb, Sn,
Since Bi and Mo have an auxiliary role of enhancing the inhibitory power as inhibitors, they can be added as needed. The preferred range of these addition amounts is 0.005 to 0.30 wt%. In addition, the addition of Ni or Co also improves the surface properties of the steel sheet, and thus may be appropriately added.

【0045】Al:0.0010〜0.0080wt% この発明ににおいては、微量のAlの添加により二次再結
晶が安定化し、良好な磁気特性が得られている。AlはAl
N を形成するためインヒビター元素として知られている
が、前述の実験結果において二次再結晶の安定性及び磁
気特性の改善に対する効果が認められたことから推定す
るところ、この発明のように微量な範囲のAlを添加する
ことによりBNもしくはMn(Se+S)の析出挙動が変化
したことが考えられる。ひとつは連続鋳造時にAlの存在
により析出温度が低下し均一微細に析出したこと、もう
ひとつは加熱時に複合した析出粒子となることによりオ
ストワルド成長が抑えられ粗大化が抑制されたことが推
定される。
Al: 0.0010 to 0.0080 wt% In the present invention, secondary recrystallization is stabilized by adding a small amount of Al, and good magnetic properties are obtained. Al is Al
Although it is known as an inhibitor element for forming N, it is presumed from the above experimental results that effects on the stability of secondary recrystallization and the improvement of magnetic properties were recognized. It is considered that the precipitation behavior of BN or Mn (Se + S) was changed by adding Al in the range. One is that the precipitation temperature was lowered due to the presence of Al during continuous casting, and uniform precipitation was achieved. .

【0046】このAlの添加によりスラブ加熱前において
析出物が微細化することにより固溶が容易となり、熱延
以後にさらに微細にインヒビターが再析出した結果、一
次再結晶粒の粒成長抑制力が高くなり、最終的に良好な
磁気特性が得られたものと考えられる。このAlの添加量
が0.0010wt%未満の場合には上記の効果が得られず、0.
0080wt%を超えると二次再結晶粒径が粗大化して、鉄損
が劣化する。以上の理由からAlの添加量は0.0010〜0.00
80wt%の範囲とする必要がある。
By adding Al, the precipitates are refined before heating the slab, so that the solid solution becomes easy. As a result, the inhibitor is re-precipitated more finely after hot rolling, and as a result, the ability to suppress the growth of the primary recrystallized grains is reduced. Thus, it is considered that good magnetic properties were finally obtained. If the amount of Al is less than 0.0010 wt%, the above effect cannot be obtained, and
When the content exceeds 0080 wt%, the secondary recrystallized grain size becomes coarse, and iron loss deteriorates. For the above reasons, the addition amount of Al is 0.0010 to 0.00
It must be in the range of 80 wt%.

【0047】また、Alには添加量が多くなると脱炭焼鈍
でのサブスケールの生成や、仕上焼鈍でのフォルステラ
イトの生成を困難にするという側面がある。このような
被膜の劣化により、被膜外観のみならず磁気特性も劣化
する。これらの劣化を防ぐためにもAlは0.0080wt%以下
に制限する必要がある。このような適正範囲が存在する
理由は明らかではないが、固溶Al量が多くなると鋼板表
層付近で酸化物を形成し易くなり、脱炭焼鈍でのサブス
ケール生成や仕上焼鈍でのフォルステライト被膜の生成
を阻害する等の悪影響が現れるものと考えられる。
In addition, when Al is added in a large amount, it is difficult to form subscales in decarburizing annealing and forsterite in finishing annealing. Such deterioration of the coating deteriorates not only the appearance of the coating but also the magnetic properties. In order to prevent such deterioration, it is necessary to limit Al to 0.0080 wt% or less. It is not clear why such an appropriate range exists, but as the amount of solute Al increases, oxides are more likely to form near the surface of the steel sheet, producing subscale during decarburization annealing and forsterite coating during finish annealing. It is thought that an adverse effect such as inhibiting the production of is produced.

【0048】(圧延条件)以上の成分に調整された鋼
は、連続鋳造されスラブとなる。このときスラブ内の組
織における柱状晶の比率を多くすることが必要である。
柱状晶内の析出粒子は、等軸晶部に比べ細かく、この比
率を多くすることにより続くスラブ加熱での固溶を良好
なものとさせる。そのため柱状晶の比率は40%以上が必
要となる。
(Rolling conditions) The steel adjusted to the above components is continuously cast into a slab. At this time, it is necessary to increase the ratio of columnar crystals in the structure in the slab.
The precipitated particles in the columnar crystal are finer than the equiaxed crystal part, and by increasing this ratio, the solid solution in the subsequent slab heating is improved. Therefore, the ratio of columnar crystals must be 40% or more.

【0049】続くスラブ加熱では加熱温度を1350℃以上
とすることが必要である。この発明ではAlを上記に示し
た所定の量添加したうえで、連続鋳造でのスラブ内の柱
状晶率を40%以上とし、更に、スラブ加熱温度を1350℃
以上とすることにおいてはじめて、BN、Mn(Se+S)
を一旦完全に固溶させることが可能となり、その後の再
析出により均一微細なインヒビターの分散析出状態を得
ることができる。
In the subsequent slab heating, it is necessary to set the heating temperature to 1350 ° C. or higher. In the present invention, after adding the above-mentioned predetermined amount of Al, the columnar crystal ratio in the slab in continuous casting is set to 40% or more, and the slab heating temperature is set to 1350 ° C.
For the first time, BN, Mn (Se + S)
Can be once completely dissolved in a solid solution, and a uniform finely dispersed state of the inhibitor can be obtained by subsequent reprecipitation.

【0050】また、スラブ加熱では、析出したBNの粗
大化が問題となる。これはBの拡散係数が大きいことに
由来するものと思われる。よって、1250℃から目標とな
る加熱温度までの昇温に要する時間を1時間以内とし、
更に、前述の実験より均熱時間t(min )を均熱温度T
(℃)で決定される次式、 1/5×(1450−T)≦t≦2/5(1500−T) (T:スラブ加熱温度)の範囲とすることが必要であ
る。
Also, in slab heating, there is a problem that the deposited BN becomes coarse. This seems to be due to the large diffusion coefficient of B. Therefore, the time required to raise the temperature from 1250 ° C. to the target heating temperature should be within one hour,
Further, according to the above-mentioned experiment, the soaking time t (min) is changed to the soaking temperature T
The following equation determined by (° C.): 1/5 × (1450−T) ≦ t ≦ 2/5 (1500−T) (T: slab heating temperature) needs to be in the range.

【0051】なお、引き続く熱間圧延に際し、スラブ加
熱前後において組織均一化のための厚み低減処理や幅圧
下処理など、公知の技術を随時加えることも可能であ
る。熱間圧延によって得られた熱延板は、必要に応じた
熱延板焼鈍後、1回の冷間圧延により最終板厚とする冷
延1回法、又は必要に応じて熱延板焼鈍を施した後、第
1回目の冷間圧延、更に中間焼鈍を挟んで第2回目の冷
間圧延を施す冷延2回法が採用できる。また、複数の中
間焼鈍を挟んで3回以上の冷間圧延を施すこともでき
る。
In the subsequent hot rolling, a known technique such as a thickness reduction treatment or a width reduction treatment for uniformizing the structure can be added before and after the slab heating, as needed. The hot-rolled sheet obtained by hot rolling is subjected to hot-rolled sheet annealing after hot-rolled sheet annealing as necessary, and one-time cold-rolling to make the final sheet thickness by one cold rolling, or hot-rolled sheet annealing as necessary. After the application, a cold rolling twice method in which a first cold rolling and further a second cold rolling with an intermediate annealing interposed therebetween can be adopted. Further, cold rolling can be performed three times or more with a plurality of intermediate annealings interposed therebetween.

【0052】冷間圧延の圧下率については、従来公知の
ように冷延2回法の場合、第1回目の圧延は15〜60%の
圧下率とする。この圧下率が15%未満の場合は圧延再結
晶の機構が作用しないため結晶組織の均一化が得られ
ず、60%を超えると結晶組織の集積化が起こり第2回目
の圧延の効果が得られなくなるためである。また、最終
圧延の圧下率は80〜90%とする。圧下率が90%を超えた
場合、二次再結晶が困難となり、80%未満では良好な二
次再結晶粒の方位が得られず、製品の磁束密度が劣化す
るからである。
With respect to the rolling reduction of the cold rolling, the rolling of the first rolling is performed at a rolling reduction of 15 to 60% in the case of the cold rolling twice method as conventionally known. If the rolling reduction is less than 15%, the mechanism of rolling recrystallization does not work, so that the crystal structure cannot be made uniform. If it exceeds 60%, the crystal structure is integrated and the effect of the second rolling is obtained. This is because it will not be possible. The rolling reduction of the final rolling is set to 80 to 90%. If the rolling reduction exceeds 90%, secondary recrystallization becomes difficult, and if it is less than 80%, good orientation of secondary recrystallized grains cannot be obtained and the magnetic flux density of the product deteriorates.

【0053】最終冷間圧延に際して、100 〜350 ℃での
温間圧延もしくは100 〜350 ℃で10〜60min のパス間時
効処理は、一次再結晶の集合組織を一層改善することが
可能となるので、この発明において採用することは好ま
しい。また、最終冷間圧延後に、公知の磁区細分化処理
を施すことも可能であり、例えば鋼板表面に線状の溝を
設ける処理などを行うことができる。
In the final cold rolling, warm rolling at 100 to 350 ° C. or aging treatment between passes at 100 to 350 ° C. for 10 to 60 minutes can further improve the texture of primary recrystallization. It is preferable to employ the present invention. Further, after the final cold rolling, it is also possible to perform a known domain refining process, for example, a process of providing a linear groove on the surface of the steel sheet.

【0054】以上の工程により最終板厚とした鋼板は、
公知の手法による脱炭・一次再結晶焼鈍を施し、MgO を
主成分とする焼鈍分離剤を鋼板表面に塗布し最終仕上焼
鈍に供される。そのときTi化合物を添加すること、ある
いはCaやBを焼鈍分離剤中に含有させることは磁気特性
を更に向上させる効果がある。
The steel sheet having the final thickness obtained through the above steps is
The steel sheet is subjected to decarburization and primary recrystallization annealing by a known method, and an annealing separator containing MgO as a main component is applied to the surface of the steel sheet and subjected to final finish annealing. At that time, adding a Ti compound or adding Ca or B to the annealing separator has the effect of further improving magnetic properties.

【0055】最終仕上焼鈍においては、昇温途中の少な
くとも900 ℃以上からはH2を含有する雰囲気中で昇温す
ることが必要である。すなわち、高温までN2のみの雰囲
気中で焼鈍を行うと、最終仕上焼鈍中に窒化が生じ方位
の劣る結晶粒が二次再結晶し磁束密度の劣化を招いてし
まうからであり、よって最終仕上焼鈍中の雰囲気は少な
くとも900 ℃以上においてH2を通入することが必要であ
る。また、H2雰囲気は上記被膜中の酸化物や窒化物の形
成に重要な働きをしており、900 ℃以上の焼鈍の中期か
ら後期において特に還元性を強めておくことが必要であ
ると考えられる。
In the final finish annealing, it is necessary to raise the temperature in an atmosphere containing H 2 from at least 900 ° C. during the temperature rise. That is, if annealing is performed in an atmosphere of only N 2 up to a high temperature, nitridation occurs during the final finish annealing, and crystal grains having inferior orientation undergo secondary recrystallization, leading to deterioration of the magnetic flux density. The atmosphere during annealing requires H 2 to pass at least at 900 ° C. or higher. In addition, the H 2 atmosphere plays an important role in the formation of oxides and nitrides in the above film, and it is considered necessary to enhance the reducibility especially in the middle to late stages of annealing at 900 ° C or higher. Can be

【0056】最終仕上焼鈍ののちは、未反応の焼鈍分離
剤を除去した後、鋼板表面に絶縁コーティングを塗布し
て製品となすが、必要に応じてコーティング塗布前に鋼
板表面を鏡面化してもよく、また、コーティングの塗布
焼き付け処理を平坦化処理と兼ねることも可能である。
更に、二次再結晶後の鋼板に対し、公知の磁区細分化処
理、、すなわちプラズマジェットやレーザー照射を線状
領域に施したり、突起ロールによる線状の凹み領域を設
けたりする処理を行い、鉄損低減効果を得ることもでき
る。
After the final finish annealing, after removing the unreacted annealing separating agent, an insulating coating is applied to the steel sheet surface to form a product. If necessary, the steel sheet surface may be mirror-finished before coating. Also, the coating baking process of the coating can also be used as the flattening process.
Further, for the steel sheet after the secondary recrystallization, known domain refining treatment, that is, performing plasma jet or laser irradiation on the linear region, or performing a process of providing a linear concave region by a projection roll, Iron loss reduction effect can also be obtained.

【0057】[0057]

【実施例】表4に示す成分及び残余は鉄及び不可避的不
純物よりなる連続鋳造スラブを用意した。
EXAMPLE A continuously cast slab was prepared in which the components shown in Table 4 and the balance consisted of iron and unavoidable impurities.

【0058】[0058]

【表4】 [Table 4]

【0059】これらの連続鋳造スラブについて冷却速度
の制御により柱状晶率を25%及び70%とした各二本のス
ラブを1250℃から1420℃まで50min で加熱し15min 均熱
した後、板厚2.2 mmまで熱延し、550 ℃でコイル状に巻
き取り熱延板とした。この熱延板に対し1000℃、60s の
熱延板焼鈍を施し、20℃/sで急冷後、1回目の冷延で板
厚1.6mm に仕上げた。この鋼板に1050℃まで昇温して60
s 保持する中間焼鈍を施し、40℃/sで急冷し、冷間圧延
の途中に300 ℃,30min 、パス間時効処理を行い、それ
ぞれ0.22mm厚に仕上げた。得られた冷延板には脱脂処
理、840 ℃で2 min の脱炭焼鈍を施した後、MgO にSrSO
4 を2 %、TiO2を8 %添加した焼鈍分離剤を塗布してか
ら最終仕上焼鈍を施した。この最終仕上焼鈍の条件は、
850 ℃までN2中で30℃/hで昇温した後、850 ℃から1200
℃までを50%N2・50%H2中で20℃/hで昇温し1200℃では
H2中で8 h 保持し、その後、600 ℃まではH2中で、600
℃からはN2の雰囲気で降温するものとした。最終仕上焼
鈍後、未反応の焼鈍分離剤を除去し、60%のコロイダル
シリカを含有するリン酸マグネシウムを張力コーティン
グとして塗布、840 ℃で焼き付けて製品とした。得られ
た製品の磁気特性は表5のとおりである。
With respect to these continuous cast slabs, two slabs each having a columnar crystal ratio of 25% and 70% by controlling the cooling rate were heated from 1250 ° C. to 1420 ° C. for 50 minutes and soaked for 15 minutes. mm and rolled into a coil at 550 ° C to form a hot-rolled sheet. The hot-rolled sheet was annealed at 1000 ° C. for 60 s, rapidly cooled at 20 ° C./s, and finished with a first cold-rolling to a thickness of 1.6 mm. The temperature of this steel sheet is raised to 1050 ° C and
s Holding intermediate annealing, quenching at 40 ° C / s, aging treatment between passes at 300 ° C for 30min during cold rolling, each finished to 0.22mm thickness. The obtained cold-rolled sheet was subjected to degreasing treatment and decarburizing annealing at 840 ° C for 2 minutes, and then SrSO4 was added to MgO.
An annealing separator containing 2% of 4 and 8% of TiO 2 was applied and then subjected to final finish annealing. The conditions for this final finish annealing are as follows:
After heating up to 850 ° C at 30 ° C / h in N 2 ,
Up to 1200 ℃ in 50% N 2・ 50% H 2 at 20 ℃ / h
H 2 and 8 h holding in, then up to 600 ° C. in H 2, 600
And it shall be cooled in an atmosphere of N 2 from ° C.. After the final finish annealing, the unreacted annealing separating agent was removed, and magnesium phosphate containing 60% colloidal silica was applied as a tension coating and baked at 840 ° C. to obtain a product. Table 5 shows the magnetic properties of the obtained product.

【0060】[0060]

【表5】 [Table 5]

【0061】表5から明らかなように、BNをインヒビ
ターとして用いる方向性電磁鋼板を製造するに際し、素
材スラブ中にAlを微量含有させ、かつ、スラブ中の柱状
晶率を高めた場合には、極めて高い磁束密度と、低い鉄
損特性が得られている。
As is clear from Table 5, when manufacturing a grain-oriented electrical steel sheet using BN as an inhibitor, when a small amount of Al is contained in the material slab and the columnar crystal ratio in the slab is increased, Extremely high magnetic flux density and low iron loss characteristics are obtained.

【0062】(実施例2)表6に示す成分と、残余は鉄
及び不可避的不純物よりなる連続鋳造スラブを用意し
た。
(Example 2) A continuous casting slab composed of the components shown in Table 6 and the balance being iron and unavoidable impurities was prepared.

【0063】[0063]

【表6】 [Table 6]

【0064】これらの連続鋳造スラブについて、冷却速
度の制御により柱状晶率を83%とし、1250℃から1400℃
までを40min で加熱し、35min 均熱した後、2.6 mm厚ま
で熱延し、550 ℃でコイル状に巻き取り熱延板とした。
この熱延板に対し、900 ℃で60s 均熱する熱延板焼鈍を
施した後、20℃/sで急冷後、酸洗し、1回目の冷延で1.
8 mmに仕上げた。
With respect to these continuously cast slabs, the columnar crystal ratio was adjusted to 83% by controlling the cooling rate, and the temperature was changed from 1250 ° C. to 1400 ° C.
After heating for 40 min and soaking for 35 min, it was hot-rolled to a thickness of 2.6 mm and wound into a coil at 550 ° C to form a hot-rolled sheet.
The hot-rolled sheet was subjected to hot-rolled sheet annealing at 900 ° C. for 60 s, followed by rapid cooling at 20 ° C./s, pickling, and first cold rolling at 1.
Finished to 8 mm.

【0065】次いで、1050℃まで昇温し、60s 保持する
中間焼鈍を施し、25℃/sで急冷した。上記により得られ
た各2枚の鋼板のうち、1枚は250 ℃の温間圧延を施
し、更に、0.5 %のCaと0.09%のBを含有するMgO にSr
SO4 を4 %、TiO2を7 %添加してなる焼鈍分離剤を塗布
し、最終仕上焼鈍を行った。最終仕上焼鈍の条件は、85
0 ℃まではN2中で30℃/hで昇温し、850 ℃から1050℃ま
では25%N2と75%H2との混合雰囲気中で15℃/hで昇温
し、さらに、H2中で25℃/hで1200℃まで昇温し、この12
00℃で8 h 保持した後、600 ℃までH2中で降温後、600
℃からはN2の雰囲気で降温するものとした。かかる仕上
焼鈍後、未反応の焼鈍分離剤を除去し、50%のコロイダ
ルシリカを含有するリン酸マグネシウムを張力コーティ
ングとして塗布し、840 ℃で焼き付けて製品とした。こ
れらの製品の磁気特性は表7のとおりである。
Next, the temperature was raised to 1050 ° C., an intermediate annealing was performed for 60 seconds, and quenched at 25 ° C./s. One of the two steel sheets obtained above was subjected to warm rolling at 250 ° C., and further, Sr was added to MgO containing 0.5% Ca and 0.09% B.
An annealing separator made by adding 4% of SO 4 and 7% of TiO 2 was applied, and final finish annealing was performed. The condition of final finish annealing is 85
0 ℃ until the temperature was raised at 30 ° C. / h in N 2, was heated at 15 ° C. / h in a mixed atmosphere of from 850 ° C. to 1050 ℃ 25% N 2 and 75% H 2, further the temperature was raised to 1200 ° C. at 25 ° C. / h in H 2, the 12
After 8 h holding at 00 ° C., after cooling in H 2 to 600 ° C., 600
And it shall be cooled in an atmosphere of N 2 from ° C.. After the finish annealing, the unreacted annealing separator was removed, magnesium phosphate containing 50% colloidal silica was applied as a tension coating, and baked at 840 ° C. to obtain a product. Table 7 shows the magnetic properties of these products.

【0066】[0066]

【表7】 [Table 7]

【0067】表7から明らかなように、BNをインヒビ
ターとして用いる方向性電磁鋼板を製造するに際し、素
材スラブ中にAlを微量含有させた発明例は、極めて高い
磁束密度と、低い鉄損特性が得られ、しかも被膜外観も
良好である。更に、冷間圧延の際に温間圧延を施した場
合には、磁気特性が一層向上している。
As is apparent from Table 7, when manufacturing a grain-oriented electrical steel sheet using BN as an inhibitor, the invention example in which a small amount of Al is contained in the material slab has extremely high magnetic flux density and low iron loss characteristics. Obtained and the coating appearance is good. Further, when warm rolling is performed during cold rolling, the magnetic properties are further improved.

【0068】[0068]

【発明の効果】かくしてこの発明によれば、BNを主た
るインヒビターとして利用しながら磁束密度が高く、鉄
損が低い方向性電磁鋼板の製造が可能となり、その結
果、良好な被膜特性と、高い磁束密度の両立が可能とな
り、従来に比べ、更に一層の鉄損値の低下が可能になっ
た。
As described above, according to the present invention, it is possible to manufacture a grain-oriented electrical steel sheet having a high magnetic flux density and a low iron loss while using BN as a main inhibitor. This makes it possible to achieve both densities and reduce the iron loss value even more than before.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に至る基礎的実験におけるAl含有量と
一次再結晶粒径との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the Al content and the primary recrystallized grain size in a basic experiment leading to the present invention.

【図2】この発明に至る基礎的実験におけるAl含有の有
無による析出物分布の違いを表すグラフである。
FIG. 2 is a graph showing the difference in the distribution of precipitates depending on the presence or absence of Al in a basic experiment leading to the present invention.

【図3】この発明に至る基礎的実験におけるスラブ加熱
温度及び加熱時間に対する磁気特性の良否を表すグラフ
である。
FIG. 3 is a graph showing the quality of magnetic characteristics with respect to a slab heating temperature and a heating time in a basic experiment leading to the present invention.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K033 AA02 BA01 BA02 CA01 CA03 CA04 CA06 CA09 DA01 FA01 HA03 HA05 JA01 JA04 RA04 RA09 SA01  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4K033 AA02 BA01 BA02 CA01 CA03 CA04 CA06 CA09 DA01 FA01 HA03 HA05 JA01 JA04 RA04 RA09 SA01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】C:0.03〜0.10wt%、 Si:2.5 〜4.5 wt%、 Mn:0.05〜1.5 wt%、 B:0.0010〜0.0060wt%、 N:0.0030〜0.010 wt%、 S及びSeの1種又は2種:0.010 〜0.040 wt%、 を含み、かつMn、S、Se量につき次式 Mn (wt%)/(S(wt%) +Se(wt%) )≧2.5 を満足する電磁鋼板用連続鋳造スラブを鋳造し、 この連続鋳造スラブを加熱均熱してから熱間圧延を行っ
た後、1回又は中間焼鈍を挟む2回以上の冷間圧延を施
して最終板厚の冷延板を得、該冷延板に一次再結晶を兼
ねた脱炭焼鈍を施した後、二次再結晶及び純化処理をす
る最終仕上焼鈍を行う方向性電磁鋼板の製造方法におい
て、 前記連続鋳造スラブの鋳造までに、更にAl:0.0010〜0.
0080wt%を含有させておき、かつ、該連続鋳造スラブに
おける柱状晶比率を40%以上とし、 更に、スラブ加熱温度を1350℃以上としたうえで、1250
℃から該加熱温度域までの昇温時間を1時間以内とし、 引き続くスラブ均熱時間t(min )を次式 1/5×(1450−T)≦t≦2/5(1500−T) (T:スラブ加熱温度(℃))を満たす範囲とすること
を特徴とする高磁束密度低鉄損方向性電磁鋼板の製造方
法。
1. C: 0.03 to 0.10 wt%, Si: 2.5 to 4.5 wt%, Mn: 0.05 to 1.5 wt%, B: 0.0010 to 0.0060 wt%, N: 0.0030 to 0.010 wt%, one of S and Se Species or 2 types: For electromagnetic steel sheets containing 0.010 to 0.040 wt%, and satisfying the following formula for the amounts of Mn, S, and Se: Mn (wt%) / (S (wt%) + Se (wt%)) ≧ 2.5 A continuous cast slab is cast, the continuous cast slab is heated and soaked, then hot-rolled, and then cold-rolled to a final thickness of one or two or more times with intermediate annealing to obtain a cold-rolled sheet having a final thickness. The method for producing a grain-oriented electrical steel sheet obtained by subjecting the cold-rolled sheet to decarburizing annealing also serving as primary recrystallization, and then performing final finish annealing for secondary recrystallization and purification treatment, wherein the continuous cast slab is cast. By further, Al: 0.0010-0.
0080 wt%, the columnar crystal ratio in the continuous cast slab is 40% or more, and the slab heating temperature is 1350 ° C or more.
The heating time from the temperature to the heating temperature range is set within one hour, and the subsequent slab soaking time t (min) is expressed by the following formula: 1/5 × (1450−T) ≦ t ≦ 2/5 (1500−T) ( (T: slab heating temperature (° C.)).
【請求項2】 連続鋳造スラブにはインヒビター元素と
して、更にCu、Sb、Sn、Bi、Moから選ばれた1種又は2
種以上を各々0.005 〜0.30wt%の範囲で含有させること
を特徴とする請求項1記載の高磁束密度低鉄損方向性電
磁鋼板の製造方法。
2. The continuous casting slab further contains one or more selected from Cu, Sb, Sn, Bi, and Mo as an inhibitor element.
2. The method for producing a magnetic steel sheet having a high magnetic flux density and a low iron loss according to claim 1, wherein each of the seeds contains at least 0.005 to 0.30 wt%.
【請求項3】 最終冷間圧延を行うに当たり、その少な
くとも1パス以上を100 〜350 ℃での温間圧延とする
か、100 〜350 ℃において10〜60min のパス間時効処理
を施すことを特徴とする請求項1又は2記載の高磁束密
度低鉄損方向性電磁鋼板の製造方法。
3. The final cold rolling is characterized in that at least one or more passes are warm-rolled at 100 to 350 ° C. or an inter-pass aging treatment is performed at 100 to 350 ° C. for 10 to 60 minutes. The method for producing a high magnetic flux density and low iron loss grain-oriented electrical steel sheet according to claim 1 or 2.
JP33117498A 1998-11-20 1998-11-20 Method for producing grain-oriented electrical steel sheet Expired - Fee Related JP3885391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33117498A JP3885391B2 (en) 1998-11-20 1998-11-20 Method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33117498A JP3885391B2 (en) 1998-11-20 1998-11-20 Method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2000160304A true JP2000160304A (en) 2000-06-13
JP3885391B2 JP3885391B2 (en) 2007-02-21

Family

ID=18240721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33117498A Expired - Fee Related JP3885391B2 (en) 1998-11-20 1998-11-20 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP3885391B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021509150A (en) * 2017-12-26 2021-03-18 ポスコPosco Directional electrical steel sheet and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021509150A (en) * 2017-12-26 2021-03-18 ポスコPosco Directional electrical steel sheet and its manufacturing method
JP7037657B2 (en) 2017-12-26 2022-03-16 ポスコ Directional electrical steel sheet and its manufacturing method

Also Published As

Publication number Publication date
JP3885391B2 (en) 2007-02-21

Similar Documents

Publication Publication Date Title
JPH0885825A (en) Production of grain oriented silicon steel sheet excellent in magnetic property over entire length of coil
JP3357578B2 (en) Grain-oriented electrical steel sheet with extremely low iron loss and method for producing the same
JP3674183B2 (en) Method for producing grain-oriented electrical steel sheet
JP3415377B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with extremely low iron loss
JP2951852B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties
JP3357603B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with extremely low iron loss
JP4123679B2 (en) Method for producing grain-oriented electrical steel sheet
JP3065853B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
EP0468819B1 (en) Method for manufacturing an oriented silicon steel sheet having improved magnetic flux density
JP4239456B2 (en) Method for producing grain-oriented electrical steel sheet
JPH02294428A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
JP4205816B2 (en) Method for producing unidirectional electrical steel sheet with high magnetic flux density
JPH11269544A (en) Manufacture of high flux density low core loss grain oriented silicon steel sheet
JP3885391B2 (en) Method for producing grain-oriented electrical steel sheet
JP2002105537A (en) Method for manufacturing grain oriented silicon steel sheet hardly causing edge crack and having satisfactory film characteristic, excellent magnetic property and high magnetic flux density
JPH02274812A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH06256846A (en) Production of grain oriented electrical steel sheet having stable high magnetic flux density
JP3443151B2 (en) Method for producing grain-oriented silicon steel sheet
JP2819994B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JP3314844B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent magnetic properties and coating properties
JPH07310124A (en) Production of thick grain-oriented silicon steel plate excellent in magnetic characteristic and film coating characteristic
JP3271655B2 (en) Method for producing silicon steel sheet and silicon steel sheet
JP2948454B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JPH05156361A (en) Manufacture of grain-oriented electric steel sheet excellent in magnetic property
JP2024503245A (en) Grain-oriented electrical steel sheet and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060120

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees