JP2006274405A - Method for manufacturing grain-oriented electromagnetic steel sheet causing high magnetic-flux density - Google Patents

Method for manufacturing grain-oriented electromagnetic steel sheet causing high magnetic-flux density Download PDF

Info

Publication number
JP2006274405A
JP2006274405A JP2005098471A JP2005098471A JP2006274405A JP 2006274405 A JP2006274405 A JP 2006274405A JP 2005098471 A JP2005098471 A JP 2005098471A JP 2005098471 A JP2005098471 A JP 2005098471A JP 2006274405 A JP2006274405 A JP 2006274405A
Authority
JP
Japan
Prior art keywords
annealing
coil
steel sheet
final finish
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005098471A
Other languages
Japanese (ja)
Inventor
Tadashi Nakanishi
匡 中西
Yukihiro Aragaki
之啓 新垣
Toshito Takamiya
俊人 高宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005098471A priority Critical patent/JP2006274405A/en
Publication of JP2006274405A publication Critical patent/JP2006274405A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To prevent adhesion between steel sheets at the end of a final-finish-annealed coil, which becomes a problem in the manufacture of a grain-oriented electromagnetic steel sheet containing Cr. <P>SOLUTION: In a process of placing a coil of a cold-rolled sheet containing, by mass%, 2.5-4.5% Si, 0.01-0.50% Cr and an inhibitor-forming element such that an axis of the coil stands straight and subjecting it to final finish annealing including purification treatment at 1,100°C or higher for three hours or longer, this manufacturing method comprises: controlling a dew point of an atmosphere in a temperature range of 900°C or higher during the final finish annealing to 20°C or lower; controlling a heating rate in a temperature range of 900°C or higher to 15°C/h or lower; and making a region having no secondary recrystallization exist in a 1 mm or inner area from the side end in a sheet width direction, at least in one place in a longitudinal direction of the coil which has been final-finish-annealed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、変圧器や発電機等の鉄心として好適に用いられる高磁束密度方向性電磁鋼板の製造方法に関し、特にCrを含有する低鉄損かつ高磁束密度の電磁鋼板を安定して製造する技術を提供しようとするものである。   The present invention relates to a method for producing a high magnetic flux density grain-oriented electrical steel sheet that is suitably used as an iron core for a transformer, a generator, etc., and in particular, stably produces a low iron loss and high magnetic flux density electrical steel sheet containing Cr. It is intended to provide technology.

Siを含有し、かつ製品の結晶方位が{110}<001>方位、いわゆるゴス方位に配向した方向性電磁鋼板は、優れた軟磁気特性を示すことから、変圧器や発電機等の鉄心として用いられている。   A grain-oriented electrical steel sheet containing Si and having a crystal orientation of {110} <001>, that is, a so-called Goss orientation, exhibits excellent soft magnetic properties, so that it can be used as an iron core for transformers and generators. It is used.

かかる電磁鋼板の基本的に重要な特性としては、鉄損値が低いことが挙げられる。また、磁束密度の高い電磁鋼板は、鉄損が低く、かつ変圧器の小型化に有利なことおよび、低騒音の変圧器を製作可能であることから、近年の省エネルギー指向および低騒音環境指向に伴い、年々その使用量が増加している。かような背景から、さらに磁束密度を高めた方向性電磁鋼板の開発も望まれている。   A fundamentally important characteristic of such an electrical steel sheet is a low iron loss value. In addition, magnetic steel sheets with high magnetic flux density have low iron loss, are advantageous for downsizing transformers, and can produce low noise transformers. Along with this, the usage is increasing year by year. Against this background, development of grain-oriented electrical steel sheets with higher magnetic flux density is also desired.

一般に、電磁鋼板の鉄損を低減するには、渦電流損の低減に有効なSiの含有量を増加して電気抵抗を高める方法、鋼板板厚を薄くする方法、製品の結晶粒径を小さくする方法、さらには結晶方位の集積度を高めて磁束密度を向上させる方法、等が知られている。しかしながら、Siを過度に含有させると圧延性や加工性を劣化させることから、Si含有量を増加させる方法は限界にきており、また鋼板板厚を薄くする方法や製品の結晶粒径を小さくする方法も、製造コストの極端な増大を招くため限界を迎えているのが現状である。   In general, in order to reduce the iron loss of electrical steel sheets, a method of increasing the electric resistance by increasing the Si content effective for reducing eddy current loss, a method of reducing the steel sheet thickness, and reducing the crystal grain size of the product And a method for improving the magnetic flux density by increasing the degree of integration of crystal orientations are known. However, if Si is excessively contained, the rollability and workability deteriorate, so the method of increasing the Si content has reached its limit, and the method of reducing the thickness of the steel sheet and the crystal grain size of the product are reduced. However, the current method has reached a limit because it causes an extreme increase in manufacturing costs.

一方、磁束密度を向上させる方法としては、インヒビターと呼ばれる析出物の種類の選定と、その形態の制御によって、二次再結晶粒のゴス方位の集積度を高めることが、主に研究されている。   On the other hand, as a method for improving the magnetic flux density, research is mainly conducted to increase the degree of accumulation of the Goss orientation of secondary recrystallized grains by selecting the type of precipitates called inhibitors and controlling the form of the precipitates. .

この析出物は、高温熱処理における結晶粒界の移動を妨げ、一次再結晶粒の成長を抑制することによって、二次再結晶粒の急激な成長を促進する役割を果たす。析出物による一次再結晶粒の成長抑制力は、一般に、Zenerの式で与えられることが知られており、析出物の体積分率が大きいほど、また同一の体積分率となる場合には微細に分散して析出しているほど、抑制力は強くなる。   This precipitate plays a role of promoting the rapid growth of the secondary recrystallized grains by preventing the movement of the grain boundaries in the high-temperature heat treatment and suppressing the growth of the primary recrystallized grains. It is known that the growth suppression force of primary recrystallized grains due to precipitates is generally given by the Zener equation, and the smaller the volume fraction of precipitates, the smaller the volume fraction that becomes the same. The more it is dispersed and precipitated, the stronger the inhibitory power.

したがって、インヒビターの形態としては、均一かつ微細に分散することが重要である。このため、従来、熱間圧延前のスラブ加熱においては、高温加熱を行ってインヒビター形成成分を完全に固溶させ、熱間圧延工程以降の二次再結晶までの過程でこのインヒビターを微細に分散析出させる方法がとられている。   Therefore, it is important that the inhibitor is uniformly and finely dispersed. Therefore, conventionally, in slab heating before hot rolling, high temperature heating is used to completely dissolve the inhibitor-forming components, and this inhibitor is finely dispersed in the process from hot rolling to secondary recrystallization. The method of making it take is taken.

このインヒビターとしては、Cu2−xS、MnS、Cu2−xSe、MnSe、AlNおよびBN等のような、硫化物、セレン化物および窒化物があり、一般に鋼中への溶解度が極めて小さい物質が用いられている。 Examples of the inhibitor include sulfides, selenides, and nitrides such as Cu 2 -xS, MnS, Cu 2 -xSe, MnSe, AlN, and BN. Generally, a substance having extremely low solubility in steel is used. It has been.

一方、上述の析出物のみだけではなく結晶粒界に偏析する元素もインヒビターの作用を有することが、よく知られている。この作用は、結晶粒界に偏析し、粒界エネルギーを低下させて粒界移動を抑制する機構による。この偏析元素の利用について、例えば特許文献1には鋼中にCuやSnを添加する方法が、特許文献2にはSbやMoを添加する方法が、また特許文献3、特許文献4、特許文献5及び特許文献6には、Biを添加する方法が、それぞれ提案されている。これらの元素は、その偏析効果による粒成長抑制作用はさほど大きくはないため、単独ではなく、MnSeとSb、AlNとSbおよび、AlNとSnなどのように、析出物と偏析元素の偏析との複合作用を利用する場合が多い。この複合して使用する方法は、偏析元素の粒界偏析効果のみならず、偏析元素が析出物界面にも偏析し析出物のオストワルド成長をも抑制するという作用も有している。   On the other hand, it is well known that not only the above-mentioned precipitates but also elements segregating at the grain boundaries have an inhibitory action. This effect is due to a mechanism that segregates at the grain boundaries and reduces grain boundary energy to suppress grain boundary movement. Regarding the use of this segregating element, for example, Patent Document 1 discloses a method of adding Cu or Sn into steel, Patent Document 2 discloses a method of adding Sb or Mo, Patent Document 3, Patent Document 4, and Patent Document. 5 and Patent Document 6 each propose a method of adding Bi. Since these elements do not have a great effect of suppressing grain growth due to the segregation effect, they are not single, but precipitates and segregation of segregation elements such as MnSe and Sb, AlN and Sb, and AlN and Sn. Often uses a complex action. This combined use method has not only the grain boundary segregation effect of the segregation element but also the action that the segregation element segregates also at the precipitate interface and suppresses the Ostwald growth of the precipitate.

一般に、インヒビターが強力で正常粒成長の抑制力が強いほど高い方位集積度が得られると考えられている。したがって、通常、インヒビター形成元素としては、複数の種類が用いられている。また、粒成長は高温ほど顕著となるため、高温での抑制力を強くすることが重要である。   In general, it is considered that the higher the degree of orientation accumulation, the stronger the inhibitor and the stronger the suppression of normal grain growth. Therefore, usually, a plurality of types of inhibitor forming elements are used. In addition, since grain growth becomes more noticeable at higher temperatures, it is important to increase the suppression at high temperatures.

特に、Biは最終仕上焼鈍における高温域の抑制力として有効に作用することが知られている(例えば、特許文献7参照)。したがって、インヒビターとしてBiを用いることは、方位集積の向上に有効である。   In particular, it is known that Bi acts effectively as a suppressing force in a high temperature region in the final finish annealing (see, for example, Patent Document 7). Therefore, using Bi as an inhibitor is effective in improving orientation accumulation.

しかしながら、粒界に偏析するインヒビターは、粒界だけでなく鋼板表面にも偏析をするため、MgOを主成分とする焼鈍分離剤を塗布した後の最終仕上焼鈍中に鋼板表面に生成するフォルステライト被膜の特性に、多大な影響を与える。通常は、偏析型のインヒビターを添加すると、製品の被膜外観や絶縁コーティングの密着性が劣化する傾向となる。   However, since the inhibitor that segregates at the grain boundaries segregates not only at the grain boundaries but also at the steel sheet surface, the forsterite that forms on the steel sheet surface during the final finish annealing after applying the annealing separator mainly composed of MgO It has a great influence on the properties of the coating. Usually, when a segregation type inhibitor is added, the film appearance of the product and the adhesion of the insulating coating tend to deteriorate.

ここで、フォルステライト被膜の特性不良を改善するには、特許文献8に開示されているように、鋼中にCrを含有させ、脱炭焼鈍で生成するサブスケールの構造を改善させることが有効である。そして、この方法は特に鋼中にBiを含有する場合の被膜改善に有効である。   Here, in order to improve the characteristic defect of the forsterite film, it is effective to improve the structure of the subscale generated by decarburization annealing by containing Cr in the steel as disclosed in Patent Document 8. It is. This method is particularly effective for improving the coating when Bi is contained in the steel.

しかしながら、Crを含有する方向性電磁鋼板を製造してみたところ、最終仕上焼鈍に際して、電磁鋼板コイルの端部で鋼板同士が密着するという問題が生じた。このように鋼板と鋼板とが密着すると、次工程で、特に開始と終了時に、コイル巻き戻しが困難となり、また形状不良により鋼板が蛇行するなど通板性が悪くなる。密着が顕著に発生した場合、通常の方法ではコイル巻き戻しができなくなり、製造上極めて重大な問題である。
特公昭60−48886号公報 特開平2−115319号公報 特開昭49−119817号公報 特公昭59−30771号公報 特公昭56−18044号公報 特公昭56−21331号各公報 特開平11−335736号公報 特開2000−96149号公報
However, when a grain-oriented electrical steel sheet containing Cr was manufactured, a problem was caused that the steel sheets were in close contact with each other at the end of the electrical steel sheet coil during final finish annealing. When the steel plate and the steel plate are brought into close contact with each other in this way, coil rewinding becomes difficult in the next step, particularly at the start and end, and the plate passing property is deteriorated, for example, the steel plate meanders due to a shape defect. When adhesion occurs remarkably, the coil cannot be rewound by a normal method, which is a very serious problem in manufacturing.
Japanese Patent Publication No. 60-48886 Japanese Patent Laid-Open No. 2-115319 Japanese Patent Laid-Open No. 49-119817 Japanese Patent Publication No.59-30771 Japanese Examined Patent Publication No. 56-18044 Japanese Patent Publication No. 56-21331 Japanese Patent Laid-Open No. 11-335736 JP 2000-96149 A

この発明の目的は、Crを含有する方向性電磁鋼板の製造において問題となる、最終仕上焼鈍後コイル端部での密着を防止するものであり、もって低鉄損と高磁束密度とを兼ね備えた電磁材料を安定して製造する技術を提供しようとするものである。   The object of the present invention is to prevent adhesion at the end of the coil after final finish annealing, which is a problem in the production of grain-oriented electrical steel sheets containing Cr, and has both low iron loss and high magnetic flux density. The present invention intends to provide a technique for stably producing an electromagnetic material.

発明者らは、Crを含有する方向性電磁鋼板の製造において、最終仕上焼鈍後のコイル端部での密着を防止するには、最終仕上焼鈍後コイルの幅方向端部1mm以上の領域で二次再結晶を抑制すること、かつ最終仕上焼鈍の900℃以上における雰囲気の露点と900℃以上での昇温速度とを制御することが有効であることを見出し、本発明を完成するに到った。   In the manufacture of grain-oriented electrical steel sheets containing Cr, the inventors have proposed that in the region of 1 mm or more in the width direction end portion of the coil after final finish annealing, in order to prevent adhesion at the coil end portion after final finish annealing. The inventors have found that it is effective to suppress secondary recrystallization and to control the dew point of the atmosphere at 900 ° C. or higher and the temperature increase rate at 900 ° C. or higher in the final finish annealing, and have completed the present invention. It was.

すなわち、この発明の要旨構成は次のとおりである。   That is, the gist configuration of the present invention is as follows.

1.質量%で、Si:2.5〜4.5%、Cr:0.01〜0.50%およびインヒビター形成元素を含有する鋼スラブを加熱した後、熱間圧延し、ついで焼鈍処理を伴う少なくとも1回の冷間圧延で最終板厚にした後、脱炭焼鈍を施し、ついで焼鈍分離剤を鋼板表面に塗布してからコイルに巻き取り、該コイルの軸を直立させた状態にて最終仕上焼鈍を施す一連の工程からなり、前記最終仕上焼鈍が1100℃以上かつ3時間以上の純化処理を含む、方向性電磁鋼板の製造方法において、
前記最終仕上焼鈍の900℃以上の温度域における雰囲気の露点を20℃以下、かつ900℃以上の温度域における昇温速度を15℃/h以下とし、さらに前記最終仕上焼鈍後のコイルにおける、長手方向の少なくとも1箇所において、板幅方向端部より1mm以上の二次再結晶していない領域を存在せしめる、高磁束密度方向性電磁鋼板の製造方法。
1. After heating a steel slab containing Si: 2.5-4.5%, Cr: 0.01-0.50% and an inhibitor-forming element in mass%, it is hot-rolled and then at least accompanied by an annealing treatment After the final plate thickness is obtained by one cold rolling, decarburization annealing is performed, and then the annealing separator is applied to the surface of the steel sheet and then wound on the coil, and the final finish is made with the coil shaft upright. In a method for producing a grain-oriented electrical steel sheet, comprising a series of steps for annealing, wherein the final finish annealing includes a purification treatment of 1100 ° C. or more and 3 hours or more,
The dew point of the atmosphere in the temperature range of 900 ° C. or more of the final finish annealing is 20 ° C. or less, and the temperature rising rate in the temperature range of 900 ° C. or more is 15 ° C./h or less. A method for producing a high magnetic flux density grain-oriented electrical steel sheet in which at least one region in the direction has a region that is not secondary recrystallized by 1 mm or more from the end in the plate width direction.

2.前記鋼スラブの加熱を、体積%で酸素濃度を0.01〜2%に制御した雰囲気下にて1350℃以上で行うことを特徴とする、上記1に記載の高磁束密度方向性電磁鋼板の製造方法。   2. Heating of the steel slab is performed at 1350 ° C or higher in an atmosphere in which the oxygen concentration is controlled to 0.01 to 2% by volume%, and the high magnetic flux density grain-oriented electrical steel sheet according to the above 1, Production method.

3.前記鋼スラブの加熱に際し、該鋼スラブにおける、最終仕上焼鈍時の板幅方向端部に対応する位置の表面温度を、幅中央部の表面温度より5℃以上低くすることを特徴とする、上記1または2に記載の高磁束密度方向性電磁鋼板の製造方法。   3. When heating the steel slab, the surface temperature of the steel slab at the position corresponding to the end in the plate width direction at the time of final finish annealing is lower by 5 ° C. or more than the surface temperature of the center of the width, A method for producing a high magnetic flux density grain-oriented electrical steel sheet according to 1 or 2.

4.前記熱間圧延と前記最終仕上焼鈍の間に均熱工程を有し、該均熱工程において、最終仕上焼鈍時の板幅方向端部に対応する位置における表面温度を、幅中央部での表面温度より5℃以上高くすることを特徴とする、上記1ないし3のいずれかに記載の高磁束密度方向性電磁鋼板の製造方法。   4). There is a soaking step between the hot rolling and the final finish annealing, and in the soaking step, the surface temperature at the position corresponding to the end portion in the plate width direction at the time of the final finish annealing is set to the surface at the width center portion. The method for producing a high magnetic flux density grain-oriented electrical steel sheet according to any one of the above 1 to 3, wherein the temperature is higher by 5 ° C or more than the temperature.

5.前記冷間圧延に伴う前記焼鈍処理が、前記均熱工程を含むことを特徴とする、上記4に記載の高磁束密度方向性電磁鋼板の製造方法。   5. 5. The method for producing a high magnetic flux density grain-oriented electrical steel sheet according to 4 above, wherein the annealing treatment accompanying the cold rolling includes the soaking step.

6.前記鋼スラブが、さらに質量%でBi:0.0005〜0.100%を含有することを特徴とする、上記1ないし5のいずれかに記載の高磁束密度方向性電磁鋼板の製造方法。   6). The method for producing a high magnetic flux density grain-oriented electrical steel sheet according to any one of 1 to 5 above, wherein the steel slab further contains Bi: 0.0005 to 0.100% by mass.

7.前記鋼スラブが、さらに質量%で、C:0.03〜0.10%、Mn:0.050〜1.5%、Sおよび/またはSeを合計で0.010〜0.040%、Sol.Al:0.015〜0.050%および/またはB:0.001〜0.01%、並びに、N:0.005〜0.015%を含有することを特徴とする、上記1ないし6のいずれかに記載の高磁束密度方向性電磁鋼板の製造方法。   7). The steel slab is further mass%, C: 0.03 to 0.10%, Mn: 0.050 to 1.5%, S and / or Se in total 0.010 to 0.040%, Sol . Al: 0.015 to 0.050% and / or B: 0.001 to 0.01%, and N: 0.005 to 0.015%, characterized in that 1 to 6 above The manufacturing method of the high magnetic flux density directionality electrical steel plate in any one.

8.前記鋼スラブが、さらに質量%で、Ni:0.05〜0.5%、Cu:0.05〜0.5%、Sn:0.005〜0.5%、Sb:0.005〜0.10%、As:0.005〜0.10%、Mo:0.005〜0.10%、Te:0.005〜0.10%およびP:0.005〜0.10%のうちから選んだ1種または2種以上を含有することを特徴とする、上記1ないし7のいずれかに記載の高磁束密度方向性電磁鋼板の製造方法。   8). The steel slab is further mass%, Ni: 0.05 to 0.5%, Cu: 0.05 to 0.5%, Sn: 0.005 to 0.5%, Sb: 0.005 to 0 .10%, As: 0.005 to 0.10%, Mo: 0.005 to 0.10%, Te: 0.005 to 0.10% and P: 0.005 to 0.10% The method for producing a high magnetic flux density grain-oriented electrical steel sheet according to any one of 1 to 7 above, which comprises one or more selected types.

この発明によれば、Crを含有する方向性電磁鋼板の製造において、最終仕上焼鈍後のコイル端部の密着を防止できるため、低鉄損かつ高磁束密度となる方向性電磁鋼板を安定して製造することができる。   According to this invention, in the manufacture of grain-oriented electrical steel sheets containing Cr, it is possible to prevent close contact of the coil ends after the final finish annealing. Therefore, the grain-oriented electrical steel sheets having low iron loss and high magnetic flux density can be stably produced. Can be manufactured.

以下に、本発明の基礎となった調査および実験結果について説明する。なお、以下とくに説明がある場合を除き、組成は質量%で表すものとする。   Below, the investigation and experimental results that form the basis of the present invention will be described. Unless otherwise specified, the composition is expressed in mass%.

Si:3%、Bi:0.004%およびCr:0.25%を含有する鋼スラブから、公知の方法に従って、最終板厚が0.23mmの方向性電磁鋼板の最終仕上焼鈍後コイルを複数個製造した。なお、常法に従い、MgOを主体とする焼鈍分離剤を最終仕上焼鈍前に鋼板に塗布した。また最終仕上焼鈍に際して、コイルはその軸が直立する向きにて加熱炉内に載置した。   A plurality of coils after final finish annealing of a grain-oriented electrical steel sheet having a final thickness of 0.23 mm from a steel slab containing Si: 3%, Bi: 0.004% and Cr: 0.25% according to a known method. Individually manufactured. In addition, according to a conventional method, an annealing separator mainly composed of MgO was applied to the steel plate before the final finish annealing. Further, during the final finish annealing, the coil was placed in the heating furnace so that its axis was upright.

かくして得られた最終仕上焼鈍後コイルの模式図を、図1に示す。最終仕上焼鈍後コイル1について鋼板同士の密着を調査したところ、図1中符号2で示すように、一部のコイルにおいて、コイル1の下側端部、すなわち焼鈍に際して下面となった側の板幅方向端部が、全長ではないが部分的に密着していた。   A schematic diagram of the coil after final finish annealing thus obtained is shown in FIG. As a result of investigating the adhesion between the steel plates of the coil 1 after the final finish annealing, as shown by reference numeral 2 in FIG. 1, in some coils, the lower end of the coil 1, that is, the plate on the side that became the lower surface during annealing. Although the width direction edge part was not full length, it was contact | adhered partially.

密着は、とくにコイルの最外巻き側から30巻き目までと、最内巻き側から30巻き目までの領域でそれぞれ顕著であった。このコイルの結晶粒を調査したところ、コイルの板幅方向端部で二次再結晶が生じていないコイルでは密着が軽度であることを見出した。   Adhesion was particularly remarkable in the region from the outermost winding side to the 30th winding and from the innermost winding side to the 30th winding. As a result of investigating the crystal grains of the coil, it was found that the coil in which secondary recrystallization did not occur at the end portion in the plate width direction of the coil was lightly adhered.

コイルの板幅方向端部で二次再結晶が生じていないと密着がしにくくなる理由、言い換えると、二次再結晶粒が密着しやすい理由は次のように考えられる。二次再結晶粒はゴス方位に集積しているので、異なる二次再結晶粒の方位は非常に近く、そのため異なる鋼板の二次再結晶粒が高温で接すると原子の再配列が容易に生じ、容易に密着すると考えられる。   The reason why adhesion is difficult to occur unless secondary recrystallization occurs at the end in the plate width direction of the coil, in other words, the reason why secondary recrystallization grains tend to adhere is considered as follows. Since the secondary recrystallized grains accumulate in the Goss orientation, the orientations of the different secondary recrystallized grains are very close, so that when the secondary recrystallized grains of different steel plates contact at high temperature, the rearrangement of atoms easily occurs. It is thought that it adheres easily.

また、コイルの最外巻き部と最内巻き部で密着が顕著となる理由は、最終仕上焼鈍直前の工程でコイルに巻き取るときに、最外巻きと最内巻き部では非定常部であるため十分な巻き取り張力が得られないこと、さらに最終仕上焼鈍中にコイルが熱膨張により変形するため最外巻きと最内巻き部では非定常部でコイルが緩むことによると考えられる。すなわち、焼鈍分離剤(後述する)の欠落が、最外巻きと最内巻き部では顕著となるためと考えられる。   In addition, the reason why the contact between the outermost winding portion and the innermost winding portion of the coil becomes conspicuous is that the outermost winding portion and the innermost winding portion are unsteady portions when winding on the coil in the process immediately before the final finish annealing. Therefore, it is considered that sufficient winding tension cannot be obtained, and that the coil is deformed by thermal expansion during the final finish annealing, so that the coil is loosened at the unsteady portion in the outermost winding and the innermost winding portion. That is, it is considered that the lack of the annealing separator (described later) becomes remarkable in the outermost winding and the innermost winding portion.

ところが、コイルの板幅端部で二次再結晶が生じていないコイルにおいても、依然として、密着部が生じているものもあることが判明した。このような密着の原因解明のため、密着部の断面を走査電子顕微鏡で観察するとともに、エネルギー分散型X線分光法(EDX)で分析した。密着部断面の様子の一例を図2に示す。   However, it has been found that even in the coil where the secondary recrystallization does not occur at the plate width end portion of the coil, there is still a close contact portion. In order to elucidate the cause of such adhesion, the cross section of the adhesion part was observed with a scanning electron microscope and analyzed by energy dispersive X-ray spectroscopy (EDX). An example of the cross section of the contact portion is shown in FIG.

EDX分析の結果を図3に示すが、この分析結果から、密着部2には組成が地鉄7および被膜6とは明らかに異なる、Fe−Cr合金と判断される組成物8が存在することが判明した。このFe−Cr合金8は、最終仕上焼鈍の初期にFeとCrの酸化物が形成され、最終仕上焼鈍の純化処理中に還元されたものと考えられる。なお、このFeとCrの酸化物がFe酸化物とCr酸化物との複合酸化物なのか混合物なのか、あるいは両者が混在しているのかは不明であるが、以後、このFeとCrの酸化物をFe−Cr系酸化物と呼ぶこととする。   FIG. 3 shows the result of the EDX analysis. From this analysis result, it is found that the composition 2 which is judged to be an Fe—Cr alloy having a composition that is clearly different from that of the base iron 7 and the coating 6 exists in the adhesion portion 2. There was found. This Fe—Cr alloy 8 is considered to be formed by the formation of oxides of Fe and Cr at the initial stage of final finish annealing and reduced during the purification process of final finish annealing. It is unknown whether this Fe and Cr oxide is a composite oxide or mixture of Fe oxide and Cr oxide, or a mixture of both. The product is called an Fe-Cr oxide.

また、密着部のFe−Cr合金中には焼鈍分離剤の主成分であるMgは含まれておらず、焼鈍分離剤が欠落していることが判明した。すなわち、密着は、最終仕上焼鈍中にコイル下側端部の焼鈍分離剤が欠落し、コイル下側がコイルの自重により変形し、コイルの自重による力がコイル下側端部では不均一となり、そのため部分的にコイル下側端部の鋼板相互間に強い力が働き、鋼板間のFe−Cr合金を挟むようにして発生したと考えられる。このFe−Cr合金が密着の発生に関与している可能性が高く、したがって、鋼板間のFe−Cr合金を減少あるいは無くせば、密着は防止できるとの推測を得るに到った。   Further, it has been found that the Fe—Cr alloy in the close contact portion does not contain Mg, which is the main component of the annealing separator, and the annealing separator is missing. That is, the close contact lacks the annealing separation agent at the lower end of the coil during final finish annealing, the lower side of the coil is deformed by its own weight, and the force due to its own weight becomes uneven at the lower end of the coil. It is considered that a strong force was partially exerted between the steel sheets at the lower end of the coil, and was generated by sandwiching the Fe—Cr alloy between the steel sheets. It is highly possible that this Fe—Cr alloy is involved in the occurrence of adhesion, and therefore it has been estimated that adhesion can be prevented by reducing or eliminating the Fe—Cr alloy between the steel plates.

そこで、発明者らは、コイルにおける密着を防止するために、Fe−Cr合金を生成させない方法を検討した。すなわち、Fe−Cr合金の元となるFe−Cr系酸化物の生成を抑制することを検討した。   In view of this, the inventors have studied a method in which an Fe—Cr alloy is not generated in order to prevent adhesion in the coil. That is, it was studied to suppress the formation of Fe—Cr-based oxides that are the basis of Fe—Cr alloys.

通常、最終仕上焼鈍前の鋼板には、MgOを主体とする物質を水に懸濁したスラリーを焼鈍分離剤として鋼板に塗布し(通常両面であるが片面も可能)、その後コイルに巻き取るのが通例である。この鋼板に塗布されたスラリーは、乾燥させた後も物理的に吸着したH2Oを保有するほか、一部が水和してMg(OH)2に変化している。そのため、最終仕上焼鈍中にH2Oを放出する。このH2Oにより最終仕上焼鈍中に鋼板表面は酸化されることが知られている。 Usually, on the steel plate before final finish annealing, a slurry in which a substance mainly composed of MgO is suspended in water is applied to the steel plate as an annealing separator (usually both sides but one side is also possible), and then wound on a coil. Is customary. The slurry applied to the steel sheet retains physically adsorbed H 2 O even after being dried, and partly hydrates and changes to Mg (OH) 2 . Therefore, H 2 O is released during the final finish annealing. It is known that the surface of the steel sheet is oxidized during the final finish annealing by this H 2 O.

一般に、酸化の反応速度は高温ほど顕著となる。一方、Cr系の酸化物すなわちCrを組成として含有する酸化物は、同一の酸素ポテンシャル雰囲気中では、高温で還元反応に変わる。例えば、下記の反応は、酸化物の標準生成自由エネルギーによる計算では、露点が−13℃の1気圧のH2雰囲気中では1150℃程度で逆反応に変わる。

1/2Fe+Cr+O2 → 1/2FeCr24
In general, the oxidation reaction rate becomes more prominent at higher temperatures. On the other hand, a Cr-based oxide, that is, an oxide containing Cr as a composition changes to a reduction reaction at a high temperature in the same oxygen potential atmosphere. For example, the following reaction is converted to a reverse reaction at about 1150 ° C. in a 1 atmosphere H 2 atmosphere with a dew point of −13 ° C., as calculated by the standard free energy of oxide formation.
1 / 2Fe + Cr + O 2 → 1 / 2FeCr 2 O 4

以上から、Fe−Cr系酸化物の生成を抑制するためには、焼鈍分離剤から放出されるH2Oと鋼板表面との酸化反応を、高温域下で生じさせないことが有効であると考えられる。すなわち、最終仕上焼鈍中の温度が900℃以上の領域、とくに900〜1100℃程度の領域での雰囲気の酸化性を低下させれば、鋼板表面のCrの酸化は抑制されると考えられる。 From the above, in order to suppress the formation of Fe—Cr-based oxides, it is considered effective not to cause an oxidation reaction between H 2 O released from the annealing separator and the steel sheet surface in a high temperature range. It is done. That is, it is considered that the oxidation of Cr on the surface of the steel sheet can be suppressed by reducing the oxidation of the atmosphere in the region where the temperature during the final finish annealing is 900 ° C. or higher, particularly in the region of about 900 to 1100 ° C.

また、コイル内の不均一な熱膨張によりコイルの変形が生じると、コイル下部にコイルの自重が局部的に集中するので、密着が助長すると考えられる。従って、昇温速度を遅くしてコイル内の温度差を小さくすることは密着を抑制すると考えられ、特に鋼板の強度が低下している高温域で昇温速度を遅くすることが密着を抑制するのに効果的だと考えられる。   Further, when the coil is deformed due to non-uniform thermal expansion in the coil, the coil's own weight is locally concentrated in the lower part of the coil, so that it is considered that adhesion is promoted. Therefore, it is considered that reducing the temperature increase rate to reduce the temperature difference in the coil suppresses adhesion, and in particular, slowing the temperature increase rate in a high temperature range where the strength of the steel sheet is reduced suppresses adhesion. It is thought that it is effective.

そこで、以上の点を確認するべく、以下の実験を行った。   Therefore, the following experiment was conducted to confirm the above points.

すなわち、C:0.06%、Si:3.3%、Mn:0.06%、Cu:0.1%、Se:0.02%、N:0.008%、Al:0.03%、Bi:0.01%を含有する鋼スラブを、熱間圧延により2.4mm厚の熱延板とした後、1000℃、30秒間の焼鈍を行った。その後、冷間圧延で1.5mm厚に仕上げたのち、1130℃、40秒間の中間焼鈍を施し、次いで最終板厚0.23mmに冷間圧延した。さらに、820℃で150秒間の脱炭焼鈍を施した後に、MgOに質量%でTiO2を3%およびSrSO4を2%添加して成る焼鈍分離剤を塗布し、コイルに巻き取って、脱炭焼鈍板コイルを複数個製造した。その際、最終仕上焼鈍後コイルの板幅方向端部で二次再結晶させないようにするため、中間焼鈍において板幅方向端部の温度を幅中央部(すなわち板幅方向中央部)の温度1130℃より20℃高い1150℃とした。 That is, C: 0.06%, Si: 3.3%, Mn: 0.06%, Cu: 0.1%, Se: 0.02%, N: 0.008%, Al: 0.03% The steel slab containing Bi: 0.01% was hot rolled into a hot-rolled sheet having a thickness of 2.4 mm, and then annealed at 1000 ° C. for 30 seconds. Then, after finishing to a thickness of 1.5 mm by cold rolling, an intermediate annealing was performed at 1130 ° C. for 40 seconds, and then cold rolling was performed to a final thickness of 0.23 mm. Further, after performing decarburization annealing at 820 ° C. for 150 seconds, an annealing separator comprising 3% TiO 2 and 2% SrSO 4 by mass% is applied to MgO, wound on a coil, and removed. Several carbon annealed plate coils were manufactured. At that time, in order to prevent secondary recrystallization at the end in the plate width direction of the coil after the final finish annealing, the temperature at the end in the plate width direction during intermediate annealing is set to the temperature 1130 of the width center (that is, the center in the plate width direction). The temperature was set to 1150 ° C., which is 20 ° C. higher than that.

その後、最終仕上焼鈍として、窒素雰囲気中で850℃まで8℃/hの速度で昇温した後、体積%で窒素:25%と水素:75%の雰囲気中にて1200℃まで加熱し、さらに1200℃で5時間の水素雰囲気中での純化処理を行った。ここで、850〜1200℃まで昇温においては、900〜1100℃の温度域を、5、10、15、20、30℃/hの各種の昇温速度に制御し、1100℃以降は1200℃超へのオーバーシュートを防止するため、これらの昇温速度よりも低い昇温速度とした。また、最終仕上焼鈍の900℃以上の温度域における露点は、各昇温速度条件に対して、0、10、20、30、40℃と変化させた。   Thereafter, as final finish annealing, the temperature was raised to 850 ° C. at a rate of 8 ° C./h in a nitrogen atmosphere, and then heated to 1200 ° C. in an atmosphere of nitrogen: 25% and hydrogen: 75% in volume%. A purification treatment was performed in a hydrogen atmosphere at 1200 ° C. for 5 hours. Here, in the temperature increase to 850 to 1200 ° C., the temperature range of 900 to 1100 ° C. is controlled to various temperature increase rates of 5, 10, 15, 20, and 30 ° C./h, and 1200 ° C. after 1100 ° C. In order to prevent overshooting to an excessively high temperature, the heating rate was set lower than these heating rates. Moreover, the dew point in the temperature range of 900 ° C. or higher of the final finish annealing was changed to 0, 10, 20, 30, 40 ° C. for each temperature increase rate condition.

以上の条件の下に得られたコイルにおいて、最外巻き部の30巻き分、長さにしておよそ100mの領域について、下側端部の鋼板の密着について調査した。密着の程度は、密着力を弱、中、強の3段階とし、最外巻き部の30巻き分内に何箇所存在したかで評価した。ここで、密着力は、密着部を剥がした時に板幅方向に伸展する割れの長さで評価し、割れの長さが10mm以上の場合を強、10mm未満の場合を中、密着しているものの割れが生じない場合を弱とした。   In the coil obtained under the above conditions, the adhesion of the steel plate at the lower end was investigated for an area of about 100 m in length for 30 turns of the outermost winding part. The degree of adhesion was evaluated based on the number of locations within 30 windings of the outermost winding portion, with the adhesion strength being three stages of weak, medium and strong. Here, the adhesion force is evaluated by the length of a crack that extends in the plate width direction when the adhesion portion is peeled off, and the case where the length of the crack is 10 mm or more is strong, and the case where it is less than 10 mm is in close contact. The case where no cracking occurred was considered weak.

その結果を表1に示す。表1より900〜1100℃間の昇温温度が15℃/h以下で、900℃以上の露点が20℃以下とした場合に、最終仕上焼鈍後のコイル下側の端部における鋼板と鋼板との密着が軽度となることが分かった。   The results are shown in Table 1. From Table 1, when the temperature rise temperature between 900-1100 ° C. is 15 ° C./h or less and the dew point of 900 ° C. or more is 20 ° C. or less, the steel plate and the steel plate at the lower end of the coil after final finish annealing It became clear that the adhesion of was light.

次に、この発明について、製造工程順に詳しく述べる。
まず、鋼板の素材となる鋼スラブの成分組成について、具体的に説明する。
Next, the present invention will be described in detail in the order of the manufacturing process.
First, the component composition of the steel slab used as the raw material for the steel plate will be specifically described.

Si:2.5〜4.5%
Siは、鋼板の比抵抗を高め、鉄損を低減するのに有効な成分であるが、4.5%を上回る含有量では冷延性が損なわれる。一方、2.5%に満たないような含有量では比抵抗が低下するだけでなく、二次再結晶および純化のために行われる最終仕上焼鈍中にα−γ変態によって結晶方位のランダム化を生じ、十分な鉄損低減効果が得られなくなる。したがって、Si含有量は2.5〜4.5%の範囲に限定した。
Si: 2.5-4.5%
Si is a component effective for increasing the specific resistance of the steel sheet and reducing iron loss, but if the content exceeds 4.5%, the cold rolling property is impaired. On the other hand, when the content is less than 2.5%, not only the specific resistance is lowered, but also the crystal orientation is randomized by α-γ transformation during the final finish annealing for secondary recrystallization and purification. Occurs, and a sufficient iron loss reduction effect cannot be obtained. Therefore, the Si content is limited to a range of 2.5 to 4.5%.

Cr:0.01〜0.50%
Crは、フォルステライト被膜の形成を促進する作用がある。特に、Biを添加した場合にはフォルステライト被膜の生成が困難となるため、その改善のためにCrを添加するのが効果的である。その効果は0.01%未満では十分でなく、他方、0.50%を越えても効果は飽和し、コスト高となる。このため、Crの範囲は0.01〜0.50%とする。もちろん、Biを添加していない場合でも、Cr添加はフォルステライト被膜の改善に有効である。
Cr: 0.01 to 0.50%
Cr has an action of promoting the formation of a forsterite film. In particular, when Bi is added, it becomes difficult to form a forsterite film, so it is effective to add Cr for improvement. If the effect is less than 0.01%, it is not sufficient. On the other hand, if it exceeds 0.50%, the effect is saturated and the cost is increased. For this reason, the range of Cr shall be 0.01 to 0.50%. Of course, even when Bi is not added, the addition of Cr is effective in improving the forsterite film.

以上の2元素に加えて、インヒビター形成元素を含有する成分組成を基本組成とする。このインヒビター形成元素については具体的に後述するが、上記の2元素の他にさらに必要に応じて、以下の各成分を添加することも可能である。   In addition to the above two elements, a component composition containing an inhibitor forming element is defined as a basic composition. This inhibitor-forming element will be specifically described later, but it is also possible to add the following components as required in addition to the above two elements.

C:0.03〜0.10%
Cの含有量は、0.03〜0.10%とするのが好ましい。即ち、0.10%を超えるとγ変態量が過剰となり、熱間圧延中に析出するMnSe、MnSなどのインヒビターの均一分散を阻害する結果となり、有害である。また、脱炭焼鈍の負荷も増大し脱炭不良を発生しやすくなる。一方、0.03%未満では組織改善効果が得られず、二次再結晶が不完全となり、同じく磁気特性が劣化する。従って、Cは0.03〜0.10%の範囲とすることが望ましい。
C: 0.03-0.10%
The C content is preferably 0.03 to 0.10%. That is, if it exceeds 0.10%, the amount of γ transformation becomes excessive, which results in inhibiting the uniform dispersion of inhibitors such as MnSe and MnS precipitated during hot rolling, which is harmful. Moreover, the load of decarburization annealing increases and it becomes easy to generate | occur | produce a decarburization defect. On the other hand, if it is less than 0.03%, the effect of improving the structure cannot be obtained, the secondary recrystallization is incomplete, and the magnetic characteristics are similarly deteriorated. Therefore, C is preferably in the range of 0.03 to 0.10%.

Mn:0.050〜1.5%
Mnは、熱間脆性を防止するためには少なくとも0.050%程度の添加が好ましいが、Mn含有量があまりに多すぎると磁気特性の劣化を引き起こすため、上限は1.5%とすることが望ましい。
Mn: 0.050 to 1.5%
Mn is preferably added in an amount of at least about 0.050% in order to prevent hot brittleness. However, if the Mn content is too large, the magnetic properties are deteriorated, so the upper limit may be 1.5%. desirable.

また、インヒビター形成元素としては、下記の元素の添加が好ましい。   Moreover, as an inhibitor forming element, the following elements are preferably added.

Bi:0.0005〜0.100%
Biの添加は、二次再結晶粒の方位集積度の向上、すなわち磁気特性の向上に有効である。Biは0.0005%未満ではとくに期待する効果は得られず、一方、0.100%を越えると均一に分散させることが困難となる。したがって、Biを含有させる場合は、0.0005〜0.100%の範囲とする。
Bi: 0.0005 to 0.100%
The addition of Bi is effective in improving the degree of orientational integration of secondary recrystallized grains, that is, improving magnetic properties. If Bi is less than 0.0005%, the expected effect cannot be obtained. On the other hand, if it exceeds 0.100%, it is difficult to disperse uniformly. Therefore, when it contains Bi, it is set as 0.0005 to 0.100% of range.

なお、Biを添加した場合に特に最終仕上焼鈍後のコイルにおける密着が顕著に生じるため、この発明の適用はBiを添加した場合に、とりわけ有効である。   Note that the application of the present invention is particularly effective when Bi is added, since adhesion in the coil after the final finish annealing is particularly noticeable when Bi is added.

Sol.Al:0.015〜0.050%および/またはB:0.001〜0.01%
最終冷延圧下率が80%以上の場合、二次再結晶温度が非常に高くなるため、鋼中には高温で安定なインヒビター形成元素の含有が必要であり、かようなインヒビター形成元素としては、Alおよび/またはBと、Nとの組み合わせが適している。
Sol. Al: 0.015-0.050% and / or B: 0.001-0.01%
When the final cold rolling reduction is 80% or more, the secondary recrystallization temperature becomes very high. Therefore, it is necessary to contain an inhibitor-forming element that is stable at a high temperature in the steel. A combination of N, Al and / or B and N is suitable.

すなわち、Alはsol.Al(酸可溶Al)として、0.015〜0.050%を含有させることが好ましい。すなわち、Alの含有量が0.015%未満の場合、析出するAlNの量が不足し、良好な二次再結晶を得ることができない。逆に、0.050%を超える場合は、インヒビターとして機能するサイズに均一分散することが困難となるため好ましくない。   That is, Al is sol. It is preferable to contain 0.015 to 0.050% as Al (acid-soluble Al). That is, when the Al content is less than 0.015%, the amount of precipitated AlN is insufficient, and good secondary recrystallization cannot be obtained. On the other hand, if it exceeds 0.050%, it is difficult to uniformly disperse into a size that functions as an inhibitor, which is not preferable.

一方、Bは0.001〜0.01%を含有させることが好ましい。すなわち、Bの含有量が0.001%未満の場合、析出するBNの量が不足し良好な二次再結晶を得ることができない。逆に、0.01%を超える場合、インヒビターとして機能するサイズに均一分散させることが困難となるため好ましくない。   On the other hand, B preferably contains 0.001 to 0.01%. That is, when the B content is less than 0.001%, the amount of precipitated BN is insufficient, and a good secondary recrystallization cannot be obtained. Conversely, if it exceeds 0.01%, it is difficult to uniformly disperse it to a size that functions as an inhibitor, which is not preferable.

N:0.005〜0.015%
Nは、インヒビターとなるAlNおよび/またはBNを構成する成分であり、この目的のためには0.005%以上の含有が必要である。しかし、0.015%を超えて含有すると、鋼中でガス化して鋼板表面に膨れを生じるなどの問題を起こすことがある。したがって、Nは0.005〜0.015%の含有量とすることが好ましい。
N: 0.005 to 0.015%
N is a component constituting AlN and / or BN serving as an inhibitor. For this purpose, N must be contained in an amount of 0.005% or more. However, if it exceeds 0.015%, it may cause problems such as gasification in steel and swelling of the steel sheet surface. Therefore, it is preferable that N has a content of 0.005 to 0.015%.

なお、BNをインヒビターとして単独使用する場合、換言すると、Alをインヒビター形成元素として用いない場合は、Al含有量を0.012%以下に制限することが好ましい。すなわち、Al含有量が多くなると、脱炭焼鈍でのサブスケールの生成や、仕上焼鈍でのフォルステライトの生成を困難にするという側面がある。したがって、インヒビター形成元素としてAlを用いない場合は、フォルステライト被膜改善のために、不純物としてのAl含有量を0.012%以下に制限することが好ましい。   When BN is used alone as an inhibitor, in other words, when Al is not used as an inhibitor-forming element, it is preferable to limit the Al content to 0.012% or less. That is, when the Al content increases, there is an aspect that it is difficult to generate subscales in decarburization annealing and forsterite generation in finish annealing. Therefore, when Al is not used as an inhibitor forming element, it is preferable to limit the Al content as an impurity to 0.012% or less in order to improve the forsterite film.

Sおよび/またはSeを合計で0.010〜0.040%
インヒビター成分として、SおよびSeを単独もしくは複合で含有させることができる。これらの成分は、鋼中にMn化合物あるいはCu化合物として析出するが、粒成長抑制効果を維持するには、いずれか1種または2種の合計で0.010%以上が必要である。一方、0.040%を超えると、高温のスラブ加熱でも完全に固溶させることができず粗大な析出物となるため、かえって有害になる。従って、これらを含有させる場合は、いずれか1種または2種の合計で0.010〜0.040%の範囲とすることが好ましい。
S and / or Se in total 0.010 to 0.040%
As an inhibitor component, S and Se can be contained alone or in combination. These components are precipitated in the steel as Mn compounds or Cu compounds, but in order to maintain the effect of suppressing grain growth, 0.010% or more in total of any one or two of them is required. On the other hand, if it exceeds 0.040%, it cannot be completely dissolved even by high-temperature slab heating, resulting in coarse precipitates. Therefore, when it contains these, it is preferable to set it as the range of 0.010-0.040% in total of any 1 type or 2 types.

Sおよび/またはSeを添加する際は、Mn/(Se+S)(質量%で計算)が2.5より小さいと、熱間圧延中に粒界割れや耳荒れが著しく増加するため、Mn/(Se+S)≧2.5となるよう、各元素を添加することが実用上好ましい。   When adding S and / or Se, if Mn / (Se + S) (calculated in% by mass) is less than 2.5, grain boundary cracking and ear roughness increase significantly during hot rolling, so Mn / ( It is practically preferable to add each element so that Se + S) ≧ 2.5.

また、上記のインヒビター形成元素の働きを強化するために、次の各元素の添加が好ましい。すなわち、Ni、Cu、Sn、Sb、As、Mo、TeおよびP等は、公知のインヒビターの抑制力を強化する補助的働きを有するため、必要に応じて鋼中に添加することが好ましい。この効果を発揮するために必要な好適添加量については、Ni、Cuがそれぞれ0.05〜0.5%、Snが0.005〜0.5%、Sb、As、Mo、TeおよびPがそれぞれ0.005〜0.10%である。いずれも、下限未満では正常粒成長の抑制効果が発揮されず、一方、上限を超えると被膜特性の劣化をもたらすため、上記の添加範囲とすることが好ましい。   Further, in order to strengthen the function of the above-described inhibitor forming elements, addition of the following respective elements is preferable. That is, Ni, Cu, Sn, Sb, As, Mo, Te, P and the like have an auxiliary function of strengthening the inhibitory power of known inhibitors, and thus are preferably added to steel as necessary. As for the preferable addition amount necessary to exert this effect, Ni and Cu are 0.05 to 0.5%, Sn is 0.005 to 0.5%, Sb, As, Mo, Te and P are each Each is 0.005 to 0.10%. In any case, if the amount is less than the lower limit, the effect of suppressing the growth of normal grains is not exhibited. On the other hand, if the upper limit is exceeded, the coating properties are deteriorated.

その他の添加元素については、例えばGeやCoの添加は鋼板の表面性状を改善する効果があることから、適宜の含有が可能である。その際の含有量は、Ge:0.02〜0.30%およびCo:0.02〜0.30%とするとよい。   As for other additive elements, for example, addition of Ge or Co has an effect of improving the surface properties of the steel sheet, and therefore can be appropriately contained. The contents at that time are preferably Ge: 0.02 to 0.30% and Co: 0.02 to 0.30%.

次に、製造条件について具体的に説明する。   Next, manufacturing conditions will be specifically described.

上述した好適成分に調整された溶鋼は、通常、連続鋳造法または造塊−分塊法によってスラブ(鋼スラブ)とされる。   The molten steel adjusted to the above-described preferred components is usually made into a slab (steel slab) by a continuous casting method or an ingot-bundling method.

ついで、このスラブは加熱された後、熱間圧延により熱延コイルとされるが、この時スラブの加熱は、鋼中のインヒビター形成元素を固溶させるために高温で行う。その際、加熱温度を1350℃以上とし、体積%で酸素濃度を0.01〜2%に調整した雰囲気下で加熱することが好ましい。というのは、スラブ加熱温度が1350℃に満たないとインヒビターの固溶が十分でなく、Mn(Se,S),BN等の微細かつ均一な分散析出が得られないからである。   Then, after this slab is heated, it is formed into a hot-rolled coil by hot rolling. At this time, the slab is heated at a high temperature to dissolve the inhibitor-forming elements in the steel. At that time, it is preferable to heat in an atmosphere in which the heating temperature is 1350 ° C. or more and the oxygen concentration is adjusted to 0.01 to 2% by volume%. This is because if the slab heating temperature is less than 1350 ° C., the inhibitor is not sufficiently dissolved, and fine and uniform dispersion precipitation of Mn (Se, S), BN, etc. cannot be obtained.

しかしながら、Crを含有するスラブを高温で加熱した場合、後工程の最終仕上焼鈍でのコイル下端部での密着が増長される傾向となる。スラブ加熱後から最終仕上焼鈍前までの間に最終仕上焼鈍より高い温度に加熱する工程がないことから、密着の増長は、Crを含有するスラブの高温加熱時における雰囲気との何らかの反応による、スラブ表層の変化が、最終仕上焼鈍以前の工程により解消されることなく残存したことが原因と考えられる。   However, when the slab containing Cr is heated at a high temperature, the adhesion at the lower end of the coil in the final finish annealing in the subsequent process tends to be increased. Since there is no step of heating to a temperature higher than the final finish annealing after the slab heating and before the final finish annealing, the increase in adhesion is caused by some reaction with the atmosphere during the high temperature heating of the slab containing Cr. It is thought that the change in the surface layer remained without being eliminated by the process before the final finish annealing.

これに対して、スラブ加熱時に0.01体積%以上の酸素を含有する高温の雰囲気中でCrを十分に酸化させると、スケール直下表層のCr量が減少して、上記したスラブ表層の変化が抑制される結果、最終仕上焼鈍での密着を低減することができることから、雰囲気の酸素濃度が0.01体積%とすることが好ましい。一方、酸素濃度が2体積%を超えると、溶融スケール発生によるスケールロスが増加するため、酸素濃度は0.01〜2体積%の範囲とすることが望ましい。   On the other hand, when Cr is sufficiently oxidized in a high temperature atmosphere containing oxygen of 0.01% by volume or more during slab heating, the amount of Cr in the surface layer immediately below the scale decreases, and the change in the slab surface layer described above occurs. As a result of being suppressed, adhesion in the final finish annealing can be reduced, and therefore, the oxygen concentration in the atmosphere is preferably 0.01% by volume. On the other hand, when the oxygen concentration exceeds 2% by volume, the scale loss due to the generation of melt scale increases, so the oxygen concentration is preferably in the range of 0.01 to 2% by volume.

この1350℃以上のスラブ加熱は、ガス燃焼式加熱炉よりも、雰囲気制御が容易な電気式加熱炉の方が適している。燃料費等のコストをも考慮すると、ガス燃焼式加熱炉で1200℃程度まで加熱し、その後、雰囲気制御型電気式加熱炉で1350℃以上に加熱することが好ましい。   The slab heating at 1350 ° C. or higher is more suitable for an electric heating furnace with easy atmosphere control than for a gas combustion heating furnace. Considering costs such as fuel costs, it is preferable to heat to about 1200 ° C. with a gas combustion type heating furnace and then heat to 1350 ° C. or more with an atmosphere control type electric heating furnace.

なお、熱間圧延に関しては、スラブ加熱前後において、組織均一化のための厚み低減処理や幅圧下処理など、公知の技術を適宜加えることが可能である。   Regarding hot rolling, it is possible to appropriately add known techniques such as thickness reduction processing and width reduction processing for homogenizing the structure before and after slab heating.

次に、冷間圧延工程については、焼鈍処理を伴う少なくとも1回の冷間圧延を行う。具体的には、冷延1回法、冷延2回法のいずれを用いても良い。ここで、冷延1回法とは、熱延板焼鈍後、1回の冷間圧延により最終板厚とする方法であり、冷延2回法とは、必要に応じて熱延板焼鈍を施した後、中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚とする方法である。   Next, about a cold rolling process, at least 1 time of cold rolling accompanying an annealing process is performed. Specifically, any one of the cold rolling method and the cold rolling method may be used. Here, the cold rolling one-time method is a method of obtaining the final sheet thickness by one cold rolling after the hot-rolled sheet annealing, and the cold-rolling two-time method is hot rolling sheet annealing as necessary. After the application, the final thickness is obtained by performing cold rolling at least twice with intermediate annealing.

冷間圧延の圧下率については、従来公知の範囲とすることが好ましい。例えば冷延2回法の第1回目の圧延の場合は15〜60%程度とすることが好ましい。というのは、圧下率が15%未満の場合は圧延再結晶の機構が作用しないため結晶組織の均一化が得られず、一方60%を超えると集合組織の集積化が起こり、第2回目の圧延の効果が得られなくなるからである。   About the rolling reduction of cold rolling, it is preferable to set it as a conventionally well-known range. For example, in the case of the first rolling in the cold rolling method, the content is preferably about 15 to 60%. This is because when the rolling reduction is less than 15%, the rolling recrystallization mechanism does not work, so that the crystal structure cannot be made uniform. On the other hand, when the rolling reduction exceeds 60%, the texture is accumulated. This is because the rolling effect cannot be obtained.

さらに、最終圧延の圧下率は80〜90%程度とするのが好ましい。というのは、圧下率が90%を超えた場合、2次再結晶が困難となり、一方80%未満では良好な2次再結晶粒の方位が得られず、製品の磁束密度が低下するからである。   Furthermore, the rolling reduction of the final rolling is preferably about 80 to 90%. This is because when the rolling reduction exceeds 90%, secondary recrystallization becomes difficult, whereas when the rolling reduction is less than 80%, good secondary recrystallization grain orientation cannot be obtained, and the magnetic flux density of the product decreases. is there.

また、熱延板焼鈍または中間焼鈍において、焼鈍温度が過度に低い場合、圧延後の再結晶組織において2次再結晶の核となる(110)粒((110)結晶面が板面と平行な結晶粒)の数が不足し、良好な方位の2次再結晶組織が得られなくなる。充分な数の(110)粒を得るためには、熱延板焼鈍後の結晶組織を一定サイズ以上に粗大化する必要があり、このためには800℃以上の温度まで昇温することが好ましい。一方、焼鈍温度の上限については、微細に析出したMn(Se,S)やBN等のインヒビターの、再固溶あるいはオストワルド成長を回避することが肝要なため、1200℃以下とすることが好ましい。   In addition, when the annealing temperature is excessively low in hot-rolled sheet annealing or intermediate annealing, (110) grains ((110) crystal planes parallel to the plate surface are cores of secondary recrystallization in the recrystallized structure after rolling. The number of crystal grains) is insufficient, and a secondary recrystallized structure with good orientation cannot be obtained. In order to obtain a sufficient number of (110) grains, it is necessary to coarsen the crystal structure after hot-rolled sheet annealing to a certain size or more. For this purpose, it is preferable to raise the temperature to a temperature of 800 ° C. or higher. . On the other hand, the upper limit of the annealing temperature is preferably set to 1200 ° C. or lower because it is important to avoid re-solution or Ostwald growth of finely precipitated inhibitors such as Mn (Se, S) and BN.

なお、かような熱延板焼鈍または中間焼鈍の冷却過程については、特に制限されることはないが、焼鈍後の鋼中の固溶Cを増加させるために急冷処理を行ったり、鋼中に微細カーバイドを析出させるために急冷低温保持処理を行ったりすることは、製品の磁気特性を向上させる上で有効である。また、焼鈍雰囲気の酸化性を高めて鋼板表層部を脱炭する手段も有効な働きをする。   In addition, about the cooling process of such hot-rolled sheet annealing or intermediate annealing, although it does not restrict | limit, in order to increase the solid solution C in steel after annealing, a rapid cooling process is performed, or in steel Performing a quenching and low-temperature holding treatment in order to precipitate fine carbide is effective in improving the magnetic properties of the product. In addition, means for decarburizing the steel sheet surface layer portion by increasing the oxidizability of the annealing atmosphere also works effectively.

さらに、冷間圧延において公知のように、最終冷間圧延を100〜350℃での温間圧延としたり、または100〜350℃で10〜60分間のパス間時効処理を付加することにより、一次再結晶の集合組織を一層改善することができる。また、最終冷間圧延後、磁区細分化のため、鋼板表面に線状の溝を設ける等の処理を行うことも可能である。   Further, as is well known in cold rolling, the final cold rolling can be performed by warm rolling at 100 to 350 ° C. or by adding an aging treatment between passes at 100 to 350 ° C. for 10 to 60 minutes. The recrystallization texture can be further improved. In addition, after the final cold rolling, it is possible to perform a treatment such as providing a linear groove on the steel plate surface for magnetic domain fragmentation.

ついで、最終板厚とした鋼板は、公知の手法による脱炭焼鈍を施した後、一般にMgOを主成分とする焼鈍分離剤を鋼板表面に塗布してからコイルに巻き取られ、最終仕上げ焼鈍に供されるが、その際Ti化合物を添加したり、CaやBを焼鈍分離剤中に含有させたりすることは、磁気特性をさらに向上させる効果があり、好ましい。   Next, after the steel sheet having the final thickness is subjected to decarburization annealing by a known method, generally, an annealing separator mainly composed of MgO is applied to the steel sheet surface, and then wound on a coil for final finishing annealing. In this case, it is preferable to add a Ti compound or to contain Ca or B in the annealing separator because it has the effect of further improving the magnetic properties.

さらに、一次再結晶焼鈍後かつ二次再結晶開始までの間において、鋼中に質量ppmで550ppm以下の範囲でNを含ませる窒化処理を行うことも、鋼中の正常粒成長の抑制力が弱い場合には適切であり、この技術の適用を妨げるものではない。窒化の方法としては、一次再結晶焼鈍後、NH3を含む雰囲気中で鋼板を熱処理する方法や、焼鈍分離剤中に分解性の窒化物を含有させる方法などが適合するが、これらに限定されるものではない。 Furthermore, after the primary recrystallization annealing and until the start of the secondary recrystallization, the nitriding treatment in which N is contained in the steel in a mass ppm range of 550 ppm or less can also be used to suppress the normal grain growth in the steel. It is appropriate if it is weak and does not interfere with the application of this technology. As a nitriding method, a method of heat-treating a steel sheet in an atmosphere containing NH 3 after primary recrystallization annealing, a method of containing a decomposable nitride in an annealing separator, and the like are suitable, but are not limited thereto. It is not something.

最終仕上焼鈍は、二次再結晶焼鈍および純化焼鈍からなり、前半の二次再結晶焼鈍において、鋼板に二次再結晶が起こり、続いて更に高温の領域で純化焼鈍を行うことによって、鋼板の純化が進み所望の磁気特性を得ることができる。この際、鋼板の純化を十分にするために、1100℃以上の領域を3時間以上とする必要がある。また、純化焼鈍は還元性ガスの水素ガス、不活性ガスのAr、He、Ne、N2ガスあるいはそれらの混合ガス等を雰囲気として行なうことが好ましい。 Final finish annealing consists of secondary recrystallization annealing and purification annealing.In the first half of secondary recrystallization annealing, secondary recrystallization occurs in the steel sheet, and then the purification annealing is performed in a higher temperature region. As the purification proceeds, desired magnetic characteristics can be obtained. At this time, in order to sufficiently purify the steel plate, the region of 1100 ° C. or higher needs to be 3 hours or longer. Further, it is preferable that the purification annealing is performed in an atmosphere of a reducing gas such as hydrogen gas, an inert gas such as Ar, He, Ne, N 2 gas, or a mixed gas thereof.

以上の組成および製造条件により達成できる鉄損値および磁束密度は、製品の板厚および磁区細分化処理の有無にも依存するが、例えば、磁区細分化処理を施さない板厚0.30mmの製品ではW17/50にして1.1W/kg以下、B8にして1.88T以上を得ることができる。 The iron loss value and magnetic flux density that can be achieved by the above composition and production conditions depend on the product thickness and the presence or absence of magnetic domain refinement treatment, for example, a product having a thickness of 0.30 mm that is not subjected to magnetic domain refinement treatment. Then, W 17/50 can be 1.1 W / kg or less, and B 8 can be 1.88 T or more.

最終仕上焼鈍は長時間の処理となるので、鋼板は前記のようにコイルの状態で加熱炉内に載置される。作業性の観点から、載置に際しては、図1に示されるように、コイルの軸が直立する向き、すなわちコイルの軸が上下方向となり、コイルの板幅方向端部が上面および下面となるように置かれる。コイル軸が厳密に垂直となることを要する訳ではないことは言うまでもない。   Since the final finish annealing is a long-time process, the steel plate is placed in the heating furnace in a coil state as described above. From the viewpoint of workability, when mounting, as shown in FIG. 1, the coil axis is in an upright direction, that is, the coil axis is in the vertical direction, and the end portions in the plate width direction are the upper and lower surfaces. Placed in. It goes without saying that the coil axis does not have to be strictly vertical.

ここで、最終仕上焼鈍の900℃以上の温度域における雰囲気の露点を20℃以下とすること、および、900℃以上の温度域における昇温速度を15℃/h以下とすることも、この発明の要件である。すなわち、Crの酸化物が生成しやすい900℃以上の温度域における雰囲気の露点を20℃以下に下げることにより、コイルにおいて鋼板相互間に生成するCrの酸化物の生成を抑制し、引き続く純化焼鈍の際にCrの酸化物の還元により生成されるFe−Cr合金を低減し、コイル下部の鋼板相互の密着を防止する。   Here, it is also possible to set the dew point of the atmosphere in the temperature range of 900 ° C. or higher of the final finish annealing to 20 ° C. or lower, and the temperature increase rate in the temperature range of 900 ° C. or higher to 15 ° C./h or lower. Is a requirement. That is, by lowering the dew point of the atmosphere in a temperature range of 900 ° C. or higher where Cr oxide is likely to be generated to 20 ° C. or lower, the generation of Cr oxide generated between steel sheets in the coil is suppressed, and subsequent purification annealing is performed. In this case, Fe—Cr alloy produced by reduction of Cr oxide is reduced, and adhesion between the steel plates under the coil is prevented.

また、900℃以上の温度域における昇温速度を15℃/h以下と遅くすることにより、コイルの変形がしやすい高温域でのコイル内の温度勾配が低減し、コイル下側におけるコイルの自重による変形が抑制されて、コイル下部に加わる力が局所的に集中するのが防がれる結果、コイル下部の鋼板の密着を防止できる。   Further, by slowing the rate of temperature rise in the temperature range of 900 ° C. or higher to 15 ° C./h or less, the temperature gradient in the coil in the high temperature range where the coil is likely to be deformed is reduced, and the coil's own weight under the coil is reduced. As a result, the force applied to the lower part of the coil is prevented from concentrating locally, and as a result, it is possible to prevent the steel sheet below the coil from sticking.

なお、昇温速度Vは、最終仕上焼鈍の加熱過程における、5時間以上離れた時刻をt1、t2(t1<t2)とし、各時刻での温度をそれぞれT1、T2としたとき、V=(T2−T1)÷(t2−t1)と表すことができる。900℃以上の温度域における昇温速度を15℃/h以下にするというのは、T1、T2≧900℃を満たす条件にて、常にV≦15℃/hとすることである。なお、T1、T2≧900℃を満たす条件下での最大のVを、900℃以上での昇温速度の最大値と定義する。   Note that the rate of temperature increase V is V = (t = t1, t2 (t1 <t2) when the time is 5 hours or more away in the heating process of final finish annealing, and T1 and T2 are the temperatures at each time. T2-T1) / (t2-t1). Making the temperature rising rate in the temperature range of 900 ° C. or higher 15 ° C./h or less means that V ≦ 15 ° C./h is always satisfied under the conditions satisfying T1, T2 ≧ 900 ° C. In addition, the maximum V under the conditions satisfying T1 and T2 ≧ 900 ° C. is defined as the maximum value of the heating rate at 900 ° C. or higher.

炉内雰囲気の露点を20℃以下にするには、炉内に通入するガスの流量の調整や、インナーカバー部の下端部をシールする粒子の粒径の調整等による方法を適用できるが、これらの方法に限定されるものではない。   In order to set the dew point of the furnace atmosphere to 20 ° C. or less, a method by adjusting the flow rate of gas passing into the furnace or adjusting the particle size of the particles sealing the lower end of the inner cover part can be applied. It is not limited to these methods.

ここで、最終仕上焼鈍時のコイル下側の板幅方向端部を幅中央部より二次再結晶しにくくすることが重要である。具体的には、最終仕上焼鈍後のコイルにおける、長手方向の少なくとも1箇所において、板幅方向端部より1mm以上の二次再結晶していない領域を存在せしめることが、この発明の要件の1つである。すなわち、二次再結晶粒はゴス方位に集積しているので異なる二次再結晶粒の結晶方位は近く、そのため密着しやすい。したがって、最終仕上焼鈍においてコイルの密着を防止するためには、コイルの長手方向の少なくとも1箇所において、板幅方向端部の幅1mm以上の領域を二次再結晶させないことが必要である。   Here, it is important to make it difficult for secondary recrystallization from the width center portion of the end portion in the plate width direction on the lower side of the coil at the time of final finish annealing. Specifically, it is one of the requirements of the present invention that at least one portion in the longitudinal direction in the coil after the final finish annealing has a region that is not recrystallized by 1 mm or more from the end in the plate width direction. One. That is, since the secondary recrystallized grains are accumulated in the Goss orientation, the crystal orientations of the different secondary recrystallized grains are close to each other, and thus are easily adhered. Therefore, in order to prevent the coil from adhering in the final finish annealing, it is necessary not to recrystallize a region having a width of 1 mm or more at the end in the plate width direction at least at one position in the longitudinal direction of the coil.

コイルの長手方向の少なくとも1箇所において、二次再結晶していない領域の幅を1mm以上としたのは、下記の理由による。   The reason why the width of the region not subjected to secondary recrystallization is set to 1 mm or more in at least one place in the longitudinal direction of the coil is as follows.

図2に例示されるように、密着は板幅方向端部から0.5mm程度のところで生じており、現実的には板幅方向端部の0.5mm程度の領域で二次再結晶させなければ十分である。ここで1コイルの領域内で板幅方向端部の経る工程条件が大きく変わることは無いことを考えると、経験的に、長手方向の少なくとも1箇所で二次再結晶していない領域が幅1mm以上となっていれば、他の部分でも幅0.5mm幅程度は二次再結晶していないと推測できる。また仮に他の部分が二次再結晶はしたとしても、前記条件が満たされる場合、板幅方向端部の少なくとも幅1mmの領域では充分に二次再結晶の開始が遅くなっており、密着防止効果が働く。すなわち、コイルの全長で、二次再結晶していない領域の幅を1mm以上とする必要はない。また、二次再結晶していない領域は最終的には切り捨てることになるので、歩留まり向上のため二次再結晶していない領域の幅は1mm以上であれば小さい方が好ましい。   As illustrated in FIG. 2, the close contact occurs at about 0.5 mm from the end in the width direction of the plate, and practically, secondary recrystallization must be performed in an area of about 0.5 mm at the end in the width direction of the plate. It is enough. Here, considering that the process conditions that the end in the plate width direction does not change significantly in the region of one coil, empirically, at least one region in the longitudinal direction has a region where the secondary recrystallization is not performed at a width of 1 mm. If it is above, it can be presumed that secondary recrystallization is not performed in other portions as much as 0.5 mm in width. Further, even if the other part is secondary recrystallized, if the above condition is satisfied, the start of secondary recrystallization is sufficiently delayed in the region of at least 1 mm width at the end in the plate width direction, thereby preventing adhesion. The effect works. That is, it is not necessary to set the width of the region not secondary recrystallized to 1 mm or more over the entire length of the coil. In addition, since the region not subjected to secondary recrystallization is eventually discarded, it is preferable that the width of the region not subjected to secondary recrystallization is 1 mm or more in order to improve the yield.

なお、1mm以上あれば組織観察が目視ででき、評価が容易であるという点も、上記の規定の理由の1つである。二次再結晶粒か否かは、結晶粒の大きさにより容易に判断できる。曖昧な場合は、結晶粒の方位解析をおこない幅中央部と比較すればよい。   In addition, if the thickness is 1 mm or more, the structure can be visually observed, and the evaluation is easy. Whether or not it is a secondary recrystallized grain can be easily determined by the size of the crystal grain. If it is ambiguous, the crystal grain orientation analysis is performed and compared with the central portion of the width.

組織を目視などで判断する場合、コイルの長手方向全体を調査する必要はない。調査箇所についてとくに限定は無いが、密着発生頻度および作業性の観点から、コイルの外巻き部および/または内巻き部の30巻き分、あるいはコイル長手方向端部より、同端部から長手方向に100mの位置までの領域について、調査することが好ましい。他の方法の一例として、合格レベルを板幅方向端部から幅10mm程度以上と設定し、機器測定(例えば、特開平1−229962号公報に記載の、超音波による結晶方位分布測定法等)により、オンラインで二次再結晶していない領域を検出してもよい。   When judging the structure visually, it is not necessary to investigate the entire longitudinal direction of the coil. Although there is no particular limitation on the investigation location, from the viewpoint of the occurrence frequency of adhesion and workability, 30 turns of the outer winding portion and / or inner winding portion of the coil, or from the end portion of the coil in the longitudinal direction from the end portion in the longitudinal direction of the coil. It is preferable to investigate the area up to a position of 100 m. As an example of another method, the acceptance level is set to be about 10 mm or more from the end in the plate width direction, and the instrument is measured (for example, the crystal orientation distribution measurement method using ultrasonic waves described in JP-A-1-229996). Thus, a region that is not secondary recrystallized online may be detected.

なお、板幅方向端部の二次再結晶を抑制する方法としては、鋼スラブの加熱に際して、当該鋼スラブの、最終仕上焼鈍時の板幅方向端部に対応する位置での表面温度を、幅中央部での表面温度より5℃以上低くする方法が考えられる。他の方法として、あるいは前記の方法と併用できる方法として、熱間圧延と最終仕上焼鈍の間における鋼板の熱処理(すなわち熱延板焼鈍、中間焼鈍など)の、とくに均熱工程において、該鋼板における、最終仕上焼鈍時の板幅方向端部に対応する位置での表面温度を、幅中央部での表面温度より5℃以上高くする方法がある。これらの方法はいずれも、板幅方向端部の正常粒成長の抑制力を弱くして、二次再結晶を抑制する。   In addition, as a method of suppressing secondary recrystallization at the plate width direction end, when heating the steel slab, the surface temperature at the position corresponding to the plate width direction end at the time of final finish annealing of the steel slab, A method of lowering the surface temperature by 5 ° C. or more from the surface temperature at the center of the width can be considered. As another method, or a method that can be used in combination with the above method, in the heat treatment of the steel plate between hot rolling and final finish annealing (ie, hot-rolled plate annealing, intermediate annealing, etc.), particularly in the soaking step, There is a method in which the surface temperature at the position corresponding to the end portion in the plate width direction at the time of final finish annealing is higher by 5 ° C. or more than the surface temperature at the width center portion. All of these methods suppress secondary recrystallization by weakening the suppressive force of normal grain growth at the end in the plate width direction.

ここで、「最終仕上焼鈍時の板幅方向端部に対応する位置」と規定したのは、工程の途中で板幅方向端部を切除する場合があることを考慮したものである。すなわち、上記スラブ加熱あるいは上記均熱工程を含む熱処理を施した後、最終仕上焼鈍までの途中工程において、スリッター等により板幅方向端部を切り捨てる場合、切り捨てる幅(片側)をXmmとすると、前記の最終仕上焼鈍時の板幅方向端部に対応する位置は、板幅方向端部からXmm内側の位置となる。   Here, “the position corresponding to the end portion in the plate width direction at the time of final finishing annealing” is defined in consideration of the fact that the end portion in the plate width direction may be cut off during the process. That is, after the heat treatment including the slab heating or the soaking step, in the intermediate process until the final finish annealing, when the plate width direction end portion is cut off by a slitter or the like, the cut-off width (one side) is Xmm, The position corresponding to the end portion in the plate width direction at the time of final finish annealing is a position inside Xmm from the end portion in the plate width direction.

なお、これらの方法は、最終仕上焼鈍時にコイル下部となる側の、かつコイルの最外巻き側と最内巻き側の30巻き部における板幅方向端部で実施すれば十分である。しかしながら、工程の数によりコイルの上下が反転することがあり、また最終仕上焼鈍時における最外巻き部と最内巻き部は、途中工程での長手方向の切り捨て量等により位置が変化してしまう。したがって、工業的には、加熱炉の制御のしやすさも考慮して、コイル全長に渡り、両方の板幅方向端部で実施することが容易で好ましい。   In addition, it is sufficient to implement these methods at the end portions in the plate width direction at the 30th winding portion on the outermost winding side and the innermost winding side of the coil at the time of final finish annealing. However, the upper and lower sides of the coil may be reversed depending on the number of processes, and the position of the outermost winding part and the innermost winding part at the time of final finish annealing changes depending on the amount of cutting in the longitudinal direction in the intermediate process. . Therefore, industrially, it is easy and preferable to carry out at both ends in the plate width direction over the entire length of the coil in consideration of ease of control of the heating furnace.

表面温度としたのは、測温が容易なためである。鋼スラブでは5℃以上低く、熱処理の均熱時における鋼板では5℃以上高くしたのは、幅中央部と5℃以上の差が無いと十分な効果が得られないためである。これらの温度差は、鋼スラブでは加熱炉から出た直後とする。なお、加熱炉を2つ以上用いて鋼スラブを加熱する場合は、鋼スラブの温度が最も高くなる加熱炉から出た直後の温度差とする。鋼板の均熱の場合は均熱中の全ての時点ではなく、均熱中の任意の時点で確保されていれば良い。ここで、均熱とは、1つの熱処理工程において、幅中央部の最高温度をTmaxとすると、幅中央部の温度がTmax−50℃からTmaxの範囲内にある時点を指すものとする。 The reason for the surface temperature is that temperature measurement is easy. The reason why the steel slab is lowered by 5 ° C. or more and the steel plate at the time of soaking in the heat treatment is raised by 5 ° C. or more is that a sufficient effect cannot be obtained unless there is a difference of 5 ° C. or more from the width center. These temperature differences are immediately after exiting the heating furnace for steel slabs. In addition, when heating steel slab using two or more heating furnaces, it is set as the temperature difference immediately after coming out of the heating furnace where the temperature of steel slab becomes the highest. In the case of soaking of a steel plate, it may be ensured not only at all times during soaking but at any time during soaking. Here, soaking means that the temperature at the center of the width is within the range of T max −50 ° C. to T max when the maximum temperature at the center of the width is T max in one heat treatment step. To do.

鋼スラブの加熱に際してのスラブ幅方向温度制御には、電気式加熱炉が適している。   An electric heating furnace is suitable for controlling the temperature in the slab width direction when heating the steel slab.

最終仕上げ焼鈍後は、未反応の焼鈍分離剤を除去した後、鋼板表面に絶縁コーティングを塗布して製品とするが、必要に応じてコーティング塗布前に鋼板表面を鏡面化してもよい。また絶縁コーティングとして張力付与効果を有するコーティングを用いてもよい。さらに、コーティングの塗布焼付処理を平坦化処理と兼ねてもよい。   After the final finish annealing, after removing the unreacted annealing separator, an insulating coating is applied to the surface of the steel sheet to obtain a product. However, the surface of the steel sheet may be mirrored before applying the coating if necessary. A coating having a tension imparting effect may be used as the insulating coating. Furthermore, the coating baking process may be combined with the flattening process.

二次再結晶後の鋼板には、鉄損をさらに低減するため、公知の磁区細分化処理、すなわちプラズマジェットやレーザ照射を線状に施したり、突起ロールによる線状のへこみ領域を設けたりする処理を施すこともできる。   In order to further reduce the iron loss, the steel sheet after the secondary recrystallization is subjected to a known magnetic domain refinement process, that is, a plasma jet or laser irradiation is linearly provided, or a linear dent region is provided by a protruding roll. Processing can also be performed.

当然であるが、最終仕上げ焼鈍後に、板幅方向端部の二次再結晶していない領域は、スリッター等で切り捨てる。   Naturally, after the final finish annealing, the region not subjected to secondary recrystallization at the end in the plate width direction is cut off with a slitter or the like.

質量%で、Cr:0.15%、Bi:0.008%、C:0.07%、Si:3.38%、Mn:0.07%、Cu:0.1%、Se:0.02%、N:0.0081%およびAl:0.025%を含有し、残部は実質的に鉄および不可避的不純物からなる、厚さ250mmの鋼スラブを複数鋳込んだ。これらの鋼スラブは、ガス加熱炉に装入し、酸素濃度が7体積%の雰囲気中で1140℃、80分間加熱した後、誘導加熱炉により酸素濃度が0.2体積%の雰囲気中で幅中央部が1380℃となるよう加熱した。その後、粗圧延に引き続いて仕上げ圧延を行って板厚2.2mmの熱延板とした。この際、誘導加熱炉において鋼スラブの幅方向の温度を制御し、最終仕上焼鈍時の板幅方向端部に対応する位置での表面温度を、1370℃以上1375℃以下としたものを半数、1376℃以上1385℃以下としたものを半数、用意した。   In mass%, Cr: 0.15%, Bi: 0.008%, C: 0.07%, Si: 3.38%, Mn: 0.07%, Cu: 0.1%, Se: 0.00. A plurality of steel slabs with a thickness of 250 mm were cast, containing 02%, N: 0.0081% and Al: 0.025%, the balance being substantially iron and inevitable impurities. These steel slabs were charged into a gas heating furnace, heated in an atmosphere having an oxygen concentration of 7% by volume at 1140 ° C. for 80 minutes, and then in an atmosphere having an oxygen concentration of 0.2% by volume by an induction heating furnace. The center part was heated to 1380 ° C. Then, subsequent to rough rolling, finish rolling was performed to obtain a hot rolled sheet having a thickness of 2.2 mm. At this time, the temperature in the width direction of the steel slab is controlled in the induction heating furnace, and the surface temperature at the position corresponding to the end portion in the sheet width direction at the time of final finish annealing is half of the one set to 1370 ° C. or higher and 1375 ° C. or lower, A half of 1376 ° C. to 1385 ° C. was prepared.

この熱延板はスリッターにより板幅端部両側を200mm切り捨てた。その後、この熱延板に1000℃で45秒間の焼鈍を施し、35℃/sの速度で急冷後、酸洗し、1回目の冷間圧延で板厚1.5mmに仕上げた。次いで、1100℃で70秒間の中間焼鈍を行い、35℃/sの速度で急冷したのち、240℃の温間圧延で板厚0.22mmに仕上げた。   This hot-rolled sheet was cut off by 200 mm on both sides of the sheet width end with a slitter. Thereafter, the hot-rolled sheet was annealed at 1000 ° C. for 45 seconds, quenched at a rate of 35 ° C./s, pickled, and finished to a thickness of 1.5 mm by the first cold rolling. Subsequently, intermediate annealing was performed at 1100 ° C. for 70 seconds, quenched at a rate of 35 ° C./s, and then finished to a thickness of 0.22 mm by warm rolling at 240 ° C.

その後、脱脂処理を施した後、830℃で100秒間、露点が58℃、水素濃度が52体積%および窒素濃度が48体積%の雰囲気中で脱炭焼鈍を施し、MgOにSr(OH)2を2質量%、TiO2を8質量%およびSrSO4を1質量%添加した焼鈍分離剤を鋼板の両面に、片面の塗布量を7g/m2として塗布した。その後、鋼板をコイルに巻き取った。 Thereafter, after degreasing treatment, decarburization annealing was performed in an atmosphere at 830 ° C. for 100 seconds, a dew point of 58 ° C., a hydrogen concentration of 52% by volume and a nitrogen concentration of 48% by volume, and MgO was subjected to Sr (OH) 2. Was applied to both sides of the steel sheet with a coating amount of 7 g / m 2 on both sides of the steel plate. 2% by mass of TiO 2 , 8% by mass of TiO 2 and 1% by mass of SrSO 4 were added. Thereafter, the steel plate was wound around a coil.

ついで、最終仕上焼鈍として、850℃までN2ガス中で30℃/hの速度で、また850℃から1050℃までをN2:25体積%およびH2:75体積%の混合ガス中で、その後はH2ガス中で1200℃まで昇温し、1200℃で8時間保持した後、1000℃まで降温し、ついでArガス中で常温まで降温する、処理を行った。コイルは、軸方向が直立する向きで最終仕上焼鈍に供した。 Then, as the final finish annealing, at a rate of 30 ° C./h in N 2 gas up to 850 ° C., and from 850 ° C. to 1050 ° C. in a mixed gas of N 2 : 25 vol% and H 2 : 75 vol%, Thereafter, the temperature was raised to 1200 ° C. in H 2 gas, held at 1200 ° C. for 8 hours, lowered to 1000 ° C., and then lowered to room temperature in Ar gas. The coil was subjected to final finish annealing with the axial direction upright.

各コイル毎に、加熱後の鋼スラブにおける最終仕上焼鈍時の板幅方向端部に対応する位置での表面温度、最終仕上焼鈍後の板幅方向端部の二次再結晶していない領域の最大幅、最終仕上焼鈍における900℃以上の温度域における雰囲気の露点の最大値および同温度域における昇温速度の最大値と、コイル下部の鋼板同士の密着との関係を調べた。密着は、最外巻き部の30巻き部、すなわちそれぞれ長手方向端部から長さおよそ100mに渡り、鋼板の密着について調査した。密着の程度は、密着力を弱、中、強の3段階とし、最外巻き部の30巻内に何箇所存在したかで評価した。なお、最内巻き部の30巻内の密着は、最外巻き部とほぼ同様の結果であった。   For each coil, in the steel slab after heating, the surface temperature at the position corresponding to the end in the plate width direction at the time of final finish annealing, the region where the secondary recrystallization of the end in the plate width direction after the final finish annealing is not performed. The relationship between the maximum width, the maximum value of the dew point of the atmosphere in the temperature range of 900 ° C. or higher in the final finish annealing, the maximum value of the temperature increase rate in the same temperature range, and the adhesion between the steel plates below the coil was examined. The adhesion was investigated over 30 m of the outermost winding, that is, about 100 m in length from each longitudinal end, and the adhesion of the steel sheet was investigated. The degree of adhesion was evaluated based on the number of locations within 30 volumes of the outermost winding portion, with the adhesion strength being three levels of weak, medium and strong. The close contact of the innermost winding part in 30 turns was almost the same as that of the outermost winding part.

その結果を表2に示す。表2に示すように、この発明に従う例では、コイル下部で密着は軽度である。   The results are shown in Table 2. As shown in Table 2, in the example according to the present invention, the adhesion is mild at the lower part of the coil.

表3および表4に示す成分組成になる溶鋼から、連続鋳造により厚さ220mm、幅1300mm幅の鋼スラブを鋳込んだ。これら鋼スラブを、ガス加熱炉で酸素濃度が5体積%の雰囲気中で1125℃、80分間加熱し、その後プレス機による幅圧下でスラブ幅を1100mmにし、水平圧下によりスラブ厚さを200mmにした。次いで誘導加熱炉により、酸素濃度が0.2体積%の雰囲気中で1400℃に加熱した。   Steel slabs having a thickness of 220 mm and a width of 1300 mm were cast from the molten steel having the composition shown in Tables 3 and 4 by continuous casting. These steel slabs were heated at 1125 ° C. for 80 minutes in an atmosphere having an oxygen concentration of 5% by volume in a gas heating furnace, and then the slab width was reduced to 1100 mm under the width of the press, and the slab thickness was increased to 200 mm by horizontal reduction. . Subsequently, it heated at 1400 degreeC in the atmosphere whose oxygen concentration is 0.2 volume% with the induction heating furnace.

その後、粗圧延で厚さ40mmのシートバーとし、引き続いて、仕上げ圧延を行い板厚2.4mmの熱延板とした。この熱延板はスリッターにより板幅端部両側を20mm切り捨てた。   Thereafter, a sheet bar having a thickness of 40 mm was obtained by rough rolling, followed by finish rolling to obtain a hot rolled sheet having a thickness of 2.4 mm. This hot-rolled sheet was cut off by 20 mm on both sides of the sheet width end with a slitter.

さらに、これらの鋼板に1000℃、50秒間の焼鈍を施し、30℃/sの速度で急冷後、酸洗し、1回目の冷間圧延で板厚1.7mmに仕上げたのち、1100℃で75秒間の中間焼鈍を行い、40℃/sの速度で急冷した。その後、250℃の温間圧延で板厚0.22mmに仕上げ、脱脂処理を施した後、830℃で2分間、露点が59℃、水素濃度が60体積%および窒素濃度が40体積%の雰囲気中で脱炭焼鈍を施した。   Furthermore, these steel sheets were annealed at 1000 ° C. for 50 seconds, quenched at a rate of 30 ° C./s, pickled, finished to a thickness of 1.7 mm by the first cold rolling, and then at 1100 ° C. The intermediate annealing was performed for 75 seconds, and quenched at a rate of 40 ° C./s. Then, after finishing the sheet thickness to 0.22 mm by warm rolling at 250 ° C. and performing a degreasing treatment, an atmosphere having a dew point of 59 ° C., a hydrogen concentration of 60% by volume and a nitrogen concentration of 40% by volume at 830 ° C. for 2 minutes. Decarburization annealing was performed inside.

ついで、MgOにSr(OH)2を2質量%、TiO2を5質量%およびSrSO4を2質量%添加した焼鈍分離剤を鋼板の両面に、片面の塗布量を6g/m2として塗布し、コイルに巻き取った。コイルの軸が直立する向きに炉内に載置した後、最終仕上焼鈍として、850℃までN2ガス中で30℃/hの速度で、また850℃から1050℃までをN2を25体積%、H2を75体積%とする混合ガス中で12.0℃/hの昇温速度で、その後はH2ガス中で1200℃まで昇温し、1200℃で8時間保持した後、1000℃までH2ガス中で降温し、1000℃からはArガス中で降温する、処理を行った。 Next, an annealing separator containing 2% by mass of Sr (OH) 2 , 5% by mass of TiO 2 and 2% by mass of SrSO 4 in MgO was applied to both sides of the steel sheet at a coating amount of 6 g / m 2 on one side. And wound on a coil. After placing in the furnace with the coil axis upright, as final finish annealing, 25 volumes of N 2 from 850 ° C. to 1050 ° C. at a rate of 30 ° C./h in N 2 gas up to 850 ° C. %, In a mixed gas containing 75% by volume of H 2 at a rate of temperature increase of 12.0 ° C./h, after that, the temperature was increased to 1200 ° C. in H 2 gas and held at 1200 ° C. for 8 hours. The temperature was lowered in H 2 gas to 0 ° C., and the temperature was lowered in Ar gas from 1000 ° C.

このとき、中間焼鈍の均熱時における鋼板において、最終仕上焼鈍時の板幅方向端部に対応する位置での表面温度を1110℃とし、最終仕上焼鈍後コイルの長手方向に対して、板幅方向端部で二次再結晶していない領域の幅が1mm以上となる箇所が1箇所以上確保されるようにした。また、最終仕上焼鈍における900℃以上の温度域における露点は10℃以下とし、900℃以上での昇温速度は最大でも12.0℃/h以下とした。   At this time, in the steel plate at the time of soaking in the intermediate annealing, the surface temperature at the position corresponding to the end portion in the plate width direction at the final finish annealing is 1110 ° C., and the plate width with respect to the longitudinal direction of the coil after the final finish annealing One or more locations where the width of the region not subjected to secondary recrystallization at the end in the direction is 1 mm or more are secured. Further, the dew point in the temperature range of 900 ° C. or higher in the final finish annealing was 10 ° C. or lower, and the rate of temperature increase at 900 ° C. or higher was 12.0 ° C./h or lower at the maximum.

このようにして得られた最終仕上焼鈍後のコイルについて、コイル下部の鋼板同士の密着状況を調べたところ、この発明に従って得られる鋼板は全て、コイル下部での密着は軽度であった。すなわち密着力が強の密着は生じていなかった。なお、密着は、最外巻き部の30巻き部と最内巻き部の30巻き部、すなわちそれぞれ長手方向端部から長さおよそ100mに渡り、鋼板の密着について調査した。密着の程度は、密着力を弱、中、強の3段階で評価した。   With respect to the coil after the final finish annealing thus obtained, the state of adhesion between the steel plates under the coil was examined. As a result, all the steel plates obtained according to the present invention had a slight adhesion at the bottom of the coil. That is, there was no adhesion with strong adhesion. In addition, adhesion was investigated over 30 m of the outermost winding part and 30 winding parts of the innermost winding part, that is, about 100 m in length from each longitudinal end, and the adhesion of the steel sheet was investigated. The degree of adhesion was evaluated in three levels: weak, medium and strong adhesion.

かように、本発明により密着を軽度にでき、高磁束密度の方向性電磁鋼板を安定して製造することができる。   As described above, according to the present invention, adhesion can be lightened, and a directional electrical steel sheet having a high magnetic flux density can be stably produced.

表3および表4に示した記号2の成分組成になる溶鋼から、連続鋳造により厚さ220mmの鋼スラブを鋳込んだ。これらの鋼スラブを、ガス加熱炉で酸素濃度が5体積%の雰囲気中で1180℃、70分間加熱し、次いで誘導加熱炉により1380℃に加熱した。その際、表5に示す種々の酸素濃度となる雰囲気中で行った。   A steel slab having a thickness of 220 mm was cast by continuous casting from the molten steel having the composition of symbol 2 shown in Tables 3 and 4. These steel slabs were heated in an atmosphere having an oxygen concentration of 5% by volume in a gas heating furnace at 1180 ° C. for 70 minutes, and then heated to 1380 ° C. in an induction heating furnace. At that time, it was performed in atmospheres having various oxygen concentrations shown in Table 5.

その後、粗圧延で厚さ40mmのシートバーとし、引き続いて、仕上げ圧延を行い板厚2.2mmの熱延板とした。この熱延板はスリッターにより板幅方向端部を10mm切り捨て、酸洗の後、1回目の冷間圧延で板厚1.5mmに仕上げた。次いで、1110℃で70秒間の中間焼鈍を行い、36℃/sの速度で急冷したのち、冷間圧延で板厚0.22mmに仕上げた。その後、脱脂処理を施した後、840℃で1分間、露点が58℃、水素濃度が50体積%、窒素濃度が50体積%の雰囲気中で脱炭焼鈍を施した。   Thereafter, a sheet bar having a thickness of 40 mm was obtained by rough rolling, followed by finish rolling to obtain a hot rolled sheet having a thickness of 2.2 mm. This hot-rolled sheet was cut off by 10 mm at the end in the sheet width direction with a slitter, pickled, and finished to a sheet thickness of 1.5 mm by the first cold rolling. Next, intermediate annealing was performed at 1110 ° C. for 70 seconds, quenched at a rate of 36 ° C./s, and then finished to a sheet thickness of 0.22 mm by cold rolling. Thereafter, after degreasing treatment, decarburization annealing was performed at 840 ° C. for 1 minute in an atmosphere having a dew point of 58 ° C., a hydrogen concentration of 50% by volume, and a nitrogen concentration of 50% by volume.

ついで、MgOにSr(OH)2を2質量%、TiO2を5質量%、SrSO4を2質量%添加した焼鈍分離剤を鋼板の両面に、片面の塗布量を7g/m2として塗布し、コイルに巻き取った。コイルの軸が直立する向きに炉内に載置した後、最終仕上げ焼鈍として、850℃までN2ガス中で20℃/hの昇温速度で、また850℃から1050℃までをN2:20体積%およびH2:80体積%の混合ガス中で10℃/hの昇温速度で、その後はH2ガス中で1200℃まで昇温し、1200℃で4時間保持した後、1000℃までH2ガス中で降温し、1000℃からはArガス中で降温した。 Next, an annealing separator containing 2% by mass of Sr (OH) 2 , 5% by mass of TiO 2 and 2% by mass of SrSO 4 in MgO was applied to both sides of the steel sheet at a coating amount of 7 g / m 2 on one side. And wound on a coil. After axis of the coil is placed on the furnace in a direction in which an upright, as a final finish annealing, at a heating rate of 20 ° C. / h in N 2 gas to 850 ° C., also from 850 ° C. to 1050 ° C. N 2: 20% by volume and H 2 : 80% by volume in a mixed gas at a rate of temperature increase of 10 ° C./h, then heated to 1200 ° C. in H 2 gas, held at 1200 ° C. for 4 hours, and then 1000 ° C. The temperature was lowered in H 2 gas until the temperature was lowered from 1000 ° C. in Ar gas.

このとき、脱炭焼鈍の均熱時における鋼板において、最終仕上焼鈍時の板幅方向端部に対応する位置での表面温度を850℃とし、最終仕上焼鈍後コイルの長手方向の少なくとも1箇所において、板幅方向端部で二次再結晶していない領域の幅が1mm以上となるようにした。また、最終仕上焼鈍における900℃以上の温度域における雰囲気の露点は15℃以下とし、900℃以上での昇温速度は最大でも10℃/h以下とした。   At this time, in the steel plate at the time of soaking in the decarburization annealing, the surface temperature at the position corresponding to the end portion in the plate width direction at the final finish annealing is 850 ° C., and at least one place in the longitudinal direction of the coil after the final finish annealing. The width of the region not subjected to secondary recrystallization at the end in the plate width direction was set to 1 mm or more. Further, the dew point of the atmosphere in the temperature range of 900 ° C. or higher in the final finish annealing was set to 15 ° C. or lower, and the temperature rising rate at 900 ° C. or higher was set to 10 ° C./h or lower at the maximum.

このようにして得られた最終仕上焼鈍後のコイルについて、最外巻き部の30巻き部と最内巻き部の30巻き部、すなわちそれぞれ長手方向端部から長さおよそ100mに渡り、鋼板の密着について調査した。密着の程度は、密着力を弱、中、強の3段階とし、60巻内に何箇所存在したかで評価した。コイル下部の鋼板同士の密着状況を調べた結果を表5に示すように、誘導加熱炉での雰囲気酸素濃度を0.005体積%とした記号1のコイルを除いて密着は軽度であった。また、記号1のコイル下部の密着は、板幅方向端部での二次再結晶をしない領域および最終仕上焼鈍条件を本発明範囲内としたため、密着力は弱く比較的容易に剥がれるレベルであった。   About the coil after the final finish annealing thus obtained, the outermost winding part 30 and the innermost winding part 30, that is, the length of about 100 m from the end in the longitudinal direction, respectively, the adhesion of the steel plate Investigated. The degree of adhesion was evaluated according to the number of locations in volume 60, with the adhesion strength being three levels of weak, medium and strong. As shown in Table 5, the results of examining the adhesion between the steel sheets below the coil were mild except for the coil of symbol 1 in which the atmospheric oxygen concentration in the induction heating furnace was 0.005% by volume. In addition, the adhesion of the lower part of the coil indicated by symbol 1 is at a level where the adhesion is weak and relatively easy to peel because the region where the secondary recrystallization at the end in the plate width direction and the final finish annealing conditions are within the scope of the present invention. It was.

かように、1350℃以上のスラブ加熱における雰囲気の酸素濃度を0.01体積%以上にすることにより、コイル下部での密着を防止することができる。スラブ加熱でのスケールロスの増加も考慮するとすれば、1350℃以上のスラブ加熱における雰囲気の酸素濃度は0.01〜2体積%の範囲とするのがよい。   Thus, adhesion at the lower part of the coil can be prevented by setting the oxygen concentration of the atmosphere in the slab heating at 1350 ° C. or more to 0.01% by volume or more. Considering an increase in scale loss due to slab heating, the oxygen concentration of the atmosphere in slab heating at 1350 ° C. or higher is preferably in the range of 0.01 to 2% by volume.

質量%で、C:0.08%、Si:3.4%、Mn:0.06%、Sol.Al:0.020%、N:0.0083%、S:0.02%、Cr:0.06%を含有し残部は鉄および不可避的不純物からなる溶鋼から、連続鋳造により厚さ220mm、幅1200mmの鋼スラブを鋳込んだ。これら鋼スラブを、ガス加熱炉で酸素濃度が5体積%の雰囲気中で1200℃、80分間加熱し、次いで誘導加熱炉により酸素濃度が0.05体積%の雰囲気中で1360℃、20分間加熱した。   % By mass, C: 0.08%, Si: 3.4%, Mn: 0.06%, Sol. Al: 0.020%, N: 0.0083%, S: 0.02%, Cr: 0.06%, the balance is made of molten steel consisting of iron and inevitable impurities. A 1200 mm steel slab was cast. These steel slabs were heated at 1200 ° C. for 80 minutes in an atmosphere with an oxygen concentration of 5% by volume in a gas heating furnace, and then heated at 1360 ° C. for 20 minutes in an atmosphere with an oxygen concentration of 0.05% by volume by an induction heating furnace. did.

その後、粗圧延で厚さ45mmのシートバーとし、引き続いて、仕上げ圧延を行い板厚2.3mmの熱延板とした。この熱延板はスリッターにより板幅方向端部を15mm切り捨てた。その後、この熱延板に1000℃で30秒間の焼鈍を施し、30℃/sの速度で急冷後、酸洗し、冷間圧延で板厚0.28mmに仕上げた。その後、脱脂処理を施した後、840℃で2分間、露点が60℃、水素濃度が50体積%、窒素濃度が50体積%の雰囲気中で脱炭焼鈍を施した。   Thereafter, a sheet bar having a thickness of 45 mm was obtained by rough rolling, followed by finish rolling to obtain a hot-rolled sheet having a thickness of 2.3 mm. This hot-rolled sheet was cut off by 15 mm at the end in the sheet width direction with a slitter. Then, this hot-rolled sheet was annealed at 1000 ° C. for 30 seconds, quenched at a rate of 30 ° C./s, pickled, and finished to a sheet thickness of 0.28 mm by cold rolling. Thereafter, after degreasing treatment, decarburization annealing was performed at 840 ° C. for 2 minutes in an atmosphere having a dew point of 60 ° C., a hydrogen concentration of 50% by volume, and a nitrogen concentration of 50% by volume.

ついで、MgOにTiO2を5体積%添加した焼鈍分離剤を鋼板の両面に、片面の塗布量を6g/m2として塗布し、コイルに巻き取った。コイルの軸が直立する向きに炉内に載置した後、最終仕上げ焼鈍として、N2ガス中で850℃まで20℃/hの昇温速度で昇温し、20時間保持した後、850℃から1150℃までをN2:20体積%およびH2:80体積%の混合ガス中で12℃/hの昇温速度で、その後はH2ガス中で1200℃まで昇温し、1200℃で5時間保持した後、1000℃までH2ガス中で降温し、1000℃からはArガス中で降温した。 Next, an annealing separator in which 5% by volume of TiO 2 was added to MgO was applied to both sides of the steel sheet at a coating amount of 6 g / m 2 on one side and wound around a coil. After placing in the furnace with the coil axis standing upright, as final finish annealing, the temperature was raised to 850 ° C. at a rate of 20 ° C./h in N 2 gas, held for 20 hours, and then 850 ° C. To 1150 ° C. in a mixed gas of N 2 : 20% by volume and H 2 : 80% by volume at a rate of temperature increase of 12 ° C./h, and then heated up to 1200 ° C. in H 2 gas at 1200 ° C. After holding for 5 hours, the temperature was lowered to 1000 ° C. in H 2 gas, and from 1000 ° C., the temperature was lowered in Ar gas.

このとき、熱延板焼鈍の均熱時における鋼板において、最終仕上焼鈍時の板幅端部に対応する位置での表面温度を1030℃とし、最終仕上焼鈍後コイルの長手方向の少なくとも1箇所において、板幅方向端部で二次再結晶していない領域の幅を1mm以上とした。また、最終仕上焼鈍における900℃以上の温度域における雰囲気の露点は15℃以下とした。   At this time, in the steel sheet at the time of soaking of hot-rolled sheet annealing, the surface temperature at the position corresponding to the sheet width end at the time of final finish annealing is 1030 ° C., and at least one place in the longitudinal direction of the coil after the final finish annealing. The width of the region not subjected to secondary recrystallization at the end in the plate width direction was set to 1 mm or more. Moreover, the dew point of the atmosphere in the temperature range of 900 ° C. or higher in the final finish annealing was set to 15 ° C. or lower.

このようにして得られた最終仕上焼鈍後のコイルについて、コイル下部の鋼板同士の密着状況を調べたところ、コイル下部での密着は軽度であった。すなわち密着力が強の密着は生じていなかった。なお、密着は、最外巻き部の30巻き部と最内巻き部の30巻き部、すなわちそれぞれ長手方向端部から長さがおよそ100mに渡り、調査した。密着の程度は、密着力を弱、中、強の3段階で評価した。   With respect to the coil after the final finish annealing thus obtained, when the adhesion state between the steel plates under the coil was examined, the adhesion at the lower part of the coil was mild. That is, there was no adhesion with strong adhesion. The close contact was investigated over a length of about 100 m from the 30 outermost winding part and the 30 innermost winding part, that is, the respective end portions in the longitudinal direction. The degree of adhesion was evaluated in three levels: weak, medium and strong adhesion.

この発明によれば、Crを含有する方向性電磁鋼板の製造において、最終仕上焼鈍後のコイル下部の密着を防止できるため、低鉄損かつ高磁束密度である方向性電磁鋼板を安定して製造することができる。   According to this invention, in the manufacture of grain-oriented electrical steel sheets containing Cr, it is possible to prevent adhesion of the lower part of the coil after the final finish annealing, and thus stably produce the grain-oriented electrical steel sheets having low iron loss and high magnetic flux density. can do.

最終仕上焼鈍後のコイルを、焼鈍における向きと共に示す模式図である。It is a schematic diagram which shows the coil after final finishing annealing with the direction in annealing. 最終仕上焼鈍後コイル下部の断面写真である。It is a cross-sectional photograph of the coil lower part after final finish annealing. エネルギー分散型X線分光法(EDX)の測定結果を示す図である。It is a figure which shows the measurement result of energy dispersive X-ray spectroscopy (EDX).

符号の説明Explanation of symbols

1 コイル
2 密着部
3 板幅方向
4 コイル下側
5 厚さ方向
6 被膜
7 地鉄
8 Fe−Cr合金
9 隙間
DESCRIPTION OF SYMBOLS 1 Coil 2 Close_contact | adherence part 3 Plate | board width direction 4 Coil lower side 5 Thickness direction 6 Coating 7 Base iron 8 Fe-Cr alloy 9 Crevice

Claims (8)

質量%で、Si:2.5〜4.5%、Cr:0.01〜0.50%およびインヒビター形成元素を含有する鋼スラブを加熱した後、熱間圧延し、ついで焼鈍処理を伴う少なくとも1回の冷間圧延で最終板厚にした後、脱炭焼鈍を施し、ついで焼鈍分離剤を鋼板表面に塗布してからコイルに巻き取り、該コイルの軸を直立させた状態にて最終仕上焼鈍を施す一連の工程からなり、前記最終仕上焼鈍が1100℃以上かつ3時間以上の純化処理を含む、方向性電磁鋼板の製造方法において、
前記最終仕上焼鈍の900℃以上の温度域における雰囲気の露点を20℃以下、かつ900℃以上の温度域における昇温速度を15℃/h以下とし、さらに前記最終仕上焼鈍後のコイルにおける、長手方向の少なくとも1箇所において、板幅方向端部より1mm以上の二次再結晶していない領域を存在せしめる、高磁束密度方向性電磁鋼板の製造方法。
After heating a steel slab containing Si: 2.5-4.5%, Cr: 0.01-0.50% and an inhibitor-forming element in mass%, it is hot-rolled and then at least accompanied by an annealing treatment After the final plate thickness is obtained by one cold rolling, decarburization annealing is performed, and then the annealing separator is applied to the surface of the steel sheet and then wound on the coil, and the final finish is made with the coil shaft upright. In a method for producing a grain-oriented electrical steel sheet, comprising a series of steps for annealing, wherein the final finish annealing includes a purification treatment of 1100 ° C. or more and 3 hours or more,
The dew point of the atmosphere in the temperature range of 900 ° C. or more of the final finish annealing is 20 ° C. or less, and the temperature rising rate in the temperature range of 900 ° C. or more is 15 ° C./h or less. A method for producing a high magnetic flux density grain-oriented electrical steel sheet in which at least one region in the direction has a region that is not secondary recrystallized by 1 mm or more from the end in the plate width direction.
前記鋼スラブの加熱を、体積%で酸素濃度を0.01〜2%に制御した雰囲気下にて1350℃以上で行うことを特徴とする、請求項1に記載の高磁束密度方向性電磁鋼板の製造方法。   2. The high magnetic flux density grain-oriented electrical steel sheet according to claim 1, wherein heating of the steel slab is performed at 1350 ° C. or higher in an atmosphere in which the oxygen concentration is controlled to 0.01 to 2% by volume%. Manufacturing method. 前記鋼スラブの加熱に際し、該鋼スラブにおける、最終仕上焼鈍時の板幅方向端部に対応する位置の表面温度を、幅中央部の表面温度より5℃以上低くすることを特徴とする、請求項1または2に記載の高磁束密度方向性電磁鋼板の製造方法。   When heating the steel slab, the surface temperature of the steel slab at a position corresponding to the end portion in the plate width direction at the time of final finish annealing is lower by 5 ° C. or more than the surface temperature of the width center portion. Item 3. The method for producing a high magnetic flux density grain-oriented electrical steel sheet according to Item 1 or 2. 前記熱間圧延と前記最終仕上焼鈍の間に均熱工程を有し、該均熱工程において、最終仕上焼鈍時の板幅方向端部に対応する位置における表面温度を、幅中央部での表面温度より5℃以上高くすることを特徴とする、請求項1ないし3のいずれかに記載の高磁束密度方向性電磁鋼板の製造方法。   There is a soaking step between the hot rolling and the final finish annealing, and in this soaking step, the surface temperature at the position corresponding to the end portion in the plate width direction at the time of the final finish annealing is determined by the surface at the center of the width. The method for producing a high magnetic flux density grain-oriented electrical steel sheet according to any one of claims 1 to 3, wherein the temperature is higher by 5 ° C or more than the temperature. 前記冷間圧延に伴う前記焼鈍処理が、前記均熱工程を含むことを特徴とする、請求項4に記載の高磁束密度方向性電磁鋼板の製造方法。   The said annealing process accompanying the said cold rolling includes the said soaking process, The manufacturing method of the high magnetic flux density directionality electrical steel plate of Claim 4 characterized by the above-mentioned. 前記鋼スラブが、さらに質量%でBi:0.0005〜0.100%を含有することを特徴とする、請求項1ないし5のいずれかに記載の高磁束密度方向性電磁鋼板の製造方法。   The method for manufacturing a high magnetic flux density grain-oriented electrical steel sheet according to any one of claims 1 to 5, wherein the steel slab further contains Bi: 0.0005 to 0.100% by mass. 前記鋼スラブが、さらに質量%で、C:0.03〜0.10%、Mn:0.050〜1.5%、Sおよび/またはSeを合計で0.010〜0.040%、Sol.Al:0.015〜0.050%および/またはB:0.001〜0.01%、並びに、N:0.005〜0.015%を含有することを特徴とする、請求項1ないし6のいずれかに記載の高磁束密度方向性電磁鋼板の製造方法。   The steel slab is further mass%, C: 0.03 to 0.10%, Mn: 0.050 to 1.5%, S and / or Se in total 0.010 to 0.040%, Sol . 7. Al: 0.015 to 0.050% and / or B: 0.001 to 0.01%, and N: 0.005 to 0.015%. The manufacturing method of the high magnetic flux density directionality electrical steel plate in any one of these. 前記鋼スラブが、さらに質量%で、Ni:0.05〜0.5%、Cu:0.05〜0.5%、Sn:0.005〜0.5%、Sb:0.005〜0.10%、As:0.005〜0.10%、Mo:0.005〜0.10%、Te:0.005〜0.10%およびP:0.005〜0.10%のうちから選んだ1種または2種以上を含有することを特徴とする、請求項1ないし7のいずれかに記載の高磁束密度方向性電磁鋼板の製造方法。   The steel slab is further mass%, Ni: 0.05 to 0.5%, Cu: 0.05 to 0.5%, Sn: 0.005 to 0.5%, Sb: 0.005 to 0 .10%, As: 0.005-0.10%, Mo: 0.005-0.10%, Te: 0.005-0.10% and P: 0.005-0.10% The method for producing a high magnetic flux density grain-oriented electrical steel sheet according to any one of claims 1 to 7, comprising one or two or more selected ones.
JP2005098471A 2005-03-30 2005-03-30 Method for manufacturing grain-oriented electromagnetic steel sheet causing high magnetic-flux density Pending JP2006274405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005098471A JP2006274405A (en) 2005-03-30 2005-03-30 Method for manufacturing grain-oriented electromagnetic steel sheet causing high magnetic-flux density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005098471A JP2006274405A (en) 2005-03-30 2005-03-30 Method for manufacturing grain-oriented electromagnetic steel sheet causing high magnetic-flux density

Publications (1)

Publication Number Publication Date
JP2006274405A true JP2006274405A (en) 2006-10-12

Family

ID=37209437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005098471A Pending JP2006274405A (en) 2005-03-30 2005-03-30 Method for manufacturing grain-oriented electromagnetic steel sheet causing high magnetic-flux density

Country Status (1)

Country Link
JP (1) JP2006274405A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012162773A (en) * 2011-02-08 2012-08-30 Jfe Steel Corp Method for manufacturing grain-oriented electrical steel sheet
WO2017017256A1 (en) * 2015-07-29 2017-02-02 Aperam Feco alloy, fesi alloy or fe sheet or strip and production method thereof, magnetic transformer core produced from said sheet or strip, and transformer comprising same
WO2019131853A1 (en) * 2017-12-28 2019-07-04 Jfeスチール株式会社 Low-iron-loss grain-oriented electrical steel sheet and production method for same
ES2885152A1 (en) * 2021-03-09 2021-12-13 Bilstein Gmbh & Co Kg Procedure for making a metal sweet magnetic by-product (Machine-translation by Google Translate, not legally binding)
JP2022512498A (en) * 2018-12-13 2022-02-04 ポスコ Directional electrical steel sheet and its manufacturing method
JPWO2022250157A1 (en) * 2021-05-28 2022-12-01
WO2022250162A1 (en) * 2021-05-28 2022-12-01 Jfeスチール株式会社 Method for producing grain-oriented electromagnetic steel sheet
WO2024053608A1 (en) * 2022-09-09 2024-03-14 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet
JP7463976B2 (en) 2020-02-28 2024-04-09 Jfeスチール株式会社 Manufacturing method of grain-oriented electrical steel sheet

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012162773A (en) * 2011-02-08 2012-08-30 Jfe Steel Corp Method for manufacturing grain-oriented electrical steel sheet
WO2017017256A1 (en) * 2015-07-29 2017-02-02 Aperam Feco alloy, fesi alloy or fe sheet or strip and production method thereof, magnetic transformer core produced from said sheet or strip, and transformer comprising same
US11767583B2 (en) 2015-07-29 2023-09-26 Aperam FeCo alloy, FeSi alloy or Fe sheet or strip and production method thereof, magnetic transformer core produced from said sheet or strip, and transformer comprising same
US11459633B2 (en) 2017-12-28 2022-10-04 Jfe Steel Corporation Low-iron-loss grain-oriented electrical steel sheet and production method for same
JP6601649B1 (en) * 2017-12-28 2019-11-06 Jfeスチール株式会社 Low iron loss grain-oriented electrical steel sheet and manufacturing method thereof
WO2019131853A1 (en) * 2017-12-28 2019-07-04 Jfeスチール株式会社 Low-iron-loss grain-oriented electrical steel sheet and production method for same
JP2022512498A (en) * 2018-12-13 2022-02-04 ポスコ Directional electrical steel sheet and its manufacturing method
JP7365414B2 (en) 2018-12-13 2023-10-19 ポスコ カンパニー リミテッド Grain-oriented electrical steel sheet and its manufacturing method
JP7463976B2 (en) 2020-02-28 2024-04-09 Jfeスチール株式会社 Manufacturing method of grain-oriented electrical steel sheet
ES2885152A1 (en) * 2021-03-09 2021-12-13 Bilstein Gmbh & Co Kg Procedure for making a metal sweet magnetic by-product (Machine-translation by Google Translate, not legally binding)
JPWO2022250157A1 (en) * 2021-05-28 2022-12-01
WO2022250157A1 (en) * 2021-05-28 2022-12-01 Jfeスチール株式会社 Oriented magnetic steel sheet manufacturing method
WO2022250162A1 (en) * 2021-05-28 2022-12-01 Jfeスチール株式会社 Method for producing grain-oriented electromagnetic steel sheet
JP7287584B2 (en) 2021-05-28 2023-06-06 Jfeスチール株式会社 Manufacturing method of grain-oriented electrical steel sheet
WO2024053608A1 (en) * 2022-09-09 2024-03-14 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet

Similar Documents

Publication Publication Date Title
JP5760504B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP4840518B2 (en) Method for producing grain-oriented electrical steel sheet
JP5988027B2 (en) Method for producing ultrathin grain-oriented electrical steel sheet
JP5772410B2 (en) Method for producing grain-oriented electrical steel sheet
WO2014013615A1 (en) Process for producing grain-oriented electrical steel sheet
JP2017222898A (en) Production method of grain oriented magnetic steel sheet
JP6132103B2 (en) Method for producing grain-oriented electrical steel sheet
JP6436316B2 (en) Method for producing grain-oriented electrical steel sheet
WO2016199423A1 (en) Oriented electromagnetic steel sheet and method for producing same
JP2006274405A (en) Method for manufacturing grain-oriented electromagnetic steel sheet causing high magnetic-flux density
KR20150109486A (en) Production method for grain-oriented electrical steel sheets
JP4032162B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP2015086414A (en) Method for manufacturing oriented electromagnetic steel sheet
JP4932544B2 (en) Method for producing grain-oriented electrical steel sheet capable of stably obtaining magnetic properties in the plate width direction
JPH0756048B2 (en) Method for manufacturing thin grain oriented silicon steel sheet with excellent coating and magnetic properties
JP3456352B2 (en) Grain-oriented electrical steel sheet with excellent iron loss characteristics and method of manufacturing the same
JP5839172B2 (en) Method for producing grain-oriented electrical steel sheet
JP2004332071A (en) Method for producing high magnetic flux density grain-oriented magnetic steel sheet
JP3846064B2 (en) Oriented electrical steel sheet
CN111542630A (en) Grain-oriented electromagnetic steel sheet
JP4123679B2 (en) Method for producing grain-oriented electrical steel sheet
JP2017110304A (en) Method for producing oriented electromagnetic steel sheet
JP3928275B2 (en) Electrical steel sheet
JP5712652B2 (en) Method for producing grain-oriented electrical steel sheet
JP2002105537A (en) Method for manufacturing grain oriented silicon steel sheet hardly causing edge crack and having satisfactory film characteristic, excellent magnetic property and high magnetic flux density

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921