KR20000041670A - Method of manufacturing oriented electrical steel sheet of low-temperature slab heating style excellent in coating - Google Patents

Method of manufacturing oriented electrical steel sheet of low-temperature slab heating style excellent in coating Download PDF

Info

Publication number
KR20000041670A
KR20000041670A KR1019980057624A KR19980057624A KR20000041670A KR 20000041670 A KR20000041670 A KR 20000041670A KR 1019980057624 A KR1019980057624 A KR 1019980057624A KR 19980057624 A KR19980057624 A KR 19980057624A KR 20000041670 A KR20000041670 A KR 20000041670A
Authority
KR
South Korea
Prior art keywords
temperature
annealing
steel sheet
slab
oriented electrical
Prior art date
Application number
KR1019980057624A
Other languages
Korean (ko)
Other versions
KR100360101B1 (en
Inventor
이청산
우종수
Original Assignee
이구택
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사 filed Critical 이구택
Priority to KR1019980057624A priority Critical patent/KR100360101B1/en
Publication of KR20000041670A publication Critical patent/KR20000041670A/en
Application granted granted Critical
Publication of KR100360101B1 publication Critical patent/KR100360101B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon

Abstract

PURPOSE: A method of manufacturing an oriented electrical steel sheet of low-temperature slab heating style is provided to have excellent coating and magnetic characteristic at the same time. CONSTITUTION: A silicon steel slab consists of, by weight %: 0.02-0.08% of C, 2.90-3.30% of Si, 0.15-0.30% of Mn, not more than 0.006% of S, 0.010-0.040% of acid soluble Al, not more than 0.006% of N, Fe and incidental impurities. The silicon steel slab is heated at a temperature of 1100-1250°C and hot-rolled. After that, the silicon steel slab is pre-annealed and cold-rolled once to manufacture a cold-rolled sheet. The cold-rolled sheet is decarbonization annealed to have 50-120ppm of nitrogen mass and coated by an annealing separator. The cold-rolled sheet passes through final annealing of process the sheet at a temperature of 550-700°C for 5-20 hours and then at a temperature of 1030-1060°C for 5-15 hours.

Description

피막특성이 우수한 저온 슬라브가열 방식의 방향성전기강판 제조방법Method for manufacturing oriented electrical steel sheet of low temperature slab heating method with excellent film characteristics

본 발명은 저온 슬라브가열에 의한 방향성 전기강판의 제조방법에 관한 것으로, 상세하게는 질소 부하에 의한 1차 재결정립 성장 억제제의 형성량과 마무리 고온소둔 방법을 적절히 제어하여 양호한 유리질 피막(Glass Film)특성과 우수한 자기특성을 동시에 안정하게 얻을 수 있는 방향성 전기강판의 제조방법에 관한 것이다.The present invention relates to a method for producing a grain-oriented electrical steel sheet by low temperature slab heating, and in particular, a good glass film is obtained by appropriately controlling the amount of formation of the primary recrystallization growth inhibitor and the finishing high temperature annealing method under nitrogen loading. The present invention relates to a method for producing a grain-oriented electrical steel sheet capable of stably obtaining characteristics and excellent magnetic properties.

방향성 전기강판은 결정립의 방위가 (110)[001] 방향으로 정렬된 집합조직을 가지고 있으며, 이 제품은 냉간압연방향으로 우수한 자기적 특성을 갖는다. 방향성 전기강판의 자기적 특성은 주로 자속밀도와 철손으로 나타내는데, 자속밀도는 통상 1000A/m의 자장에 의해 철심내에 유기되는 자속밀도, B10으로, 철손은 일정한 주파수, 50Hz 의 교류에 의해 1.7Tesla의 자속밀도가 얻어지도록 할 때 철심내에서 열등으로 낭비되는 에너지손실, W17/50으로 평가하고 있다. 자속밀도가 높은 소재를 사용하게 되면 소형, 고성능의 전기기기의 제작이 가능하게 도며, 철손이 적으면 적을수록 전기 에너지손실을 대폭 줄일 수 있다.A grain-oriented electrical steel sheet has an aggregate structure in which the grain orientations are aligned in the (110) [001] direction, which has excellent magnetic properties in the cold rolling direction. Magnetic properties of oriented electrical steel are mainly represented by magnetic flux density and iron loss. The magnetic flux density is magnetic flux density B 10 induced in the core by the magnetic field of 1000A / m, B10, and iron loss is 1.7Tesla by alternating frequency of 50Hz. The energy loss, W 17/50 , wasted inferiorly within the iron core when the magnetic flux density of is obtained. The use of materials with high magnetic flux density makes it possible to manufacture small and high-performance electrical devices. The less iron loss, the greater the loss of electrical energy.

N.P.Goss에 의해 냉간압연법에 의한 방향성 전기강판의 제조방법이 발명된 이래, 자기특성의 개량을 거듭하여 많은 진보가 있었다. 방향성 전기강판의 연구의 역사는 철손저감 노력의 역사라해도 과언이 아니다. 주요한 개선내용을 보면, 제품의 두께를 얇게 한다든가 또는, 제품에 레이저를 조사하여 자구를 미세하게 하는 방법 등이 있다. 그러나, 이러한 모든 방법들은 소재의 철손특성을 개선하는 방법이며, 낱판을 여러장 겹쳐 철심으로 만든 후의 철손특성은 이외에도 강판과 강판간의 절연성에 의해 크게 좌우된다. 절연성을 향상시키기 위해서는 방향성 전기강판 제조공정중 마무리 고온 소둔시 유리질 피막을 얼마나 양호하게 강판표면에 형성시키는가에 달려있다. 즉, 밀착성과 균일성이 좋고 표면조도가 작은 양호한 유리질 피막은 후속공정에서 추가적으로 도포되는 장력코팅층과 잘 결합하여 우수한 절연성을 발휘하게 된다.Since the invention of the method for producing a grain-oriented electrical steel sheet by cold rolling by N.P.Goss, many improvements have been made in improving magnetic properties. It is no exaggeration to say that the history of research on oriented electrical steel sheet is the history of iron loss reduction efforts. Major improvements include thinning the product, or irradiating a laser to the product to finer the magnetic domain. However, all these methods are methods to improve the iron loss characteristics of the material, and the iron loss characteristics after making several sheets of iron cores are greatly influenced by the insulation between the steel sheets and the steel sheets. In order to improve insulation, it depends on how well the glassy film is formed on the surface of the steel sheet during finishing high temperature annealing during the production of grain-oriented electrical steel sheet. That is, a good glassy film having good adhesion and uniformity and a small surface roughness may be combined with a tension coating layer additionally applied in a subsequent process to exhibit excellent insulation.

한편, 상기 (110)[001] 집합조직은 2차 재결정 현상을 이용하여 얻어지는데, 2차 재결정은 보통의 1차 재결정에 의해 생긴 미세한 결정립들 중에서 특정방위의 결정립, 소위 고스(Goss) 방위라 불리우는 (110)[001]의 방위를 가진 결정립(2차 재결정의 핵)이 시편 전체로 이상성장(Abnormal growth)한 것으로, 이러한 2차 재결정이 완전히 일어나고 그 방향성이 우수할 때 자기특성이 향상되는 것으로 알려져 있다.On the other hand, the (110) [001] texture is obtained by using a secondary recrystallization phenomenon. Secondary recrystallization is a grain of a specific orientation, which is called a Goss orientation, among the fine grains produced by ordinary primary recrystallization. Abnormal growth of grains (nuclei of secondary recrystallization) with an orientation of (110) [001] is called, and the magnetic properties are improved when such secondary recrystallization occurs completely and its orientation is excellent. It is known.

2차 재결정을 안정화하기 위해서는 1차 재결정립들의 크기가 균일함과 동시에 1차 재결정립들의 방위(이후 '1차 재결정 집합조직'으로 칭함)가 2차 재결정의 핵에 잘 잠식될 뿐만 아니라 2차 재결정의 성장과정에서 2차 재결정이 이상적인 [001] 방향을 고수하는데, 즉 우수한 방향성을 갖는 2차 재결정립을 발달시키는데 유리한 것이어야 하는 것으로 알려져 있다. 이러한 목적을 달성하기 위해서는 적절한 합금설계 및 이에 따른 적절한 공정 제어가 필요하다.In order to stabilize the secondary recrystallization, the primary recrystallized grains are uniform in size, and the orientation of the primary recrystallized grains (hereinafter referred to as 'primary recrystallized aggregate') is not only encroached on the nucleus of the secondary recrystallization but also the secondary. It is known that in the process of recrystallization, secondary recrystallization adheres to the ideal [001] direction, i.e., it should be advantageous to develop secondary recrystallized grains with good directionality. To achieve this goal, proper alloy design and appropriate process control are therefore required.

또한, 이에 못지 않게 중요한 것으로 2차 재결정이 일어나기 전까지 1차 재결정립의 성장을 억제하는 것이 필요하다. 이를 위한 입성장 억제제로는 MnS, MnSe, AlN, Cu2S 등과 같은 석출물이 알려져 있으며, 일반적으로 상기 석출물에 의한 입성장 억제력이 강할수록 2차 재결정이 안정화된다. 그러나, 강한 입성장 억제력을 얻기 위해서는 석출물의 양 및 크기 그리고, 분포를 잘 제어해야 하는데, 수백 내지 2000Å 크기의 미세한 석출물들이 가능한 한 많은 양 균일하게 분포되면 이에 상응하여 입성장 억제력이 증가하는 것으로 알려져 있다.Equally important, it is necessary to suppress the growth of primary recrystallized grains before secondary recrystallization occurs. As a grain growth inhibitor for this, precipitates such as MnS, MnSe, AlN, Cu 2 S, and the like are known. In general, the stronger the grain growth inhibitory effect of the precipitates, the more stable the secondary recrystallization. However, in order to obtain strong grain growth inhibition, the amount, size, and distribution of the precipitates should be well controlled, and it is known that the grain growth inhibitory force increases accordingly if the fine precipitates of several hundred to 2000 microns are uniformly distributed as much as possible. have.

이러한 적절한 석출물분포제어를 위해 재래식 방향성 전기강판 제조의 경우는 제강단계에서 적정량의 석출물 형성원소를 첨가하고, 연속주조후 슬라브내에 형성된 조대한 석출물을 슬라브가열에 의해 완전히 고용시키고, 후속되는 열간압연공정에서 석출물들이 미세하고 균일하게 분포되도록 제어하는데 비중을 두고 있다. 이를 위해, 상기 재래식 공정에서는 1400℃ 정도에서 5시간 정도의 슬라브 가열을 실시해야 하는 바, 이때 고온의 슬라브 표면에서는 공기와의 산화반응으로 Si 및 Fe 가 복합된 파얄라이트(Fayalite)라는 산화물이 형성되며 이 산화물은 융점이 낮아 슬라브 표면온도가 1330℃ 정도만 되어도 표면에서부터 쇳물이 녹아내리는 현상이 발생한다. 이때, 녹아내리는 쇳물(Slag)은 외측으로 흘러내리게 설계되어 있지만 일부는 가열로내의 지지대 등에 축적되어 작업종료시 응고 스케일 제거 등을 위한 내부보수를 필요로 하게 되어, 연속작업을 특징으로 하는 제철소에서는 작업성 불량, 생산성감소, 원가상승 등의 상당한 비용부담을 안게 된다. 따라서, 슬라브가 녹지 않는 온도인 1320℃ 이하의 온도에서 슬라브를 가열하는 것이 가능하다면 매우 큰 이익을 기대할 수 있다.In the case of conventional grain-oriented electrical steel sheet manufacturing for proper control of the precipitate distribution, an appropriate amount of precipitate forming element is added in the steelmaking step, and the coarse precipitate formed in the slab after continuous casting is completely dissolved by slab heating, followed by a hot rolling process. The emphasis is on controlling the precipitates to be finely and uniformly distributed. To this end, in the conventional process, the slab heating should be performed at about 1400 ° C. for about 5 hours. At this time, the surface of the hot slab is formed of an oxide called Payalite, in which Si and Fe are mixed by oxidation with air. The oxide has a low melting point, so that even when the slab surface temperature is about 1330 ° C, the molten metal melts from the surface. At this time, the molten slag is designed to flow outward, but part of it accumulates in the support in the furnace and requires internal repair to remove the solidification scale at the end of the work. There are significant cost burdens such as poor performance, reduced productivity, and higher costs. Therefore, if it is possible to heat the slab at a temperature of 1320 ° C. or less, which is a temperature at which the slab does not melt, very large profits can be expected.

슬라브 가열온도를 낮추기 위한 노력은 선진제조사를 중심으로 총력적으로 경주되고 있으며, 주로 기본성분계의 조정, 즉 저온슬라브 가열시에도 석출물의 고용을 가능하게 하는 입성장억제제의 선정으로 슬라브 가열 및 열간압연공정에서 석출물을 제어하는 기존 고온 슬라브 가열방식과는 달리 저온가열방식의 경우는 후속공정에서 부가적인 석출물 관리를 실시하는 것을 특징으로 하는 기법이 공지되고 있다.Efforts to lower the slab heating temperature have been intensively focused on advanced manufacturers, and slab heating and hot rolling are mainly carried out by adjusting the basic component system, that is, selecting grain growth inhibitors that enable the employment of precipitates even during low temperature slab heating. Unlike the existing high temperature slab heating method that controls the precipitate in the process, the low temperature heating method is known to perform additional precipitate management in the subsequent process is known.

즉, 석출물을 형성시키는데 있어서 소강성분에 포함되어 있는 원소들에 전적으로 의존하는 것이 아니라, 제조공정중의 적당한 곳에서 석출물을 만들어 주는 기술들이 공지되고 있다. 이러한 방법으로는 일본 특허공보(평) 1-230721호 및 일본특허공보(평)1-283324 호에 제시된 질화처리방법이 알려져 있다.In other words, there are known techniques for forming a precipitate at a suitable place in the manufacturing process, rather than depending entirely on the elements included in the steel composition in forming the precipitate. As such a method, the nitriding treatment method disclosed in Japanese Patent Laid-Open No. 1-230721 and Japanese Patent Laid-Open No. 1-2-283324 is known.

상기 질화처리방법에는 질화능이 있는 화합물을 함유하는 소둔분리재를 강판에 도포하는 것, 고온소둔공정의 승온기간동안 질화능이 있는 가스를 분위기 가스로 이용하는 것, 탈탄공정에서 균열처리후 질화능이 있는 가스분위기로 강판을 질화하는 것 등이 있다.The nitriding treatment method includes applying an annealing separator containing a compound having nitriding ability to a steel sheet, using a nitriding gas as an atmospheric gas during an elevated temperature of a high temperature annealing process, and a nitriding gas after cracking in a decarburization process. Nitriding a steel plate in an atmosphere, etc. are mentioned.

이들 방법중에 상업화에 적용된 기술은 적정량의 질소를 강판내 부화(이하 '침질' 이라 칭함)하고 후속되는 고온소둔중 상기 침질에 의해 형성된 AlN 등의 질화 석출물이 강판내 균일하게 분포되도록 하여 적절한 입성장 억제력을 확보함으로서, 2차 재결정을 안정화하는 것이다. 따라서, 이는 침질후 강판내 형성되는 총질소량이 엄밀하게 제어하는 것을 전제로 하는 것이며, 이때의 적정 총질소량은 150-350ppm 정도인 것으로 알려져 있다.Among these methods, the technology applied to commercialization is appropriate grain growth by incubating an appropriate amount of nitrogen in the steel sheet (hereinafter referred to as 'precipitation') and allowing the nitride precipitates such as AlN formed by the deposition during subsequent high temperature annealing to be uniformly distributed in the steel sheet. By securing the restraining force, the secondary recrystallization is stabilized. Therefore, this is based on the premise of strictly controlling the total nitrogen amount formed in the steel sheet after sedimentation, and the appropriate total nitrogen amount at this time is known to be about 150-350 ppm.

그러나, 이 경우는 상기 침질로 인해 마무리 고온소둔후 우수한 유리질 피막을 얻기 어려운 문제점이 있다. 즉, 상기 질화석출물을 구성하는 질소는 마무리 고온소둔시 2차 재결정이 완료되는 온도에 도달한 후부터는 분해되어 N2가스 형태로 되고, 순화(Purification)처리 고온균열을 포함한 이후 고온소둔 진행과정에서 강판 외부로 빠져나오게 된다. 이때, N2의 방출은 이전까지 형성된 산화층이나 초기 유리질 피막이 균일하지 않게 되면, 통상 기형성 피막중 약한 부위에서 불균일하게 방출되어 강판 표면에 육안으로 식별할 수 있는 N2의 방출구 결함(직경이 0.1-1mm 정도인 원형의 기지금속 노출부)을 다량 발생시킨다. 이러한 결함은 결국 절연성 및 밀착성 등 마무리 고온소둔후 형성된 최종 유리질 피막의 특성을 매우 불량하게 하는 요인이 된다.However, in this case, there is a problem that it is difficult to obtain an excellent glassy film after finishing high temperature annealing due to the deposition. That is, the nitrogen constituting the nitride precipitate is decomposed to form a N 2 gas after reaching the temperature at which the secondary recrystallization is completed at the time of finishing high temperature annealing, and the steel sheet in the process of high temperature annealing after purifying high temperature cracking Will come out. At this time, when the oxide layer or the initial vitreous coating formed before is not uniform, the release of N 2 is usually unevenly released at a weak portion of the teratogenic coating, and the N 2 discharge defect (diameter of which can be visually identified on the surface of the steel sheet) A large amount of circular base metal exposed parts of about 0.1-1 mm) are generated. This defect eventually causes very poor characteristics of the final glass coating formed after finishing high temperature annealing such as insulation and adhesion.

실제적으로 탈탄소둔시 형성되는 산화층이나 고온소둔 초기에 형성되는 초기 유리질 피막을 균일하게 만드는 것은 어렵기 때문에 상기 공지기술에 의한 제조방법의 경우는 양호한 유리질 피막을 얻기 어려운 것으로 알려져 있다.In practice, it is known that it is difficult to obtain a good glassy film in the case of the manufacturing method according to the above-mentioned known technology because it is difficult to uniformly make the oxide layer formed upon decarbonization or the initial glassy film formed at the beginning of high temperature annealing.

본 발명자들은 상기한 문제점을 해결하기 위해, 탈탄소둔공정에서 침질하는 총질소량과 마무리소둔공정에서 N2의 방출구 결함과의 상관관계에 대한 끊임없이 연구한 결과, 피막결함를 방지하기 위해서는 총질소량을 대폭 줄이는 것이 필요하다는 것을 밝힐 수 있었으나, 만일 총질소량을 줄이면 입성장억제량이 미흡하여 2차재결정의 불안정해지는 것을 실험을 통해 확인할 수 있었다. 따라서, 본 발명자들은 침질과정에서 총질소량을 줄이면서도 입성장억제력을 보완할 수 있는 방안을 계속적인 연구와 실험을 통해 강구하고 그 실험결과에 기초하여 본 발명을 제안하게 이르렀다.In order to solve the above problems, the present inventors have continually studied the correlation between the total nitrogen amount deposited in the decarbonization annealing process and the defect of the N 2 outlet in the finishing annealing process. It was found that it is necessary to reduce, but if the total nitrogen is reduced, the experiment shows that the amount of grain growth inhibition is insufficient and the second recrystallization becomes unstable. Therefore, the present inventors have devised a way to complement the grain growth inhibition while reducing the total nitrogen in the process of sedimentation through continuous research and experiments and came up with the present invention based on the experimental results.

본 발명은 탈탄공정에서 침질하는 방법으로 저온 스라브 가열을 가능하게 하는 방향성 전기강판의 제조방법에 있어, 침질후 부하된 총질소량을 적정량으로 제어하고 고온소둔의 승온중 적정온도에서 균열처리함으로써 우수한 피막특성과 동시에 기존방법에 필적하는 자기특성을 갖는 저온슬라브 가열방식의 방향성 전기강판 제조방법을 제공하는데, 그 목적이 있다.The present invention is a method of manufacturing a grain-oriented electrical steel sheet that enables low-temperature slab heating by the method of sedimentation in the decarburization process, by controlling the total amount of nitrogen loaded after sedimentation to an appropriate amount, and excellent coating by cracking at an appropriate temperature during the elevated temperature To provide a method for producing a grain-oriented electrical steel sheet of low-temperature slab heating method having a magnetic property comparable to the existing method at the same time, the object is.

상기 목적을 달성하기 위한 본 발명의 방향성 전기강판의 제조방법은, 중량%로, C:0.02∼0.08%, Si:2.90∼3.30%, Mn:0.15-0.30%, S:0.006%이하, 산가용성 Al:0.010∼0.040%, N:0.006%이하, 나머지 Fe 및 기타 불가피하게 함유되는 불순물로 이루어는 규소강 슬라브를 1100∼1250℃의 온도로 가열하는 단계;Method for producing a grain-oriented electrical steel sheet of the present invention for achieving the above object, by weight, C: 0.02 to 0.08%, Si: 2.90 to 3.30%, Mn: 0.15-0.30%, S: 0.006% or less, acid solubility Heating a silicon steel slab composed of Al: 0.010 to 0.040%, N: 0.006% or less, and remaining Fe and other unavoidable impurities to a temperature of 1100 to 1250 ° C;

가열된 슬라브를 연간압연한 다음, 예비소둔한 후 1회의 냉간압연에 의해 냉연판을 만드는 단계;Rolling the heated slabs annually and then pre-annealing to form a cold rolled sheet by one cold rolling;

이 냉연판의 총질소량이 50∼120ppm이 되도록 침질과 탈탄소둔하는 단계;Immersing and decarbonizing annealing so that the total nitrogen of the cold rolled sheet is 50 to 120 ppm;

소둔분리제를 도포하는 단계; 및Applying an annealing separator; And

550∼700℃ 의 온도에서 5∼20시간 1차 균열하고, 1030∼1060℃ 온도에서 5∼15시간 2차 균열하는 마무리소둔하는 단계;를 포함하여 구성된다.And a primary annealing at 5 to 20 hours at a temperature of 550 to 700 ° C. and a secondary crack at 5 to 15 hours at a temperature of 1030 to 1060 ° C .;

이하, 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명은 탈탄소둔공정에서 침질에 의한 총질소량을 약 120ppm 이하로 제어하면서 부족한 입성장 억제력을 고온소둔시의 열처리 싸이클의 영향에 주목하여 2차 재결정의 안정화에 기여할 수 있는 최적의 열처리를 적용함으로써, 유리질 피막의 특성향상과 동시에 2차 재결정의 안정화라는 2가지 목표를 동시에 달성하는데, 그 특징이 있다. 이러한 본 발명은 규소강의 성분과 제조공정의 유기적인 결합으로 달성되는 바, 이를 다음에서 세분하여 설명한다.In the present invention, by controlling the total nitrogen amount by sedimentation in the decarbonization annealing process to about 120ppm or less, by applying the optimum heat treatment that can contribute to the stabilization of the secondary recrystallization by paying attention to the effect of the heat treatment cycle during the high temperature annealing, insufficient grain growth inhibition In addition, the two objectives of improving the properties of the glassy coating and stabilizing the secondary recrystallization are simultaneously achieved. The present invention is achieved by organic bonding of the components of the silicon steel and the manufacturing process, which will be described in detail below.

[규소강 슬라브성분][Silicon Steel Slab Components]

C는 0.02% 미만의 경우 슬라브 가열시 결정립들이 조대 성장하여 최종 고온소둔시 2차 재결정의 발달이 불안정해지므로 좋지 않으며, 0.08%를 초과하면 탈탄소둔에 장시간이 소요되어 바람직하지 않다.C is not good at less than 0.02% because the grains grow coarsely upon heating the slab and the development of secondary recrystallization is unstable at the time of the final high temperature annealing.

Si는 2.90% 미만인 경우 우수한 철손특성이 얻어지지 않으며, 3.30%를 초과하는 경우는 냉간압연성이 열화되므로 바람직하지 않다.If Si is less than 2.90%, excellent iron loss characteristics are not obtained, and if it is more than 3.30%, cold rolling property is deteriorated, which is not preferable.

Mn은 슬라브에 오스테나이트를 형성하여 AlN의 고용을 용이하게 하는 원소로 0.15% 미만으로 첨가될 경우 오스테나이트의 형성량이 너무 적게 되므로 좋지 않으며, 0.30%을 초과하는 경우 압연시 롤하중(Roll force)이 너무 증가하여 판형상이 불균일해지므로 좋지 않다.Mn is an element that forms austenite in the slab to facilitate the solid solution of AlN. When Mn is added below 0.15%, Mn is not good because the amount of austenite is too small, and when it exceeds 0.30%, the roll load during rolling This is not good because it increases too much and the plate shape becomes uneven.

S은 과도하게 첨가하면 슬라브 중심부의 S편석이 심해져 이를 균질화하는데 본 발명범위 이상의 온도로 슬라브를 가열해야 하므로 0.006% 이하로 함유되도록 하는 것이 바람직하다.When S is excessively added, the S segregation in the center of the slab becomes severe and homogenizes it, so it is preferable to contain S by 0.006% or less since the slab must be heated to a temperature above the present invention.

산가용성 Al은 AlN석출물의 형성에 필요한 원소이다. 산가용성 Al은 0.010% 미만인 경우 2차 재결정의 방향성이 열화 되어 자속밀도가 저하되며, 0.040%를 초과하면 2차 재결정의 발달이 불안정해지므로 좋지 않다.Acid-soluble Al is an element necessary for the formation of AlN precipitates. If the acid-soluble Al is less than 0.010%, the direction of the secondary recrystallization deteriorates and the magnetic flux density is lowered. If the acid-soluble Al exceeds 0.040%, the development of the secondary recrystallization becomes unstable.

N은 탈탄소둔시 침질과정에서 보강하여 이용하므로 용해시 불순물로 들어갈 수 있는 양이면 충분하다. 그러나 0.006%를 초과하는 경우에는 Al 과 반응하여 조대한 AlN을 형성하여 2차 재결정이 불안정해지므로 바람직하지 않다.Since N is used in reinforcing process during the decarbonization annealing, an amount sufficient to enter impurities during dissolution is sufficient. However, if it exceeds 0.006%, the secondary recrystallization becomes unstable because it reacts with Al to form coarse AlN, which is not preferable.

본 발명의 강성분은 이상과 같으며 나머지 Fe로 구성되는데, 제강시 고철등 원재료로부터 혼입되는 불가피한 원소들(P, Cu, Cr, Ni, B, Ti, Nb, V등)의 경우 미량 함유되어도 무방하다.The steel component of the present invention is as described above and is composed of the remaining Fe, even in the case of unavoidable elements (P, Cu, Cr, Ni, B, Ti, Nb, V, etc.) mixed from raw materials such as scrap steel during steelmaking It's okay.

[제조공정][Manufacture process]

전술한 강 성분으로 구성된 규소강 슬라브의 가열온도는 저온재가열하는데, 바람직하게는 1100-1250℃에서 행하는 것이다. 이는 1100℃ 미만인 경우 열간압연시 롤하중(Roll Force)이 과다하게 되어 판형상 제어가 다소 어렵게 되므로 바람직하지 않으며, 1250℃를 초과하는 온도에서는 강 표면의 산화스케일(Scale)양이 늘어나게 되므로 바람직하지 않다. 이러한 슬라브의 두께는 너무 얇으면 열간압연 생산성이 떨어지고 너무 두꺼우면 슬라브 가열시간이 길어져야 하므로 150∼350mm 로 제어하는 것이 바람직하다.The heating temperature of the silicon steel slab comprised of the above-mentioned steel component is low-temperature reheating, Preferably it is performed at 1100-1250 degreeC. This is not preferable because the roll force during hot rolling is less than 1100 ° C., which makes it difficult to control the plate shape. It is not preferable because the amount of scale on the steel surface increases at temperatures exceeding 1250 ° C. not. If the thickness of the slab is too thin, hot rolling productivity is reduced, if the slab is too thick, the slab heating time should be long, so it is preferable to control the slab to 150 ~ 350mm.

이후, 통상의 열간압연으로 후속의 최종 냉간압연두께를 고려하여 보통 1.5∼2.6mm 의 두께의 열간압연판으로 만든다.After that, the hot rolled sheet having a thickness of 1.5 to 2.6 mm is usually made in consideration of the subsequent final cold rolled thickness by ordinary hot rolling.

상기 열간압연판의 예비소둔은 산세성 향상과 AlN의 조대화 방지를 위해 850∼1150℃ 의 온도에서 30초∼10분간 실시하는 것이 바람직하다. 본 발명범위 미만의 가열온도 및 시간에서는 산세가 용이한 피막형성이 곤란하여 산세공정 소요시간이 증가하므로 바람직하지 않으며, 본 발명범위를 초과하는 가열온도 및 시간에서 AlN 의 조대화로 2차 재결정이 불안정해지므로 좋지 않다.The pre-annealing of the hot rolled sheet is preferably carried out for 30 seconds to 10 minutes at a temperature of 850 ~ 1150 ℃ to improve pickling properties and to prevent coarsening of AlN. At the heating temperature and time less than the present invention, it is not preferable because the film formation that is easy to pickling is difficult and the time required for the pickling process is increased. Not good because it becomes unstable.

상기 예비소둔한 열간압연판을 산세하고, 1회의 냉간압연으로 최종두께로 조정된다. 이때 최종 냉연된 강판의 두께는 0.23mm 미만의 경우는 2차 재결정이 잘 발달되지 않으며, 0.35mm 를 초과하는 경우는 우수한 철손특성이 얻어지지 않으므로 바람직하지 않다.The preannealed hot rolled sheet is pickled and adjusted to the final thickness by one cold rolling. At this time, the thickness of the final cold-rolled steel sheet is less than 0.23mm secondary recrystallization is not well developed, if it exceeds 0.35mm it is not preferable because excellent iron loss characteristics are not obtained.

냉간압연하여 얻은 냉연판의 탈탄소둔공정은 균일한 1차 재결정조직의 형성과 잔류 탄소량을 30ppm 이하로 제어하기 위한 탈탄 및 총질소량을 50-120ppm 로 제어하기 위한 침질을 위해 실시되는데, 소둔온도는 700-950℃로 하는 것이 바람직하다. 이는 소둔온도가 700℃ 미만이거나 소둔시간이 30초 미만의 경우는 잔류탄소량을 허용치 이하로 낮추기 어렵게 되며, 950℃를 초과하는 온도이거나 10분을 초과하는 소둔시간에서는 강판 표면층의 결정립이 조대화되어 2차 재결정이 불안정해지므로 바람직하지 않다. 또한, 탈탄소둔시 분위기 가스의 이슬점이 30℃ 미만이면 탈탄이 불충분하게 되며, 70℃를 초과하는 경우는 강판표면에 불균일한 산화층이 형성되어 양호한 유리질 피막이 얻어지지 않으므로 바람직하지 않다. 탈탄소둔시 침질방법은 탈탄과 침질량이 제어되는 조건이라면, 탈탄이 적정수준으로 완료된 후 침질을 행하는 방식과 탈탄과 동시에 소둔 초기부터 침질을 행하는 방식의 어떤 것도 적용할 수 있다. 이때, 분위기가스로는 적정수준의 탈탄 및 본 발명범위의 침질을 동시에 가능하게 하는 어떠한 혼합분위기도 사용할 수 있으나, 바람직하게는 공업적으로 침질량의 제어가 용이한 습윤 암모니아 + 수소 + 질소의 혼합가스 분위기를 사용하는 것이 좋다.The decarburization annealing process of cold rolled plate obtained by cold rolling is carried out for formation of uniform primary recrystallization structure, decarburization to control residual carbon content below 30ppm and sedimentation to control total nitrogen amount to 50-120ppm. It is preferable to set it as 700-950 degreeC. It is difficult to reduce the residual carbon to below the allowable value when the annealing temperature is less than 700 ° C or the annealing time is less than 30 seconds, and the grains of the surface layer of the steel sheet are coarsened at the annealing time exceeding 950 ° C or more than 10 minutes. This is undesirable because secondary recrystallization becomes unstable. Further, if the dew point of the atmospheric gas during decarbonization annealing is less than 30 ° C, decarburization is insufficient, and if it is above 70 ° C, a nonuniform oxide layer is formed on the surface of the steel sheet, which is not preferable because a good glassy film is not obtained. In the case of decarbonization annealing, if decarburization and sedimentation mass are controlled, any method of decarburization after completion of decarburization to an appropriate level and method of deburring at the same time as annealing can be applied. At this time, the atmosphere gas may be any mixed atmosphere that enables the decarburization of the appropriate level and the sedimentation of the present invention at the same time, but preferably a mixed gas of wet ammonia + hydrogen + nitrogen for industrial control of the sediment mass easily. It is good to use the atmosphere.

본 발명의 특징중 하나인 침질에 의한 강판내 총질소량의 제어는 총질소량이 50ppm 미만인 경우는 AlN 등 질화석출물의 양이 부족하게 되어 2차 재결정이 불안정해지므로 바람직하지 않으며, 120ppm을 초과하는 경우는 고온소둔시 질소 방출구 결함의 발생으로 인해 유리질 피막이 불량해지므로 바람직하지 않다.One of the characteristics of the present invention, the control of the total nitrogen in the steel sheet by immersion is not preferable when the total nitrogen is less than 50ppm because the amount of nitride precipitates such as AlN is insufficient and the second recrystallization becomes unstable, and exceeds 120ppm Is not preferable because the glass coating is poor due to the occurrence of nitrogen outlet defects during high temperature annealing.

상기 탈탄소둔판은 하기 고온소둔시 판간 융착을 방지하기 위해 통상의 소둔분리제면 가능한데, 예를 들면, 중량%로, 5% 이하의 TiO2를 함유한 MgO 슬러리를 강판 표면에 도포한 후 마무리 고온소둔한다.The decarbonized annealing plate may be a conventional annealing separator in order to prevent interplate fusion at high temperature annealing, for example, by weight MgO slurry containing 5% or less of TiO 2 on the surface of the steel sheet after finishing high temperature Anneal.

마무리 고온소둔시 승온율은 적절한 1차 재결정 집합조직을 형성시키고 2차 재결정을 완전히 일으키기 위해 10-50℃/hr로 제어해야 한다. 고온소둔의 분위기가스로는 유리질 피막 형성과 N, S 등 잔류불순물을 제거하기 위해 건조한 수소 또는 수소 및 질소의 혼합가스를 사용하는 것이 바람직하다. 고온균열을 1150℃ 미만의 온도에서 행하거나 5시간 미만으로 균열하는 경우는 양호한 유리질 피막형성과 원활한 불순물 제거가 어려워지며, 1250℃ 를 초과하는 온도나 30시간을 초과하여 균열하는 경우는 비경제적이므로 본 발명의 범위에서 제외하였다.The temperature rise rate during finishing hot annealing should be controlled at 10-50 ° C./hr to form an appropriate primary recrystallization texture and to completely induce secondary recrystallization. As an atmospheric gas for high temperature annealing, it is preferable to use dry hydrogen or a mixed gas of hydrogen and nitrogen in order to form a glassy film and to remove residual impurities such as N and S. If the high temperature cracking is performed at a temperature of less than 1150 ° C. or cracked for less than 5 hours, it is difficult to form a good glass film and smoothly remove impurities. If the temperature is higher than 1250 ° C. or cracked for more than 30 hours, it is uneconomical. Excluded from the scope of the present invention.

상기 고온소둔 승온중 1차 균열온도가 550℃ 미만이거나 1차 균열시간이 5시간 미만의 경우는 1차 균열처리시 상기 침질소둔시 형성된 질화물이 강판내 균일하게 분포되지 않아 적절한 입성장 억제력을 얻을 수 없게 되어 2차 재결정이 불안정해지므로 바람직하지 않다. 또한, 700℃를 초과하는 경우는 코일상태로 고온소둔시 잔존수분에 의해 형성되는 산화층의 양이 과다하고 산화층이 불균일해지는 결과, 유리질 피막이 불량하게 형성되므로 좋지 않으며, 또한 20시간을 초과하는 1차 균열은 자기특성에는 지장이 없으나 비경제적이므로 본 발명범위에서 제외하였다.If the primary cracking temperature is below 550 ° C. or the primary cracking time is less than 5 hours during the high temperature annealing, the nitride formed during the nitriding annealing during the primary cracking process is not uniformly distributed in the steel sheet to obtain appropriate grain growth inhibition. It is not preferable because it becomes impossible and secondary recrystallization becomes unstable. In addition, when the temperature exceeds 700 ° C, the amount of the oxide layer formed by the residual moisture during the high temperature annealing in the coil state becomes excessive, and the oxide layer becomes uneven, which is not good because the glassy film is poorly formed, and it is not necessary for the primary to exceed 20 hours. The crack is not impaired in the magnetic properties, but is excluded from the scope of the invention because it is uneconomic.

본 발명의 특징중 또 하나인 고온소둔 승온중 2차 균열처리는 탈탄소둔 공정에서 공지방법에 비해 적은 양으로 침질하는 경우 반드시 행해져야 한다.The secondary crack treatment during annealing at a high temperature, which is one of the characteristics of the present invention, must be performed when sedimenting in a small amount compared to the known method in the decarbonization annealing process.

본 발명자들은 수 많은 시험결과, 2차 균열은 방향성이 우수한 2차 재결정 조직의 핵생성 관점에서 매우 중요하며, 적정 조건으로 2차 균열할 경우 탈탄소둔공정에서 공지방법에 비해 적은 양으로 침질을 하더라도 2차 재결정이 안정화될 뿐만 아니라 그 방향성이 향상되는 결과, 기존방법에 필적하는 자기특성이 얻어짐을 확인할 수 있었다.As a result of numerous tests, the present inventors have found that secondary cracks are very important from the viewpoint of nucleation of secondary recrystallized tissue having excellent directionality. As well as the stabilization of the secondary recrystallization is improved as a result, it can be confirmed that the magnetic properties comparable to the conventional method is obtained.

2차 균열 온도가 1030℃ 미만의 경우는 방향성이 우수한 2차 재결정의 핵이 생성되지 않아 우수한 자기특성을 얻을 수 없으며, 1060℃를 초과하는 2차 균열의 경우는 질화석출물의 분해가 급속히 일어나기 시작하여 2차 재결정이 불안정해지므로 바람직하지 않다.If the secondary crack temperature is less than 1030 ℃, the core of the secondary recrystallization with excellent orientation is not generated, excellent magnetic properties can not be obtained, and in the case of the secondary crack exceeding 1060 ℃, decomposition of the nitride precipitate starts to occur rapidly This is undesirable because secondary recrystallization becomes unstable.

2차 균열시간이 5시간 미만의 경우는 코일상태의 소둔시 코일 내권부와 외권부간 온도편차로 인해 2차 재결정의 방향성 개선효과가 미약하여 우수한 자속밀도를 안정하게 얻을 수 없으며, 15시간을 초과하는 2차 균열은 자기특성의 향상 효과가 그다지 크지 않은데 반해 생산성 저하가 심하게 되는 만큼 바람직하지 않다.If the secondary cracking time is less than 5 hours, the directional improvement effect of the secondary recrystallization is insignificant due to the temperature deviation between the inner coil and outer coil of the coil during annealing in coil state, so that excellent magnetic flux density cannot be stably obtained. Excessive secondary cracks are not desirable as the effect of improving the magnetic properties is not so great, but the productivity decrease is severe.

상기 고온소둔에 의해 유리질 피막이 형성된 코일표면에는 절연성 향상과 자구미세화에 의한 철손개선의 목적으로 고온소둔후 장력부여 코팅을 하여도 좋다.The coil surface on which the glassy film is formed by the high temperature annealing may be subjected to a tension-coating coating after the high temperature annealing for the purpose of improving the insulation and improving the iron loss due to the finer microstructure.

이하, 본 발명을 실시예를 통해 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예 1]Example 1

중량%로, C:0.05%, Si:3.15%, Mn:0.23%, S:0.006%, 산가용성 Al:0.027%, N:0.003% 및 나머지 Fe 로 조성된 210mm 두께의 슬라브를 제조하였다. 이것을 1200℃에서 5시간 슬라브 가열후 열간압연을 하여 2.3mm 두께의 열연코일을 만들었다. 그 다음 930℃에서 2분간 예비소둔 및 산세하고 이어서 1회 냉간압연하여 0.285mm의 최종 두께로 조정한 후, 이슬점이 50℃인 25%H2+75%N2분위기로 850℃에서 3분간 탈탄소둔을 하였으며, 연이어 건조한 1%NH3+25%H2+74%N2분위기로 동일한 온도에서 침질하였다. 이때 침질시간은 강판내 총질소량을 하기 표 1과 같이 변화시키기 위해 30초-3분간의 범위에서 변화하였다. 이후 중량%로, 5%TiO2및 나머지 MgO 로 구성된 소둔분리제를 강판 표면에 도포한 다음 마무리 고온소둔하였다. 이때 상기 고온소둔은 하기 표 1에 나타낸 바와 같이 상기 침질소둔시 형성된 질화물을 강판내 균일하게 분포시키기 위한 1차 균열과, 방향성이 우수한 2차 재결정 핵생성을 촉진하여 2차 재결정을 안정화하기 위한 2차 균열 조건을 변화하여 행하였다. 이후 2차 재결정을 일으키기 위해 15℃/hr의 승온율로 1200℃까지 승온하고 불순물 제거를 위해 상기 온도에서 10시간 균열후 냉각하였으며, 승온중 분위기개스로는 25%N2+75%H2를 사용하고, 1200℃ 균열구간에서는 순수소 가스를 사용하였다. 상기와 같이 강판내 총질소량을 변화하고 마무리 소둔중 1차 및 2차 균열시 각 균열온도 및 시간을 변화한 시편들에 대하여 2차 재결정 발달율, 자기특성을 측정하고, 또한 강판표면의 유리질 피막 형성상태를 육안으로 관찰한 결과를 하기 표 1에 나타내었다. 여기서 2차 재결정 발달율은 고온소둔 종료후 강판표면을 약 80℃의 20% 염산용액으로 부식하여 노출한 마크로(Macro) 조직을 관찰한 결과이며, 자기특성은 단판자성측정기로 B10과 W17/50을 측정하였다.By weight%, a 210 mm thick slab composed of C: 0.05%, Si: 3.15%, Mn: 0.23%, S: 0.006%, acid soluble Al: 0.027%, N: 0.003% and the remaining Fe was prepared. This was heated for 5 hours at 1200 ℃ slab and hot rolled to make a hot rolled coil of 2.3mm thickness. Then preannealed and pickled for 2 minutes at 930 ° C, followed by cold rolling once to adjust to a final thickness of 0.285 mm, followed by decarburization at 850 ° C for 3 minutes at 25% H 2 + 75% N 2 atmosphere with a dew point of 50 ° C. Annealing was performed, followed by immersion at the same temperature in a dry 1% NH 3 + 25% H 2 + 74% N 2 atmosphere. At this time, the soaking time was changed in the range of 30 seconds to 3 minutes to change the total nitrogen in the steel sheet as shown in Table 1 below. Thereafter, by weight percent, an annealing separator composed of 5% TiO 2 and the remaining MgO was applied to the surface of the steel sheet, followed by finishing hot annealing. In this case, the high temperature annealing may be performed to stabilize the secondary recrystallization by promoting primary cracking to uniformly distribute the nitride formed during the nitriding annealing in the steel sheet and secondary recrystallization having excellent directionality, as shown in Table 1 below. Different crack conditions were performed. Thereafter, the temperature was raised to 1200 ° C. at a temperature increase rate of 15 ° C./hr to cause secondary recrystallization, and cooled after cracking at the temperature for 10 hours to remove impurities. 25% N 2 + 75% H 2 was added as an atmosphere gas during the temperature increase. Pure hydrogen gas was used in the crack section of 1200 degreeC. As described above, the secondary recrystallization rate and magnetic properties were measured for the specimens of which the total nitrogen content in the steel sheet was changed and the cracking temperature and time were changed during the first and second cracking during finishing annealing, and the glass film was formed on the surface of the steel sheet. The results of visual observation of the state are shown in Table 1 below. The secondary recrystallization rate is the result of observing the macrostructure exposed by corrosion of the steel plate surface with 20% hydrochloric acid solution of about 80 ℃ after the end of high temperature annealing, and the magnetic properties of B 10 and W 17 / 50 was measured.

구분division 총질소량(ppm)Total nitrogen (ppm) 마무리소둔중1차 균열조건Primary crack condition during finish annealing 마무리소둔중2차 균열조건Second crack condition during finish annealing 2차재결정 발생율Secondary recrystallization rate 유리질 피막 외관Vitreous coating appearance 자속밀도Magnetic flux density 철손Iron loss 온도(℃)Temperature (℃) 시간(hr)Hours (hr) 온도(℃)Temperature (℃) 시간(hr)Hours (hr) B10(Tesla)B 10 (Tesla) W17/50(W/kg)W 17/50 (W / kg) 비교재1Comparative Material 1 4040 650650 1515 10401040 2020 90%90% 양호Good 1.781.78 1.711.71 발명재1Invention 1 5050 650650 1515 10401040 2020 100%100% 양호Good 1.921.92 1.021.02 발명재2Invention 2 8080 650650 1515 10401040 2020 100%100% 양호Good 1.921.92 1.021.02 발명재3Invention 3 120120 650650 1515 10401040 2020 100%100% 양호Good 1.941.94 1.001.00 비교재2Comparative Material 2 150150 650650 1515 10401040 2020 100%100% 유리질피막불량(질소방출구결함)Glassy film defect (defect of nitrogen release outlet) 1.931.93 1.051.05 비교재3Comparative Material 3 250250 500500 1515 10401040 2020 95%95% 양호Good 1.821.82 1.481.48 비교재4Comparative Material 4 250250 750750 1515 10401040 2020 100%100% 유리질피막불량(소지금속노츨)Glassy film defects 1.921.92 1.911.91 비교재5Comparative Material 5 250250 650650 44 10401040 1818 95%95% 양호Good 1.811.81 1.551.55 비교재6Comparative Material 6 250250 650650 1515 미실시Not carried 70%70% 양호Good 1.651.65 2.122.12 비교재7Comparative Material7 250250 650650 1515 10201020 2020 100%100% 양호Good 1.871.87 1.291.29 비교재8Comparative Material 8 250250 650650 1515 10701070 2020 90%90% 양호Good 1.791.79 1.691.69 비교재9Comparative Material 9 250250 650650 1515 10601060 44 100%100% 양호Good 1.861.86 1.311.31

상기 표 1에 나타낸 바와 같이, 탈탄소둔공정에서 침질한 후 총질소량이 본 발명범위 미만인 경우(비교재 1)는 질화석출물의 형성량이 부족하게 되어 2차 재결정이 불안정하게 발달하는 결과, 자기특성이 열등하였다. 반면, 총질소량을 적정량으로 제어하고, 또한 고온소둔 승온중 1차 균열 및 1차 균열의 조건을 본 발명 범위로 제어하는 경우(발명재 1-3)는 양호한 유리질 피막과 동시에 우수한 자기특성을 얻을 수 있었다.As shown in Table 1, when the total nitrogen is less than the scope of the present invention after sedimentation in the decarbonization annealing process (Comparative Material 1), the amount of nitride precipitates is insufficient, resulting in unstable development of secondary recrystallization. Inferior. On the other hand, in the case of controlling the total nitrogen amount to an appropriate amount and also controlling the conditions of the primary crack and the primary crack during the high temperature annealing temperature (invention material 1-3), it is possible to obtain a good glassy film and excellent magnetic properties at the same time. Could.

상기 총질소량이 본 발명범위를 초과하는 경우(비교재 2)는 자기특성은 양호한 편이었으나 질소방출구 결함의 발생으로 양질의 유리질 피막이 형성되지 않았다. 또한, 1차 균열 온도가 550℃ 미만의 경우(비교재 3)이거나 1차 균열시간이 5시간 미만의 경우(비교재5)는 1차 균열처리시 상기 침질소둔시 형성된 질화물이 강판내 균일하게 분포되지 않아 적절한 입성장 억제력을 얻을 수 없게 되어 2차 재결정이 불안정해지는 결과 우수한 자기특성이 얻어지지 않았으며, 또한 700℃ 를 초과하는 경우(비교재 4)는 고온소둔시 잔존수분에 의해 판면에 형성되는 산화층이 과다할 뿐만 아니라 불균일해지는 결과, 자기특성은 비교적 우수한 편이나, 유리질 피막이 불량하게 형성되었다.When the total nitrogen amount exceeded the scope of the present invention (Comparative Material 2), the magnetic properties were good, but a high quality glassy film was not formed due to the occurrence of nitrogen release defects. In addition, when the primary cracking temperature is less than 550 ° C. (Comparative Material 3) or when the primary cracking time is less than 5 hours (Comparative Material 5), the nitride formed during the immersion annealing during the primary cracking treatment is uniformly formed in the steel sheet. As it is not distributed, it is not possible to obtain adequate grain growth inhibition, and the second recrystallization becomes unstable. As a result, excellent magnetic properties were not obtained. As a result, not only the oxide layer formed is excessive but also uneven, the magnetic properties are relatively excellent, but the glassy film is poorly formed.

또한, 상기 고온소둔 승온중 2차 균열 온도가 1030℃ 미만의 경우(비교재 7)는 방향성이 우수한 2차 재결정의 핵이 생성되지 않아 우수한 자기특성을 얻을 수 없었으며, 2차 균열처리를 행하지 않은 경우(비교재 6)나 1060℃ 를 초과하는 2차 균열의 경우(비교재 8)는 유리질 피막의 외관은 양호한 편이나, 2차 재결정의 안정화가 이루어지지 않아 열등한 자기특성이 얻어졌다.In addition, when the secondary cracking temperature was lower than 1030 ° C. during the high temperature annealing (Comparative Material 7), the core of the secondary recrystallization having excellent directionality was not formed and excellent magnetic properties could not be obtained, and secondary cracking was not performed. In the case of the non-comparative material (Comparative Material 6) or the secondary crack exceeding 1060 DEG C (Comparative Material 8), the appearance of the glassy film was good, but the secondary recrystallization was not stabilized, resulting in inferior magnetic properties.

한편, 2차 균열시간이 5시간 미만의 경우 (비교재 9)는 코일상태의 소둔시 코일 내권부와 외권부간 온도편차로 인해 2차 재결정의 안정화 및 방향성 개선효과가 미약하여 우수한 자기특성을 얻을 수 없었다.On the other hand, if the secondary cracking time is less than 5 hours (Comparative Material 9), due to the temperature deviation between the inner coil part and the outer coil part during annealing in the coil state, the secondary recrystallization and the improvement of the direction are insignificant, resulting in excellent magnetic properties. Could not get

상술한 바와 같이, 본 발명은 유리질피막의 특성도 개선되면서 자기적특성도 개선되는 방향성 전기강판의 제조방법을 제공하는 효과가 있다.As described above, the present invention has the effect of providing a method for producing a grain-oriented electrical steel sheet in which the magnetic properties are also improved while the properties of the glassy coating are also improved.

Claims (4)

규소강슬라브를 가열한 후 열간압연, 예비소둔, 1회의 냉간압연에 의해 냉연판을 만든 다음, 이 냉연판을 탈탄소둔하고, 소둔분리제를 도포한 다음, 마무리고온소둔하는 공정을 포함하는 방향성전기강판의 제조방법에 있어서,After the silicon steel slab is heated, a hot rolled, preannealed, cold rolled sheet is made by one cold rolling, the cold rolled sheet is decarbonized, coated with annealing separator, and finished. In the manufacturing method of electrical steel sheet, 상기 규소강슬라브는 중량%로, C:0.02∼0.08%, Si:2.90∼3.30%, Mn:0.15∼0.30%, S:0.006%이하, 산가용성 Al:0.010∼0.040%, N:0.006%이하를 함유하고;The silicon steel slab is by weight, C: 0.02 to 0.08%, Si: 2.90 to 3.30%, Mn: 0.15 to 0.30%, S: 0.006% or less, acid soluble Al: 0.010 to 0.040%, N: 0.006% or less It contains; 상기 탈탄소둔에서는 침질을 행하여 총질소량이 50∼120ppm이 되도록 하고;In the decarbonization annealing, the total nitrogen is 50 to 120 ppm; 상기 마무리소둔은, 550∼700℃의 온도에서 5∼20시간 1차 균열하고 1030∼1060℃ 온도에서 5∼15시간 2차 균열하는 것을 포함하여 이루어지는 피막특성이 우수한 저온 슬라브 가열방식의 방향성 전기강판 제조방법.The finish annealing is a oriented electrical steel sheet of low temperature slab heating method with excellent coating properties, including primary cracking at a temperature of 550 to 700 ° C. for 5 to 20 hours and secondary cracking at a temperature of 1030 to 1060 ° C. for 5 to 15 hours. Manufacturing method. 제 1항에 있어서, 상기 규소강 슬라브의 가열은 1100∼1250℃의 온도에서 행함을 특징으로 하는 방법.The method according to claim 1, wherein the silicon steel slab is heated at a temperature of 1100 to 1250 ° C. 제 1항에 있어서, 상기 탈탄소둔은 700-950℃의 온도에서 행함을 특징으로 하는 방법.The method of claim 1, wherein the decarbonization annealing is performed at a temperature of 700-950 ° C. 제 1항에 있어서, 상기 침질은 암모니아+수소+질소의 분위기에서 행함을 특징으로 하는 방법.The method of claim 1, wherein the immersion is carried out in an atmosphere of ammonia + hydrogen + nitrogen.
KR1019980057624A 1998-12-23 1998-12-23 A method for manufacturing grain oriented electrical steel sheets having superior glass film KR100360101B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980057624A KR100360101B1 (en) 1998-12-23 1998-12-23 A method for manufacturing grain oriented electrical steel sheets having superior glass film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980057624A KR100360101B1 (en) 1998-12-23 1998-12-23 A method for manufacturing grain oriented electrical steel sheets having superior glass film

Publications (2)

Publication Number Publication Date
KR20000041670A true KR20000041670A (en) 2000-07-15
KR100360101B1 KR100360101B1 (en) 2002-12-18

Family

ID=19564912

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980057624A KR100360101B1 (en) 1998-12-23 1998-12-23 A method for manufacturing grain oriented electrical steel sheets having superior glass film

Country Status (1)

Country Link
KR (1) KR100360101B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100514790B1 (en) * 2000-12-19 2005-09-14 주식회사 포스코 A method for manufacturing grain-oriented electrical steel sheet with superior magnetic property using the low temperature heating method
CN116380599A (en) * 2023-06-06 2023-07-04 江苏省沙钢钢铁研究院有限公司 Preparation method and application of large-size nonmetallic inclusion

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100841771B1 (en) 2006-12-28 2008-06-27 주식회사 포스코 Method for manufacturing the grain-oriented electrical steel sheets with excellent magnetic properties

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100514790B1 (en) * 2000-12-19 2005-09-14 주식회사 포스코 A method for manufacturing grain-oriented electrical steel sheet with superior magnetic property using the low temperature heating method
CN116380599A (en) * 2023-06-06 2023-07-04 江苏省沙钢钢铁研究院有限公司 Preparation method and application of large-size nonmetallic inclusion
CN116380599B (en) * 2023-06-06 2023-08-11 江苏省沙钢钢铁研究院有限公司 Preparation method and application of large-size nonmetallic inclusion

Also Published As

Publication number Publication date
KR100360101B1 (en) 2002-12-18

Similar Documents

Publication Publication Date Title
JP2782086B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic and film properties
KR101149792B1 (en) Grain-oriented electrical steel sheets with extremely low core loss and high flux density, and Method for manufacturing the same
EP3561103A1 (en) Grain-oriented electrical steel sheet and manufacturing method therefor
EP3561104B1 (en) Grain-oriented electrical steel sheet and manufacturing method therefor
EP0484904B1 (en) Process for producing grain-oriented electrical steel sheet having improved magnetic and surface film properties
KR100797997B1 (en) Method for manufacturing grain-oriented electrical steel sheets with excellent magnetic property and high productivity
KR100435478B1 (en) A method for manufacturing grain oriented electrical steel sheet with high magnetic induction using low temperature slab reheating process
KR100321044B1 (en) Method for manufacturing grain oriented silicon steel sheets with high magnetic flux density
KR100360101B1 (en) A method for manufacturing grain oriented electrical steel sheets having superior glass film
KR100340495B1 (en) Method for manufacturing grain oriented electric steel sheet with high magnetic density
KR100940718B1 (en) A method for manufacturing grain-oriented electrical steel sheet without hot band annealing
KR101263842B1 (en) Grain-oriented electrical steel sheets with extremely low core-loss and high flux-density and Method for manufacturing the same
KR101263795B1 (en) Grain-oriented electrical steel sheets with extremely low core loss and high flux density, Method for manufacturing the same, and a slab using therefor
KR100399222B1 (en) Manufacturing method of oriented electrical steel sheet by slab low temperature heating
KR100347597B1 (en) Method for manufacturing grain oriented electric steel sheet with high magnetic density
KR101263846B1 (en) Grain-oriented electrical steel sheets with extremely low core-loss and high flux-density and method for manufacturing the same
KR101263848B1 (en) Grain-oriented electrical steel sheets with extremely low core-loss and high flux-density and method for manufacturing the same
KR101263843B1 (en) Grain-oriented electrical steel sheets with extremely low core-loss and high flux-density and Method for manufacturing the same
KR102319831B1 (en) Method of grain oriented electrical steel sheet
KR101263841B1 (en) Method for manufacturing grain-oriented electrical steel sheets with extremely low core-loss and high flux-density
KR101318275B1 (en) Method for manufacturing grain-oriented electrical steel sheets with extremely low core-loss and high flux-density
KR100514790B1 (en) A method for manufacturing grain-oriented electrical steel sheet with superior magnetic property using the low temperature heating method
KR20010055101A (en) A method for manufacturing the high permeability grain-oriented electrical steel sheet with low core loss
KR100435479B1 (en) A method for manufacturing low temperature slab reheating grain-oriented electrical steel sheet with superior film property
KR100360097B1 (en) The method of manufacturing grain oriented electrical steel sheet by low heating of slab

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121022

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20131021

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20141020

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20151023

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20161025

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20171017

Year of fee payment: 16

LAPS Lapse due to unpaid annual fee