JP2002241906A - Grain-oriented silicon steel sheet having excellent coating film characteristic and magnetic property - Google Patents

Grain-oriented silicon steel sheet having excellent coating film characteristic and magnetic property

Info

Publication number
JP2002241906A
JP2002241906A JP2001034062A JP2001034062A JP2002241906A JP 2002241906 A JP2002241906 A JP 2002241906A JP 2001034062 A JP2001034062 A JP 2001034062A JP 2001034062 A JP2001034062 A JP 2001034062A JP 2002241906 A JP2002241906 A JP 2002241906A
Authority
JP
Japan
Prior art keywords
steel sheet
grain
coating
annealing
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001034062A
Other languages
Japanese (ja)
Inventor
Toshito Takamiya
俊人 高宮
Mitsumasa Kurosawa
光正 黒沢
Kunihiro Senda
邦浩 千田
Tadashi Nakanishi
匡 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2001034062A priority Critical patent/JP2002241906A/en
Publication of JP2002241906A publication Critical patent/JP2002241906A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a grain-oriented silicon steel sheet which has excellent directionality and on which forsterite film with superior adhesion is formed, and particularly, a grain-oriented silicon steel sheet which contains Bi as an inhibitor and has coarsely grown secondary recrystallized grains and on which forsterite film with superior adhesion is formed. SOLUTION: The grain-oriented silicon steel sheet has the forsterite film on the surface. Grain size is 10-150 mm in the rolling direction, and the area ratio of the secondary crystallized grains in which the <001> axis has an angle of <=5 deg. with respect to the rolling direction is >=80% based on the surface area of the steel sheet. The forsterite film with superior adhesion is formed by regulating the cooling rate through the temperature region of 1100-700 deg.C to (8 to 30) deg.C/h in the cooling step of the final finish annealing.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、変圧器その他の
電気機器の鉄心用途に用いる方向性電磁鋼板に関し、特
に被膜特性と磁気特性がともに優れた方向性電磁鋼板に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grain-oriented electrical steel sheet for use in iron cores of transformers and other electrical equipment, and more particularly to a grain-oriented electrical steel sheet having both excellent film properties and excellent magnetic properties.

【0002】[0002]

【従来の技術】変圧器や発電機の鉄心材料として使用さ
れる方向性電磁鋼板には、高磁束密度かつ低鉄損である
ことが最も要求される。この要求に応えるために今日ま
で多くの手段が採用され、たとえば特公昭33-4710号公
報や特公昭40-15644号公報等に開示されたように素材中
にAlを含有させ、これを最終冷延前の焼鈍で強力なイン
ヒビターであるAlNとして析出させるとともに最終冷延
圧下率を81〜95%の高圧下とすることにより上記目的の
達成が図られている。
2. Description of the Related Art Grain-oriented electrical steel sheets used as core materials for transformers and generators are most required to have high magnetic flux density and low iron loss. To meet this demand, many means have been adopted to date, for example, as disclosed in Japanese Patent Publication No. 33-4710 and Japanese Patent Publication No. 40-15644, Al is contained in the raw material, which is finally cooled. The above object is achieved by precipitating AlN as a strong inhibitor by annealing before rolling and by setting the final cold rolling reduction under a high pressure of 81 to 95%.

【0003】さらに、Sn、As、Bi、Sb、B、Pb、Mo、T
e、V、Ge等のインヒビター成分を付加的に添加すること
が、二次再結晶粒の<001>軸の圧延方向への集積度の向
上に対して有効であることも知られており、実際に利用
されている。中でも、周期律表で5B族元素に分類される
P、As、Sb、Biは結晶粒界に偏析して主インヒビターで
あるMnS、MnSe、Cu2-xS、Cu2-xSe、AlN等と共同して正
常粒成長の抑制力を強化し、磁気特性を高めることが知
られている。特にBiは鉄に対する溶解度が低いために粒
界偏析効果による正常粒成長の抑制力強化作用が強力な
元素として注目され、これにより結晶方位が極めて高度
に<001>方向に集積し、結晶粒径が30mm以上となった方
向性電磁鋼板が得られるようになってきている。
Further, Sn, As, Bi, Sb, B, Pb, Mo, T
It is also known that the addition of an inhibitor component such as e, V, or Ge is effective in improving the degree of integration of the secondary recrystallized grains in the rolling direction of the <001> axis, It is actually used. Among them, it is classified as a Group 5B element in the periodic table
P, As, Sb, and Bi segregate at the grain boundaries and work together with the main inhibitors, such as MnS, MnSe, Cu 2-x S, Cu 2-x Se, and AlN, to enhance the suppression of normal grain growth. It is known to enhance magnetic properties. In particular, Bi has been attracting attention as a strong element that has a low solubility in iron, and thus has a strong effect of suppressing the normal grain growth by the grain boundary segregation effect, and thus has a very high crystal orientation in the <001> direction. The grain-oriented electrical steel sheet having a thickness of 30 mm or more is being obtained.

【0004】ところで、方向性電磁鋼板においては、一
般に表面にフォルステライト質被膜を生成させること
が、その上に被成される絶縁張力コーティングとともに
鉄損低減、磁歪低減のため重要であり、薄くてかつむら
のないフォルステライト質被膜生成のための手段が数多
く提案されている。たとえば特許第3081118号公報に
は、結晶粒径が1mm〜6mmである鋼板表面に生成される、
フォルステライトを主成分とする酸化被膜中のスピネル
量を5%以上にする技術が開示されている。
In a grain-oriented electrical steel sheet, it is generally important to form a forsterite coating on the surface together with an insulating tension coating formed thereon to reduce iron loss and magnetostriction. A number of means have been proposed for producing a forsterite-like coating that is uniform and even. For example, Japanese Patent No. 3081118 discloses that a crystal grain size is generated on a steel sheet surface having a diameter of 1 mm to 6 mm,
A technique has been disclosed in which the amount of spinel in an oxide film containing forsterite as a main component is 5% or more.

【0005】これらの手段により、高磁束密度方向性電
磁鋼板に鋼板への密着性がよく、かつ外観の均一なフォ
ルステライト質被膜を生成させることが可能になってき
た。しかしながら、特にBiをインヒビター成分として含
有した素材を処理して方向性電磁鋼板を製造する場合に
は結晶粒が巨大に成長し、このような場合には必ずしも
特性の優れたフォルステライト質被膜を生成させること
ができなかった。たとえば、最終仕上焼鈍終了後に平坦
化焼鈍を施す際フォルステライト質被膜の一部が鋼板か
らはがれ落ちる現象が散見された。しかしながら、その
原因と解決方法は不明のままになっており、それが優れ
た方向性、ひいては高い磁束密度を有する方向性電磁鋼
板の実用化の隘路となっていた。
[0005] By these means, it has become possible to produce a forsterite coating having high uniformity in appearance and good adhesion to a high magnetic flux density grain-oriented electrical steel sheet. However, especially when manufacturing a grain-oriented electrical steel sheet by processing a material containing Bi as an inhibitor component, crystal grains grow enormously, and in such a case, a forsterite coating film with excellent characteristics is not necessarily produced. I couldn't let it. For example, when flattening annealing is performed after the final finish annealing, a phenomenon in which a part of the forsterite coating is peeled off from the steel plate was observed. However, the cause and the solution remain unclear, and this has been a bottleneck for the practical use of grain-oriented electrical steel sheets having excellent orientation and, consequently, high magnetic flux density.

【0006】[0006]

【発明が解決しようとする課題】本発明は、このような
優れた方向性を有し密着性のよいフォルステライト質被
膜が形成された方向性電磁鋼板を提供することを目的と
する。特に本発明は、Biをインヒビターとして含有し、
二次再結晶粒が巨大に成長した方向性電磁鋼板において
密着性のよいフォルステライト質被膜が形成された方向
性電磁鋼板を提供するものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a grain-oriented electrical steel sheet on which a forsterite coating having excellent orientation and good adhesion is formed. In particular, the present invention contains Bi as an inhibitor,
An object of the present invention is to provide a grain-oriented electrical steel sheet in which a forsterite coating film with good adhesion is formed on a grain-oriented electrical steel sheet in which secondary recrystallized grains have grown to a large extent.

【0007】[0007]

【課題を解決するための手段】本発明者らは、二次再結
晶粒の<001>軸の圧延方向への集積度が高い一方向性電
磁鋼板のフォルステライト質被膜の劣化原因を調査した
結果、最終仕上焼鈍中の冷却中にフォルステライト質被
膜の劣化が起きることを明らかにし、その対策として最
終仕上焼鈍中冷却段階での1100℃〜700℃域の滞留時間
を長くすることにより形成されたフォルステライト質被
膜を有することが有効であることを発見して本発明を完
成するに至った。
Means for Solving the Problems The present inventors investigated the cause of deterioration of the forsterite coating of a grain-oriented electrical steel sheet having a high degree of integration of secondary recrystallized grains in the <001> axis rolling direction. As a result, it was clarified that the deterioration of the forsterite coating occurred during cooling during final finish annealing, and as a countermeasure, it was formed by extending the residence time in the 1100 ° C to 700 ° C region in the cooling stage during final finish annealing. The present inventors have found that it is effective to have a forsterite coating, and have completed the present invention.

【0008】すなわち、本発明は、フォルステライト質
被膜込みの組成が質量比で、Si:2.5〜7.0%、Mn:0.02
〜0.5%、Mg:0.01〜0.3%、O:0.01〜0.5%およびAl:0.0
05〜0.03%を含有し、かつ、これらの成分を含むFe以外
の成分が合計で8%以下である方向性電磁鋼板であって、
〈001〉軸が圧延方向に対して5°以下、かつ圧延方向の
粒径が10〜150mmである二次再結晶粒を面積比で鋼板表
面積の80%以上有し、最終仕上焼鈍の冷却過程における1
100〜700℃間の冷却速度を8〜30℃/hとして製造してな
るフォルステライト質被膜を有するものである。
That is, according to the present invention, the composition including the forsterite coating film has a mass ratio of Si: 2.5 to 7.0%, Mn: 0.02
0.5%, Mg: 0.01-0.3%, O: 0.01-0.5% and Al: 0.0
A grain-oriented electrical steel sheet containing from 0.05 to 0.03%, and containing a total of 8% or less of components other than Fe including these components,
<001> Secondary recrystallized grains whose axis is 5 ° or less with respect to the rolling direction and the grain size in the rolling direction is 10 to 150 mm have an area ratio of 80% or more of the steel sheet surface area, and the cooling process of final finish annealing 1 in
It has a forsterite coating produced at a cooling rate between 100 and 700 ° C of 8 to 30 ° C / h.

【0009】上記において、てさらにBiを0.001〜0.20%
含有すること、あるいは、さらに加えてCrを0.015〜0.5
0%含有することが好適である。
[0009] In the above, Bi further 0.001 to 0.20%
To contain, or Cr in addition to 0.015 to 0.5
It is preferable to contain 0%.

【0010】また、本発明の方向性電磁鋼板は、その表
面に張力付与絶縁コーティングが施されているものであ
ること、あるいは磁区細分化処理が施されているもので
あることが好ましい。
[0010] The grain-oriented electrical steel sheet of the present invention preferably has a surface provided with a tension imparting insulating coating or a magnetic domain refinement treatment.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態を説明
するが、本発明の最大の眼目は最終仕上焼鈍の冷却過程
において1100℃から700℃の冷却速度を8〜30℃/hとして
製造してなるフォルステライト質被膜を有するものであ
るので、まずこの点について実験データに基づいて説明
し、次いで本発明を実施するために要求される諸条件に
ついて順を追って説明することとする。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described. The most important aspect of the present invention is that a cooling rate of 1100 ° C. to 700 ° C. is set to 8 to 30 ° C./h in a cooling process of final finish annealing. Since it has a manufactured forsterite coating, this point will be described first based on experimental data, and then various conditions required for carrying out the present invention will be described step by step.

【0012】(磁束密度と被膜特性との関係)先にも述
べたとおり、磁束密度が高い一方向性電磁鋼板ではフォ
ルステライト質被膜の生成が不安定になるということは
経験的に知られていたところであるが、そのような現象
の生ずる原因や定量的な関係は明らかではなかった。本
発明者等はこれらの点を明確にするため、以下の実験を
行った。
(Relationship between Magnetic Flux Density and Coating Properties) As described above, it is empirically known that the formation of a forsterite coating becomes unstable in a grain-oriented electrical steel sheet having a high magnetic flux density. However, the cause of such a phenomenon and the quantitative relationship were not clear. The present inventors conducted the following experiments to clarify these points.

【0013】(実験1)C:0.08%(mass%、以下特に断
らない限り同様)、Si:3.4%、Mn:0.08%、Se:0.02%、
Al:0.030%、N:0.0082%、Cu:0.15%、Bi:0.010%を含
有し、残部は実質的にFeからなる鋼塊を常法により処理
して熱延板とし、これに熱延板焼鈍を施した後、冷延し
て板厚0.23mmの冷延板とした。得られた冷延板に脱炭焼
鈍を施した後、MgOを主成分とする焼鈍分離剤を塗布し
最終仕上焼鈍を行った。この最終仕上焼鈍は、750℃ま
では窒素(以下N2と記す)雰囲気中で、750℃から1150
℃まではN2:25vol%、水素(以下H2と記す):75vol%の
雰囲気でともに18℃/hの速度で加熱し、その雰囲気をH2
に切り替えて1180℃で8時間保持して純化を行い、しか
る後1180℃から500℃までを15℃/hで冷却するというも
のである。
(Experiment 1) C: 0.08% (mass%, hereinafter the same unless otherwise specified), Si: 3.4%, Mn: 0.08%, Se: 0.02%,
Al: 0.030%, N: 0.0082%, Cu: 0.15%, Bi: 0.010%, with the remainder being substantially processed from a steel ingot made of Fe by a conventional method to form a hot-rolled sheet. After annealing, it was cold rolled into a cold rolled sheet having a sheet thickness of 0.23 mm. After performing decarburization annealing on the obtained cold-rolled sheet, an annealing separator containing MgO as a main component was applied thereto, and final finish annealing was performed. This final finish annealing is performed in a nitrogen (hereinafter, referred to as N 2 ) atmosphere up to 750 ° C., from 750 ° C. to 1150 ° C.
° C. until N 2: 25 vol%, (hereinafter referred to as H 2) hydrogen: heating at a rate of both 18 ° C. / h with 75 vol% of the atmosphere, the atmosphere H 2
And purify by holding at 1180 ° C for 8 hours, and then cool from 1180 ° C to 500 ° C at 15 ° C / h.

【0014】上記一連の工程において、熱延板焼鈍の温
度を850℃から1150℃まで50℃おきに変化させて二次再
結晶板とした。得られた二次再結晶板の磁束密度B8は、
熱延板焼鈍温度の低いものから順に1.92T、1.93T、1.94
T、1.95T、1.96T、1.97T、1.98Tとなっていた。また二
次再結晶粒の平均粒径(圧延方向)は、6.3mm、8.5mm、
12.2mm、20.6mm、23.4mm、37.8mm、52.2mmとなってい
た。
In the above series of steps, a secondary recrystallized sheet was obtained by changing the temperature of hot-rolled sheet annealing from 850 ° C. to 1150 ° C. every 50 ° C. The magnetic flux density B 8 of the obtained secondary recrystallized plate is
1.92T, 1.93T, 1.94
T, 1.95T, 1.96T, 1.97T, 1.98T. The average grain size (rolling direction) of the secondary recrystallized grains is 6.3mm, 8.5mm,
12.2mm, 20.6mm, 23.4mm, 37.8mm, 52.2mm.

【0015】これら種々の磁束密度、平均粒径(圧延方
向)をもつ二次再結晶板の被膜外観の目視判定結果と曲
げ密着性の評価結果を表1に示す。なお、曲げ密着性
は、得られた二次再結晶板にリン酸マグネシウムとコロ
イダルシリカを主成分とする絶縁張力コーティングを施
した後、種々の直径を有する丸棒に巻き付け、被膜が剥
離しない最小径により評価した。
Table 1 shows the results of the visual judgment of the appearance of the coating of the secondary recrystallized sheet having these various magnetic flux densities and average particle diameters (rolling directions) and the evaluation results of the bending adhesion. The bending adhesion was determined by applying an insulating tension coating containing magnesium phosphate and colloidal silica as main components to the obtained secondary recrystallized plate and winding it around a round bar having various diameters. It was evaluated by the small diameter.

【0016】[0016]

【表1】 [Table 1]

【0017】表1から明らかなように、実験1で作製さ
れた鋼板はすべて被膜目視判定結果が良好で、かつ20mm
以下の曲げ剥離径を有し、実用上問題が全く生じないも
のであり、被膜特性に優れているものと判定された。し
かしながら、上記の結果は、磁束密度が高く、かつ結晶
粒径が大きい場合には被膜特性が劣るという経験則と一
致しない。その原因を解明するため最終仕上焼鈍の冷却
時における冷却速度の影響について次の実験2により明
かにした。
As is clear from Table 1, the steel sheets produced in Experiment 1 all have good film visual judgment results and have a thickness of 20 mm.
It was determined to have the following flexural peeling diameter, to cause no practical problem at all, and to be excellent in film properties. However, the above results do not agree with the empirical rule that when the magnetic flux density is high and the crystal grain size is large, the film properties are inferior. In order to elucidate the cause, the influence of the cooling rate during the cooling of the final finish annealing was clarified by the following experiment 2.

【0018】(実験2) C:0.082%、Si:3.25%、Mn:0.078%、Se:0.025%、Al:
0.030%、N:0.0092%、Cu:0.15%、Sn:0.08%、Bi:0.02
0%を含有し、残部実質的にFeからなる鋼塊(A)と、C:
0.078%、Si:3.45%、Mn:0.072%、S:0.025%、Cu:0.15
%、Sn:0.08%、Bi:0.020%を含有し、残部実質的にFeか
らなる鋼塊(B)を常法により処理して2.6mmの熱延板を
得、これに1000℃で65秒間保持後30℃/sで急冷する熱延
板焼鈍を施した。得られた熱延板を酸洗後1.8mmの中間
板厚に冷延した後、950〜1150℃の間で温度を変えて中
間焼鈍を施し、さらに板厚0.8mmまでは通常の冷間圧延
により、それ以下は平均200℃の温間圧延により最終板
厚0.23mmまで圧延して冷延板とした。得られた冷延板に
825℃で脱炭焼鈍を施した後、MgOを主成分とする焼鈍分
離剤を塗布し、直径500mmのコイル状に巻いて最終仕上
焼鈍を行った。最終仕上焼鈍は、700〜1100℃の間は10
℃/hで加熱し、1175℃で5時間純水素中で保持して純化
を行い、次いで1100〜700℃の間は35℃/hの速度で冷却
するものとした。
(Experiment 2) C: 0.082%, Si: 3.25%, Mn: 0.078%, Se: 0.025%, Al:
0.030%, N: 0.0092%, Cu: 0.15%, Sn: 0.08%, Bi: 0.02
A steel ingot (A) containing 0% and the balance substantially consisting of Fe;
0.078%, Si: 3.45%, Mn: 0.072%, S: 0.025%, Cu: 0.15
%, Sn: 0.08%, Bi: 0.020%, and the remainder was substantially treated with a steel ingot (B) substantially composed of Fe to obtain a 2.6 mm hot-rolled sheet, which was then heated at 1000 ° C. for 65 seconds. After the holding, a hot-rolled sheet was quenched at 30 ° C./s for annealing. After pickling, the obtained hot-rolled sheet is cold-rolled to an intermediate sheet thickness of 1.8 mm, then subjected to intermediate annealing at a temperature of 950 to 1150 ° C., and further subjected to normal cold rolling to a sheet thickness of 0.8 mm. The lower part was rolled to a final sheet thickness of 0.23 mm by warm rolling at an average of 200 ° C. to obtain a cold-rolled sheet. On the obtained cold rolled sheet
After decarburizing annealing at 825 ° C., an annealing separator containing MgO as a main component was applied and wound into a coil having a diameter of 500 mm to perform final finish annealing. Final finish annealing is 10 between 700 and 1100 ° C.
The mixture was heated at 1 ° C / h, purified in 1175 ° C for 5 hours in pure hydrogen, and then cooled at a rate of 35 ° C / h between 1100 and 700 ° C.

【0019】このようにして得られた二次再結晶板に、
830℃で平坦化焼鈍を行ない、さらにリン酸マグネシウ
ムとコロイダルシリカを主成分とする絶縁張力コーティ
ングを施して製品とし、実験1と同様の条件で、磁束密
度B8、平均粒径(圧延方向)の測定および被膜性状の観
察を行った。結果を表2に示す。
The secondary recrystallized plate thus obtained is
Flattened annealing at 830 ° C, coated with insulating tension coating mainly composed of magnesium phosphate and colloidal silica to obtain a product. Under the same conditions as in Experiment 1, magnetic flux density B 8 , average grain size (rolling direction) Was measured and the film properties were observed. Table 2 shows the results.

【0020】[0020]

【表2】 [Table 2]

【0021】表2から明らかなように、実験2では、被
膜外観および被膜密着性は磁束密度と結晶粒径に大きく
依存している。これは実験2においては最終仕上焼鈍時
の冷却速度を大きくしたためであると考えられる。ま
た、実験2はコイル状に巻いて最終仕上焼鈍下後、平坦
化焼鈍を施した点でも実験1と相違する。この冷却速度
を大きくしたときの被膜特性に及ぼす磁束密度と結晶粒
径の影響を明確にするため次の実験3を行った。
As is clear from Table 2, in Experiment 2, the appearance and adhesion of the coating film greatly depend on the magnetic flux density and the crystal grain size. This is considered to be because in Experiment 2, the cooling rate during the final finish annealing was increased. Experiment 2 also differs from Experiment 1 in that the coil was wound into a coil shape and subjected to flattening annealing after final finishing annealing. The following experiment 3 was performed to clarify the effect of the magnetic flux density and the crystal grain size on the film characteristics when the cooling rate was increased.

【0022】(実験3) C:0.065%、Si:3.35%、Mn:0.0635%、Se:0.030%、A
l:0.028%、N:0.0095%、Cu:0.12%を含有し、残部は実
質的にFeからなる鋼塊を常法により処理して厚さ2.9mm
の熱延板を得た。この熱延板に対して温度800〜1180
℃、保持時間30秒間の熱延板焼鈍を行い、続いて中間焼
鈍を挟んで温間圧延を行って最終板厚0.23mmとした。
(Experiment 3) C: 0.065%, Si: 3.35%, Mn: 0.0635%, Se: 0.030%, A
l: 0.028%, N: 0.0095%, Cu: 0.12%, the remainder is a steel ingot substantially consisting of Fe processed by a conventional method to a thickness of 2.9 mm
Was obtained. 800 to 1180 for this hot rolled sheet
The hot-rolled sheet was annealed at a temperature of 30 ° C. for a holding time of 30 seconds, followed by warm rolling with intermediate annealing interposed therebetween to obtain a final sheet thickness of 0.23 mm.

【0023】得られた鋼板に850℃で脱炭焼鈍を施した
後、MgOを主成分とする焼鈍分離剤を塗布して直径500mm
のコイル状に巻いて最終仕上焼鈍を行った。最終仕上焼
鈍は、まずN2雰囲気下で室温から700℃までを平均15℃/
h、700〜850℃を10℃/hで加熱し、さらに850〜1150℃間
をH2:70vol%、N2:30vol%の混合雰囲気で10℃/hで加熱
し、しかる後1150℃で15h純H2中で保持して純化し、さ
らに1100℃〜700℃の間を35℃/hの速度で冷却するもの
とした。得られた鋼板にリン酸マグネシウムとコロイダ
ルシリカを主成分とする絶縁張力コーティングを施した
後、830℃で平坦化焼鈍を行った。
After the obtained steel sheet was subjected to decarburizing annealing at 850 ° C., an annealing separating agent containing MgO as a main component was applied thereto, and the diameter was 500 mm.
And subjected to final finish annealing. In the final finish annealing, first, from room temperature to 700 ° C under N 2 atmosphere, average 15 ° C /
h, 700-850 ° C is heated at 10 ° C / h, and between 850 and 1150 ° C is heated at 10 ° C / h in a mixed atmosphere of H 2 : 70 vol% and N 2 : 30 vol%, and then at 1150 ° C 15h and purified and held in pure H 2, and as further cooled between 1100 ° C. to 700 ° C. at a rate of 35 ° C. / h. The obtained steel sheet was subjected to an insulating tension coating containing magnesium phosphate and colloidal silica as main components, followed by flattening annealing at 830 ° C.

【0024】上記実験においては、熱延板焼鈍条件、中
間焼鈍条件、温間圧延条件を適宜結合させて最終仕上焼
鈍後の二次再結晶粒の結晶粒径、結晶方位分布を種々に
変化させてある。このようにして得られた製品板の磁束
密度、および被膜外観について調査した結果を図1、2に
示す。図1から粒径が10〜150mmであり、かつ<001>軸が
圧延方向から5°以下の結晶粒の占める面積率が80%以上
となると磁束密度が格段に向上することが分かる。一
方、図2からは粒径10〜150mmの結晶粒の占める面積率が
80%以上になると被膜が劣化する傾向が顕著になり、特
に<001>軸が圧延方向から5°以下の結晶粒の占める面積
率が80%以上となるときにはこの傾向が著しいことが分
かる。
In the above experiments, the conditions of hot-rolled sheet annealing, intermediate annealing, and warm rolling were appropriately combined to vary the crystal grain size and crystal orientation distribution of the secondary recrystallized grains after final finish annealing. It is. FIGS. 1 and 2 show the results of investigations on the magnetic flux density and the film appearance of the product plate obtained in this manner. FIG. 1 shows that the magnetic flux density is remarkably improved when the grain size is 10 to 150 mm and the area ratio of the crystal grains whose <001> axis is 5 ° or less from the rolling direction is 80% or more. On the other hand, from FIG. 2, the area ratio occupied by crystal grains having a particle size of 10 to 150 mm is
At 80% or more, the tendency of the film to deteriorate becomes remarkable, especially when the area ratio of the crystal grains whose <001> axis is 5 ° or less from the rolling direction is 80% or more.

【0025】上記の実験1〜3により被膜の劣化は、最終
仕上焼鈍時の冷却速度が比較的大きく、かつ、結晶粒が
大きく、その<001>軸が圧延方向に高度に集積している
ときに生じやすいことが解明された。その機構について
は以下のように考えられる。ただし、これは必ずしも確
定的ではなく、また本発明を構成する要件でもない。
According to the above-mentioned experiments 1 to 3, the deterioration of the film was caused when the cooling rate during the final finish annealing was relatively large, the crystal grains were large, and the <001> axis was highly accumulated in the rolling direction. It was clarified that it was easy to occur. The mechanism is considered as follows. However, this is not necessarily definitive and is not a requirement that constitutes the present invention.

【0026】インヒビターとしてAlNを含有する冷延鋼
板に脱炭焼鈍を施し、これにMgOを主成分とした焼鈍分
離剤を塗布して最終仕上焼鈍を行うと、被膜の主成分で
あるフォルステライトが形成される際に鋼中のAlが被膜
中に取り込まれて、Alを含んだスピネル酸化物がフォル
ステライト質被膜中に形成される。このようなスピネル
酸化物を含むフォルステライト質被膜の熱膨張係数は小
さい。これに対し、鋼板の地鉄部分の熱膨張係数は前記
フォルステライト質被膜より大きく、そのため1100℃以
上の高温から室温に冷却される際にはフォルステライト
質被膜により地鉄に対して強い張力が働くことになる。
この張力によって電磁鋼板の磁区が細分化され、鉄損が
低下する。しかしながら、冷却速度が大きく上記張力が
過大となる場合、フォルステライト質被膜と地鉄との界
面に上記の力に耐えられなかった場所があると、その個
所で被膜と鋼板(地鉄)との間にクラックが生じ易くな
る。その結果、平坦化焼鈍後の製品に被膜劣化が現れ、
同時に被膜よる張力付与効果も失われ、鉄損低減化効果
も低下する。このような現象は、通常の方向性電磁鋼板
の製造過程においても生ずるものと考えられるが、磁束
密度が高く、結晶粒径が大きな場合に特に著しい。
Decarburizing annealing is applied to a cold-rolled steel sheet containing AlN as an inhibitor, and an annealing separator containing MgO as a main component is applied thereto, followed by final finish annealing. When formed, Al in the steel is taken into the coating, and a spinel oxide containing Al is formed in the forsterite coating. The thermal expansion coefficient of a forsterite coating containing such a spinel oxide is small. On the other hand, the thermal expansion coefficient of the ground iron portion of the steel sheet is larger than that of the forsterite coating, so that when the steel is cooled from a high temperature of 1100 ° C or more to room temperature, strong tension is applied to the base steel by the forsterite coating. Will work.
The magnetic domains of the magnetic steel sheet are subdivided by this tension, and iron loss is reduced. However, when the cooling rate is large and the tension is excessive, if there is a place at the interface between the forsterite coating and the ground iron that cannot withstand the above-described force, the coating and the steel plate (base steel) may be formed at that location. Cracks are likely to occur between them. As a result, film degradation appears on the product after flattening annealing,
At the same time, the effect of imparting tension by the film is lost, and the effect of reducing iron loss is also reduced. Such a phenomenon is considered to occur also in the process of manufacturing a normal grain-oriented electrical steel sheet, but is particularly remarkable when the magnetic flux density is high and the crystal grain size is large.

【0027】結晶粒が大きいときに被膜性状が劣化する
原因としては、最終仕上焼鈍は、工業的にはコイル状に
巻かれた状態で行われることが挙げられる。すなわち、
このような場合には、フォルステライト質被膜もコイル
状に巻かれた鋼板と同じ曲率をもって生成するため、フ
ォルステライト質被膜の生成後に平坦化焼鈍を行うと二
次再結晶粒の端部ではフォルステライト質被膜に曲げモ
ーメントが生じる。結晶粒が小さければ、曲げモーメン
トも小さく、また粒界(結晶端部)が大きいため、力が
分散されるが、この曲げモーメントは二次再結晶粒径が
大きいほど大きくなるので、結晶粒径が大きいときには
フォルステライト質被膜、さらには被膜と鋼板界面にも
クラックを生じ、被膜欠陥に至るのである。
The cause of the deterioration of the film properties when the crystal grains are large is that the final finish annealing is industrially performed in a state of being wound in a coil shape. That is,
In such a case, the forsterite coating is also formed with the same curvature as the steel sheet wound in a coil shape, so if flattening annealing is performed after the formation of the forsterite coating, the forsterite coating is formed at the end of the secondary recrystallized grains. A bending moment occurs in the stellite coating. If the crystal grains are small, the bending moment is small, and the force is dispersed because the grain boundaries (crystal ends) are large. However, this bending moment increases as the secondary recrystallized grain size increases, so that the crystal grain size increases. When is large, cracks occur in the forsterite coating, and also in the interface between the coating and the steel plate, leading to coating defects.

【0028】一方、磁束密度が高い鋼板において被膜性
状の劣化が顕著になる理由は、二つあると考えられる。
第一に、磁束密度が高い鋼板では、圧延方向に〈001〉
軸がきわめて正確に向き、かつその数が少ないため二次
再結晶時に結晶粒が必然的に大きくなってしまうことが
挙げられる。第二は、隣り合った二次再結晶粒との方位
差がほとんどないため、最終仕上焼鈍の際の冷却時に鋼
板全体に掛かる熱歪みが緩和され難いことが挙げられ
る。
On the other hand, it is considered that there are two reasons why the deterioration of the coating properties becomes remarkable in a steel sheet having a high magnetic flux density.
First, for steel sheets with high magnetic flux density, <001>
It is pointed out that the crystal grains are inevitably enlarged during the secondary recrystallization because the axes are oriented very accurately and the number thereof is small. Second, since there is almost no difference in orientation between adjacent secondary recrystallized grains, it is difficult to alleviate thermal strain applied to the entire steel sheet during cooling during final finish annealing.

【0029】いずれにしても、最終仕上焼鈍時の冷却速
度が大きいときに被膜劣化が生じやすい。この現象を定
量的に解明し、最終仕上焼鈍時の冷却過程に起因する被
膜欠陥を解決するために次の実験4を行った。
In any case, when the cooling rate at the time of the final finish annealing is high, the coating is liable to deteriorate. The following experiment 4 was carried out in order to elucidate this phenomenon quantitatively and to solve the film defect caused by the cooling process at the time of final finish annealing.

【0030】(実験4) C:0.06%、Si:3.3%、Mn:0.07%、Se:0.02%、Al:0.02
%、N:0.008%、Cu:0.15%、Sn:0.08%を含有し、残部実
質的にFeからなるけい素鋼スラブを常法により処理して
板厚0.23mmの脱炭焼鈍板とした。これにMgO:100質量
部、TiO2:12質量部、Sr(OH)2:6質量部、MgSO4:3質量
部からなる焼鈍分離剤を鋼板片面当たり13g/m2となるよ
うに塗布し、内径500mm、外径1200mmのコイル状に巻き
取り最終焼鈍に付した。最終仕上焼鈍は、窒素雰囲気で
室温から830℃の間の加熱速度を平均20℃/hとし、830℃
で20時間保持し、その後H2:75%、N2:25%の混合雰囲気
で1180℃まで12℃/hで昇温し、更に水素雰囲気で1180
℃、5時間の純化を行なうものとした。最終仕上焼鈍の
冷却は、1100〜700℃の間を5、7、9、12、15、19、23、
27、32、40℃/hの各冷却速度とした。得られた二次再結
晶板には、リン酸マグネシウムとコロイダルシリカを主
成分とする絶縁張力コーティングを施し、さらに830℃
で平坦化焼鈍をおこなった。
(Experiment 4) C: 0.06%, Si: 3.3%, Mn: 0.07%, Se: 0.02%, Al: 0.02
%, N: 0.008%, Cu: 0.15%, and Sn: 0.08%, and a silicon steel slab substantially consisting of Fe, with the balance substantially consisting of Fe, was processed into a decarburized annealed sheet having a sheet thickness of 0.23 mm. An annealing separator consisting of 100 parts by mass of MgO, 12 parts by mass of TiO 2 , 6 parts by mass of Sr (OH) 2, and 3 parts by mass of MgSO 4 was applied to the steel sheet so that the amount became 13 g / m 2 per one surface of the steel sheet. It was wound into a coil having an inner diameter of 500 mm and an outer diameter of 1200 mm and was subjected to final annealing. The final finish annealing is performed at a heating rate between room temperature and 830 ° C. in a nitrogen atmosphere at an average of 20 ° C./h.
At 20 ° C. for 20 hours, and then heated to 1180 ° C. at 12 ° C./h in a mixed atmosphere of H 2 : 75% and N 2 : 25%, and further heated to 1180 ° C. in a hydrogen atmosphere.
Purification was performed at 5 ° C. for 5 hours. Cooling of the final finish annealing is performed between 1,100 and 700 ° C, 5, 7, 9, 12, 15, 19, 23,
The cooling rates were 27, 32, and 40 ° C / h. The obtained secondary recrystallized plate is subjected to an insulating tension coating containing magnesium phosphate and colloidal silica as main components, and further 830 ° C.
For flattening annealing.

【0031】このようにして得られた製品について磁気
特性(磁束密度、鉄損W17/50)および被膜特性(被膜外
観、曲げ密着性)について調査した。結果を表3に示
す。表3に示すように、最終仕上焼鈍時に1100〜700℃の
冷却速度を9℃/hから27℃/hとした条件において、鉄損
と被膜外観に優れる製品の製造が可能であることが分か
る。このような実験を繰り返すことにより最終仕上焼鈍
時に1100〜700℃の冷却速度を8℃/hから30℃/hとすれ
ば、鉄損と被膜外観に優れる製品の製造が可能であるこ
とが確認できた。冷却速度が8℃/h未満の場合は被膜特
性には問題がないが、鉄損が劣化する。その理由は、高
温域で鉄が自己拡散し張力を下げる方向に鉄原子が動
き、その結果鋼板とフォルステライト質被膜との熱膨張
差によって生じる張力が失われたためであると考えられ
る。したがって、上記冷却速度はいたずらに小さくすべ
きではなく8℃/h以上とすべきである。
The products thus obtained were examined for magnetic properties (magnetic flux density, iron loss W 17/50 ) and coating properties (coating appearance, bending adhesion). Table 3 shows the results. As shown in Table 3, it can be seen that under conditions where the cooling rate at 1100 to 700 ° C during the final finish annealing was from 9 ° C / h to 27 ° C / h, it is possible to manufacture a product with excellent iron loss and coating appearance. . By repeating such an experiment, it was confirmed that if the cooling rate at 1100-700 ° C was changed from 8 ° C / h to 30 ° C / h during final finish annealing, it would be possible to manufacture products with excellent iron loss and coating appearance. did it. When the cooling rate is less than 8 ° C./h, there is no problem in the film properties, but the iron loss deteriorates. It is considered that the reason is that iron atoms move in a direction to lower the tension by self-diffusion of iron in a high-temperature region, and as a result, the tension generated due to a difference in thermal expansion between the steel sheet and the forsterite coating is lost. Therefore, the above cooling rate should not be unnecessarily low but should be 8 ° C./h or more.

【0032】[0032]

【表3】 [Table 3]

【0033】なお、上記冷却過程の冷却速度を制御する
1100℃〜700℃の範囲は、フォルステライトの形成が完
了し、かつ鉄原子の自己拡散が起こり、冷却速度による
変化が期待できる範囲として定められたものである。す
なわち、1100℃を超える温度ではいまだフォルステライ
トの形成が続いているため、冷却速度を制御する意味が
なく、一方700℃未満の温度では鉄原子の自己拡散がほ
とんど起こらず、冷却速度による変化が全く期待できな
いのである。
The cooling rate in the above cooling process is controlled.
The range of 1100 ° C. to 700 ° C. is defined as a range in which the formation of forsterite is completed, self-diffusion of iron atoms occurs, and a change due to the cooling rate can be expected. In other words, at temperatures above 1100 ° C, the formation of forsterite is still continuing, so there is no point in controlling the cooling rate.On the other hand, at temperatures below 700 ° C, self-diffusion of iron atoms hardly occurs, and the change due to the cooling rate does not change. I can't expect it at all.

【0034】以上、実験1〜4で明らかにしたように、最
終仕上焼鈍において二次再結晶粒を、結晶粒径が圧延方
向で10〜150mmとなり、かつ<001>軸が圧延方向に対して
5°以下の結晶粒の占める面積比が鋼板表面の80%以上と
なるように制御するとともに、最終仕上焼鈍の冷却過程
において1100〜700℃の冷却速度を8〜30℃/hとすること
により、磁気特性に優れ、かつ被膜性状が優れた一方向
性電磁鋼板を得ることができる。
As described above, as clarified in Experiments 1-4, in the final finish annealing, the secondary recrystallized grains were formed so that the crystal grain size was 10-150 mm in the rolling direction and the <001> axis was in the rolling direction.
By controlling the area ratio of crystal grains of 5 ° or less to be 80% or more of the steel sheet surface, and by setting the cooling rate of 1100 to 700 ° C to 8 to 30 ° C / h in the cooling process of final finish annealing Thus, it is possible to obtain a grain-oriented electrical steel sheet having excellent magnetic properties and excellent film properties.

【0035】なお、本発明において圧延方向の結晶粒径
が10mm以上、150mm以下でかつ〈001〉軸が圧延方向に対
して5°以下に揃った結晶粒で鋼板面積の80%以上が覆わ
れたものとする理由は、上記実験結果から明らかであ
る。すなわち、圧延方向の結晶粒径が10mm未満では被膜
劣化が生じないためであり、圧延方向の結晶粒径が150m
mを超えると、鋼板をコイル状に巻き取って最終仕上焼
鈍を行った鋼板を平坦に戻す際、結晶粒の端部で結晶粒
の方位の板面垂直方向への傾きが大きくなり、磁束密度
が低下するためである。また〈001〉軸が圧延方向に5°
以下に揃ったものとする理由は高磁束密度を確保するた
めである。
In the present invention, 80% or more of the steel sheet area is covered with crystal grains having a crystal grain size in the rolling direction of 10 mm or more and 150 mm or less and the <001> axis aligned at 5 ° or less with respect to the rolling direction. The reason for this is clear from the above experimental results. That is, when the crystal grain size in the rolling direction is less than 10 mm, film deterioration does not occur, and the crystal grain size in the rolling direction is 150 m
If it exceeds m, when the steel sheet is wound into a coil shape and the steel sheet subjected to final finish annealing is returned to a flat state, the inclination of the orientation of the crystal grains in the direction perpendicular to the sheet surface at the edge of the crystal grains increases, and the magnetic flux density Is to be reduced. The <001> axis is 5 ° in the rolling direction.
The reason why the following is set is to secure a high magnetic flux density.

【0036】以下、本発明の最も重要な点は以上のとお
りであるが、以下本発明を実施する上で重要な諸点につ
いて述べる。まず、本発明においては、出発素材の組成
を質量比でFe以外の成分が合計8%以下であり、かつC:
0.01〜0.10%、Si:2.5〜7.0%、Mn:0.02〜0.5%及びイン
ヒビター成分としてAl:0.015〜0.050%、N:0.005〜0.0
15%を含有し、残部実質的にFeおよび不可避的不純物か
らなるものとすることが好適である。このようにFe以外
の成分の合計を8%以下に限定したのは、Fe以外の含有量
が高すぎるときには飽和磁束密度が低下するため、結晶
の〈001〉軸を如何に圧延方向に揃えても磁束密度B8
劣化してしまうためである。
Hereinafter, the most important points of the present invention are as described above. Hereinafter, various points that are important in practicing the present invention will be described. First, in the present invention, the composition of the starting material is 8% or less in total of components other than Fe in mass ratio, and C:
0.01 to 0.10%, Si: 2.5 to 7.0%, Mn: 0.02 to 0.5% and Al: 0.015 to 0.050% as an inhibitor component, N: 0.005 to 0.0
It is preferable to contain 15% and the balance substantially consist of Fe and inevitable impurities. The reason for limiting the total amount of components other than Fe to 8% or less in this way is that when the content other than Fe is too high, the saturation magnetic flux density decreases, so that the <001> axis of the crystal is aligned in the rolling direction. also because the magnetic flux density B 8 is deteriorated.

【0037】Cは変態を利用して熱延組織を改善するの
に有効であり、またゴス方位粒の発生に有効な元素であ
り、0.01%以上含有させることが必要であるが、0.10%を
超えると脱炭不良を起こすので、0.01〜0.10%の範囲で
含有させることが好適である。
C is an element effective for improving the hot-rolled structure by utilizing transformation and is an element effective for generation of Goss-oriented grains. It is necessary to contain C in an amount of 0.01% or more. If the content exceeds the above range, poor decarburization may occur. Therefore, it is preferable that the content be in the range of 0.01 to 0.10%.

【0038】Siは鉄損をよくするために2.5%以上含有さ
せる必要があるが、多すぎるとトランスを作成する際に
割れやすく加工が困難となるので上限を7.0%とする。Mn
も同じく電気抵抗を高め、また製造時の熱間加工性を向
上させるので必要な元素である。この目的のためには0.
02%以上の含有が必要であるが0.5%を超えて含有した場
合、磁気特性が劣化するので、0.02〜0.5%の範囲とす
る。なお製品においても、Si、Mnの含有量は前記した範
囲となる。
It is necessary to contain 2.5% or more of Si in order to improve iron loss. However, if it is too much, it is likely to be broken when forming a transformer, and it becomes difficult to work, so the upper limit is made 7.0%. Mn
Is also an element necessary for increasing electric resistance and improving hot workability at the time of production. 0 for this purpose.
It is necessary that the content be 02% or more, but if it exceeds 0.5%, the magnetic properties deteriorate, so the content is set in the range of 0.02 to 0.5%. Note that the content of Si and Mn in the product is also in the range described above.

【0039】インヒビター成分としては、AlおよびNを
含有させることが好適である。このうちAlは0.015〜0.0
50%含有させることが必要である。Alの含有量が0.015%
未満の場合、析出するAlNの量が不足し良好な二次再結
晶粒を得ることができず、一方0.050%を超える場合、イ
ンヒビターとして機能するサイズに均一分散することが
困難となるため好ましくない。したがって、Alは0.015
〜0.050%含有することとする。Nは0.005%以上含有する
と鋼中でガス化しフクレなどの欠陥をもたらすので0.00
5〜0.015%を含有させることとする。
It is preferable to contain Al and N as the inhibitor component. Of these, Al is 0.015-0.0
It is necessary to contain 50%. Al content 0.015%
If less than, it is not possible to obtain good secondary recrystallized grains due to insufficient amount of AlN to be precipitated, while if more than 0.050%, it is difficult to uniformly disperse to a size functioning as an inhibitor, which is not preferable. . Therefore, Al is 0.015
To 0.050%. If N is contained at 0.005% or more, it gasifies in the steel and causes defects such as blisters.
5 to 0.015% is to be contained.

【0040】なお、製品におけるAlの含有量を0.005〜
0.03%とすることが必須である。0.005%未満ではAlの酸
化物が鋼板表面に存在しないためフォルステライト質被
膜による張力付与効果が大とならず、そのため本発明が
目的とする鉄損の低い一方向性電磁鋼板を製造すること
ができないとともに被膜欠陥も発生しないためである。
一方、製品におけるAl含有量の上限を0.03%としたの
は、これ以上存在すると鋼中での析出物が多くなりす
ぎ、磁壁移動を妨げ、かえって鉄損が高くなってしまう
ためである。
The content of Al in the product is 0.005 to 0.005.
It is essential to set it to 0.03%. If less than 0.005%, the oxide of Al does not exist on the surface of the steel sheet, the effect of imparting tension by the forsterite coating does not become large, and therefore, it is possible to produce a unidirectional magnetic steel sheet having a low iron loss aimed at by the present invention. This is because it is not possible and no coating defects occur.
On the other hand, the reason why the upper limit of the Al content in the product is set to 0.03% is that if it is present in excess, the precipitates in the steel will be too large, hindering the domain wall movement and increasing the iron loss.

【0041】インヒビター成分としては、その他にSe、
Sを単独もしくは複合して用いることができる。これら
の元素は鋼中にMn化合物あるいはCu化合物として析出す
るが、一次再結晶粒の成長抑制効果を維持するには合計
で0.010%以上を含有させること望ましい。しかし、これ
らの合計含有量が0.040%を超えるとスラブ加熱温度を高
くしても完全に固溶させることができなくなり、元素と
して利用する場合には0.010〜0.040%の範囲で含有させ
るのがよい。なお、これらの元素をインヒビター元素と
して利用せず、スラブの高温加熱を省略する方法をとる
ときには、これらの含有量は合計で0.010%以下とするの
がよい。
Other inhibitor components include Se,
S can be used alone or in combination. These elements precipitate as Mn compounds or Cu compounds in the steel, but it is desirable to contain a total of 0.010% or more in order to maintain the effect of suppressing the growth of primary recrystallized grains. However, if the total content of these exceeds 0.040%, even if the slab heating temperature is increased, it is not possible to completely form a solid solution, and when used as an element, it is better to contain them in the range of 0.010 to 0.040%. . When these elements are not used as inhibitor elements and a method of omitting high-temperature heating of the slab is adopted, the content of these elements is preferably 0.010% or less in total.

【0042】本発明においては、Biをインヒビター元素
として利用するのが特に好適である。Biは二次再結晶粒
の<001>軸を高度に圧延方向に集積させる作用をなし、
また、結晶粒を極めて大きく成長させる作用をなすため
にBiを含有させた場合、本発明の適用により被膜改善効
果が顕著に現れる。しかしながら、その含有量が0.005%
未満では期待する効果が得られず、一方0.20%を超える
と均一分散が困難となり、かえって弊害がある。したが
って、Biは0.005〜0.20%を含有させるのがよい。なお、
Biは最終仕上焼鈍中にある程度の量が鋼から抜けること
があるため、出発素材中のBiの含有量を0.005〜0.20%と
した場合、製品にけるBiの含有量は0.001〜0.20%とな
る。
In the present invention, it is particularly preferable to use Bi as an inhibitor element. Bi acts to highly accumulate the <001> axis of secondary recrystallized grains in the rolling direction,
In addition, when Bi is contained in order to make crystal grains grow extremely large, the effect of improving the film is remarkably exhibited by applying the present invention. However, its content is 0.005%
If it is less than 0.20%, the expected effect cannot be obtained. On the other hand, if it exceeds 0.20%, uniform dispersion becomes difficult, which is rather detrimental. Therefore, Bi is preferably contained at 0.005 to 0.20%. In addition,
Since Bi may escape from the steel to some extent during the final annealing, if the Bi content in the starting material is 0.005 to 0.20%, the Bi content in the product will be 0.001 to 0.20% .

【0043】上記のほか、Cu、Sn、Sb、Mo、B、As、T
e、P等公知のインヒビター元素を補助的に含有させるこ
とができる。これら元素の好適含有範囲は、Cu、Snにつ
いては0.05〜0.5%、Sb、As、Mo、Te、Pについては0.005
〜0.10%、Bについては0.0010〜0.0060%である。
In addition to the above, Cu, Sn, Sb, Mo, B, As, T
Known inhibitor elements such as e and P can be supplementarily contained. The preferred content range of these elements is 0.05 to 0.5% for Cu and Sn, and 0.005 for Sb, As, Mo, Te, and P.
0.10.10%, and B is 0.0010-0.0060%.

【0044】上記元素の他、例えば、Ge、Coの添加など
は鋼板の表面性状を改善する効果があるので0.005〜0.0
5%の範囲で含有させることは好ましい。特に、Crはフォ
ルステライト生成反応を促進する効果があるので0.05〜
0.5%の範囲で含有させるのが好ましい。0.05%未満では
効果の発現が十分でなく、一方0.5%を超えると被膜改善
効果が飽和するばかりでなく、磁束密度が低下する傾向
があり、さらにコスト高とるのでCrを含有させる場合に
は0.05〜0.5%の範囲とするのがよい。また、本発明の方
向性電磁鋼板はフォルステライト質被膜を有するため、
Mgを0.01〜0.3%、Oを0.01〜0.5%含有する。Mgが0.01%に
満たないと、フォルステライト被膜が所望の張力を発生
させるには少なすぎ、0.3%を超えると鋼板厚に対して被
膜厚が過大となり磁束密度が低下する。OについてもMg
と同様の理由から下限を0.01%、上限を0.5%とした。
In addition to the above elements, for example, the addition of Ge or Co has an effect of improving the surface properties of the steel sheet.
It is preferable to contain it in the range of 5%. In particular, Cr has an effect of accelerating the forsterite formation reaction.
It is preferable to contain it in the range of 0.5%. When the content is less than 0.05%, the effect is not sufficiently exhibited.On the other hand, when the content is more than 0.5%, not only the coating improvement effect is saturated but also the magnetic flux density tends to decrease. It is better to be in the range of 0.5%. Also, since the grain-oriented electrical steel sheet of the present invention has a forsterite coating,
Contains 0.01 to 0.3% of Mg and 0.01 to 0.5% of O. If Mg is less than 0.01%, the forsterite film is too small to generate the desired tension, and if more than 0.3%, the coating thickness becomes excessively large with respect to the steel sheet thickness, and the magnetic flux density decreases. Mg for O
For the same reason as above, the lower limit was set to 0.01% and the upper limit was set to 0.5%.

【0045】上記の組成を有する出発素材は、通常1350
℃以上に加熱された後、熱間圧延により熱延コイルとさ
れる。しかし、SeやSのように溶体化に高温を必要とす
る元素の配合を控えた組成を有する場合にはより低い加
熱温度を採用することができる。熱間圧延は常法によっ
て行えばよく、たとえば仕上圧延出側温度は800〜1100
℃、コイル巻取り温度700℃以下等の条件を採用でき
る。
The starting material having the above composition is usually 1350
After being heated to a temperature of at least ° C., a hot-rolled coil is formed by hot rolling. However, a lower heating temperature can be employed when the composition has a composition that precludes the blending of elements that require a high temperature for solution, such as Se and S. Hot rolling may be performed by a conventional method, for example, the finish-rolling exit temperature is 800 to 1100.
° C, coil winding temperature 700 ° C or less.

【0046】冷延工程については、熱延板焼鈍後1回の
圧延により最終板厚とする冷延1回法、または必要に応
じて熱延板焼鈍を施したのち、第1回目の冷間圧延を行
い、次いで中間焼鈍を行って第2回目の冷間圧延を施す
冷延2回法が採用できる。冷間圧延の圧下率は好ましく
は60〜90%、より好ましくは80〜90%範囲とする。熱延板
焼鈍および中間焼鈍の条件は、好ましくは800〜1200
℃、より好ましくは1000〜1200℃の範囲で適宜選べばよ
い。また、最終冷間圧延に当たり、温間圧延、あたはパ
ス間時効処理を必要に応じて行う。温間圧延は、好まし
くは120〜300℃、より好ましくは180〜250℃の範囲と
し、パス間時効は150〜350℃で1分以上行うことが好ま
しい。冷間圧延の後に行う脱炭焼鈍では、加熱速度が60
0〜750℃間を10℃/s以上と急速加熱を行うことが有効で
ある。これらの手段を上記好適範囲内において適宜組み
合わせることにより、1次再結晶集合組織を改善し、ひ
いては本願発明範囲である、二次再結晶後の結晶粒の
〈001〉軸が圧延方向に対して5°以下、かつ圧延方向の
結晶粒径が10〜150mmの結晶粒の占める面積比が鋼板表
面積の80%以上となる鋼板を得ることができる。さらに
最終冷間圧延後、鋼板表面に線状の溝を設ける磁区細分
化処理を行うことも可能である。
In the cold rolling step, the cold rolling process is performed once to obtain the final thickness by rolling once after the hot rolling plate annealing, or, if necessary, after the hot rolling plate annealing process, the first cold rolling process is performed. A cold rolling twice method in which rolling is performed, then intermediate annealing is performed, and second cold rolling is performed can be adopted. The rolling reduction of the cold rolling is preferably in the range of 60 to 90%, more preferably 80 to 90%. The conditions of hot-rolled sheet annealing and intermediate annealing are preferably 800 to 1200
C, more preferably within the range of 1000 to 1200 C. In the final cold rolling, warm rolling or aging treatment between passes is performed as necessary. Warm rolling is preferably performed in the range of 120 to 300 ° C, more preferably 180 to 250 ° C, and aging between passes is preferably performed at 150 to 350 ° C for 1 minute or more. In the decarburization annealing performed after cold rolling, the heating rate is 60
It is effective to perform rapid heating between 0 and 750 ° C at 10 ° C / s or more. By appropriately combining these means within the above preferred range, the primary recrystallization texture is improved, and thus the <001> axis of the crystal grains after the secondary recrystallization is within the scope of the present invention, with respect to the rolling direction. A steel sheet can be obtained in which the area ratio of crystal grains having a crystal grain size of 5 ° or less and a grain size in the rolling direction of 10 to 150 mm is 80% or more of the steel sheet surface area. Further, after the final cold rolling, it is possible to perform a magnetic domain refining treatment for providing linear grooves on the surface of the steel sheet.

【0047】かかる方法により得られた脱炭焼鈍後の鋼
板は、MgOを主成分とする焼鈍分離剤が塗布された後、
コイル状に巻きとって最終仕上焼鈍に供される。その
際、焼鈍分離剤中にTi化合物やSr化合物やSb化合物ある
いはCaやBを含有させることは自由である。また、脱炭
焼鈍後、二次再結晶開始までの間に鋼中に300ppm以下の
範囲でNを含ませる窒化処理を施すことも可能であり、
これにより被膜特性と磁気特性のさらに優れた製品を製
造することができる。
The steel sheet after decarburization annealing obtained by this method is coated with an annealing separator mainly composed of MgO,
It is wound in a coil shape and subjected to final finish annealing. At that time, it is free to include a Ti compound, an Sr compound, an Sb compound, or Ca or B in the annealing separator. Further, after decarburizing annealing, it is also possible to perform a nitriding treatment for containing N in a range of 300 ppm or less in the steel before the start of the secondary recrystallization,
As a result, it is possible to manufacture a product having more excellent film characteristics and magnetic characteristics.

【0048】最終仕上焼鈍の条件は、すでに実験1〜4に
おいて示したとおり、純化段階後の冷却条件に特徴があ
る。それについてはすでに詳述した。その他の条件につ
いては、従来公知の方法によればよい。なお、最終仕上
焼鈍の昇温過程において少なくとも1050℃以上、望まし
くは900℃以上の温度では、焼鈍雰囲気をH2含有雰囲気
とすることが必要である。これにより、最終仕上焼鈍中
に形成される被膜中の酸化物や窒化物の形成が円滑に行
われ、鋼板に高い張力を与える被膜を形成できる。
The conditions for the final finish annealing are characterized by the cooling conditions after the purification stage, as already shown in Experiments 1 to 4. That was already detailed. Other conditions may be according to a conventionally known method. Note that at least 1050 ° C. or more, preferably 900 ° C. or more in the temperature rise process of the final finish annealing, it is necessary to set the annealing atmosphere to an H 2 -containing atmosphere. Thereby, the formation of oxides and nitrides in the coating formed during the final finish annealing is performed smoothly, and a coating that gives high tension to the steel sheet can be formed.

【0049】最終仕上焼鈍後は未反応分離剤を除去した
後、鋼板表面にたとえばリン酸マグネシウムとコロイダ
ルシリカを主成分とする絶縁張力コーティングを塗布・
焼き付けする。一般的には、さらに平坦化焼鈍を施して
製品とするが、上記絶縁張力コーティングの塗布・焼き
付け処理を平坦化処理と兼ねてもよい。また、二次再結
晶後の鋼板に鉄損低減効果を得るため、公知の磁区細分
化処理、たとえば、プラズマジェットやレーザー照射に
よる線状領域の形成、あるいは突起ロールによる線状の
へこみ領域の形成を行うことも自由である。
After the final finish annealing, after removing the unreacted separating agent, an insulating tension coating mainly containing magnesium phosphate and colloidal silica is applied to the surface of the steel sheet.
Bake. Generally, the product is further subjected to flattening annealing, but the application and baking process of the insulating tension coating may also serve as the flattening process. In addition, in order to obtain an iron loss reduction effect on the steel sheet after the secondary recrystallization, known magnetic domain refining treatment, for example, formation of a linear region by plasma jet or laser irradiation, or formation of a linear dent region by a projection roll You are also free to do.

【0050】[0050]

【実施例】(実施例1) C:0.08%、Si:3.65%、Mn:0.07%、P:0.003%、S:0.00
3%、Al:0.027%、Se:0.020%、Sb:0.060%、Cr:0.25
%、N:0.0092%、Bi:0.020%を含有し、残部が実質的に
鉄からなる珪素鋼スラブをガス加熱炉に装入し1180℃ま
で加熱し、30分保持した後、誘導加熱により1400℃で20
分間加熱し、熱間圧延によって2.5mmの厚さに熱間圧延
した。得られた熱延板に1000℃、30秒間の熱延板焼鈍を
施し、次いで酸洗、一次冷間圧延を行って厚さ1.7mmと
した後、1080℃、2分間の中間焼鈍を施し、最高到達温
度220℃の二次冷間圧延により最終板厚0.23mmの冷延板
とした。
[Example] (Example 1) C: 0.08%, Si: 3.65%, Mn: 0.07%, P: 0.003%, S: 0.00
3%, Al: 0.027%, Se: 0.020%, Sb: 0.060%, Cr: 0.25
%, N: 0.0092%, Bi: 0.020%, and a silicon steel slab consisting essentially of iron was charged into a gas heating furnace, heated to 1180 ° C., held for 30 minutes, and then heated to 1400% by induction heating. 20 at ℃
Heated for 2.5 minutes and hot rolled to a thickness of 2.5 mm by hot rolling. The obtained hot-rolled sheet is subjected to hot-rolled sheet annealing at 1000 ° C. for 30 seconds, then pickled, subjected to primary cold rolling to a thickness of 1.7 mm, and subjected to intermediate annealing at 1080 ° C. for 2 minutes, A cold rolled sheet having a final thickness of 0.23 mm was formed by secondary cold rolling at a maximum temperature of 220 ° C.

【0051】得られた冷延板を均一過程の雰囲気がP(H2
0)/P(H2)が0.45の雰囲気となるようにして850℃、100秒
間の脱炭焼鈍に付した。得られた脱炭焼鈍板に焼鈍分離
剤を鋼板片面当り7g/m2塗布してコイルに巻き取り、最
終仕上焼鈍した。このときの焼鈍分離剤組成は、MgO:1
00質量部、TiO2:10質量部、Sr(OH)2:3質量部、SnO2
1質量部であった。また、最終仕上焼鈍の条件は、窒素
雰囲気中で室温から870℃までを70時間かけて加熱し、8
70℃で10時間に保持した後、雰囲気をH2:50%とN2:50%
の混合雰囲気に切り替え、1200℃まで加熱し、その後雰
囲気をアルゴン(Ar)雰囲気に切り替えて冷却を開始
し、1100〜700℃間を表4に示す所定の冷却速度とするも
のであった。
The atmosphere of the obtained cold rolled sheet in a uniform process was P (H 2
0) / P (H 2 ) was subjected to decarburization annealing at 850 ° C. for 100 seconds in an atmosphere of 0.45. An annealing separator was applied to the obtained decarburized annealed sheet at 7 g / m 2 per one side of the steel sheet, wound around a coil, and subjected to final finish annealing. At this time, the composition of the annealing separator was MgO: 1.
00 parts by mass, TiO 2 : 10 parts by mass, Sr (OH) 2 : 3 parts by mass, SnO 2 :
It was 1 part by mass. The conditions for final finish annealing were as follows: heating from room temperature to 870 ° C in a nitrogen atmosphere for 70 hours;
After holding at 70 ° C for 10 hours, the atmosphere was H 2 : 50% and N 2 : 50%
And heated to 1200 ° C., and then the atmosphere was switched to an argon (Ar) atmosphere to start cooling. The predetermined cooling rate shown in Table 4 was between 1100 and 700 ° C.

【0052】[0052]

【表4】 [Table 4]

【0053】このようにして得られた仕上焼鈍板に、コ
ロイダルシリカを含有するリン酸マグネシウムを主成分
とする絶縁張力コーティングを塗布し、830℃、10秒間
の平坦化焼鈍を行い、さらにプラズマ炎の照射による磁
区細分化処理を行って製品とした。得られた製品から、
長さ500mm、幅500mmの試片を採取してSSTによる磁気測
定を行った。測定結果は表4に併せて示す。表4から明ら
かなように、本発明に適合する方法で製造した場合、被
膜外観・密着性、磁気特性ともに優れている。
The thus obtained finish-annealed plate was coated with an insulating tension coating mainly composed of magnesium phosphate containing colloidal silica, flattened at 830 ° C. for 10 seconds, and further subjected to plasma flame. The product was subjected to a magnetic domain refining treatment by irradiation of the product. From the obtained product,
A sample having a length of 500 mm and a width of 500 mm was collected and subjected to magnetic measurement by SST. The measurement results are also shown in Table 4. As is evident from Table 4, when manufactured by a method compatible with the present invention, the film appearance, adhesion, and magnetic properties are excellent.

【0054】(実施例2)表5に示す組成を有し残部が
実質的に鉄からなる21種の珪素鋼スラブをガス加熱炉で
1150℃、60分間加熱した後、誘導加熱炉にて50分で1430
℃まで加熱した後、1430℃で15分間保持した。これを炉
から抽出し3パスの粗圧延で厚さ40mmのシートバーとし
た後、熱間圧延によって厚さ2.2mmの熱延板とし550℃で
巻き取った。得られた熱延板に950℃、1分間の熱延板焼
鈍を施し、30℃/sで室温まで冷却した。これに一次冷間
圧延を施して厚さ1.5mmの中間厚さとした後、1120℃、3
0秒間の中間焼鈍を施し35℃/sで室温まで冷却してか
ら、平均板温170℃の二次冷間圧延により0.20mmの最終
板厚とした。
Example 2 21 kinds of silicon steel slabs having the composition shown in Table 5 and the balance substantially consisting of iron were put in a gas heating furnace.
After heating at 1150 ° C for 60 minutes, 1430 in 50 minutes in induction heating furnace
After heating to 14 ° C., it was kept at 1430 ° C. for 15 minutes. This was extracted from the furnace and formed into a 40 mm-thick sheet bar by three-pass rough rolling, followed by hot rolling to form a 2.2 mm-thick hot-rolled sheet and winding at 550 ° C. The obtained hot-rolled sheet was annealed at 950 ° C. for 1 minute, and cooled to room temperature at 30 ° C./s. This was subjected to primary cold rolling to an intermediate thickness of 1.5 mm, and then 1120 ° C, 3
Intermediate annealing was performed for 0 second, and the temperature was reduced to room temperature at 35 ° C./s. Then, a final sheet thickness of 0.20 mm was obtained by secondary cold rolling at an average sheet temperature of 170 ° C.

【0055】[0055]

【表5】 [Table 5]

【0056】得られた冷延板にレジストエッチングによ
り圧延方向との角度75°、間隔3.5mmで深さ20μm、幅17
0μmの線状に溝を形成させた後、脱炭焼鈍を行った。脱
炭焼鈍の条件は、850℃までの加熱速度を25℃/sとし、
過熱過程の雰囲気の酸化性をP(H20)/P(H2)が0.39、均
熱過程の雰囲気の酸化性をP(H20)/P(H2)を0.42とし、均
熱温度850℃、均熱時間150秒とした。得られた脱炭焼鈍
板にMgO 100質量部に対して12質量部のTiO2と2質量部の
Sr(OH)2の焼鈍分離剤を塗布しコイル状に巻きとって最
終焼鈍を施した。
The obtained cold-rolled sheet was etched by resist etching at an angle of 75 ° with respect to the rolling direction, an interval of 3.5 mm, a depth of 20 μm, and a width of 17 mm.
After forming grooves in a linear shape of 0 μm, decarburization annealing was performed. The conditions for decarburizing annealing are as follows: heating rate up to 850 ° C is 25 ° C / s,
P (H 2 0) / P (H 2 ) is 0.39 for the oxidizing property of the atmosphere in the overheating process, and P (H 20 ) / P (H 2 ) is 0.42 for the oxidizing property of the atmosphere in the soaking process. The temperature was 850 ° C. and the soaking time was 150 seconds. The obtained decarburized annealed plate has 12 parts by mass of TiO 2 and 2 parts by mass of MgO 100 parts by mass.
An annealing separator of Sr (OH) 2 was applied and wound into a coil to perform final annealing.

【0057】最終仕上焼鈍は、700℃〜850℃間を20℃/h
rでN2雰囲気で加熱し、850℃〜1150℃間をH2:70%、
N2:30%の混合雰囲気中で10℃/hrで加熱した後、1150℃
で雰囲気をH2雰囲気に切り替えて1200℃、12時間の純化
を施し、1100〜700℃の間の冷却速度を表6(スラブ記
号A〜K)および表7(スラブ記号L〜U)に示す条件で行
うものとした。
The final finish annealing is performed between 700 ° C. and 850 ° C. at 20 ° C./h.
Heat in N 2 atmosphere with r, H 2 : 70% between 850 ° C and 1150 ° C,
N 2 : Heat at 10 ° C / hr in a 30% mixed atmosphere, then 1150 ° C
The atmosphere was changed to H 2 atmosphere, and the purification was performed at 1200 ° C. for 12 hours. The cooling rates between 1100 and 700 ° C. are shown in Table 6 (slab symbols A to K) and Table 7 (slab symbols L to U). It was performed under conditions.

【0058】[0058]

【表6】 [Table 6]

【0059】[0059]

【表7】 [Table 7]

【0060】得られた最終仕上焼鈍板に、リン酸マグネ
シウムとコロイダルシリカを主成分とする絶縁張力コー
ティングを塗布し平坦化焼鈍を施して製品とした。得ら
れた製品の磁気特性および被膜特性は表6に併せて示
す。また、最終仕上焼鈍板から未反応分離剤を水洗除去
した後、被膜付の成分分析をおこなった。結果を表8に
示す。Mgが0.01〜0.300%、Oが0.010〜0.500%の範囲に
あるときに、適当な厚さのフォルステライト質被膜が生
成されていることが分かる。このように本発明に適合す
る方法で製造された場合、被膜外観・密着性、磁気特性
ともに優れている。
The resulting final annealed plate was coated with an insulating tension coating containing magnesium phosphate and colloidal silica as main components and subjected to flattening annealing to obtain a product. Table 6 also shows the magnetic properties and coating properties of the obtained product. After the unreacted separating agent was removed from the final annealed plate by washing with water, the components with the coating were analyzed. Table 8 shows the results. It can be seen that when the content of Mg is in the range of 0.01 to 0.300% and the content of O is in the range of 0.010 to 0.500%, a forsterite coating having an appropriate thickness is formed. As described above, when manufactured by a method conforming to the present invention, the film appearance, adhesion, and magnetic properties are excellent.

【0061】[0061]

【表8】 [Table 8]

【0062】[0062]

【発明の効果】本発明は上記のとおり、二次再結晶粒の
<001>軸の圧延方向への集積度が高い方向性電磁鋼板の
フォルステライト質被膜の劣化を最終仕上焼鈍中冷却段
階での1100℃〜700℃域の滞留時間を長くすることによ
って解決した。これにより、被膜特性及び磁気特性が極
めて優れた方向性電磁鋼板を得ることが可能になる。特
に本発明は、Biをインヒビターとして含有し、いわゆる
二次再結晶粒子が巨大に成長した方向性電磁鋼板におい
て密着性のよいフォルステライト質被膜が形成された優
れた被膜特性及び磁気特性を有する方向性電磁鋼板を得
ることが可能となる。
According to the present invention, as described above, secondary recrystallized grains
The deterioration of the forsterite coating on grain-oriented electrical steel sheets with a high degree of integration in the rolling direction of the <001> axis was solved by extending the residence time in the 1100 ° C to 700 ° C region in the cooling stage during final finish annealing. Thereby, it becomes possible to obtain a grain-oriented electrical steel sheet having extremely excellent coating properties and magnetic properties. In particular, the present invention is directed to a directionally oriented steel sheet containing Bi as an inhibitor, in which so-called secondary recrystallized particles have grown to a large size, in which a forsterite coating with good adhesion is formed and has excellent coating properties and magnetic properties. It is possible to obtain a conductive magnetic steel sheet.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 結晶粒径、結晶方位と磁気特性との関係を示
す図である。
FIG. 1 is a diagram showing a relationship between a crystal grain size, a crystal orientation, and magnetic properties.

【図2】 結晶粒径、結晶方位と被膜外観との関係を示
す図である。
FIG. 2 is a diagram showing a relationship between a crystal grain size, a crystal orientation, and a film appearance.

フロントページの続き (72)発明者 千田 邦浩 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 中西 匡 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 Fターム(参考) 5E041 AA11 BC08 HB14 Continued on the front page (72) Inventor Kunihiro Senda 1-chome, Mizushima-Kawasaki-dori, Kurashiki-shi, Okayama Pref. None) Kawasaki Steel Corporation Mizushima Works F-term (reference) 5E041 AA11 BC08 HB14

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 フォルステライト質被膜込みの組成が質
量比で、Si:2.5〜7.0%、Mn:0.02〜0.5%、Mg:0.01〜
0.3%、O:0.01〜0.5%およびAl:0.005〜0.03%を含有
し、かつ、これらの成分を含むFe以外の成分が合計で8%
以下である方向性電磁鋼板であって、 〈001〉軸が圧延方向に対して5°以下、かつ圧延方向の
粒径が10〜150mmである二次再結晶粒を面積比で鋼板表
面積の80%以上有し、 最終仕上焼鈍の冷却過程における1100〜700℃間の冷却
速度を8〜30℃/hとして製造してなるフォルステライト
質被膜を有することを特徴とする被膜特性および磁気特
性に優れた方向性電磁鋼板。
1. A composition containing a forsterite coating containing Si by weight: 2.5 to 7.0%, Mn: 0.02 to 0.5%, and Mg: 0.01 to 1.
Contains 0.3%, O: 0.01 to 0.5% and Al: 0.005 to 0.03%, and a total of 8% of components other than Fe including these components
The grain-oriented electrical steel sheet is as follows, the <001> axis is 5 ° or less to the rolling direction, and the secondary recrystallized grains having a grain size in the rolling direction of 10 to 150 mm have an area ratio of 80 to the sheet surface area Excellent for coating and magnetic properties characterized by having a forsterite coating produced at a cooling rate between 1100 and 700 ° C in the cooling process of final finish annealing of 8 to 30 ° C / h. Oriented magnetic steel sheet.
【請求項2】 請求項1においてさらにBiを0.001〜0.20
%含有することを特徴とする被膜特性および磁気特性に
優れた方向性電磁鋼板。
2. The method according to claim 1, wherein Bi is 0.001 to 0.20.
A grain-oriented electrical steel sheet with excellent coating and magnetic properties characterized by containing
【請求項3】 請求項1または2において、さらにCrを0.
015〜0.50%含有することを特徴とする被膜特性および磁
気特性に優れた方向性電磁鋼板。
3. The method according to claim 1, further comprising:
A grain-oriented electrical steel sheet having excellent coating and magnetic properties, characterized by containing 015 to 0.50%.
【請求項4】 方向性電磁鋼板は表面に張力付与絶縁コ
ーティングが施されているものであることを特徴とする
請求項1〜3いずれかに記載の被膜特性および磁気特性に
優れた方向性電磁鋼板。
4. The grain-oriented electrical steel sheet according to claim 1, wherein the grain-oriented electrical steel sheet has a surface provided with a tension imparting insulating coating. steel sheet.
【請求項5】 方向性電磁鋼板は磁区細分化処理が施さ
れているものであることを特徴とする請求項1〜4のいず
れかに記載の被膜特性および磁気特性に優れた方向性電
磁鋼板。
5. The grain-oriented electrical steel sheet according to claim 1, wherein the grain-oriented electrical steel sheet has been subjected to a magnetic domain refining treatment. .
JP2001034062A 2001-02-09 2001-02-09 Grain-oriented silicon steel sheet having excellent coating film characteristic and magnetic property Withdrawn JP2002241906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001034062A JP2002241906A (en) 2001-02-09 2001-02-09 Grain-oriented silicon steel sheet having excellent coating film characteristic and magnetic property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001034062A JP2002241906A (en) 2001-02-09 2001-02-09 Grain-oriented silicon steel sheet having excellent coating film characteristic and magnetic property

Publications (1)

Publication Number Publication Date
JP2002241906A true JP2002241906A (en) 2002-08-28

Family

ID=18897725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001034062A Withdrawn JP2002241906A (en) 2001-02-09 2001-02-09 Grain-oriented silicon steel sheet having excellent coating film characteristic and magnetic property

Country Status (1)

Country Link
JP (1) JP2002241906A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110217A1 (en) * 2009-03-23 2010-09-30 新日本製鐵株式会社 Process for producing grain-oriented magnetic steel sheet, grain-oriented magnetic steel sheet for wound core, and wound core
WO2012032792A1 (en) * 2010-09-10 2012-03-15 Jfeスチール株式会社 Grain-oriented magnetic steel sheet and process for producing same
JP2013087305A (en) * 2011-10-14 2013-05-13 Jfe Steel Corp Grain-oriented electromagnetic steel sheet, method for production thereof, and transformer
US20130129984A1 (en) * 2010-08-06 2013-05-23 Jfe Steel Corporation Grain oriented electrical steel sheet and method for manufacturing the same
EP2891728A1 (en) * 2012-08-30 2015-07-08 Baoshan Iron & Steel Co., Ltd. High magnetic induction oriented silicon steel and manufacturing method thereof
WO2016129015A1 (en) * 2015-02-13 2016-08-18 Jfeスチール株式会社 Oriented electrical steel sheet and method for producing same
US11066722B2 (en) 2016-03-09 2021-07-20 Jfe Steel Corporation Method of producing grain-oriented electrical steel sheet

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4746716B2 (en) * 2009-03-23 2011-08-10 新日本製鐵株式会社 Method for producing grain-oriented electrical steel sheet, grain-oriented electrical steel sheet for wound iron core, and wound iron core
WO2010110217A1 (en) * 2009-03-23 2010-09-30 新日本製鐵株式会社 Process for producing grain-oriented magnetic steel sheet, grain-oriented magnetic steel sheet for wound core, and wound core
CN104087823A (en) * 2009-03-23 2014-10-08 新日铁住金株式会社 Grain oriented electrical steel sheet for wound core and wound core
US9406437B2 (en) * 2010-08-06 2016-08-02 Jfe Steel Corporation Grain oriented electrical steel sheet and method for manufacturing the same
US20130129984A1 (en) * 2010-08-06 2013-05-23 Jfe Steel Corporation Grain oriented electrical steel sheet and method for manufacturing the same
WO2012032792A1 (en) * 2010-09-10 2012-03-15 Jfeスチール株式会社 Grain-oriented magnetic steel sheet and process for producing same
JP2012077380A (en) * 2010-09-10 2012-04-19 Jfe Steel Corp Grain-oriented electromagnetic steel sheet, and method for manufacturing the same
US20130160901A1 (en) * 2010-09-10 2013-06-27 Jfe Steel Corporation Grain oriented electrical steel sheet and method for manufacturing the same
KR101303472B1 (en) 2010-09-10 2013-09-05 제이에프이 스틸 가부시키가이샤 Grain oriented electrical steel sheet and method for manufacturing the same
US8784995B2 (en) 2010-09-10 2014-07-22 Jfe Steel Corporation Grain oriented electrical steel sheet and method for manufacturing the same
JP2013087305A (en) * 2011-10-14 2013-05-13 Jfe Steel Corp Grain-oriented electromagnetic steel sheet, method for production thereof, and transformer
EP2891728A1 (en) * 2012-08-30 2015-07-08 Baoshan Iron & Steel Co., Ltd. High magnetic induction oriented silicon steel and manufacturing method thereof
EP2891728A4 (en) * 2012-08-30 2016-08-31 Baoshan Iron & Steel High magnetic induction oriented silicon steel and manufacturing method thereof
WO2016129015A1 (en) * 2015-02-13 2016-08-18 Jfeスチール株式会社 Oriented electrical steel sheet and method for producing same
JP6020768B1 (en) * 2015-02-13 2016-11-02 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
CN107250403A (en) * 2015-02-13 2017-10-13 杰富意钢铁株式会社 Grain-oriented magnetic steel sheet and its manufacture method
US11066722B2 (en) 2016-03-09 2021-07-20 Jfe Steel Corporation Method of producing grain-oriented electrical steel sheet

Similar Documents

Publication Publication Date Title
US6444051B2 (en) Method of manufacturing a grain-oriented electromagnetic steel sheet
JP3357611B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with extremely low iron loss
JP4932544B2 (en) Method for producing grain-oriented electrical steel sheet capable of stably obtaining magnetic properties in the plate width direction
JP3415377B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with extremely low iron loss
JP3846064B2 (en) Oriented electrical steel sheet
JP2002241906A (en) Grain-oriented silicon steel sheet having excellent coating film characteristic and magnetic property
JP2003171718A (en) Manufacturing method of magnetic steel sheet of excellent mean magnetic characteristic in rolled surface
KR20240035911A (en) Method for producing grain-oriented electrical steel sheet
JP2004332071A (en) Method for producing high magnetic flux density grain-oriented magnetic steel sheet
JPH11335738A (en) Production of high magnetic flux density-grain oriented silicon steel sheet extremely low in core loss
JP3357603B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with extremely low iron loss
JPH059580A (en) Production of grain-oriented silicon steel sheet extremely excellent in magnetic property
JP4205816B2 (en) Method for producing unidirectional electrical steel sheet with high magnetic flux density
JPH08100216A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP4123679B2 (en) Method for producing grain-oriented electrical steel sheet
JP2003193134A (en) Method of producing grain oriented silicon steel sheet having excellent magnetic property and coating property
CN111417737B (en) Grain-oriented electromagnetic steel sheet with low iron loss and method for producing same
JP3928275B2 (en) Electrical steel sheet
JP3885428B2 (en) Method for producing grain-oriented electrical steel sheet
JP3061491B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP3743707B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH06145799A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP4258156B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP2002105537A (en) Method for manufacturing grain oriented silicon steel sheet hardly causing edge crack and having satisfactory film characteristic, excellent magnetic property and high magnetic flux density
JP3357615B2 (en) Method for manufacturing oriented silicon steel sheet with extremely low iron loss

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050301

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060417