JP2002105537A - Method for manufacturing grain oriented silicon steel sheet hardly causing edge crack and having satisfactory film characteristic, excellent magnetic property and high magnetic flux density - Google Patents

Method for manufacturing grain oriented silicon steel sheet hardly causing edge crack and having satisfactory film characteristic, excellent magnetic property and high magnetic flux density

Info

Publication number
JP2002105537A
JP2002105537A JP2000295735A JP2000295735A JP2002105537A JP 2002105537 A JP2002105537 A JP 2002105537A JP 2000295735 A JP2000295735 A JP 2000295735A JP 2000295735 A JP2000295735 A JP 2000295735A JP 2002105537 A JP2002105537 A JP 2002105537A
Authority
JP
Japan
Prior art keywords
mass
annealing
steel sheet
reduction
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000295735A
Other languages
Japanese (ja)
Inventor
Tadashi Nakanishi
匡 中西
Kunihiro Senda
邦浩 千田
Toshito Takamiya
俊人 高宮
Mitsumasa Kurosawa
光正 黒沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2000295735A priority Critical patent/JP2002105537A/en
Publication of JP2002105537A publication Critical patent/JP2002105537A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively prevent edge cracking which is liable to occur at hot rolling in the case of manufacturing a grain oriented silicon steel sheet containing Bi in combination with Cr together with known inhibitors and to manufacture a grain oriented silicon steel sheet having high magnetic flux density, satisfactory film characteristics and excellent magnetic properties in high production yield. SOLUTION: Prior to the initiation of roughing in hot rolling in the process for manufacturing the grain oriented silicon steel sheet, a steel slab is heated to <1,300 deg.C in an atmosphere of 0.01-15 vol.% average oxygen concentration, subjected to horizontal reduction at 1-20% draft and/or edging at 1-20% draft, and further heated to >=1,350 deg.C in an atmosphere of 0.01-2 vol.% average oxygen concentration while regulating temperature-rise rate at >=1,300 deg.C to <=10 deg.C/min.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、変圧器や発電機
等の鉄心として用いられる高磁束密度方向性電磁鋼板の
製造方法に関し、特に被膜特性の有利な改善を図ると共
に、熱間圧延における耳割れの発生を効果的に防止しよ
うとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high magnetic flux density grain-oriented electrical steel sheet used as an iron core of a transformer, a generator, and the like. It is intended to effectively prevent the occurrence of cracks.

【0002】[0002]

【従来の技術】Siを含有し、かつ製品の結晶方位が{1
10}<001>方位いわゆるゴス方位に配向した方向
性電磁鋼板は、優れた軟磁気特性を示すことから、変圧
器や発電機等の鉄心として多用されている。かかる電磁
鋼板の特性として基本的に重要なことは、鉄損値が低い
ことである。特に最近では、省エネルギー化への要請が
一段と高まったこともあって、方向性電磁鋼板の特性改
善に対する要求はますます強まりつつある。
2. Description of the Related Art A product containing Si and having a crystal orientation of $ 1
Oriented electrical steel sheets oriented in the 10 ° <001> orientation, the so-called Goss orientation, have excellent soft magnetic properties and are therefore frequently used as iron cores for transformers and generators. What is fundamentally important as a characteristic of such an electromagnetic steel sheet is that the iron loss value is low. In particular, recently, the demand for energy saving has been further increased, and the demand for improving the properties of grain-oriented electrical steel sheets has been increasing more and more.

【0003】一般に電磁鋼板の鉄損を低減するには、渦
電流損の低減に有効なSiの含有量を増加して電気抵抗を
高める方法、鋼板板厚を薄くする方法、製品の結晶粒径
を小さくする方法、さらには結晶方位の集積度を高めて
磁束密度を向上させる方法等が知られている。しかしな
がら、現状では、Si含有量を増加させる方法は、Siを過
度に含有させると圧延性や加工性の劣化を招くことから
限界となっており、また鋼板板厚を薄くする方法や結晶
粒径を小さくする方法も、製造コストの極端な増大を招
くため限界となっている。
Generally, in order to reduce the iron loss of an electromagnetic steel sheet, a method of increasing the Si content effective for reducing the eddy current loss to increase the electric resistance, a method of reducing the thickness of the steel sheet, and a method of reducing the grain size of the product Are known, and furthermore, a method of increasing the degree of integration of crystal orientation to improve the magnetic flux density is known. However, at present, the method of increasing the Si content is at a limit since excessively containing Si causes deterioration in rollability and workability. Is also limited because of the extreme increase in manufacturing costs.

【0004】残る磁束密度を向上させる方法について
は、これまでにもよく研究されていて、インヒビターと
呼ばれる析出物の種類の選定とその形態の制御によっ
て、二次再結晶粒におけるゴス方位の集積度を高めると
いったものが主である。ここに、インヒビターとして
は、Cu2-x S, MnS, Cu2-x Se, MnSe, AlN, BN等の
ような硫化物、セレン化物および窒化物で、一般に鋼中
への溶解度が極めて小さい物質が用いられている。ま
た、最近では、インヒビター機能の一層の増強を目的と
して、例えば特公昭60−48886 号公報には鋼中にCuやSn
を添加する方法が、また特開平2−115319号公報にはSb
やMoを添加する方法が、それぞれ提案されている。イン
ヒビターの形態としては、均一に微細分散させることが
重要である。このため、従来から、熱間圧延前のスラブ
加熱を高温加熱としてインヒビターを完全に固溶させ、
熱間圧延工程以降、二次再結晶までの過程でこのインヒ
ビターを微細に分散析出させる方法が採られている。
[0004] Methods for improving the remaining magnetic flux density have been well studied so far, and the degree of integration of Goss orientation in secondary recrystallized grains can be controlled by selecting the type of precipitate called an inhibitor and controlling its morphology. The main thing is to increase the quality. Here, inhibitors include sulfides, selenides, and nitrides such as Cu 2-x S, MnS, Cu 2-x Se, MnSe, AlN, and BN, which are substances that generally have extremely low solubility in steel. Is used. Recently, for the purpose of further enhancing the inhibitor function, for example, Japanese Patent Publication No. 60-48886 discloses that Cu or Sn is contained in steel.
Is added, and JP-A-2-115319 discloses Sb.
And methods for adding Mo have been proposed. As the form of the inhibitor, it is important to uniformly and finely disperse it. For this reason, conventionally, slab heating before hot rolling was heated to high temperature to completely dissolve the inhibitor,
A method is employed in which the inhibitor is finely dispersed and precipitated in the process from the hot rolling step to the secondary recrystallization.

【0005】ところで、特開昭51−41624 号公報に開示
されているように、インヒビターの機能強化に極めて効
果の高い元素として古くからBiが知られているが、この
Biは、インヒビター機能の強化元素としての効果は優れ
るものの、方向性電磁鋼板に固有のフォルステライト被
膜の生成を阻害するという欠陥があった。かかる被膜欠
陥の改善方法としては、特開2000−96149 号公報に記載
されているように、鋼中にCrを添加することが有効であ
り、この方法により被膜特性を良好にすることが可能と
なった。
As disclosed in Japanese Patent Application Laid-Open No. 51-41624, Bi has long been known as an element that is extremely effective in enhancing the function of an inhibitor.
Bi has an excellent effect as an inhibitory element of the inhibitor function, but has a defect that it inhibits formation of a forsterite film unique to grain-oriented electrical steel sheets. As a method for improving such coating defects, it is effective to add Cr to steel as described in JP-A-2000-96149, and it is possible to improve coating characteristics by this method. became.

【0006】しかしながら、Biを含有する鋼中にCrを含
有させると、熱間圧延における耳割れが極度に増加する
だけでなく、安定して良好な磁気特性が得られないとい
う新たな問題が生じた。方向性電磁鋼板は、磁気特性ば
かりでなく、安価な供給も強く望まれていて、生産歩留
り良く製造することも重要な課題である。そして、この
生産歩留り向上という観点からは、熱間圧延における板
端部の耳割れの発生を如何に防止するかは重要な課題で
ある。
However, when Cr is contained in the Bi-containing steel, not only the edge cracks in hot rolling are extremely increased, but also a new problem that stable and good magnetic properties cannot be obtained arises. Was. As for grain-oriented electrical steel sheets, not only magnetic properties but also inexpensive supply are strongly desired, and it is also an important issue to manufacture them with good production yield. From the viewpoint of improving the production yield, it is an important issue how to prevent the occurrence of edge cracks at the plate edge in hot rolling.

【0007】Biを添加した方向性電磁鋼板における耳割
れ低減技術としては、例えば特開平6−179918号公報お
よび特開平8−246055号公報等に記載の方法がある。特
開平6−179918号公報は、S量を少なくし、かつスラブ
加熱温度を1280℃以下にすることを特徴としているが、
この方法では特開平8−246055号公報にも記載されてい
るようにインヒビターの調整が不適切となり、優れた磁
気特性が得られない。また、特開平8−246055号公報
は、スラブ加熱において1250℃以上の温度域での昇温速
度を速くし、異常粒成長を抑制することによって耳割れ
を低減しようとするものであるが、この方法では、多少
の耳割れ低減効果が認められるものの、十分に満足のい
く効果を得ることはできなかった。なお、これらの技術
はいずれも、Crを添加していない場合のものであり、Bi
とCrを複合添加した場合においては耳割れの低減効果は
認められなかった。
As a technique for reducing edge cracks in a grain-oriented electrical steel sheet to which Bi is added, for example, there are methods described in JP-A-6-179918 and JP-A-8-246055. JP-A-6-179918 is characterized in that the amount of S is reduced and the slab heating temperature is set to 1280 ° C. or less.
In this method, as described in JP-A-8-246055, the adjustment of the inhibitor becomes inappropriate, and excellent magnetic characteristics cannot be obtained. Japanese Patent Application Laid-Open No. Hei 8-246055 discloses a method of increasing the rate of temperature rise in a temperature range of 1250 ° C. or more in slab heating to reduce edge cracks by suppressing abnormal grain growth. According to the method, although some effect of reducing ear cracks was recognized, a sufficiently satisfactory effect could not be obtained. In addition, all of these technologies are those in which Cr is not added.
When Cr and Cr were added in combination, no effect of reducing ear cracking was observed.

【0008】[0008]

【発明が解決しようとする課題】この発明は、上述した
問題を有利に解決するもので、公知のインヒビターと共
に、BiとCrを併せて含有する方向性電磁鋼板を製造する
場合において、熱間圧延時に懸念される耳割れの発生を
効果的に防止して、被膜特性が良好な磁気特性に優れた
高磁束密度方向性電磁鋼板を生産歩留り良く製造する方
法を提案することを目的とする。
SUMMARY OF THE INVENTION The present invention advantageously solves the above-mentioned problems. In the case of manufacturing a grain-oriented electrical steel sheet containing both Bi and Cr together with a known inhibitor, hot rolling is performed. An object of the present invention is to propose a method of effectively preventing the occurrence of edge cracks, which is sometimes concerned, and manufacturing a high magnetic flux density grain-oriented electrical steel sheet having good coating properties and excellent magnetic properties with a high production yield.

【0009】[0009]

【課題を解決するための手段】さて、発明者らは、上記
の目的を達成すべく鋭意研究を重ねた結果、BiとCrを複
合含有する鋼スラブにおいて耳割れの発生を防止するに
は、スラブを1300℃以上に加熱する前にスラブに歪みを
付与し、かつ1300℃以上の高温域での昇温速度を遅くす
ること、また磁気特性を向上させるためには加熱炉の雰
囲気酸素濃度を低くすることが有効であることの知見を
得た。この発明は、上記の知見に立脚するものである。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, to prevent the occurrence of edge cracks in a steel slab containing a complex of Bi and Cr, Before heating the slab to 1300 ° C or higher, the slab should be strained, and the rate of temperature rise in the high temperature range of 1300 ° C or higher should be reduced. We have found that lowering is effective. The present invention is based on the above findings.

【0010】すなわち、この発明の要旨構成は次のとお
りである。 1.C:0.03〜0.10mass%、Si:2.5 〜4.5 mass%、B
i:0.005 〜0.100 mass%、Cr:0.010 〜0.500 mass
%、その他公知のインヒビター元素を含有する組成にな
る鋼スラブを、熱間圧延、冷間圧延および熱処理を組み
合わせた一連の工程によって処理することからなる方向
性電磁鋼板の製造方法において、熱間圧延における粗圧
延開始前に、鋼スラブを平均酸素濃度が0.01〜15 vol%
の雰囲気中で1300℃未満に加熱後、圧下率が1〜20%の
水平圧下および/または圧下率が1〜20%の幅圧下を施
したのち、さらに平均酸素濃度が0.01〜2 vol%の雰囲
気中で1300℃以上における昇温速度を10℃/min以下とし
て1350℃以上の温度に加熱することを特徴とする、耳割
れが少なくかつ被膜特性が良好な磁気特性に優れる高磁
束密度方向性電磁鋼板の製造方法。
That is, the gist of the present invention is as follows. 1. C: 0.03 to 0.10 mass%, Si: 2.5 to 4.5 mass%, B
i: 0.005 to 0.100 mass%, Cr: 0.010 to 0.500 mass
%, A steel slab having a composition containing other known inhibitor elements is subjected to a series of steps combining hot rolling, cold rolling and heat treatment. Before the start of rough rolling in the steel slab, the average oxygen concentration was 0.01 to 15 vol%
After heating in an atmosphere of less than 1300 ° C., a horizontal reduction with a reduction ratio of 1 to 20% and / or a width reduction with a reduction ratio of 1 to 20% are performed, and then an average oxygen concentration of 0.01 to 2 vol% High magnetic flux directionality with less edge cracks and good film properties, characterized by heating to 1350 ° C or more at a rate of temperature rise of 1300 ° C or less in atmosphere at a rate of 10 ° C / min or less. Manufacturing method of electrical steel sheet.

【0011】2.C:0.03〜0.10mass%、Si:2.5 〜4.
5 mass%、Mn:0.05〜1.5 mass%、Bi:0.005 〜0.100
mass%およびCr:0.010 〜0.500 mass%を含有し、さら
にインヒビター元素として、Sおよび/またはSe:0.01
0 〜0.040 mass%、sol.Al:0.015 〜0.050 mass%、
B:0.001 〜0.01mass%およびN:0.005 〜0.015 mass
%を、またインヒビター補強元素として、Ni:0.05〜0.
5 mass%、Cu:0.05〜0.5mass%、Sn:0.05〜0.5 mass
%、Sb:0.005 〜0.10mass%、As:0.005 〜0.10mass
%、Mo:0.005 〜0.10mass%、Te:0.005 〜0.10mass%
およびP:0.005 〜0.10mass%のうちから選んだ1種ま
たは2種以上を含有する組成になる鋼スラブを、熱間圧
延し、必要に応じて熱延板焼鈍を施し、酸洗後、1回ま
たは中間焼鈍を含む2回以上の冷間圧延を施して最終板
厚に仕上げたのち、1次再結晶を兼ねた脱炭焼鈍を施
し、ついでMgOを主成分とする焼鈍分離剤を塗布してか
ら、2次再結晶焼鈍および純化焼鈍からなる最終仕上げ
焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方
法において、熱間圧延における粗圧延開始前に、鋼スラ
ブを平均酸素濃度が0.01〜15 vol%の雰囲気中で1300℃
未満に加熱後、圧下率が1〜20%の水平圧下および/ま
たは圧下率が1〜20%の幅圧下を施したのち、さらに平
均酸素濃度が0.01〜2 vol%の雰囲気中で1300℃以上に
おける昇温速度を10℃/min以下として1350℃以上の温度
に加熱することを特徴とする、耳割れが少なくかつ被膜
特性が良好な磁気特性に優れる高磁束密度方向性電磁鋼
板の製造方法。
2. C: 0.03 to 0.10 mass%, Si: 2.5 to 4.
5 mass%, Mn: 0.05 to 1.5 mass%, Bi: 0.005 to 0.100
mass% and Cr: 0.010 to 0.500 mass%, and further, as an inhibitor element, S and / or Se: 0.01
0 to 0.040 mass%, sol.Al: 0.015 to 0.050 mass%,
B: 0.001 to 0.01 mass% and N: 0.005 to 0.015 mass
%, And as an inhibitor reinforcing element, Ni: 0.05-0.
5 mass%, Cu: 0.05-0.5 mass%, Sn: 0.05-0.5 mass
%, Sb: 0.005 to 0.10mass%, As: 0.005 to 0.10mass
%, Mo: 0.005 to 0.10mass%, Te: 0.005 to 0.10mass%
And P: a steel slab having a composition containing one or more selected from 0.005 to 0.10 mass% is hot-rolled, and if necessary, is subjected to hot-rolled sheet annealing; After performing cold rolling twice or more including intermediate annealing and finishing to the final sheet thickness, decarburizing annealing combined with primary recrystallization is performed, and then an annealing separator mainly composed of MgO is applied. Then, in a method for producing a grain-oriented electrical steel sheet comprising a series of steps of performing a final finish annealing consisting of a secondary recrystallization annealing and a purification annealing, the steel slab has an average oxygen concentration of 0.01% before starting rough rolling in hot rolling. 1300 ℃ in atmosphere of ~ 15 vol%
After heating to less than 1%, the horizontal reduction with a reduction rate of 1 to 20% and / or the width reduction with a reduction rate of 1 to 20% is performed, and then, in an atmosphere having an average oxygen concentration of 0.01 to 2 vol%, 1300 ° C or more. A method of producing a high magnetic flux density grain-oriented electrical steel sheet having a small edge crack and excellent coating properties and excellent magnetic properties, characterized by heating at a temperature of 1350 ° C. or more at a heating rate of 10 ° C./min or less.

【0012】3.C:0.03〜0.10mass%、Si:2.5 〜4.
5 mass%、Mn:0.05〜1.5 mass%、Bi:0.005 〜0.100
mass%およびCr:0.010 〜0.500 mass%を含有し、さら
にインヒビター元素として、Sおよび/またはSe:0.01
0 〜0.040 mass%、sol.Al:0.015 〜0.050 mass%およ
びN:0.005 〜0.015 mass%を、またインヒビター補強
元素として、Ni:0.05〜0.5 mass%、Cu:0.05〜0.5mas
s %、Sn:0.05〜0.5 mass%、Sb:0.005 〜0.10mass
%、As:0.005 〜0.10mass%、Mo:0.005 〜0.10mass
%、Te:0.005 〜0.10mass%およびP:0.005 〜0.10ma
ss%のうちから選んだ1種または2種以上を含有する組
成になる鋼スラブを、熱間圧延し、必要に応じて熱延板
焼鈍を施し、酸洗後、1回または中間焼鈍を含む2回以
上の冷間圧延を施して最終板厚に仕上げたのち、1次再
結晶を兼ねた脱炭焼鈍を施し、ついでMgOを主成分とす
る焼鈍分離剤を塗布してから、2次再結晶焼鈍および純
化焼鈍からなる最終仕上げ焼鈍を施す一連の工程からな
る方向性電磁鋼板の製造方法において、熱間圧延におけ
る粗圧延開始前に、鋼スラブを平均酸素濃度が0.01〜15
vol%の雰囲気中で1300℃未満に加熱後、圧下率が1〜
20%の水平圧下および/または圧下率が1〜20%の幅圧
下を施したのち、さらに平均酸素濃度が0.01〜2 vol%
の雰囲気中で1300℃以上における昇温速度を10℃/min以
下として1350℃以上の温度に加熱することを特徴とす
る、耳割れが少なくかつ被膜特性が良好な磁気特性に優
れる高磁束密度方向性電磁鋼板の製造方法。
3. C: 0.03 to 0.10 mass%, Si: 2.5 to 4.
5 mass%, Mn: 0.05 to 1.5 mass%, Bi: 0.005 to 0.100
mass% and Cr: 0.010 to 0.500 mass%, and further, as an inhibitor element, S and / or Se: 0.01
0 to 0.040 mass%, sol.Al: 0.015 to 0.050 mass% and N: 0.005 to 0.015 mass%, and as inhibitor reinforcing elements Ni: 0.05 to 0.5 mass%, Cu: 0.05 to 0.5 mass
s%, Sn: 0.05 to 0.5 mass%, Sb: 0.005 to 0.10 mass
%, As: 0.005 to 0.10mass%, Mo: 0.005 to 0.10mass
%, Te: 0.005 to 0.10 mass% and P: 0.005 to 0.10 ma
A steel slab having a composition containing one or more selected from ss% is hot-rolled, subjected to hot-rolled sheet annealing if necessary, pickled, and includes one or intermediate annealing After performing cold rolling two or more times to finish the final sheet thickness, decarburizing annealing also serving as primary recrystallization is performed, and then an annealing separator containing MgO as a main component is applied. In the method for producing a grain-oriented electrical steel sheet comprising a series of steps of performing a final finish annealing consisting of crystal annealing and purification annealing, before starting rough rolling in hot rolling, the steel slab has an average oxygen concentration of 0.01 to 15%.
After heating to less than 1300 ° C in a vol% atmosphere, the rolling reduction is
After applying a horizontal reduction of 20% and / or a width reduction of a reduction ratio of 1 to 20%, an average oxygen concentration of 0.01 to 2 vol%
High flux density direction with less edge cracks and excellent coating properties, characterized by heating to a temperature of 1350 ° C or higher with a temperature rise rate of 1300 ° C or higher in an atmosphere of 1300 ° C or higher and 10 ° C / min or lower Manufacturing method of conductive electrical steel sheet.

【0013】4.C:0.03〜0.10mass%、Si:2.5 〜4.
5mass %、Mn:0.05〜1.5 mass%、Bi:0.005 〜0.100
mass%およびCr:0.010 〜0.500 mass%を含有し、さら
にインヒビター元素として、Sおよび/またはSe:0.01
0 〜0.040 mass%、B:0.001〜0.01mass%およびN:
0.005 〜0.015 mass%を、またインヒビター補強元素と
して、Ni:0.05〜0.5 mass%、Cu:0.05〜0.5 mass%、
Sn:0.05〜0.5 mass%、Sb:0.005 〜0.10mass%、As:
0.005 〜0.10mass%、Mo:0.005 〜0.10mass%、Te:0.
005 〜0.10mass%およびP:0.005 〜0.10mass%のうち
から選んだ1種または2種以上を含有する組成になる鋼
スラブを、熱間圧延し、必要に応じて熱延板焼鈍を施
し、酸洗後、1回または中間焼鈍を含む2回以上の冷間
圧延を施して最終板厚に仕上げたのち、1次再結晶を兼
ねた脱炭焼鈍を施し、ついでMgOを主成分とする焼鈍分
離剤を塗布してから、2次再結晶焼鈍および純化焼鈍か
らなる最終仕上げ焼鈍を施す一連の工程からなる方向性
電磁鋼板の製造方法において、熱間圧延における粗圧延
開始前に、鋼スラブを平均酸素濃度が0.01〜15 vol%の
雰囲気中で1300℃未満に加熱後、圧下率が1〜20%の水
平圧下および/または圧下率が1〜20%の幅圧下を施し
たのち、さらに平均酸素濃度が0.01〜2 vol%の雰囲気
中で1300℃以上における昇温速度を10℃/min以下として
1350℃以上の温度に加熱することを特徴とする、耳割れ
が少なくかつ被膜特性が良好な磁気特性に優れる高磁束
密度方向性電磁鋼板の製造方法。
4. C: 0.03 to 0.10 mass%, Si: 2.5 to 4.
5 mass%, Mn: 0.05 to 1.5 mass%, Bi: 0.005 to 0.100
mass% and Cr: 0.010 to 0.500 mass%, and further, as an inhibitor element, S and / or Se: 0.01
0 to 0.040 mass%, B: 0.001 to 0.01 mass% and N:
0.005 to 0.015 mass%, and as inhibitor inhibitor elements, Ni: 0.05 to 0.5 mass%, Cu: 0.05 to 0.5 mass%,
Sn: 0.05-0.5 mass%, Sb: 0.005-0.10 mass%, As:
0.005 to 0.10 mass%, Mo: 0.005 to 0.10 mass%, Te: 0.
A steel slab having a composition containing one or more selected from 005 to 0.10 mass% and P: 0.005 to 0.10 mass% is hot-rolled, and if necessary, hot-rolled sheet annealing is performed. After pickling, cold rolling is performed once or twice or more including intermediate annealing to finish the final sheet thickness, then decarburizing annealing also serving as primary recrystallization, and then annealing mainly containing MgO In the method for producing a grain-oriented electrical steel sheet comprising a series of steps of applying a separating agent and then performing a final finish annealing consisting of a secondary recrystallization annealing and a purification annealing, the steel slab is subjected to hot rolling before starting rough rolling. After heating in an atmosphere having an average oxygen concentration of 0.01 to 15 vol% to less than 1300 ° C., a horizontal reduction with a reduction ratio of 1 to 20% and / or a width reduction with a reduction ratio of 1 to 20% are performed. In an atmosphere with an oxygen concentration of 0.01 to 2 vol%, the temperature rise rate at 1300 ° C or higher is 10 ° C / min. As below
A method for producing a high magnetic flux density grain-oriented electrical steel sheet, characterized by being heated to a temperature of 1350 ° C or higher and having small edge cracks and excellent coating properties and excellent magnetic properties.

【0014】[0014]

【発明の実施の形態】以下に、この発明の基礎となった
実験およびその結果について説明する。実験1 まず、BiおよびCrを含有する鋼スラブの熱間圧延工程で
の耳割れに及ぼすスラブの加熱条件の影響を明らかにす
るために、次の実験を行った。なお、以後、各元素の含
有量の表示に用いる「%」は特に断りがない限り質量百
分率(mass%)を表すものとする。 C:0.08%、Si:3.40%、Mn:0.06%、Cu:0.10%、S
e:0.02%、N:0.0090%、sol.Al:0.027 %、Cr:0.2
0%およびBi:0.030 %を含有する厚さ:220 mmの連続
鋳造スラブを、ガス加熱炉で1200℃, 60分間加熱し、そ
の後一部のスラブについては種々の圧下率で水平圧下
(通常の板厚方向の圧下)を施したのち、誘導加熱炉に
装入した。ついで、1300℃以上の昇温速度を種々に変更
して1360℃まで加熱した。その後、粗圧延で厚さ:45mm
のシートバーとした後、仕上げ圧延によって2.5mm厚と
した熱延板について、耳割れの発生状況を観察した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an experiment on which the present invention is based and its results will be described. Experiment 1 First, the following experiment was conducted to clarify the effect of slab heating conditions on edge cracking in a hot rolling step of a steel slab containing Bi and Cr. Hereinafter, “%” used to indicate the content of each element indicates a mass percentage (mass%) unless otherwise specified. C: 0.08%, Si: 3.40%, Mn: 0.06%, Cu: 0.10%, S
e: 0.02%, N: 0.0090%, sol. Al: 0.027%, Cr: 0.2
A continuous cast slab of 220 mm thickness containing 0% and Bi: 0.030% was heated in a gas heating furnace at 1200 ° C for 60 minutes, and then a part of the slab was subjected to horizontal reduction at various reduction rates (normal (Pressure reduction in the thickness direction), and then charged into an induction heating furnace. Next, the temperature was raised to 1360 ° C. while changing the heating rate at 1300 ° C. or more in various ways. Then, rough rolling thickness: 45mm
Then, the occurrence of edge cracks was observed for a hot-rolled sheet having a thickness of 2.5 mm by finish rolling.

【0015】スラブ加熱条件と熱延板の耳割れとの関係
を、図1に示す。同図に示したように、誘導加熱炉によ
る高温加熱前に20%以下の圧下率で水平圧下を施し、か
つ1300℃以上の高温での昇温速度を遅くした場合に耳割
れの最大深さが小さくなることが判明した。
FIG. 1 shows the relationship between the slab heating conditions and the edge cracks of the hot-rolled sheet. As shown in the figure, the maximum depth of ear cracks when horizontal reduction was performed at a rolling reduction of 20% or less before high-temperature heating by an induction heating furnace and the heating rate at high temperatures of 1300 ° C or more was reduced. Was found to be smaller.

【0016】この耳割れの低減機構については、次のよ
うに考えられる。耳割れは、熱間圧延中に板端部に長手
方向の引張張力が作用することによって発生するが、そ
の際、析出物や結晶粒界等が割れの起点になっていると
考えられる。ところで、スラブを融点に近い高温まで加
熱する時、昇温速度が速いと介在物、析出物が母相へ十
分に固溶しない状態で高温となる。その結果として、介
在物、析出物が存在する部分およびその周辺は局所的に
母相と組成が異なり、従って融点も異なることになる。
この時、融点が低くなると、局所的に液化を生じること
になる。このように、高温への昇温速度が速いと、局所
的に液化を生じてしまい、そこが耳割れの起点となって
耳割れが発生し易くなる。
The mechanism for reducing the ear cracks is considered as follows. The edge cracks are generated by applying a tensile tension in the longitudinal direction to the edge of the sheet during hot rolling. At this time, it is considered that precipitates, crystal grain boundaries, and the like are the starting points of the cracks. By the way, when the slab is heated to a high temperature close to the melting point, if the temperature rising rate is high, the temperature becomes high in a state where inclusions and precipitates are not sufficiently dissolved in the matrix. As a result, the portion where the inclusions and precipitates are present and the periphery thereof locally have a composition different from that of the parent phase, and accordingly have a different melting point.
At this time, if the melting point is low, liquefaction occurs locally. As described above, when the rate of raising the temperature to a high temperature is high, liquefaction occurs locally, and the liquefaction is a starting point of the ear cracks, which easily causes ear cracks.

【0017】特に、Bi含有鋼では、Biはほとんど鉄に固
溶しないので析出しており、このBiを核として他の元素
も析出し易くなっていると考えられる。また、Biは粒界
に偏析し易い元素であるので、析出物と母相界面にBiが
偏析し、析出物が解離固溶しづらくなっていることも考
えられる。さらに、Crを添加すると耳割れが極度に悪化
することから、特にCr系の析出物に対してこの現象が顕
著になるものと考えられる。このため、BiおよびCrを含
有する鋼では局所的に液化が生じ易く、昇温速度が速い
と耳割れが極めて悪化すると考えられる。従って、Crと
Biを含有する鋼では、高温での昇温速度を遅くすること
によって耳割れの改善が期待できる。
Particularly, in Bi-containing steel, Bi hardly forms a solid solution with iron, so that Bi is precipitated, and it is considered that other elements are easily precipitated with this Bi as a nucleus. Further, since Bi is an element that is easily segregated at the grain boundary, it is conceivable that Bi segregates at the interface between the precipitate and the mother phase, and the precipitate is hardly dissociated into a solid solution. Further, when Cr is added, the edge cracks are extremely deteriorated, and it is considered that this phenomenon becomes remarkable especially for Cr-based precipitates. For this reason, it is considered that liquefaction is apt to occur locally in steel containing Bi and Cr, and ear cracks are extremely deteriorated when the heating rate is high. Therefore, Cr and
For Bi-containing steel, improvement in ear cracking can be expected by slowing the rate of temperature rise at high temperatures.

【0018】しかしながら、上記の実験1における結果
が示すように、高温加熱前にスラブに歪みを与えないと
この効果は現れない。これは、スラブに歪みを与えない
で高温に加熱すると、結晶粒の粗大化により、靱性が損
なわれて耳割れが発生し易くなり、昇温速度が遅い場合
でも大きな耳割れが発生したものと考えられる。従っ
て、耳割れを改善するためには、スラブに歪みを与え結
晶粒の粗大化を抑制した上で、高温域での昇温速度を遅
くすることが重要である。ただし、高温加熱前の歪量が
大きすぎると、やはり耳割れが悪化する。これは、歪み
量が大きいと端面に亀裂が生じ、耳割れが発生し易くな
るためと考えられる。
However, as shown in the result of Experiment 1, this effect does not appear unless the slab is strained before high-temperature heating. This is because when the slab is heated to a high temperature without distortion, the crystal grains become coarse, the toughness is impaired and ear cracks are likely to occur, and large ear cracks occur even when the heating rate is slow. Conceivable. Therefore, in order to improve edge cracking, it is important to reduce the rate of temperature rise in a high temperature range while suppressing distortion by giving strain to the slab and suppressing crystal grain coarsening. However, if the amount of strain before heating at a high temperature is too large, ear cracks will also worsen. This is considered to be because a large amount of strain causes cracks on the end face, which tends to cause ear cracks.

【0019】なお、本実験の熱延板を用いて得られた製
品板の磁気特性は、昇温速度が遅い条件ではほとんどが
劣化した。しかしながら、一部の素材では良好な磁気特
性を示した。そこで、この原因を解明するために、加熱
条件についてさらに詳細な調査を行った。その結果、加
熱雰囲気中の酸素濃度が低い場合に良好な磁気特性を示
すことが究明されたのである。そこで、次に加熱雰囲気
と磁気特性との関係について調査を行った。
Incidentally, the magnetic properties of the product sheet obtained by using the hot rolled sheet of the present experiment were almost deteriorated under the condition of a low heating rate. However, some materials showed good magnetic properties. Therefore, in order to elucidate the cause, a more detailed investigation was conducted on the heating conditions. As a result, it has been found that when the oxygen concentration in the heating atmosphere is low, good magnetic properties are exhibited. Then, the relationship between the heating atmosphere and the magnetic properties was investigated next.

【0020】実験2 C:0.08%,Si:3.40%,Mn:0.08%,Cu:0.10%,S
e:0.02%,N:0.0085%,sol.Al:0.027 %,Cr:0.2
5%およびBi:0.040 %を含有する厚さ:210mm、幅:12
00mmの連続鋳造スラブを、ガス加熱炉で1150℃、80分間
加熱し、その後10%の圧下率で水平圧下を施したのち、
誘導加熱炉に装入した。そして、1300℃以上の昇温速度
を3℃/min、15℃/minの2条件で1420℃まで加熱した。
この際、加熱炉の雰囲気中の酸素濃度を種々に変更し
た。その後、粗圧延で厚さ:35mmのシートバーとした
後、仕上げ圧延によって2.3mmの熱延板とした。かくし
て得られた熱延板の耳割れの発生状況について調査した
ところ、昇温速度が3℃/minの場合には耳割れ最大深さ
は5mm以下と良好であったのに対し、昇温速度が15℃/m
inの場合には耳割れ最大深さは40mm以上と極めて悪かっ
た。
Experiment 2 C: 0.08%, Si: 3.40%, Mn: 0.08%, Cu: 0.10%, S
e: 0.02%, N: 0.0085%, sol. Al: 0.027%, Cr: 0.2
Containing 5% and Bi: 0.040% Thickness: 210mm, Width: 12
A continuous casting slab of 00 mm is heated in a gas heating furnace at 1150 ° C for 80 minutes, and then subjected to a horizontal reduction at a reduction rate of 10%.
It was charged in an induction heating furnace. Then, it was heated to 1420 ° C. under two conditions of a heating rate of 1300 ° C. or more, 3 ° C./min and 15 ° C./min.
At this time, the oxygen concentration in the atmosphere of the heating furnace was variously changed. Thereafter, a sheet bar having a thickness of 35 mm was formed by rough rolling, and then a 2.3 mm hot-rolled sheet was formed by finish rolling. Investigation of the occurrence of edge cracks in the hot-rolled sheet obtained in this way showed that when the heating rate was 3 ° C / min, the maximum depth of the edge cracks was as good as 5 mm or less, whereas the heating rate was Is 15 ℃ / m
In the case of in, the maximum depth of the ear cracks was extremely bad at 40 mm or more.

【0021】ついで、1000℃で50秒間の熱延板焼鈍を行
い、酸洗後、冷間圧延により 1.7mmの中間厚としたの
ち、1125℃で 120秒間の中間焼鈍および35℃/sの冷却速
度での急冷処理を経て、 210℃の温間圧延を含む冷間圧
延によって最終板厚が0.22mm厚の冷延板に仕上げた。そ
の後、840 ℃で 120秒間の脱炭焼鈍後、MgOを主成分と
する焼鈍分離剤を片面当たり7g/m2 塗布してから、窒
素雰囲気中で 850℃まで8℃/hの速度で昇温し、その後
窒素:25 vol%と水素:75 vol%の雰囲気中にて10℃/h
の昇温速度で1200℃まで加熱し、1200℃で5時間の水素
雰囲気中での純化焼鈍を行った。
Then, hot-rolled sheet annealing is performed at 1000 ° C. for 50 seconds, and after pickling, cold-rolled to an intermediate thickness of 1.7 mm, and then intermediate annealing at 1125 ° C. for 120 seconds and cooling at 35 ° C./s. After quenching at a high speed, a cold-rolled sheet having a final thickness of 0.22 mm was finished by cold rolling including warm rolling at 210 ° C. Thereafter, after decarburizing annealing at 840 ° C. for 120 seconds, an annealing separator containing MgO as a main component is applied at 7 g / m 2 per side, and then heated to 850 ° C. at a rate of 8 ° C./h in a nitrogen atmosphere. And then at 10 ° C / h in an atmosphere of 25 vol% nitrogen and 75 vol% hydrogen
Was heated to 1200 ° C. at a heating rate of 5 ° C., and purification annealing was performed at 1200 ° C. for 5 hours in a hydrogen atmosphere.

【0022】かくして得られた方向性電磁鋼板の磁気特
性と、スラブ加熱によるスケールロス量について調査し
た。なお、磁気特性は、800 A/m で磁化したときの磁束
密度B8 (T)および周波数:50Hz、磁束密度:1.7 T
における鉄損W17/50 (W/kg)で評価した。また、スケー
ルロス量は、次式 (ガス炉加熱前のスラブ重量−誘導加熱後のスラブ重
量)÷ガス炉加熱前のスラブ重量×100 のスケールロス率で評価した。ここで誘導加熱後のスラ
ブ重量は、熱延板重量とクロップシャー等により熱延中
に切断された部分の重量との和から算出した。加熱炉内
の雰囲気酸素濃度と磁気特性の関係を、昇温速度が3℃
/minおよび15℃/minの場合に別けて、図2および図3に
示す。また、同様にスラブ加熱によるスケールロス率を
図4および図5に示す。
The magnetic properties of the grain-oriented electrical steel sheet thus obtained and the amount of scale loss due to slab heating were investigated. The magnetic properties are as follows: magnetic flux density B 8 (T) when magnetized at 800 A / m, frequency: 50 Hz, magnetic flux density: 1.7 T
Was evaluated by the iron loss W 17/50 (W / kg). The scale loss was evaluated by the following formula (slab weight before heating the gas furnace-slab weight after induction heating) ス slab weight before heating the gas furnace × 100. The weight of the slab after induction heating was calculated from the sum of the weight of the hot rolled sheet and the weight of the portion cut during hot rolling by a crop shear or the like. The relationship between the oxygen concentration in the atmosphere in the heating furnace and the magnetic properties was determined by measuring the temperature rise
2 and 3 separately for the cases of / min and 15 ° C./min. Similarly, the scale loss ratio due to slab heating is shown in FIGS.

【0023】図2および図3に示したとおり、加熱雰囲
気中の酸素濃度が高いと磁気特性が劣化することが分か
る。特に、昇温速度が3℃/minと低い場合には、誘導加
熱炉内の酸素濃度が3 vol%でも磁気特性が劣化してい
る。また、図4および図5により、磁気特性の劣化を生
じた条件では、スケールロス率が1%以上と高いことが
分かる。なお、磁性劣化を生じた条件における誘導加熱
後のスラブ表面のスケールを分析した結果、BiおよびCr
が検出された。
As shown in FIGS. 2 and 3, it can be seen that the magnetic properties deteriorate when the oxygen concentration in the heating atmosphere is high. In particular, when the heating rate is as low as 3 ° C./min, the magnetic properties are deteriorated even when the oxygen concentration in the induction heating furnace is 3 vol%. 4 and 5 that the scale loss rate is as high as 1% or more under the condition where the magnetic characteristics are deteriorated. In addition, as a result of analyzing the scale of the slab surface after induction heating under the condition where magnetic deterioration occurred, Bi and Cr
Was detected.

【0024】以上のことから、磁気特性の劣化原因は、
以下のように考えられる。スラブ加熱中に表層のBiはス
ケールと共に除去され、雰囲気中の酸素濃度が高いとBi
の減少量は増加する。特にCrを添加した場合において
は、表層のスケール組成の変化によりスケール生成量が
増加し、Biが除去される量が増加すると考えられる。そ
の結果、雰囲気中の酸素濃度が高いとインヒビター強度
が弱まり磁気特性が劣化したものと考えられる。また、
雰囲気中の酸素濃度が同じでも、特に1300℃以上の高温
域で昇温速度が遅い場合には、加熱時間が長くなるた
め、あるいはスケールの成長速度および構造が変化する
ため、Biが除去される量が増加し、その結果、磁気特性
の劣化が生じるものと考えられる。
From the above, the causes of the deterioration of the magnetic characteristics are as follows.
It is considered as follows. During heating of the slab, Bi on the surface layer is removed together with the scale, and when the oxygen concentration in the atmosphere is high, Bi is removed.
The amount of decrease increases. In particular, when Cr is added, it is considered that the amount of scale generation increases due to the change in the scale composition of the surface layer, and the amount of Bi removed increases. As a result, it is considered that when the oxygen concentration in the atmosphere is high, the inhibitor strength is weakened and the magnetic properties are degraded. Also,
Even if the oxygen concentration in the atmosphere is the same, especially when the heating rate is low in a high temperature range of 1300 ° C or more, Bi is removed because the heating time becomes longer or the growth rate and structure of the scale change. It is considered that the amount increases, and as a result, the magnetic properties deteriorate.

【0025】次に、この発明で対象とする方向性電磁鋼
板の好適製造条件について述べる。まず、代表的な成分
組成範囲を挙げると次のとおりである。 Si:2.5 〜4.5 % Siは、鋼板の比抵抗を高め、鉄損を低減するのに有効な
成分であるが、4.5 %を上回ると冷延性が損なわれ、一
方 2.5%に満たないと比抵抗が低下するだけでなく、二
次再結晶および純化のために行われる最終仕上焼鈍中に
α→γ変態によって結晶方位のランダム化を生じ、十分
な鉄損低減効果が得られなくなるので、Si量は 2.5〜4.
5 %の範囲に限定した。
Next, preferred conditions for manufacturing a grain-oriented electrical steel sheet which is the subject of the present invention will be described. First, the typical component composition ranges are as follows. Si: 2.5 to 4.5% Si is an effective component for increasing the specific resistance of steel sheet and reducing iron loss. However, if it exceeds 4.5%, the cold-rolling property is impaired, whereas if it is less than 2.5%, the specific resistance is reduced. Not only decreases, but also in the final finish annealing performed for secondary recrystallization and purification, α → γ transformation causes randomization of the crystal orientation, and a sufficient iron loss reduction effect cannot be obtained. Is 2.5-4.
Limited to the 5% range.

【0026】C:0.03〜0.10% C量を0.10%以下とすることをこの発明の特徴とする。
すなわち、C量が0.10%を超えるとγ変態量が過剰とな
り、熱間圧延中に析出するMnSe, MnSなどのインヒビタ
ーの分布の均一性が阻害される。また、脱炭焼鈍の負荷
が増大し脱炭不良が発生し易くなる。一方0.03%未満で
は組織改善効果が得られず2次再結晶が不完全となって
同じく磁気特性が劣化する。従って、C量は0.03〜0.10
%の範囲に限定した。
C: 0.03 to 0.10% The feature of the present invention is that the C content is 0.10% or less.
That is, if the C content exceeds 0.10%, the γ transformation amount becomes excessive, and the uniformity of the distribution of inhibitors such as MnSe and MnS precipitated during hot rolling is impaired. Further, the load of decarburization annealing increases, and poor decarburization easily occurs. On the other hand, if it is less than 0.03%, the effect of improving the structure cannot be obtained, and the secondary recrystallization is incomplete, and the magnetic properties are similarly deteriorated. Therefore, the C content is 0.03-0.10
%.

【0027】Bi:0.005 〜0.100 % この発明の特徴の一つであるBi添加において、Biが 0.0
05%未満では期待する効果が得られず、一方 0.100%を
超えると均一分散が困難となる。従って、Biは0.005〜
0.100 %の範囲で含有させることとする。
Bi: 0.005 to 0.100% In the Bi addition, which is one of the features of the present invention, Bi is 0.0
If it is less than 05%, the expected effect cannot be obtained, while if it exceeds 0.100%, uniform dispersion becomes difficult. Therefore, Bi is 0.005 ~
It is to be contained in the range of 0.100%.

【0028】Cr:0.010 〜0.500 % Bi添加材はフォルステライト被膜の生成を阻害するの
で、その改善のためにCrを添加する。その効果は 0.010
%未満では十分でなく、一方 0.500%を超えて添加して
も効果は飽和し、コスト高となるため、Cr量は 0.010〜
0.500 %の範囲に限定した。
Cr: 0.010 to 0.500% Since the Bi additive material inhibits the formation of a forsterite film, Cr is added for improvement. The effect is 0.010
% Is not sufficient. On the other hand, if the content exceeds 0.500%, the effect is saturated and the cost is increased.
Limited to the range of 0.500%.

【0029】Mn:0.05〜1.5 % Mnは、熱間脆性を防止するためには少なくとも0.05%程
度を必要とするが、Mn量があまりに多すぎると磁気特性
の劣化を引き起こすので、上限は 1.5%程度にするのが
望ましい。
Mn: 0.05 to 1.5% Mn needs to be at least about 0.05% in order to prevent hot brittleness. However, if the amount of Mn is too large, the magnetic properties deteriorate, so the upper limit is 1.5%. It is desirable to be about.

【0030】インヒビター元素については、次のとおり
である。 Sおよび/またはSe:0.010 〜0.040 % インヒビター成分として、Se, Sを単独または複合して
含有させることができる。これらの成分は鋼中にMn化合
物あるいはCu化合物として析出するが、抑制効果を維持
するには合計で 0.010%以上の含有が必要である。一方
0.040%を超えると高温のスラブ加熱でも完全に固溶さ
せることができず粗大な析出物となるためかえって有害
である。従って、Sおよび/またはSeは 0.010〜0.040
%の範囲とする。この時、Mn/(Se+S)が 2.5より小
さいと熱間圧延中に粒界割れや耳荒れが著しく増加する
ため、Mn/(Se+S)≧2.5 とすることが実用上必要で
ある。
The inhibitor elements are as follows. S and / or Se: 0.010 to 0.040% Se or S can be contained alone or in combination as an inhibitor component. These components precipitate as Mn compounds or Cu compounds in steel, but a total content of 0.010% or more is required to maintain the suppression effect. on the other hand
If it exceeds 0.040%, even if the slab is heated at a high temperature, the solid solution cannot be completely formed and coarse precipitates are formed, which is rather harmful. Therefore, S and / or Se are 0.010 to 0.040.
% Range. At this time, if Mn / (Se + S) is smaller than 2.5, grain boundary cracks and edge roughness increase significantly during hot rolling, so that it is practically necessary to satisfy Mn / (Se + S) ≧ 2.5.

【0031】sol.Al:0.015 〜0.050 %および/または
B:0.001 〜0.01% 最終冷延圧下率が80%以上の場合、2次再結晶温度が非
常に高くなるため、鋼中にはこれらの元素の他に高温で
安定なインヒビター成分の含有が必要で、かようなイン
ヒビター成分としてはAlやBと、Nが適している。この
うちAlはsol.Al(酸可溶Al)として 0.015〜0.050 %含
有させることが必要である。ここでsol.Alの含有量が
0.015%に満たない場合、析出するAINの量ンヒビター
として機能するサイズに均一に分散することが困難とな
るため好ましくない。また、Bは 0.001〜0.01%含有さ
せることが必要である。ここでBの含有量が0.001 %未
満の場合、析出するBNの量が不足し良好な2次再結晶
を得ることができない。逆に 0.010%を超えると、イン
ヒビターとして機能するサイズに均一に分散することが
困難となるため好ましくない。
Sol.Al: 0.015 to 0.050% and / or B: 0.001 to 0.01% When the final cold rolling reduction is 80% or more, the secondary recrystallization temperature becomes extremely high. In addition to the elements, it is necessary to contain an inhibitor component that is stable at high temperatures, and Al, B, and N are suitable as such inhibitor components. Of these, Al needs to be contained as 0.015 to 0.050% as sol.Al (acid-soluble Al). Where the sol.Al content is
If the amount is less than 0.015%, it is difficult to uniformly disperse AIN in a size that functions as an inhibitor, which is not preferable. Further, it is necessary that B be contained in an amount of 0.001 to 0.01%. Here, when the content of B is less than 0.001%, the amount of precipitated BN is insufficient, so that a good secondary recrystallization cannot be obtained. Conversely, if it exceeds 0.010%, it is difficult to uniformly disperse the particles in a size that functions as an inhibitor, which is not preferable.

【0032】N:0.005 〜0.015 % Nは、インヒビター主成分としてのAlNおよび/または
BNを構成する成分であり、0.005 %以上の含有が必要
である。しかしながら、0.015 %を超えて含有すると鋼
中でガス化しフクレなどの欠陥の原因となるので、Nは
0.005〜0.015%を含有させることとする。
N: 0.005 to 0.015% N is a component constituting AlN and / or BN as a main inhibitor component, and must be contained at 0.005% or more. However, if the content exceeds 0.015%, it gasifies in the steel and causes defects such as blisters.
0.005 to 0.015% is to be contained.

【0033】また、インヒビター補強元素については次
のとおりである。すなわち、Ni,Cu,Sn,Sb,Mo,As,
TeおよびP等は、公知のインヒビターの抑制力を強化す
る補助的働きを有するので、鋼中に随時含有させること
が好ましい。このために必要な好適添加量については、
Ni,Cu,Snが0.05〜0.50%、Sb,Mo,Te,As,Pが 0.0
05〜0.10%である。その他の添加元素については、例え
ばGe, Coなどは鋼板の表面性状の改善効果があるので適
宜含有させることは好ましい。
Further, the inhibitor reinforcing elements are as follows. That is, Ni, Cu, Sn, Sb, Mo, As,
Since Te, P, and the like have an auxiliary function of enhancing the inhibitory power of known inhibitors, it is preferable to include them in steel as needed. About the suitable addition amount required for this,
Ni, Cu, Sn 0.05-0.50%, Sb, Mo, Te, As, P 0.0
It is between 0.05 and 0.10%. As for other additional elements, for example, Ge, Co, etc. are preferably contained as appropriate because they have an effect of improving the surface properties of the steel sheet.

【0034】次に、この発明に従う製造条件について具
体的に説明する。上述した好適成分に調整された溶鋼
は、通常、連続鋳造法または造塊−分塊法によって鋼ス
ラブとする。ついで、この鋼スラブは加熱されたのち、
熱間圧延により熱延コイルとされるが、この時スラブ加
熱温度を1350℃以上とすることが重要である。というの
は、スラブ加熱温度が1350℃に満たないとインヒビター
成分の固溶が十分でなく、Mn(Se,S),AlN等のイン
ヒビターの微細均一な分散析出が得られないからであ
る。
Next, the manufacturing conditions according to the present invention will be specifically described. The molten steel adjusted to the preferable components described above is usually made into a steel slab by a continuous casting method or an ingot-bulking method. Then, after this steel slab is heated,
The hot-rolled coil is formed by hot rolling. At this time, it is important that the slab heating temperature be 1350 ° C. or higher. This is because if the slab heating temperature is lower than 1350 ° C., the solid solution of the inhibitor component is not sufficient, and fine uniform dispersion of the inhibitor such as Mn (Se, S), AlN cannot be obtained.

【0035】このスラブ加熱工程において、前述したよ
うに、加熱中にスラブ中のBiが減少し磁気特性が劣化す
るのを防止するために、1300℃未満の範囲では酸素濃度
が0.01〜15 vol%の雰囲気中で、また1300℃以上の範囲
では酸素濃度が0.01〜2 vol%の雰囲気中でスラブ加熱
を行う。ここで、雰囲気酸素濃度の下限を 0.01vol%と
したのは、 0.01vol%未満にするのは工業的に実現する
のが困難だからである。
In this slab heating step, as described above, in order to prevent the Bi in the slab from decreasing during heating and to prevent the magnetic properties from deteriorating, the oxygen concentration must be 0.01 to 15 vol. Slab heating is performed in an atmosphere having an oxygen concentration of 0.01 to 2 vol. Here, the lower limit of the oxygen concentration in the atmosphere is set to 0.01 vol% because it is difficult to industrially realize it to be less than 0.01 vol%.

【0036】また、耳割れを防止するため、粗圧延開始
前に、1300℃未満に加熱後、圧下率が1〜20%の水平圧
下および/または圧下率が1〜20%の幅圧下を施したの
ち、1300℃以上における昇温速度を10℃/min以下として
1350℃以上に加熱する。ここで、水平圧下もしくは幅圧
下の圧下率が1%未満では耳割れ防止効果が低いため、
これらの圧下率は1%以上とする必要がある。なお、13
00℃以上における昇温速度の下限は特に定めないが、長
時間の焼鈍はコスト大となるため経済性の点から 0.2℃
/min以上とすることが好ましい。また、水平圧下もしく
は幅圧下に先立つ加熱は圧延性や経済性の点から1000〜
1250℃の範囲とすることが好適である。かくして、Biお
よびCrを添加する場合に懸念された熱間圧延における耳
割れの発生を効果的に防止することができ、またBi量の
低減による磁気特性の劣化も防止することができる。
Further, in order to prevent edge cracks, before starting the rough rolling, after heating to less than 1300 ° C., a horizontal reduction with a reduction ratio of 1 to 20% and / or a width reduction with a reduction ratio of 1 to 20% are performed. After that, the heating rate at 1300 ° C or more is set to 10 ° C / min or less.
Heat above 1350 ° C. Here, if the rolling reduction under the horizontal reduction or the width reduction is less than 1%, the effect of preventing ear cracks is low.
These rolling reductions need to be 1% or more. Note that 13
The lower limit of the heating rate at 00 ° C or higher is not particularly specified, but long-time annealing increases the cost, so from the economical point of view it is 0.2 ° C.
/ min or more is preferable. Heating prior to horizontal or width reduction is 1000-
The temperature is preferably in the range of 1250 ° C. Thus, it is possible to effectively prevent the occurrence of edge cracks in hot rolling, which is a concern when adding Bi and Cr, and also to prevent the magnetic properties from deteriorating due to a decrease in the Bi content.

【0037】冷延工程については、熱延板焼鈍後、1回
の冷間圧延により最終板厚とする冷延1回法、あるいは
必要に応じて熱延板焼鈍を施したのち、中間焼鈍を挟む
2回以上の冷間圧延を施す冷延2回法を採用できる。冷
間圧延における圧下率については、従来公知なように冷
延2回法の第1回目の圧延は15〜60%程度とすることが
好ましい。というのは、圧下率が15%未満の場合は圧延
再結晶の機構が作用せず結晶組織の均一化が図れず、一
方60%を超えると集合組織の集積化が起こり第2回目の
圧延の効果が得られなくなるからである。また、最終圧
延の圧下率は80〜90%程度とするのが好ましい。という
のは、圧下率が90%を超えた場合、2次再結晶が困難と
なり、一方80%未満では良好な2次再結晶粒の方位が得
られず製品の磁束密度が低下するからである。
In the cold-rolling step, after the hot-rolled sheet is annealed, the sheet is subjected to a single cold-rolling method to make the final sheet thickness by one cold rolling, or, if necessary, to hot-rolled sheet annealing, followed by intermediate annealing. A cold rolling twice method of performing cold rolling two or more times between them can be adopted. As for the rolling reduction in the cold rolling, it is preferable that the first rolling in the two-time cold rolling method is about 15 to 60% as conventionally known. This is because when the rolling reduction is less than 15%, the mechanism of rolling recrystallization does not work and the crystal structure cannot be homogenized, whereas when it exceeds 60%, the texture is integrated and the second rolling This is because the effect cannot be obtained. Further, it is preferable that the rolling reduction of the final rolling is about 80 to 90%. This is because when the rolling reduction exceeds 90%, secondary recrystallization becomes difficult, while when the rolling reduction is less than 80%, good secondary recrystallized grain orientation cannot be obtained and the magnetic flux density of the product decreases. .

【0038】また、熱延板焼鈍および中間焼鈍におい
て、焼鈍温度が過度に低い場合、圧延後の再結晶組織に
おいて2次再結晶の核となる(110)粒の頻度が不足
し、良好な方位の2次再結晶組織が得られなくなる。
(110)粒の強度を得るためには熱延板焼鈍後の結晶
組織を一定サイズ以上に粗大化する必要があり、このた
めには800 ℃以上の温度まで昇温することが不可欠であ
る。一方、焼鈍温度の上限については微細に析出したMn
(Se,S),AlN等のインヒビターを再固溶あるいはオ
ストワルド成長させないことが肝要なため、1200℃以下
の焼鈍が好ましい。
When the annealing temperature is excessively low in hot-rolled sheet annealing and intermediate annealing, the frequency of (110) grains serving as nuclei for secondary recrystallization in the recrystallized structure after rolling is insufficient, and good orientation is obtained. Cannot be obtained.
In order to obtain the strength of (110) grains, it is necessary to coarsen the crystal structure after annealing of the hot-rolled sheet to a certain size or more. For this purpose, it is essential to raise the temperature to 800 ° C. or more. On the other hand, as for the upper limit of the annealing temperature,
Since it is important that the inhibitors such as (Se, S) and AlN do not re-dissolve or grow Ostwald, annealing at 1200 ° C. or lower is preferable.

【0039】なお、かような焼鈍の冷却過程について
は、特に制限されることはないが、焼鈍後の鋼中の固溶
Cを増加させるために急冷処理を行ったり、鋼中に微細
カーバイトを析出させるために、急冷後、300 ℃程度で
低温保持処理を行ったりすることは、製品の磁気特性を
向上させる上で有効である。また、焼鈍雰囲気の酸化性
を高めて鋼板表層部を脱炭する公知の手段も有効であ
る。また、最終冷間圧延を、公知のように 100〜350 ℃
での温間圧延としたり、また 100〜350 ℃で10〜60分間
のパス間時効処理を付加することによって、1次再結晶
の集合組織を一層改善することができる。さらに、最終
冷間圧延後、公知のように磁区細分化のため、鋼板表面
に線状の溝を設ける処理を行うことも可能である。
The cooling process of such annealing is not particularly limited, but a quenching treatment is performed to increase the solute C in the steel after annealing, or fine carbide is added to the steel. It is effective to perform a low-temperature holding treatment at about 300 ° C. after quenching in order to cause precipitation, in order to improve the magnetic properties of the product. A known means for increasing the oxidizing property of the annealing atmosphere and decarburizing the surface layer of the steel sheet is also effective. Also, the final cold rolling is performed at 100-350 ° C.
In addition, the texture of the primary recrystallization can be further improved by warm rolling at 100 ° C. or by adding an inter-pass aging treatment at 100 to 350 ° C. for 10 to 60 minutes. Furthermore, after the final cold rolling, it is also possible to perform a process of providing a linear groove on the surface of the steel sheet for magnetic domain refinement as is known.

【0040】ついで最終板厚とした鋼板は、公知の手法
による脱炭焼鈍を施したのち、MgOを主成分とする焼鈍
分離剤を鋼板表面に塗布してから、最終仕上げ焼鈍に供
されるが、その時Ti化合物を添加したり、CaやBを焼鈍
分離剤中に含有させることは磁気特性をさらに向上させ
る効果があり、好ましい。最終仕上げ焼鈍において、昇
温途中少なくとも1050℃以上、好ましくは 900℃以上の
温度域については、H2を含有する雰囲気中で昇温するこ
とが必要である。すなわち、H2雰囲気は、最終仕上げ焼
鈍中に形成される被膜中の酸化物や窒化物の形成に重要
な作用を及ぼし、 900℃以上の焼鈍の中期から後期にお
いて特に還元性を強めておくことが有効である。最終仕
上げ焼鈍後は、未反応の焼鈍分離剤を除去したのち、鋼
板表面に絶縁コーティングを塗布して製品とするが、必
要に応じてコーティング塗布前に鋼板表面を鏡面化して
も良いし、また絶縁コーティングとして張力コーティン
グを用いても良い。さらに、コーティングの塗布焼付処
理を平坦化処理と兼ねてもよい。また、2次再結晶後の
鋼板に対し、一層の鉄損低減効果を得るために、公知の
磁区細分化処理すなわちプラズマジェットやレーザ照射
を線状領域に施したり、突起ロールによる線状のへこみ
領域を設けたりする処理を施すこともできる。
Next, the steel sheet having the final thickness is subjected to decarburization annealing by a known method, and then an annealing separator containing MgO as a main component is applied to the surface of the steel sheet, and then subjected to final finish annealing. At this time, it is preferable to add a Ti compound or to include Ca or B in the annealing separator, since it has the effect of further improving the magnetic properties. In the final finish annealing, heated middle least 1050 ° C. or higher, for preferably at a temperature range of not lower than 900 ° C., it is necessary to raise the temperature in an atmosphere containing H 2. In other words, the H 2 atmosphere has an important effect on the formation of oxides and nitrides in the film formed during the final annealing, and it is necessary to enhance the reducibility especially in the middle to late stages of annealing at 900 ° C or higher. Is valid. After the final finish annealing, after removing the unreacted annealing separator, an insulating coating is applied to the steel sheet surface to form a product, but if necessary, the steel sheet surface may be mirror-finished before coating, or A tension coating may be used as the insulating coating. Further, the coating and baking treatment of the coating may also serve as the flattening treatment. In addition, in order to obtain a further iron loss reduction effect on the steel sheet after the secondary recrystallization, a known domain refining treatment, that is, plasma jet or laser irradiation is applied to a linear region, or a linear dent due to a projection roll is formed. Processing for providing an area can also be performed.

【0041】[0041]

【実施例】実施例1 C:0.07%, Si:3.25%, Mn:0.08%, Cu:0.10%, S
e:0.02%, N:0.0088%, sol.Al:0.027 %, Cr:0.0
2%, Sb:0.03%およびBi:0.03%を含有し、残部はFe
および不可避的不純物の組成になる厚さ:220 mm、幅:
1200mmの連続鋳造スラブを、ガス加熱炉に装入し、酸素
濃度が5 vol%の雰囲気中にて1200℃、70分間加熱し
た。その後プレス機により幅圧下を施したのち、水平ロ
ールにより水平圧下を施し、ついで誘導加熱炉で酸素濃
度が0.5vol%の雰囲気中にて1400℃に加熱した。この
際、幅圧下量、水平圧下量および1300℃から1400℃まで
の昇温速度を種々に変更した。その後、粗圧延で厚さ40
mmのシートバーとし、引き続き仕上げ圧延により2.2mm
厚の熱延板とした。これらの各熱延板コイルの耳割れの
発生状況について観察した結果を表1に示す。
EXAMPLES Example 1 C: 0.07%, Si: 3.25%, Mn: 0.08%, Cu: 0.10%, S
e: 0.02%, N: 0.0088%, sol.Al: 0.027%, Cr: 0.0
2%, Sb: 0.03% and Bi: 0.03%, the balance being Fe
And the composition of unavoidable impurities thickness: 220 mm, width:
A continuous casting slab of 1200 mm was placed in a gas heating furnace and heated at 1200 ° C. for 70 minutes in an atmosphere having an oxygen concentration of 5 vol%. Then, after a width reduction was performed by a press machine, a horizontal reduction was performed by a horizontal roll, and then heating was performed to 1400 ° C. in an atmosphere having an oxygen concentration of 0.5 vol% in an induction heating furnace. At this time, the width reduction, the horizontal reduction, and the heating rate from 1300 ° C. to 1400 ° C. were variously changed. Then, rough rolling to a thickness of 40
mm and then finish rolling to 2.2 mm
A thick hot rolled sheet was used. Table 1 shows the results of observations on the occurrence of edge cracks in each of these hot-rolled sheet coils.

【0042】[0042]

【表1】 [Table 1]

【0043】表1に示したように、この発明に従い、誘
導加熱炉での高温加熱に先立ち、圧下率:1〜20%の幅
圧下または水平圧下を施すと共に、1300℃から1400℃ま
での昇温速度を10℃/min以下として得られた熱延板の耳
割れは、いずれも軽微であった。
As shown in Table 1, according to the present invention, prior to the high-temperature heating in the induction heating furnace, a rolling reduction of 1% to 20% or a horizontal reduction was performed, and the temperature was raised from 1300 ° C. to 1400 ° C. The edge cracks of the hot-rolled sheet obtained at a temperature rate of 10 ° C./min or less were all slight.

【0044】ついで、これらの熱延板に1110℃、50秒間
の焼鈍を施し、30℃/sの速度で急冷後、酸洗し、1回目
の冷間圧延で1.5mm 厚に仕上げた。ついで、1130℃で70
秒間の中間焼鈍を行い、30℃/sの速度で急冷したのち、
230 ℃の温間圧延で0.22mm厚に仕上げた。その後、脱脂
処理を施したのち、830 ℃で2分間、露点:58℃、水素
濃度:50vol%、窒素濃度:50 vol%の雰囲気中で脱炭
焼鈍を施した。ついで、MgOに Sr(OH)2を2%、TiO2
5%、 SrSO4を2%添加した焼鈍分離剤を鋼板の両面
に、片面の塗布量を6g/m2として塗布し、最終仕上げ焼
鈍として、850 ℃までをN2ガス中で30℃/hの速度で、ま
た 850℃から1050℃までをN2:25vol%、H2:75 vol%
の混合ガス中で12.0℃/hの速度で、その後はH2ガス中で
25℃/hの速度で1200℃まで昇温し、1200℃で8時間保持
したのち、600 ℃までH2ガス中で降温し、600 ℃からは
Arガス中で降温した。上記の最終仕上げ焼鈍後、未反応
の焼鈍分離剤を除去したのち、50%のコロイダルシリカ
を含有するリン酸マグネシウムを張力コーティングして
塗布してから、840 ℃で30秒間焼き付け、ついで磁区細
分化処理としてレーザを 7.5mm間隔で照射し製品板とし
た。かくして得られた製品板の磁気特性および被膜特性
について調べた結果、磁気特性および被膜特性とも極め
て良好であった。
Then, these hot rolled sheets were annealed at 1110 ° C. for 50 seconds, rapidly cooled at a rate of 30 ° C./s, pickled, and finished in a first cold rolling to a thickness of 1.5 mm. Then at 1130 ° C 70
After performing intermediate annealing for 2 seconds and quenching at a rate of 30 ° C / s,
It was finished to a thickness of 0.22 mm by warm rolling at 230 ° C. Thereafter, after degreasing, decarburization annealing was performed at 830 ° C. for 2 minutes in an atmosphere having a dew point of 58 ° C., a hydrogen concentration of 50 vol%, and a nitrogen concentration of 50 vol%. Then, MgO in Sr (OH) 2 2%, the TiO 2 5% on both sides of the steel sheet with an annealing separator agent added SrSO 4 2% was applied to one side of the coating amount as 6 g / m 2, the final finishing As annealing, up to 850 ° C in N 2 gas at a rate of 30 ° C / h, and from 850 ° C to 1050 ° C, N 2 : 25 vol%, H 2 : 75 vol%
Mixing at a rate of 12.0 ° C. / h in the gas, thereafter the of H 2 gas
The temperature is raised to 1200 ° C at a rate of 25 ° C / h, maintained at 1200 ° C for 8 hours, and then lowered to 600 ° C in H 2 gas.
The temperature dropped in Ar gas. After the final annealing as described above, the unreacted annealing separator is removed, and magnesium phosphate containing 50% colloidal silica is applied by tension coating, baked at 840 ° C for 30 seconds, and then magnetic domain refinement. A laser was irradiated at intervals of 7.5 mm as a treatment to obtain a product plate. As a result of examining the magnetic properties and coating properties of the product sheet thus obtained, both the magnetic properties and the coating properties were extremely good.

【0045】実施例2 C:0.06%,Si:3.3 %,Mn:0.08%,Cu:0.15%,S
e:0.02%,N:0.0080%,sol.Al:0.027 %,Cr:0.0
2%およびBi:0.03%を含有し、残部はFeおよび不可避
的不純物の組成になる厚さ:210 mm、幅:1300mmの連続
鋳造スラブを、ガス加熱炉に装入し、1150℃、80分間加
熱したのち、プレス機による幅圧下でスラブ幅を1100mm
にした。ついで、誘導加熱炉で1300℃以上の昇温速度を
4℃/minとして1400℃まで加熱した。この際、ガス加熱
炉および誘導加熱炉の雰囲気酸素濃度を種々に変更し
た。その後、粗圧延で厚さ40mmのシートバーとし、引き
続き仕上げ圧延により 2.0mm厚の熱延板とした。つい
で、これらの熱延板に1140℃、80秒間の焼鈍を施し、30
℃/sの速度で急冷後、酸洗し、冷間圧延と 220℃の温間
圧延を組み合わせて0.22mm厚に仕上げた。その後、脱脂
処理を施したのち、 850℃, 3分間の脱炭焼鈍を施し
た。
Example 2 C: 0.06%, Si: 3.3%, Mn: 0.08%, Cu: 0.15%, S
e: 0.02%, N: 0.0080%, sol. Al: 0.027%, Cr: 0.0
A continuous casting slab containing 2% and Bi: 0.03%, with the balance being Fe and inevitable impurities, having a thickness of 210 mm and a width of 1300 mm, was charged into a gas heating furnace at 1150 ° C for 80 minutes. After heating, the slab width is reduced to 1100mm under width pressure by a press
I made it. Next, the mixture was heated to 1400 ° C. in an induction heating furnace at a rate of 1300 ° C. or higher at 4 ° C./min. At this time, the oxygen concentration in the atmosphere of the gas heating furnace and the induction heating furnace was variously changed. Thereafter, a sheet bar having a thickness of 40 mm was obtained by rough rolling, and subsequently a hot-rolled sheet having a thickness of 2.0 mm was obtained by finish rolling. Then, these hot-rolled sheets were annealed at 1140 ° C for 80 seconds,
After quenching at a rate of ° C./s, it was pickled and finished to a thickness of 0.22 mm by a combination of cold rolling and warm rolling at 220 ° C. Then, after degreasing, decarburization annealing was performed at 850 ° C. for 3 minutes.

【0046】ついで、MgOに SrSO4を2%、TiO2を5%
添加した焼鈍分離剤を鋼板の両面に、片面の塗布量を8
g/m2として塗布し、最終仕上げ焼鈍として、850 ℃まで
をN2ガス中で30℃/hの速度で、また 850℃から1050℃ま
でをN2:25 vol%、H2:75 vol%の混合ガス中で12.5℃
/hの速度で、その後はH2ガス中で25℃/hの速度で1200℃
まで昇温し、1200℃で8時間保持した後、600 ℃までH2
ガス中で降温し、600℃からはArガス中で降温した。上
記の最終仕上げ焼鈍後、未反応の焼鈍分離剤を除去した
のち、50%のコロイダルシリカを含有するリン酸マグネ
シウムを張力コーティングして塗布してから、840 ℃で
30秒間焼き付けて製品板とした。かくして得られた製品
板の磁気特性について調べた結果を、表2に示す。
Then, 2% of SrSO 4 and 5% of TiO 2 were added to MgO.
Apply the added annealing separator to both sides of the steel sheet, and apply 8
g / m 2, and as final finish annealing, up to 850 ° C. in N 2 gas at a rate of 30 ° C./h, and from 850 ° C. to 1050 ° C .: N 2 : 25 vol%, H 2 : 75 vol. 12.5 ° C in a gas mixture of 1%
/ h, then 1200 ° C at a rate of 25 ° C / h in H 2 gas
Until the temperature was raised, it was held 8 hours at 1200 ° C., H 2 up to 600 ° C.
The temperature was lowered in the gas, and from 600 ° C., the temperature was lowered in the Ar gas. After the final annealing as described above, the unreacted annealing separator is removed, and magnesium phosphate containing 50% colloidal silica is applied by tension coating and then applied at 840 ° C.
Bake for 30 seconds to make a product plate. Table 2 shows the results obtained by examining the magnetic properties of the product sheet thus obtained.

【0047】[0047]

【表2】 [Table 2]

【0048】表2に示したように、この発明に従い、ガ
ス加熱炉雰囲気中の酸素濃度を15 vol%以下、また誘導
加熱炉中の酸素濃度を2 vol%以下しとて得られた製品
板の磁気特性はいずれも良好であった。
As shown in Table 2, according to the present invention, a product plate obtained by reducing the oxygen concentration in the gas heating furnace atmosphere to 15 vol% or less and the oxygen concentration in the induction heating furnace to 2 vol% or less. All had good magnetic properties.

【0049】実施例3 表3に示す成分組成になる溶鋼を、連続鋳造により厚
み:230 mm、幅:1300mmのスラブとした。このスラブ
を、ガス加熱炉で酸素濃度が5 vol%の雰囲気中で1120
℃、90分間加熱し、その後プレス機による幅圧下でスラ
ブ幅を1100mmをし、ついで水平圧下により210 mm厚とし
たのち、誘導加熱炉で酸素濃度が0.5vol%の雰囲気中で
1390℃まで加熱した。この際、誘導加熱炉における1300
℃から1360℃までの昇温速度を5℃/sとした。その後、
粗圧延で厚さ:35mmのシートバーとし、引き続き仕上げ
圧延を行って2.4 mmの熱延板とした。この時、全ての素
材で耳割れ最大深さは5mm以下と良好であった。つい
で、この鋼板に1100℃、50秒間の焼鈍を施し、40℃/sの
速度で急冷後、酸洗し、1回目の冷間圧延で1.7 mm厚に
仕上げた。ついで、1120℃℃で70秒の中間焼鈍を行い、
30℃/sの速度で急冷した。その後、 250℃の温間圧延で
0.22mm厚に仕上げた。その後、脱脂処理を施したのち、
820 ℃で3分間、露点:60℃、水素濃度:60vol%、窒
素濃度:40 vol%の雰囲気中で脱炭焼鈍を施した。
Example 3 Molten steel having the composition shown in Table 3 was formed into a slab having a thickness of 230 mm and a width of 1300 mm by continuous casting. This slab was placed in an atmosphere with an oxygen concentration of 5 vol% in a gas heating furnace at 1120%.
After heating at 90 ° C for 90 minutes, the slab width was reduced to 1100mm under width pressure by a press machine, and then reduced to 210mm thickness by horizontal pressure reduction. Then, in an atmosphere with an oxygen concentration of 0.5vol% in an induction heating furnace.
Heated to 1390 ° C. At this time, 1300 in induction heating furnace
The temperature rising rate from 1 ° C. to 1360 ° C. was 5 ° C./s. afterwards,
A sheet bar having a thickness of 35 mm was obtained by rough rolling, followed by finish rolling to obtain a hot-rolled sheet of 2.4 mm. At this time, the maximum depth of the ear cracks of all the materials was as good as 5 mm or less. Then, the steel sheet was annealed at 1100 ° C. for 50 seconds, rapidly cooled at a rate of 40 ° C./s, pickled, and finished in a first cold rolling to a thickness of 1.7 mm. Then, intermediate annealing is performed at 1120 ° C for 70 seconds,
It was quenched at a rate of 30 ° C./s. Then, at 250 ℃ warm rolling
Finished 0.22mm thick. After degreasing,
Decarburization annealing was performed at 820 ° C. for 3 minutes in an atmosphere having a dew point of 60 ° C., a hydrogen concentration of 60 vol%, and a nitrogen concentration of 40 vol%.

【0050】ついで、MgOに Sr(OH)2を2%、TiO2を5
%、 SrSO4を2%添加した焼鈍分離剤を鋼板の両面に、
片面の塗布量を6g/m2として塗布し、最終仕上げ焼鈍と
して、850 ℃までをN2ガス中で30℃/hの速度で、また 8
50℃から1050℃までをN2:25vol%、H2:75 vol%の混
合ガス中で12.0℃/hの速度で、その後はH2ガス中で25℃
/hの速度で1200℃まで昇温し、1200℃で8時間保持した
のち、600 ℃までH2ガス中で降温し、600 ℃からはArガ
ス中で降温した。上記の最終仕上げ焼鈍後、未反応の焼
鈍分離剤を除去したのち、50%のコロイダルシリカを含
有するリン酸マグネシウムを張力コーティングして塗布
してから、840 ℃で30秒間焼き付け、ついで磁区細分化
処理としてレーザを 7.5mm間隔で照射し製品板とした。
かくして得られた製品板の磁気特性および被膜特性につ
いて調べた結果を、表4に示す。
[0050] Next, 2% Sr (OH) 2 to MgO, the TiO 2 5
%, SrSO 4 2% added annealing separator on both sides of steel plate
The coating amount was 6 g / m 2 on one side, and the final finishing annealing was performed up to 850 ° C in N 2 gas at a rate of 30 ° C / h.
From 50 ° C to 1050 ° C, at a rate of 12.0 ° C / h in a mixed gas of N 2 : 25 vol% and H 2 : 75 vol%, and then 25 ° C in H 2 gas
The temperature was raised to 1200 ° C. at a rate of / h, maintained at 1200 ° C. for 8 hours, then lowered to 600 ° C. in H 2 gas, and from 600 ° C. in Ar gas. After the final annealing as described above, the unreacted annealing separator is removed, and magnesium phosphate containing 50% colloidal silica is applied by tension coating, baked at 840 ° C for 30 seconds, and then magnetic domain refinement. A laser was irradiated at intervals of 7.5 mm as a treatment to obtain a product plate.
Table 4 shows the results obtained by examining the magnetic properties and coating properties of the product sheet thus obtained.

【0051】[0051]

【表3】 [Table 3]

【0052】[0052]

【表4】 [Table 4]

【0053】表4に示したように、この発明に従い得ら
れた製品板の磁気特性および被膜特性はいずれも、極め
て良好であった。
As shown in Table 4, the magnetic properties and the coating properties of the product plate obtained according to the present invention were both very good.

【0054】[0054]

【発明の効果】かくして、この発明によれば、極めて優
れた磁気特性を有し、また熱間圧延における耳割れの発
生が軽微で、かつ被膜特性が良好な高磁束密度電磁鋼板
を安定して得ることができる。
As described above, according to the present invention, it is possible to stably produce a high magnetic flux density electromagnetic steel sheet having extremely excellent magnetic properties, having little occurrence of edge cracks in hot rolling, and having good coating properties. Obtainable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 高温加熱前の水平圧下率と1300℃から1360℃
の間の昇温速度が熱間圧延における耳割れに及ぼす影響
を示した図である。
[Fig.1] Horizontal rolling reduction before high temperature heating and 1300 ℃ to 1360 ℃
FIG. 4 is a diagram showing the effect of the temperature raising rate during the period on the edge cracking in hot rolling.

【図2】 1300℃から1420℃の間の昇温速度が3℃/min
の条件下で、ガス加熱炉内の雰囲気酸化濃度および誘導
加熱炉内の雰囲気酸化濃度が磁束密度に及ぼす影響を示
した図である。
[Figure 2] The rate of temperature rise between 1300 ℃ and 1420 ℃ is 3 ℃ / min
FIG. 4 is a diagram showing the influence of the atmosphere oxidation concentration in a gas heating furnace and the atmosphere oxidation concentration in an induction heating furnace on the magnetic flux density under the conditions described in FIG.

【図3】 1300℃から1420℃の間の昇温速度が15℃/min
の条件下で、ガス加熱炉内の雰囲気酸化濃度および誘導
加熱炉内の雰囲気酸化濃度が磁束密度に及ぼす影響を示
した図である。
[Figure 3] The heating rate between 1300 ℃ and 1420 ℃ is 15 ℃ / min
FIG. 4 is a diagram showing the influence of the atmosphere oxidation concentration in a gas heating furnace and the atmosphere oxidation concentration in an induction heating furnace on the magnetic flux density under the conditions described in FIG.

【図4】 1300℃から1420℃の間の昇温速度が3℃/min
の条件下で、ガス加熱炉内の雰囲気酸化濃度および誘導
加熱炉内の雰囲気酸化濃度がスケールロスに及ぼす影響
を示した図である。
Fig. 4 Temperature rise rate between 1300 ℃ and 1420 ℃ is 3 ℃ / min
FIG. 4 is a diagram showing the influence of the atmospheric oxidation concentration in the gas heating furnace and the atmospheric oxidation concentration in the induction heating furnace on the scale loss under the conditions described in FIG.

【図5】 1300℃から1420℃の間の昇温速度が15℃/min
の条件がで、ガス加熱炉内の雰囲気酸化濃度および誘導
加熱炉内の雰囲気酸化濃度がスケールロスに及ぼす影響
を示した図である。
[Figure 5] The heating rate between 1300 ℃ and 1420 ℃ is 15 ℃ / min
FIG. 3 is a diagram showing the effect of the atmospheric oxidation concentration in a gas heating furnace and the atmospheric oxidation concentration in an induction heating furnace on scale loss under the following conditions.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高宮 俊人 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 黒沢 光正 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 Fターム(参考) 4K033 AA02 BA01 BA02 CA01 CA02 CA03 CA04 CA06 CA07 CA08 FA01 FA05 FA13 HA01 HA02 HA03 HA04 HA06 JA04 LA01 MA03 PA06 PA08 PA09 RA04 SA02 SA03 TA01 TA04 TA06 TA07 5E041 AA02 AA19 BC01 CA02 HB05 HB07 HB11 HB14 NN01 NN17 NN18  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshito Takamiya 1-chome, Mizushima-Kawasaki-dori, Kurashiki-shi, Okayama Pref. 1-chome (without address) Kawasaki Steel Corporation Mizushima Works F-term (reference) 4K033 AA02 BA01 BA02 CA01 CA02 CA03 CA04 CA06 CA07 CA08 FA01 FA05 FA13 HA01 HA02 HA03 HA04 HA06 JA04 LA01 MA03 PA06 PA08 PA09 RA04 SA02 SA03 TA01 TA04 TA06 TA07 5E041 AA02 AA19 BC01 CA02 HB05 HB07 HB11 HB14 NN01 NN17 NN18

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 C:0.03〜0.10mass%、Si:2.5 〜4.5
mass%、Bi:0.005 〜0.100 mass%、Cr:0.010 〜0.50
0 mass%、その他公知のインヒビター元素を含有する組
成になる鋼スラブを、熱間圧延、冷間圧延および熱処理
を組み合わせた一連の工程によって処理することからな
る方向性電磁鋼板の製造方法において、 熱間圧延における粗圧延開始前に、鋼スラブを平均酸素
濃度が0.01〜15 vol%の雰囲気中で1300℃未満に加熱
後、圧下率が1〜20%の水平圧下および/または圧下率
が1〜20%の幅圧下を施したのち、さらに平均酸素濃度
が0.01〜2 vol%の雰囲気中で1300℃以上における昇温
速度を10℃/min以下として1350℃以上の温度に加熱する
ことを特徴とする、耳割れが少なくかつ被膜特性が良好
な磁気特性に優れる高磁束密度方向性電磁鋼板の製造方
法。
1. C: 0.03 to 0.10 mass%, Si: 2.5 to 4.5
mass%, Bi: 0.005 to 0.100 mass%, Cr: 0.010 to 0.50
In a method for producing a grain-oriented electrical steel sheet, a steel slab having a composition containing 0 mass% and other known inhibitor elements is subjected to a series of steps combining hot rolling, cold rolling and heat treatment. Before starting the rough rolling in the hot rolling, the steel slab is heated to less than 1300 ° C. in an atmosphere having an average oxygen concentration of 0.01 to 15 vol%, and then a horizontal reduction of 1 to 20% and / or a reduction of 1 to 20%. After applying a 20% width pressure, it is further heated in an atmosphere with an average oxygen concentration of 0.01 to 2 vol% at a temperature rising rate of 1300 ° C or more at a temperature rising rate of 10 ° C / min or less to 1350 ° C or more. A method for producing a high magnetic flux density grain-oriented electrical steel sheet having excellent edge-to-edge cracking and good magnetic properties.
【請求項2】 C:0.03〜0.10mass%、Si:2.5 〜4.5
mass%、Mn:0.05〜1.5mass%、Bi:0.005 〜0.100 mas
s%およびCr:0.010 〜0.500 mass%を含有し、さらに
インヒビター元素として、Sおよび/またはSe:0.010
〜0.040 mass%、sol.Al:0.015 〜0.050 mass%、B:
0.001 〜0.01mass%およびN:0.005 〜0.015 mass%
を、またインヒビター補強元素として、Ni:0.05〜0.5
mass%、Cu:0.05〜0.5 mass%、Sn:0.05〜0.5 mass
%、Sb:0.005 〜0.10mass%、As:0.005 〜0.10mass
%、Mo:0.005 〜0.10mass%、Te:0.005 〜0.10mass%
およびP:0.005 〜0.10mass%のうちから選んだ1種ま
たは2種以上を含有する組成になる鋼スラブを、熱間圧
延し、必要に応じて熱延板焼鈍を施し、酸洗後、1回ま
たは中間焼鈍を含む2回以上の冷間圧延を施して最終板
厚に仕上げたのち、1次再結晶を兼ねた脱炭焼鈍を施
し、ついでMgOを主成分とする焼鈍分離剤を塗布してか
ら、2次再結晶焼鈍および純化焼鈍からなる最終仕上げ
焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方
法において、 熱間圧延における粗圧延開始前に、鋼スラブを平均酸素
濃度が0.01〜15 vol%の雰囲気中で1300℃未満に加熱
後、圧下率が1〜20%の水平圧下および/または圧下率
が1〜20%の幅圧下を施したのち、さらに平均酸素濃度
が0.01〜2 vol%の雰囲気中で1300℃以上における昇温
速度を10℃/min以下として1350℃以上の温度に加熱する
ことを特徴とする、耳割れが少なくかつ被膜特性が良好
な磁気特性に優れる高磁束密度方向性電磁鋼板の製造方
法。
2. C: 0.03 to 0.10 mass%, Si: 2.5 to 4.5
mass%, Mn: 0.05 to 1.5 mass%, Bi: 0.005 to 0.100 mas
s% and Cr: 0.010 to 0.500 mass%, and as an inhibitor element, S and / or Se: 0.010
-0.040 mass%, sol.Al: 0.015-0.050 mass%, B:
0.001 to 0.01 mass% and N: 0.005 to 0.015 mass%
And as an inhibitor reinforcing element, Ni: 0.05 to 0.5
mass%, Cu: 0.05-0.5 mass%, Sn: 0.05-0.5 mass
%, Sb: 0.005 to 0.10mass%, As: 0.005 to 0.10mass
%, Mo: 0.005 to 0.10mass%, Te: 0.005 to 0.10mass%
And P: a steel slab having a composition containing one or more selected from 0.005 to 0.10 mass% is hot-rolled, and if necessary, is subjected to hot-rolled sheet annealing; After performing cold rolling twice or more including intermediate annealing and finishing to the final sheet thickness, decarburizing annealing combined with primary recrystallization is performed, and then an annealing separator mainly composed of MgO is applied. Then, in a method for producing a grain-oriented electrical steel sheet comprising a series of steps of performing a final finish annealing consisting of a secondary recrystallization annealing and a purification annealing, the steel slab has an average oxygen concentration of 0.01% before starting rough rolling in hot rolling. After heating to less than 1300 ° C. in an atmosphere of vol15 vol%, a horizontal reduction of a reduction rate of 1-20% and / or a width reduction of a reduction rate of 1-20% are performed, and then an average oxygen concentration of 0.01- In a 2 vol% atmosphere, the rate of temperature rise above 1300 ° C was set to 10 ° C / min or less. A method for producing a high magnetic flux density grain-oriented electrical steel sheet, characterized by heating to a temperature of 50 ° C. or higher, having less cracks in the edges and excellent magnetic properties with good coating properties.
【請求項3】 C:0.03〜0.10mass%、Si:2.5 〜4.5
mass%、Mn:0.05〜1.5mass%、Bi:0.005 〜0.100 mas
s%およびCr:0.010 〜0.500 mass%を含有し、さらに
インヒビター元素として、Sおよび/またはSe:0.010
〜0.040 mass%、sol.Al:0.015 〜0.050 mass%および
N:0.005 〜0.015 mass%を、またインヒビター補強元
素として、Ni:0.05〜0.5 mass%、Cu:0.05〜0.5mass
%、Sn:0.05〜0.5 mass%、Sb:0.005 〜0.10mass%、
As:0.005 〜0.10mass%、Mo:0.005 〜0.10mass%、T
e:0.005 〜0.10mass%およびP:0.005 〜0.10mass%
のうちから選んだ1種または2種以上を含有する組成に
なる鋼スラブを、熱間圧延し、必要に応じて熱延板焼鈍
を施し、酸洗後、1回または中間焼鈍を含む2回以上の
冷間圧延を施して最終板厚に仕上げたのち、1次再結晶
を兼ねた脱炭焼鈍を施し、ついでMgOを主成分とする焼
鈍分離剤を塗布してから、2次再結晶焼鈍および純化焼
鈍からなる最終仕上げ焼鈍を施す一連の工程からなる方
向性電磁鋼板の製造方法において、 熱間圧延における粗圧延開始前に、鋼スラブを平均酸素
濃度が0.01〜15 vol%の雰囲気中で1300℃未満に加熱
後、圧下率が1〜20%の水平圧下および/または圧下率
が1〜20%の幅圧下を施したのち、さらに平均酸素濃度
が0.01〜2 vol%の雰囲気中で1300℃以上における昇温
速度を10℃/min以下として1350℃以上の温度に加熱する
ことを特徴とする、耳割れが少なくかつ被膜特性が良好
な磁気特性に優れる高磁束密度方向性電磁鋼板の製造方
法。
3. C: 0.03 to 0.10 mass%, Si: 2.5 to 4.5
mass%, Mn: 0.05 to 1.5 mass%, Bi: 0.005 to 0.100 mas
s% and Cr: 0.010 to 0.500 mass%, and as an inhibitor element, S and / or Se: 0.010
-0.040 mass%, sol.Al: 0.015-0.050 mass% and N: 0.005-0.015 mass%, and Ni: 0.05-0.5 mass%, Cu: 0.05-0.5 mass as an inhibitor reinforcing element.
%, Sn: 0.05-0.5 mass%, Sb: 0.005-0.10mass%,
As: 0.005 to 0.10mass%, Mo: 0.005 to 0.10mass%, T
e: 0.005 to 0.10 mass% and P: 0.005 to 0.10 mass%
A steel slab having a composition containing one or more selected from the above is hot-rolled, subjected to hot-rolled sheet annealing if necessary, pickled, and then once or twice including intermediate annealing After performing the above cold rolling to finish to the final sheet thickness, decarburizing annealing also serving as primary recrystallization is performed, and then an annealing separator containing MgO as a main component is applied, and then secondary recrystallization annealing is performed. And a method of manufacturing a grain-oriented electrical steel sheet comprising a series of steps of performing a final finish annealing including a purification annealing, wherein before starting rough rolling in hot rolling, the steel slab is placed in an atmosphere having an average oxygen concentration of 0.01 to 15 vol%. After heating to a temperature of less than 1300 ° C., a horizontal reduction with a reduction ratio of 1 to 20% and / or a width reduction with a reduction ratio of 1 to 20% are performed. Heat to a temperature of 1350 ° C or more with a temperature rise rate of 10 ° C / min or less at a temperature of 10 ° C or more A method for producing a high magnetic flux density grain-oriented electrical steel sheet, characterized by having small edge cracks and excellent coating properties and excellent magnetic properties.
【請求項4】 C:0.03〜0.10mass%、Si:2.5 〜4.5m
ass %、Mn:0.05〜1.5mass%、Bi:0.005 〜0.100 mas
s%およびCr:0.010 〜0.500 mass%を含有し、さらに
インヒビター元素として、Sおよび/またはSe:0.010
〜0.040 mass%、B:0.001 〜0.01mass%およびN:0.
005 〜0.015 mass%を、またインヒビター補強元素とし
て、Ni:0.05〜0.5 mass%、Cu:0.05〜0.5 mass%、S
n:0.05〜0.5 mass%、Sb:0.005 〜0.10mass%、As:
0.005 〜0.10mass%、Mo:0.005 〜0.10mass%、Te:0.
005 〜0.10mass%およびP:0.005 〜0.10mass%のうち
から選んだ1種または2種以上を含有する組成になる鋼
スラブを、熱間圧延し、必要に応じて熱延板焼鈍を施
し、酸洗後、1回または中間焼鈍を含む2回以上の冷間
圧延を施して最終板厚に仕上げたのち、1次再結晶を兼
ねた脱炭焼鈍を施し、ついでMgOを主成分とする焼鈍分
離剤を塗布してから、2次再結晶焼鈍および純化焼鈍か
らなる最終仕上げ焼鈍を施す一連の工程からなる方向性
電磁鋼板の製造方法において、 熱間圧延における粗圧延開始前に、鋼スラブを平均酸素
濃度が0.01〜15 vol%の雰囲気中で1300℃未満に加熱
後、圧下率が1〜20%の水平圧下および/または圧下率
が1〜20%の幅圧下を施したのち、さらに平均酸素濃度
が0.01〜2 vol%の雰囲気中で1300℃以上における昇温
速度を10℃/min以下として1350℃以上の温度に加熱する
ことを特徴とする、耳割れが少なくかつ被膜特性が良好
な磁気特性に優れる高磁束密度方向性電磁鋼板の製造方
法。
4. C: 0.03 to 0.10 mass%, Si: 2.5 to 4.5 m
ass%, Mn: 0.05 to 1.5 mass%, Bi: 0.005 to 0.100 mas
s% and Cr: 0.010 to 0.500 mass%, and as an inhibitor element, S and / or Se: 0.010
0.040 mass%, B: 0.001 to 0.01 mass% and N: 0.
005 to 0.015 mass%, and as inhibitor reinforcing elements, Ni: 0.05 to 0.5 mass%, Cu: 0.05 to 0.5 mass%, S
n: 0.05 to 0.5 mass%, Sb: 0.005 to 0.10 mass%, As:
0.005 to 0.10 mass%, Mo: 0.005 to 0.10 mass%, Te: 0.
A steel slab having a composition containing one or more selected from 005 to 0.10 mass% and P: 0.005 to 0.10 mass% is hot-rolled, and if necessary, hot-rolled sheet annealing is performed. After pickling, cold rolling is performed once or twice or more including intermediate annealing to finish the final sheet thickness, then decarburizing annealing also serving as primary recrystallization, and then annealing mainly containing MgO In the method for producing a grain-oriented electrical steel sheet comprising a series of steps of applying a separating agent and then performing a final finish annealing consisting of a secondary recrystallization annealing and a purification annealing, the steel slab is subjected to hot rolling before starting rough rolling. After heating in an atmosphere having an average oxygen concentration of 0.01 to 15 vol% to less than 1300 ° C., a horizontal reduction with a reduction ratio of 1 to 20% and / or a width reduction with a reduction ratio of 1 to 20% are performed. 10 ° C / mi at a temperature rise rate of 1300 ° C or more in an atmosphere with an oxygen concentration of 0.01 to 2 vol% A method for producing a high magnetic flux density grain-oriented electrical steel sheet having small edge cracks and excellent coating properties and excellent magnetic properties, characterized by heating to a temperature of 1350 ° C. or more, where n is not more than n.
JP2000295735A 2000-09-28 2000-09-28 Method for manufacturing grain oriented silicon steel sheet hardly causing edge crack and having satisfactory film characteristic, excellent magnetic property and high magnetic flux density Withdrawn JP2002105537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000295735A JP2002105537A (en) 2000-09-28 2000-09-28 Method for manufacturing grain oriented silicon steel sheet hardly causing edge crack and having satisfactory film characteristic, excellent magnetic property and high magnetic flux density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000295735A JP2002105537A (en) 2000-09-28 2000-09-28 Method for manufacturing grain oriented silicon steel sheet hardly causing edge crack and having satisfactory film characteristic, excellent magnetic property and high magnetic flux density

Publications (1)

Publication Number Publication Date
JP2002105537A true JP2002105537A (en) 2002-04-10

Family

ID=18778112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000295735A Withdrawn JP2002105537A (en) 2000-09-28 2000-09-28 Method for manufacturing grain oriented silicon steel sheet hardly causing edge crack and having satisfactory film characteristic, excellent magnetic property and high magnetic flux density

Country Status (1)

Country Link
JP (1) JP2002105537A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006193787A (en) * 2005-01-13 2006-07-27 Jfe Steel Kk Rolling method for hot-rolled steel strip for grain-oriented electromagnetic steel, and method for manufacturing grain-oriented electromagnetic steel sheet
JP2012031518A (en) * 2010-06-30 2012-02-16 Jfe Steel Corp Grain-oriented electromagnetic steel, and method of manufacturing the same
WO2018030400A1 (en) * 2016-08-08 2018-02-15 新日鐵住金株式会社 Steel sheet
CN115161453A (en) * 2022-07-08 2022-10-11 江苏沙钢集团有限公司 Preparation method for preventing edge damage and edge crack of cold-rolled high-grade silicon steel
WO2023074908A1 (en) 2021-10-29 2023-05-04 Jfeスチール株式会社 Method of manufacturing grain-oriented magnetic steel sheet, and grain-oriented magnetic steel sheet

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006193787A (en) * 2005-01-13 2006-07-27 Jfe Steel Kk Rolling method for hot-rolled steel strip for grain-oriented electromagnetic steel, and method for manufacturing grain-oriented electromagnetic steel sheet
JP4565264B2 (en) * 2005-01-13 2010-10-20 Jfeスチール株式会社 Method for rolling hot rolled steel strip for grain-oriented electrical steel and method for producing grain-oriented electrical steel sheet
JP2012031518A (en) * 2010-06-30 2012-02-16 Jfe Steel Corp Grain-oriented electromagnetic steel, and method of manufacturing the same
WO2018030400A1 (en) * 2016-08-08 2018-02-15 新日鐵住金株式会社 Steel sheet
US11365465B2 (en) 2016-08-08 2022-06-21 Nippon Steel Corporation Steel sheet
WO2023074908A1 (en) 2021-10-29 2023-05-04 Jfeスチール株式会社 Method of manufacturing grain-oriented magnetic steel sheet, and grain-oriented magnetic steel sheet
CN115161453A (en) * 2022-07-08 2022-10-11 江苏沙钢集团有限公司 Preparation method for preventing edge damage and edge crack of cold-rolled high-grade silicon steel
CN115161453B (en) * 2022-07-08 2023-11-03 江苏沙钢集团有限公司 Preparation method for preventing cold-rolled high-grade silicon steel from edge damage and edge cracking

Similar Documents

Publication Publication Date Title
US6444051B2 (en) Method of manufacturing a grain-oriented electromagnetic steel sheet
JP7454646B2 (en) High magnetic induction grain-oriented silicon steel and its manufacturing method
JP5760590B2 (en) Method for producing grain-oriented electrical steel sheet
JP2013139629A (en) Method for producing low iron loss grain-oriented magnetic steel sheet
JP2006274405A (en) Method for manufacturing grain-oriented electromagnetic steel sheet causing high magnetic-flux density
JP3456352B2 (en) Grain-oriented electrical steel sheet with excellent iron loss characteristics and method of manufacturing the same
JP6011063B2 (en) Manufacturing method of low iron loss grain oriented electrical steel sheet
JP2003171718A (en) Manufacturing method of magnetic steel sheet of excellent mean magnetic characteristic in rolled surface
JPH1143746A (en) Grain-oriented silicon steel sheet extremely low in core loss and its production
JP7197069B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2004332071A (en) Method for producing high magnetic flux density grain-oriented magnetic steel sheet
JP3357603B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with extremely low iron loss
JP7465975B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JP2024503245A (en) Grain-oriented electrical steel sheet and its manufacturing method
JP2002105537A (en) Method for manufacturing grain oriented silicon steel sheet hardly causing edge crack and having satisfactory film characteristic, excellent magnetic property and high magnetic flux density
JP4123679B2 (en) Method for producing grain-oriented electrical steel sheet
JP4205816B2 (en) Method for producing unidirectional electrical steel sheet with high magnetic flux density
JP2002241906A (en) Grain-oriented silicon steel sheet having excellent coating film characteristic and magnetic property
JP3928275B2 (en) Electrical steel sheet
JP4258156B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5712652B2 (en) Method for producing grain-oriented electrical steel sheet
JP3536812B2 (en) Method for producing grain-oriented electrical steel sheet with few edge cracks and good coating properties and excellent magnetic properties
JP2784687B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP4259025B2 (en) Oriented electrical steel sheet having excellent bend characteristics and method for producing the same
JP3474741B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060424