JP2001152250A - Method for producing grain-oriented silicon steel sheet excellent in magnetic property - Google Patents

Method for producing grain-oriented silicon steel sheet excellent in magnetic property

Info

Publication number
JP2001152250A
JP2001152250A JP2000167963A JP2000167963A JP2001152250A JP 2001152250 A JP2001152250 A JP 2001152250A JP 2000167963 A JP2000167963 A JP 2000167963A JP 2000167963 A JP2000167963 A JP 2000167963A JP 2001152250 A JP2001152250 A JP 2001152250A
Authority
JP
Japan
Prior art keywords
slab
steel sheet
annealing
temperature
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000167963A
Other languages
Japanese (ja)
Other versions
JP3488181B2 (en
Inventor
Yoshifumi Ohata
喜史 大畑
Tomoji Kumano
知二 熊野
Nobunori Fujii
宣憲 藤井
Takashi Mogi
尚 茂木
Hitoshi Yokouchi
仁 横内
Norihiro Yamamoto
紀宏 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000167963A priority Critical patent/JP3488181B2/en
Priority to EP01112898.0A priority patent/EP1162280B1/en
Priority to US09/873,963 priority patent/US6432222B2/en
Priority to KR10-2001-0031104A priority patent/KR100442100B1/en
Priority to CNB011221771A priority patent/CN1184336C/en
Publication of JP2001152250A publication Critical patent/JP2001152250A/en
Application granted granted Critical
Publication of JP3488181B2 publication Critical patent/JP3488181B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To extremely stably produce a grain-oriented silicon steel sheet excellent in magnetic properties. SOLUTION: In the method for producing a grain-oriented silicon steel sheet in which a slab for a grain-oriented silicon steel sheet containing a prescribed amount of Al is heated at >=1200 deg.C and is thereafter hot-rolled to form into a hot rolled sheet, and this sheet is, if required, annealed, is subjected to cold rolling for one time or two or more times including process annealing, is subsequently subjected to decarburizing annealing, is next coated with a separation agent for annealing and is subjected to finish annealing, the heating for the slab is executed at a temperature higher than the perfect solid solution temperature of a material having inhibitor capacity, and, moreover, till the start of secondary recrystallization in the finish annealing after the decarburizing annealing, the steel sheet is subjected to nitriding treatment. At this time, preferably, the average grain size of primarily recrystallized grains after the dedecarburizing annealing is controlled to 7 to <18 μm, the increased amount of nitrogen by the nitriding treatment is controlled to 0.001 to 0.03 weight%, and the draft in the cold rolling is controlled to 80 to 95%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主にトランス等の
鉄芯として使用する一方向性電磁鋼板の製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented electrical steel sheet mainly used as an iron core of a transformer or the like.

【0002】[0002]

【従来の技術】磁束密度B8 (800A/mの磁場中で
の磁束密度)が1.9Tを超える、優れた磁気特性を有
する一方向性電磁鋼板を安定的に生産する技術は種々提
案されているが、これらは、概ね次の三つに分類でき
る。第一の技術は、スラブを1350℃から最高では1
450℃の超高温度に加熱し、かつ、スラブ全体を通し
て一様に加熱(均熱)するために、十分な時間、スラブ
をその加熱温度に保持する方法である。この方法は、M
nS、AlN等のインヒビター能力を有する物質を完全
溶体化させて、二次再結晶に必要なインヒビターとして
機能させるためのものであり、この完全溶体化の処理
は、同時に、スラブ部位によるインヒビターの強度差を
解消する手段にもなっているから、この点で、上記方法
は、安定した生産を実現する上で理にかなっている。
2. Description of the Related Art Various techniques for stably producing a grain-oriented electrical steel sheet having excellent magnetic properties and having a magnetic flux density B 8 (magnetic flux density in a magnetic field of 800 A / m) exceeding 1.9 T have been proposed. However, these can be roughly classified into the following three. The first technique is to raise the slab from 1350 ° C to 1
This is a method in which the slab is kept at the heating temperature for a sufficient time to heat it to an extremely high temperature of 450 ° C. and to uniformly heat (soak) the entire slab. This method uses M
The purpose is to completely solubilize a substance having inhibitory ability such as nS or AlN so as to function as an inhibitor required for secondary recrystallization. This complete solution treatment is performed simultaneously with the strength of the inhibitor due to the slab site. In this regard, the above method makes sense in achieving stable production, as it is also a means of overcoming the differences.

【0003】しかしながら、上記方法の場合、インヒビ
ター能力を有する物質を完全溶体化するのに必要な加熱
温度、すなわち、完全溶体化温度は超高温度となり、実
生産においては、二次再結晶に必要なインヒビター量を
確保するため、完全溶体化温度(超高温度)以上の温度
で加熱することになるが故、実生産上様々な問題を包含
している。
[0003] However, in the case of the above method, the heating temperature required for completely solidifying a substance having inhibitory ability, that is, the complete solution temperature becomes an extremely high temperature, and in actual production, it is necessary for secondary recrystallization. In order to ensure a sufficient amount of inhibitor, heating is performed at a temperature equal to or higher than the complete solution solution temperature (extremely high temperature), which involves various problems in actual production.

【0004】例えば、熱間圧延において、所要の熱延
温度を確保することが困難となり、該温度を確保できな
い場合には、インヒビター強度のスラブ内偏差が生じ、
そのため二次再結晶不良が発生する、熱延加熱時に粗
大粒が生成し、その粗大粒部分が二次再結晶できず、線
状の二次再結晶不良が発生する、スラブ表層が溶融し
ノロとなり加熱炉のメンテナンスに多大の労力が必要と
なる、もしくは、熱延後の鋼帯に巨大なエッジクラッ
クが発生し歩留まりが低下する、等の問題が発生する。
[0004] For example, in hot rolling, it is difficult to secure a required hot rolling temperature. If the temperature cannot be secured, a deviation in inhibitor strength occurs in a slab.
As a result, secondary recrystallization defects occur.Coarse grains are generated during hot rolling and the coarse grains cannot be recrystallized secondarily, resulting in linear secondary recrystallization defects. Therefore, a large amount of labor is required for maintenance of the heating furnace, or a huge edge crack is generated in the steel strip after hot rolling to lower the yield.

【0005】この技術の改善技術として、特開平1−1
68817号公報などに開示されているような、上記の
方法をベースにして、一次再結晶後に窒化処理を行い二
次再結晶を安定化させようとする方法が知られている
が、この方法によって解決され得る問題は、前記の問
題のみであり、依然として、実生産上での〜の問題
解決には困難性が残っている。
As an improvement technique of this technique, Japanese Patent Laid-Open Publication No. 1-1
A method of stabilizing the secondary recrystallization by performing a nitriding treatment after the primary recrystallization based on the above method as disclosed in Japanese Patent No. 68817 is known. The problems that can be solved are only the above-mentioned problems, and it is still difficult to solve the above problems in actual production.

【0006】第二の技術は、特開昭59−56522号
公報、特開平5−112827号公報、特開平9−11
8964号公報などに開示されているように、AlNを
インヒビターとして用い、スラブ加熱を1280℃未満
で行い、脱炭焼鈍後二次再結晶開始までに窒化処理する
方法を組み合わせるものである。このような方法におい
ては、例えば、特開平2−182866号公報に示され
るように、脱炭焼鈍後の一次再結晶粒の平均粒径を一定
範囲に、通常、18〜35μmの範囲に制御すること
が、二次再結晶を良好に行わせる上で非常に重要であ
る。
The second technique is disclosed in JP-A-59-56522, JP-A-5-112827, and JP-A-9-11.
As disclosed in JP 8964 and the like, a method is used in which AlN is used as an inhibitor, slab heating is performed at less than 1280 ° C., and nitriding treatment is performed after decarburization annealing and before the start of secondary recrystallization. In such a method, for example, as shown in JP-A-2-182866, the average particle size of primary recrystallized grains after decarburization annealing is controlled to a certain range, usually to a range of 18 to 35 μm. This is very important for good secondary recrystallization.

【0007】更に、特開平5−295443号公報に
は、熱延加熱時の固溶窒素などの、インヒビター能力を
有する物質の鋼中固溶量が一次再結晶の粒成長性を決定
づけるため、スラブ内一次再結晶粒の大きさを均一にす
るよう、熱延加熱時の固溶窒素などを低く抑えるべく成
分調整などを行う方法が開示されている。しかしなが
ら、この方法では、いかに厳密に成分を調整しても、固
溶窒素量などのスラブ内における偏差は存在し、スラブ
内におけるインヒビター能力差、つまり、スラブ内にお
ける一次再結晶粒径の差を厳密に消失させることは不可
能である。そして、結果として、二次再結晶をスラブ内
で均一化することが困難となる場合があるという問題を
有しており、上記方法は工業的に極めて安定した製造法
とはいえないものである。
Further, Japanese Patent Application Laid-Open No. Hei 5-295443 discloses that the amount of a solid solution of a substance having an inhibitory ability, such as nitrogen dissolved during hot rolling, in steel determines the grain growth of primary recrystallization. There is disclosed a method of adjusting the components in order to keep the size of the primary recrystallized grains uniform so as to keep the dissolved nitrogen and the like at the time of hot rolling heating low. However, in this method, no matter how strictly the components are adjusted, there is a deviation in the slab such as the amount of dissolved nitrogen, and the difference in the inhibitor capacity in the slab, that is, the difference in the primary recrystallization particle size in the slab. It is impossible to eliminate it exactly. As a result, there is a problem that it may be difficult to make the secondary recrystallization uniform in the slab, and the above method is not an industrially extremely stable production method. .

【0008】第三の技術は、特開平6−322443号
公報等に開示されているように、インヒビターとしてC
x S(x=1.8、又は2)を用い、スラブ加熱温度
をCux Sの完全溶体化温度以上MnSの完全溶体化温
度以下とする方法である。この方法の特徴は、スラブ加
熱温度を低温化した上で、第二の技術で採用する窒化処
理などの付加的な工程を不要とすることにある。
[0008] A third technique is to use a C-type inhibitor as disclosed in Japanese Patent Application Laid-Open No. 6-322443.
u x S (x = 1.8, or 2) using, as a slab heating temperature method of less Cu x fully solution temperature of fully solution temperature above MnS of S. The feature of this method is that, after the slab heating temperature is lowered, an additional step such as a nitriding treatment employed in the second technique is not required.

【0009】しかしながら、上記方法は、スラブ加熱温
度をMnSの完全溶体化温度以下とすることから、前記
の第二の技術が抱える問題と同様の問題を有しており、
やはり工業的に極めて安定した製造法ではない。また、
そもそも、Cux Sは、二次再結晶を制御するためのイ
ンヒビターとして公知であるものの、特に、最終冷延率
が80%を超える高磁束密度一方向性電磁鋼板の製造に
は適していない(鉄と鋼 p.2049,N0.15,
Vol.70,N0.1984)。
However, the above-mentioned method has the same problem as the above-mentioned second technique because the slab heating temperature is set to be equal to or lower than the complete solution solution temperature of MnS.
After all, it is not a very stable industrial production method. Also,
Originally, although Cu x S is known as an inhibitor for controlling secondary recrystallization, it is not particularly suitable for producing a high magnetic flux density unidirectional electrical steel sheet having a final cold rolling reduction of more than 80% ( Iron and steel p.2049, N0.15
Vol. 70, N 0.1984).

【0010】[0010]

【発明が解決しようとする課題】一般に、良好な磁気特
性を持つ二次再結晶を実現させ得るか否かは、主に、一
次再結晶粒径と、二次再結晶を制御する二次インヒビタ
ーとによって決定されるが、例えば、前記第一の技術に
おける一次再結晶粒径が約10μmであるのに対して、
前記第二の技術におけるそれは18〜35μmであると
いうように、それぞれの一次再結晶粒径が大きく異なる
にもかかわらず、何れの方法でも良好な二次再結晶を実
現せしめることが可能であることは、Goss方位
({110}<001>方位)の良く揃った二次再結晶
を実現させるために必要な一次再結晶粒径と二次インヒ
ビターの組み合わせが、必ずしも一意的でないことを示
している。
Generally, whether secondary recrystallization having good magnetic properties can be realized depends mainly on the primary recrystallized grain size and the secondary inhibitor for controlling the secondary recrystallization. For example, while the primary recrystallization particle size in the first technique is about 10 μm,
In the second technique, it is possible to realize good secondary recrystallization by any method despite that the primary recrystallization particle diameters are greatly different, such as 18 to 35 μm. Indicates that the combination of the primary recrystallized particle size and the secondary inhibitor required for realizing secondary recrystallization with a well-aligned Goss orientation ({110} <001> orientation) is not necessarily unique. .

【0011】そこで、本発明者らは、一次結晶粒径が如
何なる値でも、二次インヒビターを調整することで、G
oss方位の良く揃った二次再結晶を実現することが可
能であるという発想のもとで、研究を重ねてきた。そし
て、本発明者らは、上記発想のもとで、安定した生産方
法を確立するという観点から、一方向性電磁鋼板の製造
に欠かせないインヒビターについて、その機能を発揮す
る段階によって、一次再結晶粒径を制御する一次インヒ
ビターと、二次再結晶粒径を制御する二次インヒビター
とに分類し、優れた磁気特性を持つ一方向性電磁鋼板の
製造に関して検討した。
[0011] Therefore, the present inventors adjust the secondary inhibitor for any value of the primary crystal grain size to obtain G G.
Research has been repeated with the idea that it is possible to realize secondary recrystallization with well-aligned oss orientation. Then, based on the above idea, the present inventors, from the viewpoint of establishing a stable production method, perform the primary re-operation of the inhibitor, which is indispensable for the production of a grain-oriented electrical steel sheet, by exerting its function. The production of unidirectional electrical steel sheets with excellent magnetic properties was studied by classifying them into primary inhibitors that control the crystal grain size and secondary inhibitors that control the secondary recrystallization grain size.

【0012】ところで、Goss方位の良く揃った二次
再結晶を実現させるために必要な一次再結晶粒径と二次
インヒビターの組み合わせは一意的でないといえども、
例えば、一次結晶粒径がスラブ(コイル)全体に渡って
変動する場合、スラブ部位毎に二次インヒビター強度を
適正にコントロールしなければ、良好な二次再結晶方位
は得られない。それ故、一次再結晶粒径、二次再結晶粒
径ともに、スラブ全体に渡って変動がない製造法が、安
定的な製造法となる。
By the way, although the combination of the primary recrystallized particle size and the secondary inhibitor required for realizing the secondary recrystallization with good Goss orientation is not unique,
For example, when the primary crystal grain size varies over the entire slab (coil), a good secondary recrystallization orientation cannot be obtained unless the secondary inhibitor strength is properly controlled for each slab site. Therefore, a manufacturing method in which the primary recrystallized grain size and the secondary recrystallized grain size do not vary over the entire slab is a stable manufacturing method.

【0013】また、一次結晶粒径は、一次インヒビター
強度と一次再結晶を行う脱炭焼鈍の温度によって決定さ
れるため、一次インヒビター強度もスラブ全体に渡って
変動がないことが望まれる。すなわち、安定した生産方
法を確立するという観点からは、一次インヒビターと二
次インヒビターを、ともに、如何にスラブ全体に渡って
変動なく造り込むかということが最大の問題となる。
Further, since the primary crystal grain size is determined by the primary inhibitor strength and the temperature of the decarburization annealing for performing the primary recrystallization, it is desired that the primary inhibitor strength does not fluctuate over the entire slab. That is, from the viewpoint of establishing a stable production method, the biggest problem is how to produce both the primary inhibitor and the secondary inhibitor without variation over the entire slab.

【0014】この点において、前記第一〜三の技術は、
それぞれ以下の問題を抱えている。第一の技術では、イ
ンヒビターの完全溶体化温度以上で、かつ、二次再結晶
の不安定化を招く熱延加熱時の粗大粒形成温度以下とい
う、極めて狭い温度範囲でスラブを加熱する必要があ
り、二次再結晶に必要なインヒビター強度の確保と工業
的に安定した品質の確保の両立が非常に困難である。
In this regard, the first to third techniques are:
Each has the following problems: In the first technique, it is necessary to heat the slab in an extremely narrow temperature range, which is equal to or higher than the complete solution solution temperature of the inhibitor and equal to or lower than the coarse-grain formation temperature during hot-rolling heating, which causes instability of secondary recrystallization. In addition, it is very difficult to ensure both inhibitor strength necessary for secondary recrystallization and industrially stable quality.

【0015】第二の技術では、脱炭焼鈍後、仕上げ焼鈍
中二次再結晶までの間に窒化処理することで二次インヒ
ビター強度の確保は容易であるが、一次インヒビター強
度の均一性という点でみると、有限量の固溶窒素などが
スラブ(コイル)内で偏在し、これが一次再結晶粒径の
変動をもたらす。また、この場合、一次インヒビター
は、二次インヒビターとしても作用するため、スラブ
(コイル)全体に渡る一次インヒビターの変動は、二次
インヒビターの変動にも繋がる。
According to the second technique, it is easy to secure the secondary inhibitor strength by performing a nitriding treatment after the decarburizing annealing and before the secondary recrystallization during the finish annealing, but the uniformity of the primary inhibitor strength is high. In view of the above, a finite amount of solute nitrogen and the like are unevenly distributed in the slab (coil), and this causes a change in the primary recrystallized grain size. Also, in this case, the primary inhibitor also acts as a secondary inhibitor, so that a change in the primary inhibitor over the entire slab (coil) also leads to a change in the secondary inhibitor.

【0016】第三の技術では、MnSについて完全溶体
化処理を施さず、また、熱延後にAlNを60%以上析
出させる製造法であることから、第二の技術と同様、一
次インヒビターのスラブ(コイル)内における均一化の
点で不利であり、途中工程でインヒビター強化処理を施
さないので、二次インヒビターは一次インヒビターから
変化しておらず、二次インヒビターがスラブ部位毎で変
動し、結局、工業的に安定した品質を確保することが困
難である。更に、前述したように、Cux Sは二次再結
晶を制御するためのインヒビターとして公知であるもの
の、特に、最終冷延率80%を超える高磁束密度一方向
性電磁鋼板の製造には適していない。
In the third technique, since MnS is not subjected to a complete solution treatment and AlN is precipitated by 60% or more after hot rolling, the slab (primary inhibitor) is used as in the second technique. Coil) is disadvantageous in terms of homogenization, and since the inhibitor reinforcement treatment is not performed in the middle of the process, the secondary inhibitor has not changed from the primary inhibitor, and the secondary inhibitor has fluctuated for each slab site. It is difficult to ensure industrially stable quality. Further, as described above, although Cu x S is known as an inhibitor for controlling secondary recrystallization, it is particularly suitable for producing a high magnetic flux density unidirectional electrical steel sheet exceeding a final cold rolling reduction of 80%. Not.

【0017】すなわち、本発明は、上述した実情に鑑み
発明されたもので、二次再結晶をより一層完全ならし
め、優れた磁気特性を持つ一方向性電磁鋼板を極めて安
定して製造することができる方法を提供することを目的
としている。
That is, the present invention has been made in view of the above-mentioned circumstances, and is intended to more stably produce a unidirectional magnetic steel sheet having more excellent secondary magnetic recrystallization and excellent magnetic properties. The purpose is to provide a method that can do.

【0018】[0018]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、下記(1)〜(8)に示すとおりである。 (1)Alを所定量含有する一方向性電磁鋼板用のスラ
ブを、1200℃以上の温度で加熱した後熱間圧延して
熱延板とし、次いで、これに焼鈍を施すかもしくは施こ
さず、1回もしくは中間焼鈍を挟む2回以上の冷間圧延
をし、その後、脱炭焼鈍、次いで、焼鈍分離剤を塗布
し、仕上げ焼鈍を施す一方向性電磁鋼板の製造方法にお
いて、インヒビター能力を有する物質の完全溶体化温度
よりも高い温度(スラブ加熱温度Ts(℃))で前記ス
ラブの加熱を行い、更に、脱炭焼鈍後、仕上げ焼鈍の二
次再結晶開始までの間に鋼板に窒化処理を施すことを特
徴とする磁気特性に優れた一方向電磁鋼板の製造方法。
The gist of the present invention is as follows (1) to (8). (1) A slab for a grain-oriented electrical steel sheet containing a predetermined amount of Al is heated at a temperature of 1200 ° C. or higher, and then hot-rolled into a hot-rolled sheet, and then subjected to annealing or not. In a method for producing a grain-oriented electrical steel sheet which is subjected to cold rolling once or twice or more with intermediate annealing, followed by decarburizing annealing, and then applying an annealing separating agent and performing finish annealing, the inhibitor capacity is reduced. The slab is heated at a temperature (slab heating temperature Ts (° C.)) higher than the complete solution heat-up temperature of the material, and after the decarburizing annealing, the steel is nitrided before the secondary recrystallization of the finish annealing starts. A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, characterized by performing a treatment.

【0019】(2)前記スラブの加熱を、1350℃以
下の温度で行うことを特徴とする前記(1)に記載の磁
気特性に優れた一方向性電磁鋼板の製造方法。 (3)前記スラブが、質量%で、 C:0.025〜0.10%、 Si:2.5〜4.0%、 酸可溶性Al(sAl):0.01〜0.10%、 N:0.0075%以下、 Seq=S+0.406×Se:0.003〜0.05
%、 Mn:0.02〜0.20%、 を含有し、残部がFe及び不可避的不純物からなり、か
つ、該スラブの加熱を、下記式([ ]は、[ ]内の
成分元素の質量%)、 T1 =10062/(2.72−log([sAl]*
[N]))−273、 T2 =14855/(6.82−log([Mn]*
[S]))−273、 及び、 T3 =10733/(4.08−log([Mn]*
[Se]))−273、 で定義するT1 (℃)、T2 (℃)及びT3 (℃)の中
の最大の温度よりも高いスラブ加熱温度Ts(℃)で行
うことを特徴とする、前記(1)または(2)に記載の
磁気特性に優れた一方向性電磁鋼板の製造方法。
(2) The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to (1), wherein the slab is heated at a temperature of 1350 ° C. or lower. (3) The slab is represented by mass%, C: 0.025 to 0.10%, Si: 2.5 to 4.0%, Acid-soluble Al (sAl): 0.01 to 0.10%, N : 0.0075% or less, Seq = S + 0.406 × Se: 0.003 to 0.05
%, Mn: 0.02 to 0.20%, the balance being Fe and unavoidable impurities, and heating the slab by the following formula ([] is the mass of the component elements in []). %), T 1 = 10062 / (2.72-log ([sAl] *
[N])) - 273, T 2 = 14855 / (6.82-log ([Mn] *
[S])) - 273, and, T 3 = 10733 / (4.08 -log ([Mn] *
[Se]))-273, characterized by performing at a slab heating temperature Ts (° C.) higher than the maximum temperature among T 1 (° C.), T 2 (° C.), and T 3 (° C.). The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to the above (1) or (2).

【0020】(4)前記スラブが、更に、質量%で、C
u:0.01〜0.30%を含有し、かつ、該スラブの
加熱を、下記式(式中[ ]は、[ ]内の成分元素の
質量%)、 T4 =43091/(25.09−log([Cu]*
[Cu]*[S]))−273 で定義するT4 (℃)よりも高いスラブ加熱温度Ts
(℃)で行うことを特徴とする、前記(1)〜(3)の
いずれかに記載の磁気特性に優れた一方向性電磁鋼板の
製造方法。
(4) The slab further comprises, by mass%, C
u: 0.01 to 0.30%, and the heating of the slab is performed by the following formula (where [] is the mass% of the component elements in []): T 4 = 43091 / (25. 09-log ([Cu] *
[Cu] * [S])) Slab heating temperature Ts higher than T 4 (° C.) defined by -273
(1) The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to any one of the above (1) to (3), which is performed at (° C).

【0021】(5)前記スラブが、更に、質量%で、
B:0.0005〜0.0060%を含有し、かつ、該
スラブの加熱を、下記式(式中[ ]は、[ ]内の成
分元素の質量%)、 T5 =13680/(4.63−log([B]*
[N]))−273 で定義するT5 (℃)よりも高いスラブ加熱温度Ts
(℃)で行うことを特徴とする前記(1)〜(4)のい
ずれかに記載の磁気特性に優れた一方向性電磁鋼板の製
造方法。
(5) The slab further comprises, in mass%,
B: 0.0005 to 0.0060%, and the slab is heated by the following formula (where [] is the mass% of the component elements in []): T 5 = 13680 / (4. 63-log ([B] *
[N])) Slab heating temperature Ts higher than T 5 (° C.) defined by -273
The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to any one of the above (1) to (4), which is performed at (° C.).

【0022】(6)前記脱炭焼鈍後の一次再結晶粒の平
均粒径が7μm以上18μm未満であることを特徴とす
る前記(1)〜(5)のいずれかに記載の磁気特性に優
れた一方向性電磁鋼板の製造方法。 (7)前記窒化処理を、ストリップ走行状態下で、水
素、窒素、アンモニアの混合ガス中で行い、鋼板の窒素
増量を0.001〜0.03質量%とすることを特徴と
する前記(1)〜(6)のいずれかに記載の磁気特性に
優れた一方向性電磁鋼板の製造方法。
(6) The magnetic properties as described in any of (1) to (5) above, wherein the primary recrystallized grains after the decarburizing annealing have an average particle diameter of 7 μm or more and less than 18 μm. Manufacturing method of unidirectional magnetic steel sheet. (7) The nitriding treatment is performed in a mixed gas of hydrogen, nitrogen, and ammonia in a strip running state, and a nitrogen increase of the steel sheet is set to 0.001 to 0.03 mass%. The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to any one of (1) to (6).

【0023】(8)前記脱炭焼鈍前の最終の冷間圧延に
おいて、その冷延圧下率を80%以上95%以下とする
ことを特徴とする前記(1)〜(7)のいずれかに記載
の磁気特性に優れた一方向性電磁鋼板の製造方法。
(8) In any one of the above (1) to (7), in the final cold rolling before the decarburization annealing, the cold rolling reduction is 80% or more and 95% or less. A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties as described.

【0024】[0024]

【発明の実施の形態】本発明者らは、スラブ加熱時、イ
ンヒビター能力を有する物質を完全溶体化することが、
スラブ(コイル)内で一次インヒビターを極限まで均一
化する最適の方法であるとの出発点に立ち、インヒビタ
ー能力を有する物質のスラブ内濃度を従来法より低くす
ると、完全溶体化温度が下がることに着目した。熱延加
熱時にインヒビターの完全溶体化を図る技術としては、
前記第一の技術があるが、この技術においてインヒビタ
ー能力を有する物質のスラブ内濃度を低くすると、二次
再結晶を不安定化することになり、安定的な工業生産技
術として成立しなかった。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have found that when a slab is heated, a substance having an inhibitory ability is completely dissolved.
Starting from the starting point that this is the best method to homogenize the primary inhibitor in the slab (coil) to the utmost, if the concentration in the slab of a substance having inhibitor capacity is made lower than in the conventional method, the complete solution heat-up temperature will decrease. I paid attention. As a technique for achieving complete solution of the inhibitor during hot rolling heating,
Although there is the first technique, when the concentration of a substance having an inhibitory ability in a slab is reduced in this technique, secondary recrystallization is destabilized, and it has not been established as a stable industrial production technique.

【0025】そこで、本発明者らは、鋭意研究、実験を
重ねた結果、スラブ成分中の窒素濃度が高い場合、スラ
ブ加熱を完全溶体化温度以上で行っても、スラブ全体に
渡って一次インヒビターを均一化することが困難である
ことを解明した。つまり、スラブ成分中の窒素濃度を低
くすることが、スラブ内における一次インヒビター能力
の差を極めて小さくする上でのキーポイントであること
を見い出した。
Therefore, the present inventors have conducted intensive studies and experiments, and as a result, when the nitrogen concentration in the slab component is high, even if the slab heating is performed at a temperature equal to or higher than the complete solution solution temperature, the primary inhibitor is formed over the entire slab. Is difficult to equalize. That is, it has been found that lowering the nitrogen concentration in the slab component is a key point in minimizing the difference in primary inhibitor ability in the slab.

【0026】一方、硫化物や、セレン化物のインヒビタ
ーについては、熱延工程におけるインヒビターの均一化
において、窒化物インヒビターほどの影響を与えないこ
とも判明し、一次インヒビターとして、主に硫化物や、
セレン化物のインヒビターを用いることが有効であるこ
とを見い出した。この窒化物インヒビターと、硫化物
や、セレン化物のインヒビターの作用効果における相違
の原因は定かでないが、AlNの溶解度が、α相とγ相
で大きく異なることに起因し、熱間圧延中に、母相がA
lNの溶解し易いγ相から、溶解し難いα相へ転移する
際、AlNが不均一に析出することが原因と考えられ
る。
On the other hand, it has also been found that sulfide and selenide inhibitors do not have as much an effect as nitride inhibitors in making the inhibitors uniform in the hot-rolling process, and sulfide and selenide are mainly used as primary inhibitors.
It has been found that it is effective to use selenide inhibitors. The cause of the difference in the effect between the nitride inhibitor and the sulfide or selenide inhibitor is unclear, but the solubility of AlN is significantly different between the α phase and the γ phase, and during hot rolling, Mother is A
It is considered that when the transition from the γ phase in which 1N is easily dissolved to the α phase in which it is difficult to dissolve is caused, AlN is deposited unevenly.

【0027】さて、上記方策(スラブ成分中の窒素濃度
の低減)によって、スラブ(コイル)部位間における一
次インヒビター能力(強度)の差を、極めて低減するこ
とができるが、一方、二次再結晶において優れた磁気特
性を持つ先鋭化されたGoss方位を得るためには、硫
化物や、セレン化物に加えて、高温まで安定なインヒビ
ターが必要であり、本発明では、このインヒビターを、
窒化処理によりAlNを形成することで確保する。
By the above method (reduction of the nitrogen concentration in the slab component), the difference in the primary inhibitor ability (strength) between the slab (coil) portions can be extremely reduced. In order to obtain a sharpened Goss orientation with excellent magnetic properties, in addition to sulfide and selenide, an inhibitor that is stable up to high temperatures is necessary. In the present invention, this inhibitor is
This is ensured by forming AlN by nitriding.

【0028】すなわち、本発明は、スラブ成分中、イン
ヒビター能力を有する物質の濃度を従来法より低くする
ことで、インヒビターの完全溶体化温度を下げ、かつ、
スラブ加熱温度をその温度より高くすることで、スラブ
部位によらずに一次インヒビター強度を均一化せしめ、
インヒビター成分濃度を下げたことに起因する二次イン
ヒビターの強度不足を、脱炭焼鈍後、仕上げ焼鈍中二次
再結晶開始までの間に窒化処理を施すことにより、窒化
物(AlN、Si3 4 、Mn等の単独または複合析出
物)を形成し、インヒビターとして機能させて補償する
ことで、磁気特性の良好な一方向性電磁鋼板の安定的な
製造を可能にするものである。
That is, the present invention lowers the concentration of a substance having an inhibitor ability in a slab component as compared with the conventional method, thereby lowering the complete solution solution temperature of the inhibitor, and
By making the slab heating temperature higher than that temperature, the primary inhibitor strength is made uniform regardless of the slab part,
Insufficient strength of the secondary inhibitor caused by lowering the concentration of the inhibitor component is achieved by performing a nitriding treatment after decarburizing annealing and before the start of secondary recrystallization during finish annealing to obtain nitride (AlN, Si 3 N). 4 , a single or composite precipitate of Mn or the like) is formed and compensated by functioning as an inhibitor, thereby enabling stable production of a grain-oriented electrical steel sheet having good magnetic properties.

【0029】つまり、本発明の目的は、一方向性電磁鋼
板の製造において大きな役割を有するインヒビターにつ
いて、その機能発揮段階を冶金的に分離し、機能発揮段
階毎に、それぞれ異なる物質を用いてその機能を行わし
めることにより極めて安定な製造法を提供することにあ
る。また、一方向性電磁鋼板の製造において一次再結晶
が行われる脱炭焼鈍の温度は、一般に、930℃以下と
低いので、この段階では、従来法の高温熱間圧延で形成
するような強力なインヒビターは必要がない。本発明で
は、この一次インヒビターとして、主に硫化物や、セレ
ン化物を用いるので、一次再結晶粒成長の温度依存性が
極めて小さく、一次再結晶焼鈍(実際には脱炭焼鈍)温
度を大きく変える必要がない。この結果、一次酸化層の
構成組成および引き続く窒化処理における窒化量が著し
く安定し、一次皮膜欠陥を激減させる効果も得られる。
That is, an object of the present invention is to provide an inhibitor having a large role in the production of a grain-oriented electrical steel sheet by metallurgically separating its functioning stages and using a different substance for each functioning stage. An object of the present invention is to provide an extremely stable manufacturing method by performing a function. In addition, since the temperature of decarburization annealing at which primary recrystallization is performed in the production of a grain-oriented electrical steel sheet is generally as low as 930 ° C. or less, at this stage, strong carbon steel formed by conventional high-temperature hot rolling is used. No inhibitors are required. In the present invention, since sulfide or selenide is mainly used as the primary inhibitor, the temperature dependence of primary recrystallization grain growth is extremely small, and the primary recrystallization annealing (actually, decarburization annealing) temperature is greatly changed. No need. As a result, the constituent composition of the primary oxide layer and the amount of nitridation in the subsequent nitriding treatment are remarkably stabilized, and the effect of drastically reducing primary film defects can be obtained.

【0030】次に、本発明におけるスラブの成分組成の
限定理由について述べる。Cは、0.025%より少な
いと一次再結晶集合組織が適切でなくなり、0.10%
を超えると、脱炭が困難になり工業生産に適さない。S
iは、2.5%より少ないと良好な鉄損が得られず、
4.0%を超えると冷間圧延が極めて困難となり工業生
産に適さない。
Next, the reasons for limiting the component composition of the slab in the present invention will be described. If the content of C is less than 0.025%, the primary recrystallization texture becomes inappropriate, and 0.10%
If it exceeds, decarburization becomes difficult and it is not suitable for industrial production. S
If i is less than 2.5%, good iron loss cannot be obtained,
If it exceeds 4.0%, cold rolling becomes extremely difficult and is not suitable for industrial production.

【0031】Alは、Nと結合してAlNを形成し、主
に二次インヒビターとして機能する。このAlNは、窒
化前に形成されるものと、窒化後高温焼鈍時に形成され
るものの両方があり、この両方のAlN量を確保するた
め、0.01〜0.10%必要である。0.01%未満
の場合は、二次インヒビターとしての働きが不充分とな
り、良好なGoss方位を持つ二次再結晶粒を安定的に
得ることができず、また、0.10%を超える場合に
は、後工程で必要とする窒化量が増大し、被膜に甚大な
ダメージを与える。
Al combines with N to form AlN, and mainly functions as a secondary inhibitor. This AlN includes both those formed before nitriding and those formed during high-temperature annealing after nitriding, and 0.01 to 0.10% is necessary in order to secure the amount of both AlN. When the content is less than 0.01%, the function as a secondary inhibitor becomes insufficient, so that secondary recrystallized grains having a good Goss orientation cannot be stably obtained. In this case, the amount of nitridation required in the post-process increases, and the film is seriously damaged.

【0032】Nは、0.0075%を超えると、熱延時
の不均一析出の原因となるので、上限を0.0075%
とした。より好ましくは、0.0050%以下である。
SおよびSeは、Mn、Cuと結合して、主に、一次イ
ンヒビターとして作用する。SおよびSeの含有量は、
Seq=S+0.406×Seで限定するが、Seqが
0.05%を超えると、最終仕上げ焼鈍で純化するのに
要する時間が長くなりすぎて好ましくない。また、0.
003%未満とすると、一次インヒビターとしての効果
が弱くなるので、下限を0.003%とする必要があ
る。
If N exceeds 0.0075%, it causes non-uniform precipitation during hot rolling.
And More preferably, it is 0.0050% or less.
S and Se combine with Mn and Cu and mainly act as primary inhibitors. The content of S and Se is
It is limited by Seq = S + 0.406 × Se, but if Seq exceeds 0.05%, the time required for purification by final finish annealing is undesirably too long. Also, 0.
If it is less than 003%, the effect as a primary inhibitor is weakened, so the lower limit must be made 0.003%.

【0033】Mnは、0.02%より少ないと、熱延鋼
帯で割れが発生しやすく、歩留まりが低下する。一方、
0.20%を超えると、MnS、MnSeが多くなりす
ぎて、固溶の程度が場所により不均一となり、安定的な
生産が困難になるので、上限を0.2%とする。Cu
は、スラブを1200℃以上で加熱する本発明の条件で
熱延すると、SやSeとともに微細な析出物を形成し、
一次インヒビター効果を発揮する。また、この析出物は
AlNの分散をより均一にする析出核ともなり、二次イ
ンヒビターの役割も演じ、この効果が二次再結晶を良好
ならしめる。0.01%より少ないと上記効果が減じ安
定生産が難しくなり、0.30%を超えると上記効果が
飽和するとともに、熱延時に「カッパーヘゲ」なる表面
疵の原因になる。
If the Mn content is less than 0.02%, cracks tend to occur in the hot-rolled steel strip, and the yield decreases. on the other hand,
If it exceeds 0.20%, MnS and MnSe become excessively large, the degree of solid solution becomes uneven at some places, and stable production becomes difficult. Therefore, the upper limit is made 0.2%. Cu
When hot-rolled under the conditions of the present invention in which the slab is heated at 1200 ° C. or higher, fine precipitates are formed together with S and Se,
Exhibits primary inhibitory effects. The precipitate also serves as a precipitation nucleus for making the dispersion of AlN more uniform, and also plays a role of a secondary inhibitor, and this effect makes secondary recrystallization favorable. If it is less than 0.01%, the above effect is reduced and stable production becomes difficult. If it exceeds 0.30%, the above effect is saturated, and a surface flaw such as "copper heap" occurs during hot rolling.

【0034】Bは、0.0005%より少ない場合、B
Nとしてのインヒビター効果が発揮されず、0.006
%を越えると、窒化によってインヒビターを形成させる
際、必要とする窒化量が多くなり過ぎ、このことに起因
して、地鉄が露出した一次皮膜欠陥が多発する。更に、
Al、N、S、Se、Mn、Cu、Bの各含有量につい
ては、それらのスラブ中成分濃度から求められる、下記
式で定義するT1 (℃)〜T5 (℃)のうち一つでも1
400℃以上になる場合は、これら成分を完全固溶させ
るために、スラブ加熱温度Ts(℃)を非常に高くする
必要が生じ、好ましくないので、この観点から、これら
含有量相互の調整を図る必要がある。
If B is less than 0.0005%, B
The inhibitory effect as N was not exhibited, and 0.006
%, When the inhibitor is formed by nitriding, the required amount of nitriding becomes too large, and as a result, primary coating defects in which the base iron is exposed frequently occur. Furthermore,
Each of the contents of Al, N, S, Se, Mn, Cu, and B is one of T 1 (° C.) to T 5 (° C.) defined by the following formula, which is obtained from the concentration of the components in the slab. But one
If the temperature exceeds 400 ° C., it is necessary to make the slab heating temperature Ts (° C.) extremely high in order to completely dissolve these components, which is not preferable. There is a need.

【0035】T1 =10062/(2.72−log
([sAl]*[N]))−273 T2 =14855/(6.82−log([Mn]*
[S]))−273 T3 =10733/(4.08−log([Mn]*
[Se]))−273 T4 =43091/(25.09−log([Cu]*
[Cu]*[S]))−273 T5 =13680/(4.63−log([B]*
[N]))−273 ここで、式中[ ]は、[ ]内の成分元素の質量%を
表す。
T 1 = 10062 / (2.72-log)
([SAl] * [N] )) - 273 T 2 = 14855 / (6.82-log ([Mn] *
[S])) - 273 T 3 = 10733 / (4.08-log ([Mn] *
[Se])) - 273 T 4 = 43091 / (25.09-log ([Cu] *
[Cu] * [S]) ) - 273 T 5 = 13680 / (4.63-log ([B] *
[N]))-273 Here, [] in the formula represents mass% of the component element in [].

【0036】前述の如く、本発明では、一次インヒビタ
ーとして、主に、硫化物や、セレン化物を用い、一次再
結晶粒を制御しており、スラブ成分におけるNは極力少
なくする必要があり、0.0050%以下が望ましい。
ただし、これだけでは、二次再結晶を制御するのに不充
分であるから、後で述べる窒化処理が必要となる。な
お、インヒビター形成成分としては、上記したAl、
N、S、Se、Mn、Cu、Bの他、Sn、Sb、P、
Cr、Mo、Cd、Ge、Te及びBiなども有利に適
合し、また、Niは、一次及び二次インヒビターとして
の析出物の均一分散に著しい効果があるので、それぞれ
を少量併せて含有させることもできる。
As described above, in the present invention, sulfides and selenides are mainly used as primary inhibitors to control the primary recrystallized grains, and it is necessary to minimize N in the slab component. 0.0050% or less is desirable.
However, this alone is not enough to control the secondary recrystallization, so that a nitriding treatment described later is required. In addition, as the inhibitor-forming component, Al described above,
N, S, Se, Mn, Cu, B, Sn, Sb, P,
Cr, Mo, Cd, Ge, Te, Bi and the like are also advantageously adapted, and Ni has a remarkable effect on the uniform dispersion of precipitates as primary and secondary inhibitors. Can also.

【0037】上記成分の好適添加範囲は、それぞれ、S
n、Sb、P及びCr:0.02〜0.3%、Mo及び
Cd:0.008〜0.3%、Ge、Te及びBi:
0.005〜0.1%、そして、Ni:0.03〜0.
3%であり、これらの各成分についても、単独使用及び
複合使用のいずれもが可能である。次に本発明における
製造工程に係る条件の限定理由について述べる。
The preferred range of addition of the above components is S
n, Sb, P and Cr: 0.02 to 0.3%, Mo and Cd: 0.008 to 0.3%, Ge, Te and Bi:
0.005 to 0.1%, and Ni: 0.03 to 0.
3%, and each of these components can be used alone or in combination. Next, the reasons for limiting the conditions relating to the manufacturing process in the present invention will be described.

【0038】脱炭焼鈍完了後の一次再結晶粒の平均粒径
については、例えば、特開平7−252532号公報で
は一次再結晶粒の平均粒径を18〜35μmとしている
が、本発明では、一次再結晶粒の平均粒径を7μm以上
18μm未満とすることで、磁気特性(特に鉄損)を更
に良好ならしめることができる。すなわち、一次再結晶
粒の粒径が小さければ、単位体積内に存在する一次再結
晶粒の数が増えることを意味する。更に、一次再結晶粒
の粒径が小さい場合、粒成長の観点から、一次再結晶の
段階で二次再結晶の核となるGoss方位粒の体積分率
が多くなる(Materials Science Forum Vol.204-206,Pa
rt2:pp:631)。
Regarding the average particle size of the primary recrystallized grains after the completion of the decarburizing annealing, for example, in Japanese Patent Application Laid-Open No. 7-252532, the average particle size of the primary recrystallized grains is 18 to 35 μm, but in the present invention, By setting the average particle size of the primary recrystallized grains to 7 μm or more and less than 18 μm, magnetic properties (particularly, iron loss) can be further improved. That is, if the particle size of the primary recrystallized grains is small, it means that the number of primary recrystallized grains existing in a unit volume increases. Further, when the particle size of the primary recrystallized grains is small, the volume fraction of Goss-oriented grains serving as nuclei for secondary recrystallization at the stage of primary recrystallization increases from the viewpoint of grain growth (Materials Science Forum Vol. 204). -206, Pa
rt2: pp: 631).

【0039】そして、その結果、Goss方位粒の絶対
数は、例えば、一次再結晶粒の平均粒径が18〜35μ
mの場合に比べて、5倍程度も多くなるので、二次再結
晶粒径も相対的に小さくなり、この結果、著しい鉄損の
向上が得られる。また、一次再結晶粒の平均粒径が小さ
いと、二次再結晶の駆動力が大きくなり、最終仕上げ焼
鈍中、昇温段階の早い時期に(より低温で)二次再結晶
を開始させることができる。最終仕上げ焼鈍をコイル状
で行っている現状では、高温ほどコイル各点での温度差
(温度履歴差)が広がるので、上述の二次再結晶温度の
低温化によって、コイル各点での温度履歴がより均一な
(コイル各点での昇温速度が一定な)温度領域で二次再
結晶させることができ、コイル部位間での不均一性が著
しく減少して磁気特性が極めて安定する。
As a result, the absolute number of Goss-oriented grains is, for example, that the average grain size of primary recrystallized grains is 18 to 35 μm.
Since it is about five times as large as that of m, the secondary recrystallized grain size also becomes relatively small, and as a result, a remarkable improvement in iron loss is obtained. In addition, when the average particle size of the primary recrystallized grains is small, the driving force of the secondary recrystallization is increased, and the secondary recrystallization should be started earlier (at a lower temperature) during the final finish annealing during the temperature raising stage. Can be. In the current situation where the final finish annealing is performed in a coil shape, the temperature difference (temperature history difference) at each point of the coil increases as the temperature increases, so the temperature history at each point of the coil is reduced by lowering the secondary recrystallization temperature. Can be secondary-recrystallized in a more uniform temperature range (where the rate of temperature rise at each coil point is constant), and the non-uniformity between coil portions is significantly reduced, and the magnetic characteristics are extremely stable.

【0040】但し、一次再結晶粒の平均粒径が7μm未
満になると、その大きな粒成長駆動力のため、二次再結
晶温度が低くなりすぎるためと考えられるが、二次再結
晶粒方位のGoss方位からの分散が大きくなり、磁束
密度の低下を招く。脱炭焼鈍後二次再結晶開始前に鋼板
に窒化処理を施すことは、本発明では必須である。その
方法は、仕上げ焼鈍時の焼鈍分離剤に窒化物(CrN、
MnN等)を混合する方法や、脱炭焼鈍後にストリップ
を走行させた状態下でアンモニアを含んだ雰囲気で窒化
処理する方法がある。どちらの方法を採用してもよい
が、後者の方法が工業的に安定している。
However, if the average grain size of the primary recrystallized grains is less than 7 μm, it is considered that the secondary recrystallization temperature becomes too low due to the large grain growth driving force. Dispersion from the Goss orientation increases, leading to a decrease in magnetic flux density. It is essential in the present invention that the steel sheet is subjected to a nitriding treatment after the decarburizing annealing and before the start of the secondary recrystallization. The method uses nitride (CrN, CrN,
MnN) or a method of nitriding in an atmosphere containing ammonia while the strip is running after decarburizing annealing. Either method may be adopted, but the latter method is industrially stable.

【0041】この窒化処理で増加する窒素量(窒素増
量)は、0.001〜0.03質量%に限定するが、
0.001%未満では二次再結晶が不安定となり、一
方、0.03%を超えると、地鉄が露出した一次皮膜欠
陥が多発する。好ましい窒素増量は、0.003〜0.
025%である。熱間圧延に先立つスラブ加熱温度は本
発明の重要な点である。スラブ加熱温度が1200℃未
満では本発明のキーポイントである一次インヒビターの
生成が十分に行われず、脱炭焼鈍温度に対する一次再結
晶粒径の変動が大きくなるなどの問題を引き起こす。
The amount of nitrogen (increased nitrogen) increased by this nitriding treatment is limited to 0.001 to 0.03% by mass.
If it is less than 0.001%, the secondary recrystallization becomes unstable, while if it exceeds 0.03%, primary coating defects where the base iron is exposed frequently occur. The preferred nitrogen increase is from 0.003 to 0.
025%. The slab heating temperature prior to hot rolling is an important aspect of the present invention. When the slab heating temperature is lower than 1200 ° C., the primary inhibitor, which is a key point of the present invention, is not sufficiently generated, and a problem such as a large variation in the primary recrystallized grain size with respect to the decarburization annealing temperature is caused.

【0042】一方、スラブ加熱温度を、インヒビター能
力を有する物質の完全溶体化温度よりも高くすることに
よって、スラブ部位毎での一次インヒビターの強度差を
極端に小さくすることができる。但し、スラブ加熱温度
を、インヒビターの完全溶体化温度の直上に設定する場
合は、インヒビターの溶体化のため、加熱温度に保定す
る必要時間が長くなるので、生産性の観点より、少なく
とも20℃程度以上は高く設定することが好ましい。な
お、1400℃を超える超高温度で加熱することは、工
業生産において非常な困難を伴うので避けるべきであ
る。
On the other hand, by making the slab heating temperature higher than the complete solution-solution temperature of the substance having inhibitor ability, the difference in the intensity of the primary inhibitor at each slab site can be extremely reduced. However, when the slab heating temperature is set immediately above the complete solution solution temperature of the inhibitor, the time required to maintain the heating temperature for the solution of the inhibitor becomes longer, so from the viewpoint of productivity, at least about 20 ° C. The above is preferably set high. It should be noted that heating at an extremely high temperature exceeding 1400 ° C. is extremely difficult in industrial production and should be avoided.

【0043】実生産の上で、スラブ加熱温度は、熱間圧
延が容易で熱延鋼帯の形状(クラウン)が優れ、スラブ
表層部の溶解、鉱滓化発生に係る実害が伴わない、12
00〜1350℃が好ましい。本発明の方法では、第一
に、公知の連続鋳造法により、初期の厚みが150mm
から300mm、好ましくは、200mmから250m
mのスラブを製造する。このスラブに替りに、初期の厚
みが約30mmから70mmのいわゆる薄いスラブであ
ってもよく、この場合は、熱間圧延鋼帯を製造する際、
中間厚みに粗加工をする必要がないという利点がある。
また、鋼帯鋳造により製造した、一層薄い初期厚みのス
ラブ又は鋼帯を用いて、本発明方法により一方向性電磁
鋼板を製造することも可能である。
In actual production, the slab heating temperature is set such that hot rolling is easy, the shape of the hot-rolled steel strip (crown) is excellent, and there is no actual harm associated with melting of the slab surface layer and generation of slag.
00-1350 degreeC is preferable. In the method of the present invention, first, the initial thickness is 150 mm by a known continuous casting method.
To 300 mm, preferably 200 mm to 250 m
m slabs. Instead of this slab, a so-called thin slab having an initial thickness of about 30 mm to 70 mm may be used. In this case, when manufacturing a hot-rolled steel strip,
There is an advantage that it is not necessary to perform rough processing to an intermediate thickness.
Further, it is also possible to manufacture a unidirectional magnetic steel sheet by the method of the present invention using a slab or a steel strip having a smaller initial thickness manufactured by steel strip casting.

【0044】また、工業生産上において、熱間圧延の加
熱方法には通常のガス加熱方法を用いてよいが、この方
法に加え、誘導加熱、直接通電加熱を用いることは、均
一に焼鈍する点で望ましく、これらの特別な加熱方法に
おいて、所要の形状を確保するため、分塊圧延を鋳込み
スラブに施しても何ら問題はない。また、加熱温度が1
300℃以上になる場合は、この分塊圧延により集合組
織の改善を施しC量を減じてもよい。これらは、従来技
術の範囲である。
In industrial production, a normal gas heating method may be used as a heating method for hot rolling. In addition to this method, induction heating and direct electric heating are used to achieve uniform annealing. In these special heating methods, there is no problem even if slab rolling is performed on the cast slab in order to secure a required shape. When the heating temperature is 1
When the temperature is 300 ° C. or more, the texture may be improved by this bulk-rolling to reduce the C content. These are within the scope of the prior art.

【0045】冷間圧延における最終の冷延圧下率が80
%未満であると、一次再結晶集合組織中のGoss方位
粒において所望の方位集積度が得難いので、高磁束密度
の確保が難しくなる。一方、最終の冷延圧下率が95%
を超えると、一次再結晶集合組織中のGoss方位粒の
粒数が極端に少なくなり、二次再結晶が不安定になる。
The final cold rolling reduction in cold rolling is 80.
%, It is difficult to obtain a desired degree of orientation integration in the Goss orientation grains in the primary recrystallization texture, so that it is difficult to secure a high magnetic flux density. On the other hand, the final cold rolling reduction rate is 95%
If it exceeds, the number of Goss-oriented grains in the primary recrystallization texture becomes extremely small, and secondary recrystallization becomes unstable.

【0046】熱延鋼帯の焼鈍は、主に、熱延時に生じた
鋼帯内の組織・インヒビター分散の不均一性を除去する
ために行われる。熱延鋼帯での焼鈍でもよいし、最終の
冷間圧延の前の焼鈍でもよい。すなわち、最終の冷間圧
延の前に、熱延時の温度履歴の差による不均一性を解消
するために、1回以上の焼鈍を行うことが望ましい。最
終の冷間圧延は常温で実施してもよいが、少なくとも1
パスを100〜300℃の温度で1分以上保つと、一次
再結晶集合組織が改善され磁気特性が極めて良好にな
る。
Annealing of the hot-rolled steel strip is mainly performed in order to remove the non-uniformity of the structure and the dispersion of the inhibitor in the steel strip generated at the time of hot rolling. Annealing in a hot-rolled steel strip or annealing before final cold rolling may be used. That is, it is desirable to perform one or more annealings before the final cold rolling in order to eliminate non-uniformity due to a difference in temperature history during hot rolling. The final cold rolling may be performed at room temperature, but at least one
When the pass is kept at a temperature of 100 to 300 ° C. for 1 minute or more, the primary recrystallization texture is improved and the magnetic properties are extremely improved.

【0047】[0047]

【実施例】〔実施例1〕表1に示す(1)〜(4)の成
分組成のスラブを、a:1150℃、b:1200℃、
c:1250℃、d:1300℃、e:1350℃の5
水準の温度で各60分均熱した後に熱間圧延し、2.0
mmの熱延板とした。次いで、この熱延板に、1120
℃に200秒保持後直ちに900℃に保持して急冷する
熱延板焼鈍を施した後酸洗し、0.23mmに冷間圧延
した。この冷延板に、850℃で150秒間保持する脱
炭焼鈍を施した。この後、水素、窒素、アンモニアの混
合ガス中で、750℃30秒間保持する窒化焼鈍を行
い、窒化後の鋼板の全窒素量を200ppm前後に調整
した。次いで、MgO、TiO2 を主成分とする焼鈍分
離剤を塗布し、1200℃まで15℃/時の昇温速度で
加熱し、その後、1200℃で20時間の仕上げ焼鈍を
行った。この鋼板に歪取り焼鈍を施した後、コロイダル
シリカとリン酸アルミニウムを主成分とする張力コーテ
ィング処理を行い、磁気特性を測定した。以上の各試験
水準についての、磁気測定結果等を表2に、また、sA
lとNの含有量及びスラブ加熱温度と製品コイル内B8
偏差の関係を図1に示す。本発明の成分組成に属するス
ラブから、本発明の工程条件に従って製造した場合、製
品コイル全長に渡って優れた磁気特性が安定して得られ
ていることが判る。
EXAMPLES Example 1 Slabs having the component compositions of (1) to (4) shown in Table 1 were prepared at a: 1150 ° C., b: 1200 ° C.
c: 1250 ° C, d: 1300 ° C, e: 1350 ° C
After soaking at a standard temperature for 60 minutes each, hot rolling was performed, and 2.0
mm hot rolled sheet. Next, 1120
Immediately after holding at 200 ° C. for 200 seconds, the steel sheet was annealed at 900 ° C. for rapid cooling, pickled, and cold-rolled to 0.23 mm. The cold rolled sheet was subjected to decarburizing annealing at 850 ° C. for 150 seconds. Thereafter, nitriding annealing was performed at 750 ° C. for 30 seconds in a mixed gas of hydrogen, nitrogen, and ammonia to adjust the total nitrogen content of the steel sheet after nitriding to about 200 ppm. Next, an annealing separator containing MgO and TiO 2 as main components was applied, heated to 1200 ° C. at a rate of 15 ° C./hour, and then subjected to finish annealing at 1200 ° C. for 20 hours. After the steel sheet was subjected to strain relief annealing, a tension coating treatment containing colloidal silica and aluminum phosphate as main components was performed, and the magnetic properties were measured. Table 2 shows the magnetic measurement results and the like for each of the above test levels.
l and N content, slab heating temperature and B 8 in product coil
FIG. 1 shows the relationship between the deviations. It can be seen that when manufactured from a slab belonging to the component composition of the present invention in accordance with the process conditions of the present invention, excellent magnetic properties are stably obtained over the entire length of the product coil.

【0048】[0048]

【表1】 [Table 1]

【0049】[0049]

【表2】 [Table 2]

【0050】〔実施例2〕表3に示す(5)〜(8)の
成分組成のスラブを、実施例1と同じ5水準の温度で各
60分均熱した後に熱間圧延し、2.3mmの熱延板と
した。次いで、この熱延板に、1120℃に180秒保
持後直ちに900℃に保持して急冷する熱延板焼鈍を施
した後酸洗し、0.30mmに冷間圧延した。この冷延
板に、850℃で150秒間保持する脱炭焼鈍を施し
た。この後、水素、窒素、アンモニアの混合ガス中で、
750℃30秒間保持する窒化焼鈍を行い、窒化後の鋼
板の全窒素量を200ppm前後に調整した。次いで、
MgO、TiO2 を主成分とする焼鈍分離剤を塗布し、
1200℃まで15℃/時の昇温速度で加熱し、その
後、1200℃で20時間の仕上げ焼鈍を行った。この
鋼板に歪取り焼鈍を施した後、コロイダルシリカとリン
酸アルミニウムを主成分とする張力コーティング処理を
行い、磁気特性を測定した。以上の各試験水準について
の、磁気測定結果等を表4に、また、MnとSの含有量
及びスラブ加熱温度と製品コイル内B8 偏差の関係を図
2に示す。本発明の成分組成に属するスラブから、本発
明の工程条件に従って製造した場合、製品コイル全長に
渡って優れた磁気特性が安定して得られていることが判
る。特に、一次再結晶平均粒径が7〜18μmの場合
は、B8が1.92T以上の特に優れた磁気特性が製品
コイル全長に渡って安定して得られている。
Example 2 A slab having the component compositions (5) to (8) shown in Table 3 was soaked at the same five levels of temperature as in Example 1 for 60 minutes each, and then hot-rolled. It was a hot-rolled sheet of 3 mm. Next, the hot-rolled sheet was annealed at 1120 ° C. for 180 seconds and then immediately maintained at 900 ° C. for rapid cooling, followed by pickling and cold rolling to 0.30 mm. The cold rolled sheet was subjected to decarburizing annealing at 850 ° C. for 150 seconds. Then, in a mixed gas of hydrogen, nitrogen and ammonia,
Nitriding annealing was performed at 750 ° C. for 30 seconds to adjust the total nitrogen content of the nitrided steel sheet to about 200 ppm. Then
Apply an annealing separator mainly composed of MgO and TiO 2 ,
Heating was performed at 1200 ° C. at a rate of 15 ° C./hour, followed by finish annealing at 1200 ° C. for 20 hours. After the steel sheet was subjected to strain relief annealing, a tension coating treatment containing colloidal silica and aluminum phosphate as main components was performed, and the magnetic properties were measured. For each test level above, the magnetic measurement results and the like in Table 4 also shows the content and the relationship of the slab heating temperature and the product coils in the B 8 deviation Mn and S in FIG. It can be seen that when manufactured from a slab belonging to the component composition of the present invention in accordance with the process conditions of the present invention, excellent magnetic properties are stably obtained over the entire length of the product coil. In particular, when the average primary recrystallization particle size is 7 to 18 μm, particularly excellent magnetic properties of B 8 of 1.92 T or more are stably obtained over the entire length of the product coil.

【0051】[0051]

【表3】 [Table 3]

【0052】[0052]

【表4】 [Table 4]

【0053】〔実施例3〕表5に示す(9)〜(12)
の成分組成のスラブを、実施例1と同じ5水準の温度で
各60分均熱した後に熱間圧延し、2.5mmの熱延板
とした。次いで、この熱延板に、1120℃に30秒保
持後直ちに900℃に保持して急冷する熱延板焼鈍を施
した後酸洗し、0.27mmに冷間圧延した。この冷延
板に、850℃で90秒間保持する脱炭焼鈍を施した。
この後、水素、窒素、アンモニアの混合ガス中で、75
0℃30秒間保持する窒化焼鈍を行い、窒化後の鋼板の
全窒素量を200ppm前後に調整した。次いで、Mg
O、TiO2 を主成分とする焼鈍分離剤を塗布し、12
00℃まで15℃/時の昇温速度で加熱し、その後、1
200℃で20時間の仕上げ焼鈍を行った。この鋼板に
歪取り焼鈍を施した後、コロイダルシリカとリン酸アル
ミニウムを主成分とする張力コーティング処理を行い、
磁気特性を測定した。以上の各試験水準についての、磁
気測定結果等を表6に、また、MnとSeの含有量及び
スラブ加熱温度と製品コイル内B8 偏差の関係を図3に
示す。本発明の成分組成に属するスラブから本発明の工
程条件に従って製造した場合、製品コイル全長に渡って
優れた磁気特性が安定して得られていることが判る。
[Embodiment 3] (9) to (12) shown in Table 5
The slab having the component composition described above was soaked at the same five levels of temperature as in Example 1 for 60 minutes each, and then hot-rolled to obtain a hot-rolled sheet of 2.5 mm. Next, the hot-rolled sheet was annealed at 900 ° C. immediately after holding at 1120 ° C. for 30 seconds and then rapidly cooled, pickled, and cold-rolled to 0.27 mm. This cold rolled sheet was subjected to decarburizing annealing at 850 ° C. for 90 seconds.
Thereafter, in a mixed gas of hydrogen, nitrogen and ammonia, 75
Nitriding annealing at 0 ° C. for 30 seconds was performed to adjust the total nitrogen content of the steel sheet after nitriding to about 200 ppm. Then, Mg
Apply an annealing separator mainly composed of O and TiO 2 ,
Heat to 00 ° C at a heating rate of 15 ° C / hr.
Finish annealing was performed at 200 ° C. for 20 hours. After subjecting this steel sheet to strain relief annealing, a tension coating process containing colloidal silica and aluminum phosphate as main components is performed,
The magnetic properties were measured. For each test level above, the magnetic measurement results and the like in Table 6 also shows the content and the relationship of the slab heating temperature and the product coils in the B 8 deviation Mn and Se in FIG. It can be seen that when manufactured from a slab belonging to the component composition of the present invention under the process conditions of the present invention, excellent magnetic properties are stably obtained over the entire length of the product coil.

【0054】[0054]

【表5】 [Table 5]

【0055】[0055]

【表6】 [Table 6]

【0056】〔実施例4〕表7に示す(13)〜(1
6)の成分組成のスラブを、実施例1と同じ5水準の温
度で各60分均熱した後に熱間圧延し、2.3mmの熱
延板とした。次いで、この熱延板に、1120℃に25
0秒保持後急冷する熱延板焼鈍を施した後酸洗し、0.
35mmに冷間圧延した。この冷延板に、850℃で1
50秒間保持する脱炭焼鈍を施した。次いで、MgO、
TiO2 を主成分としてMnNを加えた焼鈍分離剤を塗
布し、1200℃まで10℃/時の昇温速度で加熱し、
その後、1200℃で20時間の仕上げ焼鈍を行った。
この鋼板に歪取り焼鈍を施した後、コロイダルシリカと
リン酸アルミニウムを主成分とする張力コーティング処
理を行い、磁気特性を測定した。以上の各試験水準につ
いての、磁気測定結果等を表8に、また、CuとSの含
有量及びスラブ加熱温度と製品コイル内B8 偏差の関係
を図4に示す。本発明の成分組成に属するスラブから、
本発明の工程条件に従って製造した場合、製品コイル全
長に渡って優れた磁気特性が安定して得られていること
が判る。
Example 4 (13) to (1) shown in Table 7
The slab having the component composition of 6) was soaked at the same five levels of temperature as in Example 1 for 60 minutes each, and then hot-rolled to obtain a 2.3 mm hot-rolled sheet. Then, the hot rolled sheet was heated to
After hot-rolled sheet annealing of quenching after holding for 0 seconds, pickling was performed,
It was cold rolled to 35 mm. At 850 ° C, 1
Decarburization annealing was performed for 50 seconds. Then, MgO,
An annealing separator containing TiO 2 as a main component and MnN added is applied and heated to 1200 ° C. at a rate of 10 ° C./hour,
Thereafter, finish annealing was performed at 1200 ° C. for 20 hours.
After the steel sheet was subjected to strain relief annealing, a tension coating treatment containing colloidal silica and aluminum phosphate as main components was performed, and the magnetic properties were measured. For each test level above, in Table 8 the magnetic measurement results, etc., also shows the content and the relationship of the slab heating temperature and the product coils in the B 8 deviation of Cu and S in FIG. From the slab belonging to the composition of the present invention,
It can be seen that when manufactured according to the process conditions of the present invention, excellent magnetic properties are stably obtained over the entire length of the product coil.

【0057】[0057]

【表7】 [Table 7]

【0058】[0058]

【表8】 [Table 8]

【0059】〔実施例5〕表9に示す(17)〜(2
0)の成分組成のスラブを、実施例1と同じ5水準の温
度で各60分均熱した後に熱間圧延し、2.3mmの熱
延板とした。次いで、この熱延板に、1150℃に30
秒保持後直ちに900℃に保持して急冷する熱延板焼鈍
を施した後酸洗し、0.30mmに冷間圧延した。この
冷延板に、850℃で150秒間保持する脱炭焼鈍を施
した。この後、水素、窒素、アンモニアの混合ガス中
で、750℃30秒間保持する窒化焼鈍を行い、窒化後
の鋼板の全窒素量を200ppm前後に調整した。次い
で、MgO、TiO2 を主成分とする焼鈍分離剤を塗布
し1200℃まで15℃/時の昇温速度で加熱し、その
後、1200℃で20時間の仕上げ焼鈍を行った。この
鋼板に歪取り焼鈍を施した後、コロイダルシリカとリン
酸アルミニウムを主成分とする張力コーティング処理を
行い、磁気特性を測定した。以上の各試験水準について
の、磁気測定結果等を表10に、また、BとNの含有量
及びスラブ加熱温度と製品コイル内B8 偏差の関係を図
5に示す。本発明の成分組成に属するスラブから、本発
明の工程条件に従って製造した場合、製品コイル全長に
渡って優れた磁気特性が安定して得られていることが判
る。但し、N濃度の最も高いスラブでは、製品コイル内
磁性偏差が大きくなっていることが判る。
[Example 5] (17) to (2) shown in Table 9
The slab having the component composition of 0) was soaked at the same five levels of temperature as in Example 1 for 60 minutes each, and then hot-rolled to obtain a 2.3 mm hot-rolled sheet. Then, the hot rolled sheet was heated to 1150 ° C. for 30 minutes.
Immediately after holding for 2 seconds, the sheet was annealed at 900 ° C. and rapidly cooled, followed by pickling and cold rolling to 0.30 mm. This cold rolled sheet was subjected to decarburizing annealing at 850 ° C. for 150 seconds. Thereafter, nitriding annealing was performed at 750 ° C. for 30 seconds in a mixed gas of hydrogen, nitrogen, and ammonia to adjust the total nitrogen content of the steel sheet after nitriding to about 200 ppm. Next, an annealing separator mainly composed of MgO and TiO 2 was applied and heated to 1200 ° C. at a rate of 15 ° C./hour, and then finish annealing was performed at 1200 ° C. for 20 hours. After the steel sheet was subjected to strain relief annealing, a tension coating treatment containing colloidal silica and aluminum phosphate as main components was performed, and the magnetic properties were measured. For each test level above, in Table 10 the magnetic measurement results, etc., also shows B and N content and relationships of the slab heating temperature and the product coils in the B 8 deviations in FIG. It can be seen that when manufactured from a slab belonging to the component composition of the present invention in accordance with the process conditions of the present invention, excellent magnetic properties are stably obtained over the entire length of the product coil. However, it can be seen that the slab having the highest N concentration has a large magnetic deviation in the product coil.

【0060】[0060]

【表9】 [Table 9]

【0061】[0061]

【表10】 [Table 10]

【0062】[0062]

【発明の効果】本発明により、二次再結晶の不均一性を
解消して、優れた磁気特性を有する一方向性電磁鋼板
を、極めて安定して、工業的に生産することが可能とな
る。したがって、本発明は、一方向性電磁鋼板の工業的
な生産に寄与するところが大きい。
According to the present invention, it is possible to eliminate the non-uniformity of the secondary recrystallization and to produce a grain-oriented electrical steel sheet having excellent magnetic properties in an extremely stable and industrial manner. . Therefore, the present invention greatly contributes to industrial production of a grain-oriented electrical steel sheet.

【図面の簡単な説明】[Brief description of the drawings]

【図1】sAlとNの含有量及びスラブ加熱温度と製品
コイル内B8 偏差の関係を示す図である。
1 is a diagram showing the relationship between sAl and N content and the slab heating temperature and the product coils B 8 deviation.

【図2】MnとSの含有量及びスラブ加熱温度と製品コ
イル内B8 偏差の関係を示す図である。
FIG. 2 is a diagram showing the relationship between the contents of Mn and S, the slab heating temperature, and the B 8 deviation in a product coil.

【図3】MnとSeの含有量及びスラブ加熱温度と製品
コイル内B8 偏差の関係を示す図である。
FIG. 3 is a diagram showing the relationship between the contents of Mn and Se, the slab heating temperature, and the B 8 deviation in a product coil.

【図4】CuとSの含有量及びスラブ加熱温度と製品コ
イル内B8 偏差の関係を示す図である。
FIG. 4 is a diagram showing the relationship between the contents of Cu and S, the slab heating temperature, and the B 8 deviation in the product coil.

【図5】BとNの含有量及びスラブ加熱温度と製品コイ
ル内B8 偏差の関係を示す図である。
FIG. 5 is a diagram showing the relationship between the contents of B and N, the slab heating temperature, and the B 8 deviation in a product coil.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤井 宣憲 福岡県北九州市戸畑区飛幡町1−1 新日 本製鐵株式会社八幡製鐵所内 (72)発明者 茂木 尚 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 横内 仁 福岡県北九州市戸畑区飛幡町1−1 新日 本製鐵株式会社八幡製鐵所内 (72)発明者 山本 紀宏 福岡県北九州市戸畑区飛幡町1−1 新日 本製鐵株式会社八幡製鐵所内 Fターム(参考) 4K033 AA02 BA02 CA01 CA10 DA01 FA01 HA01 HA04 HA06 JA04 LA01 MA00 5E041 AA02 AA19 BC01 CA02 HB05 HB07 HB09 HB11 NN01 NN06 NN17 NN18  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Noriyoshi Fujii 1-1, Hibata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka Prefecture Inside the Nippon Steel Corporation Yawata Works (72) Inventor Naoki Mogi 20 Shintomi, Futtsu-shi, Chiba -1 Inside the Technology Development Division of Nippon Steel Corporation (72) Inventor Hitoshi Yokouchi 1-1 Yawata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka Prefecture Inside Nippon Steel Corporation Yawata Works (72) Inventor Norihiro Yamamoto Fukuoka F-term (reference) in Yawata Works, Tobata-ku, Kitakyushu-shi 1-1 Nippon Steel Corporation 4K033 AA02 BA02 CA01 CA10 DA01 FA01 HA01 HA04 HA06 JA04 LA01 MA00 5E041 AA02 AA19 BC01 CA02 HB05 HB07 HB09 HB11 NN01 NN06 NN17 NN18

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 Alを所定量含有する一方向性電磁鋼板
用のスラブを、1200℃以上の温度で加熱した後熱間
圧延して熱延板とし、次いで、これに焼鈍を施すかもし
くは施こさず、1回もしくは中間焼鈍を挟む2回以上の
冷間圧延をし、その後、脱炭焼鈍、次いで、焼鈍分離剤
を塗布し、仕上げ焼鈍を施す一方向性電磁鋼板の製造方
法において、インヒビター能力を有する物質の完全溶体
化温度よりも高い温度(スラブ加熱温度Ts(℃))で
前記スラブの加熱を行い、更に、脱炭焼鈍後、仕上げ焼
鈍の二次再結晶開始までの間に、鋼板に窒化処理を施す
ことを特徴とする磁気特性に優れた一方向電磁鋼板の製
造方法。
1. A slab for a grain-oriented electrical steel sheet containing a predetermined amount of Al is heated at a temperature of 1200 ° C. or higher, then hot-rolled into a hot-rolled sheet, and then subjected to annealing or In a method for producing a grain-oriented electrical steel sheet, cold rolling is performed once or twice or more with intermediate annealing, followed by decarburizing annealing, then applying an annealing separator, and performing finish annealing. The slab is heated at a temperature (slab heating temperature Ts (° C.)) higher than the complete solution temperature of the material having the ability, and after decarburizing annealing, before the secondary recrystallization of finish annealing starts. A method for producing a unidirectional magnetic steel sheet having excellent magnetic properties, characterized by subjecting a steel sheet to a nitriding treatment.
【請求項2】 前記スラブの加熱を、1350℃以下の
温度で行うことを特徴とする請求項1に記載の磁気特性
に優れた一方向性電磁鋼板の製造方法。
2. The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to claim 1, wherein the heating of the slab is performed at a temperature of 1350 ° C. or less.
【請求項3】 前記スラブが、質量%で、 C:0.025〜0.10%、 Si:2.5〜4.0%、 酸可溶性Al(sAl):0.01〜0.10%、 N:0.0075%以下、 Seq=S+0.406×Se:0.003〜0.05
%、 Mn:0.02〜0.20%、 を含有し、残部がFe及び不可避的不純物からなり、か
つ、該スラブの加熱を、下記式(式中[ ]は、[ ]
内の成分元素の質量%)、 T1 =10062/(2.72−log([sAl]*
[N]))−273、 T2 =14855/(6.82−log([Mn]*
[S]))−273、 及び、 T3 =10733/(4.08−log([Mn]*
[Se]))−273、 で定義するT1 (℃)、T2 (℃)及びT3 (℃)の中
の最大の温度よりも高いスラブ加熱温度Ts(℃)で行
うことを特徴とする請求項1または2に記載の磁気特性
に優れた一方向性電磁鋼板の製造方法。
3. The slab is, by mass%, C: 0.025 to 0.10%, Si: 2.5 to 4.0%, Acid-soluble Al (sAl): 0.01 to 0.10% N: 0.0075% or less, Seq = S + 0.406 × Se: 0.003 to 0.05
%, Mn: 0.02 to 0.20%, with the balance being Fe and unavoidable impurities, and heating the slab by the following formula (where [] is []
, T 1 = 10062 / (2.72-log ([sAl] *)
[N])) - 273, T 2 = 14855 / (6.82-log ([Mn] *
[S])) - 273, and, T 3 = 10733 / (4.08 -log ([Mn] *
[Se]))-273, characterized by performing at a slab heating temperature Ts (° C.) higher than the maximum temperature among T 1 (° C.), T 2 (° C.), and T 3 (° C.). The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to claim 1 or 2.
【請求項4】 前記スラブが、更に、質量%で、Cu:
0.01〜0.30%を含有し、かつ、該スラブの加熱
を、下記式(式中[ ]は、[ ]内の成分元素の質量
%)、 T4 =43091/(25.09−log([Cu]*
[Cu]*[S]))−273 で定義するT4 (℃)よりも高いスラブ加熱温度Ts
(℃)で行うことを特徴とする請求項1〜3項のいずれ
かの項に記載の磁気特性に優れた一方向性電磁鋼板の製
造方法。
4. The slab further comprises, in mass%, Cu:
0.01 to 0.30%, and heating of the slab is performed by the following formula (where [] is the mass% of the component elements in []): T 4 = 43091 / (25.09− log ([Cu] *
[Cu] * [S])) Slab heating temperature Ts higher than T 4 (° C.) defined by -273
The method according to any one of claims 1 to 3, wherein the method is performed at (° C).
【請求項5】 前記スラブが、更に、質量%で、B:
0.0005〜0.006%を含有し、かつ、該スラブ
の加熱を、下記式(式中[ ]は、[ ]内の成分元素
の質量%)、 T5 =13680/(4.63−log([B]*
[N]))−273 で定義するT5 (℃)よりも高いスラブ加熱温度Ts
(℃)で行うことを特徴とする請求項1〜4項のいずれ
かの項に記載の磁気特性に優れた一方向性電磁鋼板の製
造方法。
5. The slab further comprises, in mass%, B:
0.005 to 0.006%, and heating of the slab is performed by the following formula (where [] is the mass% of the component elements in []): T 5 = 13680 / (4.63 − log ([B] *
[N])) Slab heating temperature Ts higher than T 5 (° C.) defined by -273
The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to any one of claims 1 to 4, wherein the method is performed at (° C).
【請求項6】 前記脱炭焼鈍後の一次再結晶粒の平均粒
径が、7μm以上18μm未満であることを特徴とする
請求項1〜5項のいずれかの項に記載の磁気特性に優れ
た一方向性電磁鋼板の製造方法。
6. The magnetic material according to claim 1, wherein an average particle diameter of primary recrystallized grains after the decarburizing annealing is 7 μm or more and less than 18 μm. Manufacturing method of unidirectional magnetic steel sheet.
【請求項7】 前記窒化処理を、ストリップ走行状態下
で、水素、窒素、アンモニアの混合ガス中で行い、鋼板
の窒素増量を0.001〜0.03質量%とすることを
特徴とする請求項1〜6項のいずれかの項に記載の磁気
特性に優れた一方向性電磁鋼板の製造方法。
7. The method according to claim 1, wherein the nitriding treatment is performed in a mixed gas of hydrogen, nitrogen, and ammonia in a strip running state to increase the nitrogen content of the steel sheet to 0.001 to 0.03 mass%. Item 7. A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to any one of Items 1 to 6.
【請求項8】 前記脱炭焼鈍前の最終の冷間圧延におい
て、その冷延圧下率を80%以上95%以下とすること
を特徴とする請求項1〜7項のいずれかの項に記載の磁
気特性に優れた一方向性電磁鋼板の製造方法。
8. The method according to claim 1, wherein the cold rolling reduction in the final cold rolling before the decarburizing annealing is set to 80% or more and 95% or less. For producing unidirectional electrical steel sheets with excellent magnetic properties.
JP2000167963A 1999-09-09 2000-06-05 Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties Expired - Fee Related JP3488181B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2000167963A JP3488181B2 (en) 1999-09-09 2000-06-05 Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
EP01112898.0A EP1162280B1 (en) 2000-06-05 2001-06-01 Method for producing a grain-oriented electrical steel sheet excellent in magnetic properties
US09/873,963 US6432222B2 (en) 2000-06-05 2001-06-04 Method for producing a grain-oriented electrical steel sheet excellent in magnetic properties
KR10-2001-0031104A KR100442100B1 (en) 2000-06-05 2001-06-04 Method for producing a grain-oriented electrical steel sheet excellent in magnetic properties
CNB011221771A CN1184336C (en) 2000-06-05 2001-06-05 Method for manufacturing grain orientation electric steel plate with good magnetic property

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-255616 1999-09-09
JP25561699 1999-09-09
JP2000167963A JP3488181B2 (en) 1999-09-09 2000-06-05 Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties

Publications (2)

Publication Number Publication Date
JP2001152250A true JP2001152250A (en) 2001-06-05
JP3488181B2 JP3488181B2 (en) 2004-01-19

Family

ID=26542315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000167963A Expired - Fee Related JP3488181B2 (en) 1999-09-09 2000-06-05 Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties

Country Status (1)

Country Link
JP (1) JP3488181B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100544616B1 (en) * 2001-12-24 2006-01-24 주식회사 포스코 Method for Manufacturing Grain-Oriented Electrical Steel Sheet with Superior Magnetic Property
WO2007136137A1 (en) 2006-05-24 2007-11-29 Nippon Steel Corporation Process for producing grain-oriented magnetic steel sheet with high magnetic flux density
JP2008001981A (en) * 2006-05-24 2008-01-10 Nippon Steel Corp Process for producing grain-oriented magnetic steel sheet with high magnetic flux density
JP2008001978A (en) * 2006-05-24 2008-01-10 Nippon Steel Corp Process for producing grain-oriented magnetic steel sheet with high magnetic flux density
WO2010029921A1 (en) 2008-09-10 2010-03-18 新日本製鐵株式会社 Directional electromagnetic steel plate manufacturing method
WO2010116936A1 (en) 2009-04-06 2010-10-14 新日本製鐵株式会社 Method for treating steel for directional electromagnetic steel plate and method for producing directional electromagnetic steel plate
US7833360B2 (en) 2006-03-07 2010-11-16 Nippon Steel Corporation Method of producing grain-oriented electrical steel sheet very excellent in magnetic properties
US7857915B2 (en) 2005-06-10 2010-12-28 Nippon Steel Corporation Grain-oriented electrical steel sheet extremely excellent in magnetic properties and method of production of same
WO2011007771A1 (en) 2009-07-13 2011-01-20 新日本製鐵株式会社 Method for producing grain-oriented electromagnetic steel plate
JP2011510166A (en) * 2007-12-28 2011-03-31 ポスコ Oriented electrical steel sheet with excellent magnetic properties and method for producing the same
US7976644B2 (en) * 2006-05-24 2011-07-12 Nippon Steel Corporation Method of production of grain-oriented electrical steel sheet with high magnetic flux density
JP5031934B2 (en) * 2010-03-17 2012-09-26 新日本製鐵株式会社 Method for producing grain-oriented electrical steel sheet
US8409368B2 (en) 2009-07-17 2013-04-02 Nippon Steel & Sumitomo Metal Corporation Manufacturing method of grain-oriented magnetic steel sheet
CN103506380A (en) * 2012-06-20 2014-01-15 鞍钢股份有限公司 Production method for reducing thickness of high-carbon spring strip steel decarburized layer
JP2014148723A (en) * 2013-02-01 2014-08-21 Jfe Steel Corp Method of manufacturing oriented electromagnetic steel sheet and primary recrystallization steel sheet for manufacturing oriented electromagnetic steel sheet
JPWO2019013348A1 (en) * 2017-07-13 2020-08-13 日本製鉄株式会社 Grain-oriented electrical steel sheet

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100544616B1 (en) * 2001-12-24 2006-01-24 주식회사 포스코 Method for Manufacturing Grain-Oriented Electrical Steel Sheet with Superior Magnetic Property
US7857915B2 (en) 2005-06-10 2010-12-28 Nippon Steel Corporation Grain-oriented electrical steel sheet extremely excellent in magnetic properties and method of production of same
US7833360B2 (en) 2006-03-07 2010-11-16 Nippon Steel Corporation Method of producing grain-oriented electrical steel sheet very excellent in magnetic properties
US7976645B2 (en) 2006-05-24 2011-07-12 Nippon Steel Corporation Method of production of grain-oriented electrical steel sheet having a high magnetic flux density
WO2007136137A1 (en) 2006-05-24 2007-11-29 Nippon Steel Corporation Process for producing grain-oriented magnetic steel sheet with high magnetic flux density
JP2008001981A (en) * 2006-05-24 2008-01-10 Nippon Steel Corp Process for producing grain-oriented magnetic steel sheet with high magnetic flux density
JP2008001978A (en) * 2006-05-24 2008-01-10 Nippon Steel Corp Process for producing grain-oriented magnetic steel sheet with high magnetic flux density
US7976644B2 (en) * 2006-05-24 2011-07-12 Nippon Steel Corporation Method of production of grain-oriented electrical steel sheet with high magnetic flux density
JP2011510166A (en) * 2007-12-28 2011-03-31 ポスコ Oriented electrical steel sheet with excellent magnetic properties and method for producing the same
WO2010029921A1 (en) 2008-09-10 2010-03-18 新日本製鐵株式会社 Directional electromagnetic steel plate manufacturing method
US8303730B2 (en) 2008-09-10 2012-11-06 Nippon Steel Corporation Manufacturing method of grain-oriented electrical steel sheet
WO2010116936A1 (en) 2009-04-06 2010-10-14 新日本製鐵株式会社 Method for treating steel for directional electromagnetic steel plate and method for producing directional electromagnetic steel plate
US8202374B2 (en) 2009-04-06 2012-06-19 Nippon Steel Corporation Method of treating steel for grain-oriented electrical steel sheet and method of manufacturing grain-oriented electrical steel sheet
WO2011007771A1 (en) 2009-07-13 2011-01-20 新日本製鐵株式会社 Method for producing grain-oriented electromagnetic steel plate
US8366836B2 (en) 2009-07-13 2013-02-05 Nippon Steel Corporation Manufacturing method of grain-oriented electrical steel sheet
US8409368B2 (en) 2009-07-17 2013-04-02 Nippon Steel & Sumitomo Metal Corporation Manufacturing method of grain-oriented magnetic steel sheet
JP5031934B2 (en) * 2010-03-17 2012-09-26 新日本製鐵株式会社 Method for producing grain-oriented electrical steel sheet
CN103506380A (en) * 2012-06-20 2014-01-15 鞍钢股份有限公司 Production method for reducing thickness of high-carbon spring strip steel decarburized layer
JP2014148723A (en) * 2013-02-01 2014-08-21 Jfe Steel Corp Method of manufacturing oriented electromagnetic steel sheet and primary recrystallization steel sheet for manufacturing oriented electromagnetic steel sheet
JPWO2019013348A1 (en) * 2017-07-13 2020-08-13 日本製鉄株式会社 Grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP3488181B2 (en) 2004-01-19

Similar Documents

Publication Publication Date Title
JP2782086B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic and film properties
JP3172439B2 (en) Grain-oriented silicon steel having high volume resistivity and method for producing the same
WO2006132095A1 (en) Grain-oriented magnetic steel sheet with extremely high magnetic property and process for producing the same
KR100442100B1 (en) Method for producing a grain-oriented electrical steel sheet excellent in magnetic properties
JP3488181B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP4673937B2 (en) Method for processing steel for grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
JP2002212639A (en) Method for producing grain oriented silicon steel sheet having excellent magnetic property
EP0484904B1 (en) Process for producing grain-oriented electrical steel sheet having improved magnetic and surface film properties
JP4585144B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP2003003215A (en) Method for producing grain-oriented silicon steel sheet having high magnetic flux density
JPH08100216A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP3369443B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP2514447B2 (en) Manufacturing method of non-oriented electrical steel sheet having excellent magnetic properties and surface properties
JP2002030340A (en) Method for producing grain-oriented silicon steel sheet excellent in magnetic property
JP4206538B2 (en) Method for producing grain-oriented electrical steel sheet
JP4473357B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
WO2008078947A1 (en) Method of manufacturing grain-oriented electrical steel sheets
JP2002129236A (en) Method for stably manufacturing grain oriented silicon steel sheet
JP4267320B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP2653637B2 (en) Method for manufacturing high magnetic flux density grain-oriented electrical steel sheet
JPH06306474A (en) Production of grain-oriented magnetic steel sheet excellent in magnetic property
JPH07258738A (en) Production of grain-oriented magnetic steel sheet having high magnetic flux density
KR20000041670A (en) Method of manufacturing oriented electrical steel sheet of low-temperature slab heating style excellent in coating
JPH09118920A (en) Stable manufacture of grain-oriented magnetic steel sheet excellent in magnetic property
JP2653636B2 (en) Method for manufacturing high magnetic flux density grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030930

R151 Written notification of patent or utility model registration

Ref document number: 3488181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees