JP4585144B2 - Method for producing unidirectional electrical steel sheet with excellent magnetic properties - Google Patents

Method for producing unidirectional electrical steel sheet with excellent magnetic properties Download PDF

Info

Publication number
JP4585144B2
JP4585144B2 JP2001152728A JP2001152728A JP4585144B2 JP 4585144 B2 JP4585144 B2 JP 4585144B2 JP 2001152728 A JP2001152728 A JP 2001152728A JP 2001152728 A JP2001152728 A JP 2001152728A JP 4585144 B2 JP4585144 B2 JP 4585144B2
Authority
JP
Japan
Prior art keywords
slab
temperature
inhibitor
steel sheet
electrical steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001152728A
Other languages
Japanese (ja)
Other versions
JP2002348611A (en
Inventor
喜史 大畑
知二 熊野
宣憲 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001152728A priority Critical patent/JP4585144B2/en
Publication of JP2002348611A publication Critical patent/JP2002348611A/en
Application granted granted Critical
Publication of JP4585144B2 publication Critical patent/JP4585144B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、主にトランス等の鉄芯として使用する一方向性電磁鋼板の製造方法に関するものである。
【0002】
【従来の技術】
磁束密度B8(800A/mの磁場中での磁束密度)が1.9Tを超える、優れた磁気特性を有する一方向性電磁鋼板を安定的に生産する技術は種々提案されているが、これらは、概ね次の三つに分類できる。
第一の技術は、スラブを1350℃から最高では1450℃の超高温度に加熱し、かつ、スラブ全体を通して一様に加熱(均熱)するために、十分な時間、スラブをその加熱温度に保持する方法である。この方法は、MnS、AlN等のインヒビター能力を有する物質を完全溶体化させて、二次再結晶に必要なインヒビターとして機能させるためのものであり、この完全溶体化の処理は、同時に、スラブ部位によるインヒビターの強度差を解消する手段にもなっているから、この点で、上記方法は、安定した生産を実現する上で理にかなっている。
【0003】
しかしながら、上記方法の場合、インヒビター能力を有する物質を完全溶体化するのに必要な加熱温度、すなわち、完全溶体化温度は超高温度となり、実生産においては、二次再結晶に必要なインヒビター量を確保するため、完全溶体化温度(超高温度)以上の温度で加熱することになるが故、実生産上様々な問題を包含している。
【0004】
例えば、1)熱間圧延において、所要の熱延温度を確保することが困難となり、該温度を確保できない場合には、インヒビター強度のスラブ内偏差が生じ、そのため二次再結晶不良が発生する、2)熱延加熱時に粗大粒が生成し、その粗大粒部分が二次再結晶できず、線状の二次再結晶不良が発生する、3)スラブ表層が溶融しノロとなり加熱炉のメンテナンスに多大の労力が必要となる、4)熱延後の鋼帯に巨大なエッジクラックが発生し歩留まりが低下する、等の問題が発生する。
【0005】
この技術の改善技術として、特開平1−168817号公報などに開示されているような、上記の方法をベースにして、一次再結晶後に窒化処理を行い二次再結晶を安定化させようとする方法が知られているが、この方法によって解決され得る問題は、前記1)の問題のみであり、依然として、実生産上での2)〜4)の問題解決には困難性が残っている。
【0006】
第二の技術は、特開昭59−56522号公報、特開平5−112827号公報、特開平9−118964号公報などに開示されているように、AlNをインヒビターとして用い、スラブ加熱を1280℃未満で行い、脱炭焼鈍後二次再結晶開始までに窒化処理する方法を組み合わせるものである。このような方法においては、例えば、特開平2−182866号公報に示されるように、脱炭焼鈍後の一次再結晶粒の平均粒径を一定範囲に、通常、18〜35μmの範囲に制御することが、二次再結晶を良好に行わせる上で非常に重要である。
【0007】
更に、特開平5−295443号公報には、熱延加熱時の固溶窒素などの、インヒビター能力を有する物質の鋼中固溶量が一次再結晶の粒成長性を決定づけるため、スラブ内一次再結晶粒の大きさを均一にするよう、熱延加熱時の固溶窒素などを低く抑えるべく成分調整などを行う方法が開示されている。
しかしながら、この方法では、いかに厳密に成分を調整しても、固溶窒素量などのスラブ内における偏差は存在し、スラブ内におけるインヒビター能力差、つまり、スラブ内における一次再結晶粒径の差を厳密に消失させることは不可能である。そして、結果として、二次再結晶をスラブ内で均一化することが困難となる場合があるという問題を有しており、上記方法は工業的に極めて安定した製造法とはいえないものである。
【0008】
第三の技術は、特開平6−322443号公報等に開示されているように、インヒビターとしてCuxS(x=1.8、又は2)を用い、スラブ加熱温度をCuxSの完全溶体化温度以上MnSの完全溶体化温度以下とする方法である。この方法の特徴は、スラブ加熱温度を低温化した上で、第二の技術で採用する窒化処理などの付加的な工程を不要とすることにある。
【0009】
しかしながら、上記方法は、スラブ加熱温度をMnSの完全溶体化温度以下とすることから、前記の第二の技術が抱える問題と同様の問題を有しており、やはり工業的に極めて安定した製造法ではない。また、そもそも、CuxSは、二次再結晶を制御するためのインヒビターとして公知であるものの、特に、最終冷延率が80%を超える高磁束密度一方向性電磁鋼板の製造には適していない(「鉄と鋼」p.2049,N0.15,Vol.70,N0.1984)。
【0010】
また、上記以外には、特開昭51−73922号公報や特開昭51−145422号等において、B添加による方法が開示されている。BのN親和力がAlよりも強いので、AlNよりも高温まで安定なインヒビターとしてBNを活用したものと考えられるが、二次再結晶を工業的に安定化させる量の確保が困難であったらしく、現在、この方法で工業生産は行われていない。
【0011】
【発明が解決しようとする課題】
一般に、良好な磁気特性を持つ二次再結晶を実現させ得るか否かは、主に、一次再結晶粒径と、二次再結晶を制御する二次インヒビターとによって決定されるが、例えば、前記第一の技術における一次再結晶粒径が約10μmであるのに対して、前記第二の技術におけるそれは18〜35μmであるというように、それぞれの一次再結晶粒径が大きく異なるにもかかわらず、何れの方法でも良好な二次再結晶を実現せしめることが可能であることは、Goss方位({110}<001>方位)の良く揃った二次再結晶を実現させるために必要な一次再結晶粒径と二次インヒビターの組み合わせが、必ずしも一意的でないことを示している。
【0012】
そこで、本発明者らは、一次結晶粒径が如何なる値でも、二次インヒビターを調整することで、Goss方位の良く揃った二次再結晶を実現することが可能であるという発想のもとで、研究を重ねてきた。そして、本発明者らは、上記発想のもとで、安定した生産方法を確立するという観点から、一方向性電磁鋼板の製造に欠かせないインヒビターについて、その機能を発揮する段階によって、一次再結晶粒径を制御する一次インヒビターと、二次再結晶粒径を制御する二次インヒビターとに分類し、優れた磁気特性を持つ一方向性電磁鋼板の製造に関して検討した。
【0013】
ところで、Goss方位の良く揃った二次再結晶を実現させるために必要な一次再結晶粒径と二次インヒビターの組み合わせは一意的でないといえども、例えば、一次結晶粒径がスラブ(コイル)全体に渡って変動する場合、スラブ部位毎に二次インヒビター強度を適正にコントロールしなければ、良好な二次再結晶方位は得られない。それ故、一次再結晶粒径、二次再結晶粒径ともに、スラブ全体に渡って変動がない製造法が、安定的な製造法となる。
【0014】
また、一次結晶粒径は、一次インヒビター強度と一次再結晶を行う脱炭焼鈍の温度によって決定されるため、一次インヒビター強度もスラブ全体に亘って変動がないことが望まれる。すなわち、安定した生産方法を確立するという観点からは、一次インヒビターと二次インヒビターを、ともに、如何にスラブ全体に渡って変動なく造り込むかということが最大の問題となる。
【0015】
この点において、前記第一〜三の技術は、それぞれ以下の問題を抱えている。
第一の技術では、インヒビターの完全溶体化温度以上で、かつ、二次再結晶の不安定化を招く熱延加熱時の粗大粒形成温度以下という、極めて狭い温度範囲でスラブを加熱する必要があり、二次再結晶に必要なインヒビター強度の確保と工業的に安定した品質の確保の両立が非常に困難である。
【0016】
第二の技術では、脱炭焼鈍後、仕上焼鈍中二次再結晶までの間に窒化処理することで二次インヒビター強度の確保は容易であるが、一次インヒビター強度の均一性という点でみると、有限量の固溶窒素などがスラブ(コイル)内で偏在し、これが一次再結晶粒径の変動をもたらす。また、この場合、一次インヒビターは、二次インヒビターとしても作用するため、スラブ(コイル)全体に亘る一次インヒビターの変動は、二次インヒビターの変動にも繋がる。
【0017】
第三の技術では、MnSについて完全溶体化処理を施さず、また、熱延後にAlNを60%以上析出させる製造法であることから、第二の技術と同様、一次インヒビターのスラブ(コイル)内における均一化の点で不利であり、途中工程でインヒビター強化処理を施さないので、二次インヒビターは一次インヒビターから変化しておらず、二次インヒビターがスラブ部位毎で変動し、結局、工業的に安定した品質を確保することが困難である。更に、前述したように、CuxSは二次再結晶を制御するためのインヒビターとして公知であるものの、特に、最終冷延率80%を超える高磁束密度一方向性電磁鋼板の製造には適していない。
【0018】
すなわち、本発明は、上述した実情に鑑み発明されたもので、二次再結晶をより一層完全ならしめ、優れた磁気特性を持つ一方向性電磁鋼板を極めて安定して製造することができる方法を提供することを目的としている。
【0019】
【課題を解決するための手段】
本発明は上記課題を解決するためになされたもので、その要旨は以下のとおりである。
(1) Alを含有する一方向性電磁鋼板用のスラブを、1200℃以上の温度で加熱した後熱間圧延して熱延板とし、次いで、これに焼鈍を施すかもしくは施こさず、1回もしくは中間焼鈍を挟む2回以上の冷間圧延をし、その後、脱炭焼鈍、次いで、焼鈍分離剤を塗布し、仕上焼鈍を施す一方向性電磁鋼板の製造方法において、前記スラブが、質量%で、C:0.025〜0.10%、Si:2.5〜4.0%、酸可溶性Al(solAl):0.01〜0.10%、N:0.0054%以下、Mn:0.02〜0.20%、Seq=S+0.406×Se:0.003〜0.05%、B:0.0005〜0.0070%、Sn:0.02〜0.3%、Cr:0.02〜0.3%を含有し、残部がFe及び不可避的不純物からなり、[ ]が[ ]内の成分元素の質量%を表すとして、
[B]≧0.771×[N]
を満足する関係を満たし、かつ、該スラブの加熱を、下記式、
T1=10062/(2.72−log([solAl]×[N]))−273、
T2=14855/(6.82−log([Mn]×[S]))−273、及び、
T3=10733/(4.08−log([Mn]×[Se]))−273、
で定義するT1(℃)、T2(℃)及びT3(℃)の中の最大の温度よりも高いスラブ加熱温度Ts(℃)で行い、更に、脱炭焼鈍後、仕上焼鈍の二次再結晶開始までの間に、鋼板に窒化処理を行うことを特徴とする一方向性電磁鋼板の製造方法。
【0020】
(2) 前記スラブが、更に、質量%で、Cu:0.01〜0.30%を含有し、かつ、該スラブの加熱を、下記式(式中[ ]は、[ ]内の成分元素の質量%)、T4=43091/(25.09−log([Cu]×[Cu]×[S]))−273で定義するT4(℃)及びT1(℃)、T2(℃)T3(℃)の中の最大の温度よりも高いスラブ加熱温度Ts(℃)で行うことを特徴とする(1)に記載の一方向性電磁鋼板の製造方法。
【0021】
(3) 前記スラブの加熱を、1350℃以下の温度で行うことを特徴とする(1)または(2)に記載の一方向性電磁鋼板の製造方法。
(4) 前記脱炭焼鈍完了後の一次再結晶粒の平均粒径を7μm以上18μm未満とすることを特徴とする、(1)〜(3)のいずれかの項に記載の一方向性電磁鋼板の製造方法。
【0022】
【発明の実施の形態】
本発明者らは、スラブ加熱時、インヒビター能力を有する物質を完全溶体化することが、スラブ(コイル)内で一次インヒビターを極限まで均一化する最適の方法であるとの出発点に立ち、インヒビター能力を有する物質のスラブ内濃度を従来法より低くすると、完全溶体化温度が下がることに着目した。熱延加熱時にインヒビターの完全溶体化を図る技術としては、前記第一の技術があるが、この技術においてインヒビター能力を有する物質のスラブ内濃度を低くすると、インヒビター強度低下のため、二次再結晶を不安定化することになり、安定的な工業生産技術として成立しなかった。
【0023】
発明者らは、一次再結晶後二次再結晶開始までの間で窒化処理を施すことにより、前記の二次再結晶不安定性を回避できるという信念の元、研究・実験を重ねた結果、スラブ成分としてBをN当量以上含有することによって、スラブ全体に渡る一次インヒビター強度の均一化、AlN以上に高温までインヒビター効果を発揮する二次インヒビターの導入が可能であることを見出した。
【0024】
すなわち、スラブ成分としてBをN当量以上含有させることによって、まず、一次インヒビター強度のスラブ(コイル)内変動に関しては、熱間圧延時AlNが不均一に析出することが原因であったが、AlよりもN親和力の強いBをN当量以上に含有させることで、AlNになりうる固溶Nを最小限に抑えることが可能となる。更に、上工程(熱延)から存在するBNは、AlNより高温まで安定なので、二次インヒビターとして高温まで強力に機能させることが出来ることを突き止めたのである。
【0025】
一方、硫化物や、セレン化物のインヒビターについては、熱延工程におけるインヒビターの均一化において、窒化物インヒビターほどの影響を与えないことも判明し、一次インヒビターとして、主に硫化物や、セレン化物のインヒビターを用いることが有効であることも判った。
この窒化物インヒビターと、硫化物や、セレン化物のインヒビターの作用効果における相違の原因は定かでないが、AlNの溶解度が、α相とγ相で大きく異なることに起因し、熱間圧延中に、母相がAlNの溶解し易いγ相から、溶解し難いα相へ転移する際、AlNが不均一に析出することが原因と考えられる。BNに関してもAlNと同様、α相γ相での溶解度差が存在すると考えられるが、BのN親和力がAlよりも大きいことに起因してBNの析出はAlNより高温から始まるために、特に部位による温度差が大きくなる熱延後期に達する前に析出してしまい、部位による析出均一性に関してAlN程の悪影響を及ぼさないと考えている。
【0026】
さて、上記方法(スラブ成分中の窒素濃度の低減)によって、スラブ(コイル)部位間における一次インヒビター能力(強度)の差を、極めて低減することができるが、一方、二次再結晶において優れた磁気特性を持つ先鋭化されたGoss方位を得るためには、硫化物や、セレン化物に加えて、高温まで安定なインヒビターが必要であり、本発明では、BNに加え、窒化処理によりAlNを形成することで確保する。
【0027】
すなわち、本発明は、スラブ成分中、インヒビター能力を有する物質の濃度を従来法より低くすることで、インヒビターの完全溶体化温度を下げ、かつ、スラブ加熱温度をその温度より高くすることで、スラブ部位によらずに一次インヒビター強度を均一化せしめ、インヒビター成分濃度を下げたことに起因する二次インヒビターの強度不足を、脱炭焼鈍後、仕上焼鈍中二次再結晶開始までの間に窒化処理を施すことにより、窒化物(AlN、Si34、MnN等の単独または複合析出物)を形成し、インヒビターとして機能させて補償することで、磁気特性の良好な一方向性電磁鋼板の安定的な製造を可能にするものである。
【0028】
つまり、本発明の目的は、一方向性電磁鋼板の製造において大きな役割を有するインヒビターについて、その機能発揮段階を冶金的に分離し、機能発揮段階毎に、それぞれ異なる物質を用いてその機能を発現させることにより極めて安定な製造法を提供することにある。
また、一方向性電磁鋼板の製造において一次再結晶が行われる脱炭焼鈍の温度は、一般に、930℃以下と低いので、この段階では、従来法の高温熱間圧延で形成するような強力なインヒビターは必要がない。本発明では、この一次インヒビターとして、主に硫化物や、セレン化物を用いるので、一次再結晶粒成長の温度依存性が極めて小さく、一次再結晶焼鈍(実際には脱炭焼鈍)温度を大きく変える必要がない。この結果、一次酸化層の構成組成及び引き続く窒化処理における窒化量が著しく安定し、一次皮膜欠陥を激減させる効果も得られる。
【0029】
次に、本発明におけるスラブの成分組成の限定理由について述べる。
Cは、0.025%より少ないと一次再結晶集合組織が適切でなくなり、0.10%を超えると、脱炭が困難になり工業生産に適さない。
Siは、2.5%より少ないと良好な鉄損が得られず、4.0%を超えると冷間圧延が極めて困難となり工業生産に適さない。
【0030】
酸可溶Al(solAl)は、Nと結合してAlNを形成し、主に二次インヒビターとして機能する。このAlNは、窒化前に形成されるものと、窒化後高温焼鈍時に形成されるものの両方があり、この両方のAlN量を確保するため、0.01〜0.10%必要である。0.01%未満の場合は、二次インヒビターとしての働きが不充分となり、良好なGoss方位を持つ二次再結晶粒を安定的に得ることができず、また、0.10%を超える場合には、後工程で必要とする窒化量が増大し、被膜に甚大なダメージを与える。
【0031】
Nは、0.0054%を超えると、熱延時の不均一析出の原因となるので、上限を0.0054%とした。より好ましくは、0.0030%以下である。
S及びSeは、Mn、Cuと結合して、主に、一次インヒビターとして作用する。S及びSeの含有量は、Seq=S+0.406×Seで限定するが、Seqが0.05%を超えると、最終仕上焼鈍で純化するのに要する時間が長くなりすぎて好ましくない。また、0.003%未満とすると、一次インヒビターとしての効果が弱くなるので、下限を0.003%とする必要がある。
【0032】
Mnは、0.02%より少ないと、熱延鋼帯で割れが発生しやすく、歩留まりが低下する。一方、0.20%を超えると、MnS、MnSeが多くなりすぎて、固溶の程度が場所により不均一となり、安定的な生産が困難になるので、上限を0.2%とする。
Bは、0.0005%より少ない場合、BNとしてのインヒビター効果が発揮されず、0.007%を越えると、窒化によってインヒビターを形成させる際、必要とする窒化量が多くなり過ぎ、このことに起因して、地鉄が露出した一次皮膜欠陥が多発する。更に、BをN当量(=0.771×Nの質量%)以上にすることが本発明の主要なポイントの一つである。BはN親和力がAlよりも強く、BをN当量以上含有させることで、特に熱延段階でコイル位置による析出差を生ずるAlNの析出を一次再結晶完了までの間、極限まで小さくすることが可能となる。更に、熱延に先立つスラブ加熱時にBNを完全固溶させるべく、スラブ成分のB,N及びスラブ加熱温度を調整することは、一次インヒビターの均一性を増すのでより有効に働く。
Sn、Crは、インヒビター形成成分として有利に適合する。これら成分の好適添加範囲は、それぞれ0.02〜0.3%である。
【0033】
Cuは、スラブを1200℃以上で加熱する本発明の条件で熱延すると、SやSeとともに微細な析出物を形成し、一次インヒビター効果を発揮する。また、この析出物はAlNの分散をより均一にする析出核ともなり、二次インヒビターの役割も演じ、この効果が二次再結晶を良好ならしめる。0.01%より少ないと上記効果が減じ安定生産が難しくなり、0.30%を超えると上記効果が飽和するとともに、熱延時に「カッパーヘゲ」なる表面疵の原因になる。
【0034】
更に、Al、N、S、Se、Mn、Cuの各含有量については、それらのスラブ中成分濃度から求められる、下記式で定義するT1(℃)〜T4(℃)のうち一つでも1400℃以上になる場合は、これら成分を完全固溶させるために、スラブ加熱温度Ts(℃)を非常に高くする必要が生じ、好ましくないので、この観点から、これら含有量相互の調整を図る必要がある。
【0035】
T1 =10062/(2.72−log([solAl]×[N]))−273
T2=14855/(6.82−log([Mn]×[S]))−273
T3=10733/(4.08−log([Mn]×[Se]))−273
T4=43091/(25.09−log([Cu]×[Cu]×[S]))−273
ここで、式中[ ]は、[ ]内の成分元素の質量%を表す。
【0036】
前述の如く、本発明では、一次インヒビターとして、主に、硫化物や、セレン化物を用い、一次再結晶粒を制御しており、スラブ成分におけるNは極力少なくする必要があり、0.0050%以下が望ましい。ただし、これだけでは、二次再結晶を制御するのに不充分であるから、後で述べる窒化処理が必要となる。
なお、インヒビター形成成分としては、上記したAl、N、S、Se、Mn、Cu、B、Sn、Crの他、Sb、P、Mo、Cd、Ge、Te及びBiなども有利に適合し、また、Niは、一次及び二次インヒビターとしての析出物の均一分散に著しい効果があるので、それぞれを少量併せて含有させることもできる。
【0037】
上記成分の好適添加範囲は、それぞれ、Sb及びP:0.02〜0.3%、Mo及びCd:0.008〜0.3%、Ge、Te及びBi:0.005〜0.1%、そして、Ni:0.03〜0.3%であり、これらの各成分についても、単独使用及び複合使用のいずれもが可能である。
次に本発明における製造工程に係る条件の限定理由について述べる。
【0038】
脱炭焼鈍完了後の一次再結晶粒の平均粒径については、例えば、特開平7−252532号公報では一次再結晶粒の平均粒径を18〜35μmとしているが、本発明では、一次再結晶粒の平均粒径を7μm以上18μm未満とすることで、磁気特性(特に鉄損)を更に良好ならしめることができる。
すなわち、一次再結晶粒の粒径が小さければ、単位体積内に存在する一次再結晶粒の数が増えることを意味する。更に、一次再結晶粒の粒径が小さい場合、粒成長の観点から、一次再結晶の段階で二次再結晶の核となるGoss方位粒の体積分率が多くなる(“Materials Science Forum”Vol.204-206,Part2:pp:631)。
【0039】
そして、その結果、Goss方位粒の絶対数は、例えば、一次再結晶粒の平均粒径が18〜35μmの場合に比べて、5倍程度も多くなるので、二次再結晶粒径も相対的に小さくなり、この結果、著しい鉄損の向上が得られる。
また、一次再結晶粒の平均粒径が小さいと、二次再結晶の駆動力が大きくなり、最終仕上焼鈍中、昇温段階の早い時期に(より低温で)二次再結晶を開始させることができる。最終仕上焼鈍をコイル状で行っている現状では、高温ほどコイル各点での温度差(温度履歴差)が広がるので、上述の二次再結晶温度の低温化によって、コイル各点での温度履歴がより均一な(コイル各点での昇温速度が一定な)温度領域で二次再結晶させることができ、コイル部位間での不均一性が著しく減少して磁気特性が極めて安定する。
【0040】
但し、一次再結晶粒の平均粒径が7μm未満になると、その大きな粒成長駆動力のため、二次再結晶温度が低くなりすぎるためと考えられるが、二次再結晶粒方位のGoss方位からの分散が大きくなり、磁束密度の低下を招く。
脱炭焼鈍後二次再結晶開始前に鋼板に窒化処理を施すことは、本発明では必須である。その方法は、仕上焼鈍時の焼鈍分離剤に窒化物(CrN、MnN等)を混合する方法や、脱炭焼鈍後にストリップを走行させた状態下でアンモニアを含んだ雰囲気で窒化処理する方法がある。どちらの方法を採用してもよいが、後者の方法が工業的に安定している。
【0041】
この窒化処理で増加する窒素量(窒素増量)は、0.001〜0.03質量%に限定するが、0.001%未満では二次再結晶が不安定となり、一方、0.03%を超えると、地鉄が露出した一次皮膜欠陥が多発する。好ましい窒素増量は、0.003〜0.025%である。
熱間圧延に先立つスラブ加熱温度は本発明の重要な点である。スラブ加熱温度が1200℃未満では本発明のキーポイントである一次インヒビターの生成が十分に行われず、脱炭焼鈍温度に対する一次再結晶粒径の変動が大きくなるなどの問題を引き起こす。
【0042】
一方、スラブ加熱温度を、インヒビター能力を有する物質の完全溶体化温度よりも高くすることによって、スラブ部位毎での一次インヒビターの強度差を極端に小さくすることができる。但し、スラブ加熱温度を、インヒビターの完全溶体化温度の直上に設定する場合は、インヒビターの溶体化のため、加熱温度に保定する必要時間が長くなるので、生産性の観点より、少なくとも20℃程度以上は高く設定することが好ましい。なお、1400℃を超える超高温度で加熱することは、工業生産において非常な困難を伴うので避けるべきである。
【0043】
実生産の上で、スラブ加熱温度は、熱間圧延が容易で熱延鋼帯の形状(クラウン)が優れ、スラブ表層部の溶解、鉱滓化発生に係る実害が伴わない、1200〜1350℃が好ましい。
本発明の方法では、第一に、公知の連続鋳造法により、初期の厚みが150mmから300mm、好ましくは、200mmから250mmのスラブを製造する。このスラブに替りに、初期の厚みが約30mmから70mmのいわゆる薄いスラブであってもよく、この場合は、熱間圧延鋼帯を製造する際、中間厚みに粗加工をする必要がないという利点がある。また、鋼帯鋳造により製造した、一層薄い初期厚みのスラブ又は鋼帯を用いて、本発明方法により一方向性電磁鋼板を製造することも可能である。
【0044】
また、工業生産上において、熱間圧延の加熱方法には通常のガス加熱方法を用いてよいが、この方法に加え、誘導加熱、直接通電加熱を用いることは、均一に焼鈍する点で望ましく、これらの特別な加熱方法において、所要の形状を確保するため、分塊圧延を鋳込みスラブに施しても何ら問題はない。また、加熱温度が1300℃以上になる場合は、この分塊圧延により集合組織の改善を施しC量を減じてもよい。これらは、従来技術の範囲である。
【0045】
冷間圧延における最終の冷延圧下率が80%未満であると、一次再結晶集合組織中のGoss方位粒において所望の方位集積度が得難いので、高磁束密度の確保が難しくなる。一方、最終の冷延圧下率が95%を超えると、一次再結晶集合組織中のGoss方位粒の粒数が極端に少なくなり、二次再結晶が不安定になる。
【0046】
熱延鋼帯の焼鈍は、主に、熱延時に生じた鋼帯内の組織・インヒビター分散の不均一性を除去するために行われる。熱延鋼帯での焼鈍でもよいし、最終の冷間圧延の前の焼鈍でもよい。すなわち、最終の冷間圧延の前に、熱延時の温度履歴の差による不均一性を解消するために、1回以上の焼鈍を行うことが望ましい。
最終の冷間圧延は常温で実施してもよいが、少なくとも1パスを100〜300℃の温度で1分以上保つと、一次再結晶集合組織が改善され磁気特性が極めて良好になる。
【0047】
【実施例】
〔実施例1〕
表1に通常の方法で溶製した溶鋼成分と製造条件及び製品特性の結果を示す。
熱延板焼鈍は1100℃に50秒保持して冷却した。この板に、酸洗、冷延を施した後、850℃で90〜150秒間脱炭焼鈍した。この後、水素、窒素、アンモニアの混合ガス中で、750℃30秒間保持する窒化焼鈍を行い、窒化後の鋼板の全窒素量を200ppm前後に調整した。次いで、MgO、TiO2を主成分とする焼鈍分離剤を塗布し、1200℃まで15℃/時の昇温速度で加熱した後、1200℃で20時間の仕上焼鈍を行った。その後、通常用いられる絶縁張力コーティングの塗布と平坦化処理を行った。その結果を表2に示す。
【0048】
表1より、熱延加熱温度(Ts)と析出物インヒビター完全溶体化温度(T1〜T4の最大値)の差、及び、BからN当量差し引いた量(=B−0.771×N)に対する、コイル内磁気特性の関係を抽出したものを図1に示す。
本発明の成分組成に属するスラブから、本発明の工程条件に従って製造した場合、製品コイル全長に亘って優れた磁気特性が安定して得られていることが判る。
【0049】
【表1】

Figure 0004585144
【0050】
【表2】
Figure 0004585144
【0051】
【発明の効果】
本発明により、二次再結晶の不均一性を解消して、優れた磁気特性を有する一方向性電磁鋼板を、工業的に生産することが可能となる。
【図面の簡単な説明】
【図1】熱延加熱温度と析出物インヒビター完全溶体化温度の差、及び、BからN当量差し引いた量(=B−0.771×N)に対する、磁気特性の関係を示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a unidirectional electrical steel sheet mainly used as an iron core such as a transformer.
[0002]
[Prior art]
Various techniques for stably producing unidirectional electrical steel sheets having excellent magnetic properties with a magnetic flux density B8 (magnetic flux density in a magnetic field of 800 A / m) exceeding 1.9 T have been proposed. In general, it can be classified into the following three categories.
The first technique is to heat the slab to its heating temperature for a sufficient amount of time to heat the slab from 1350 ° C to an ultra-high temperature of up to 1450 ° C and uniformly throughout the slab (soaking). It is a method of holding. This method is for completely dissolving a substance having inhibitor ability such as MnS, AlN and the like to function as an inhibitor necessary for secondary recrystallization, and this complete solution treatment is performed simultaneously with a slab site. In this respect, the above method makes sense for realizing stable production.
[0003]
However, in the case of the above-described method, the heating temperature necessary for completely dissolving the substance having the inhibitor ability, that is, the complete solution temperature becomes an extremely high temperature. In actual production, the amount of the inhibitor necessary for secondary recrystallization. In order to ensure this, it is heated at a temperature equal to or higher than the complete solution temperature (ultra high temperature), and thus various problems are included in actual production.
[0004]
For example, 1) In hot rolling, it becomes difficult to ensure a required hot rolling temperature, and when the temperature cannot be ensured, a deviation in the slab of inhibitor strength occurs, and therefore secondary recrystallization failure occurs. 2) Coarse grains are produced during hot rolling heating, and the coarse grains cannot be recrystallized secondary, resulting in linear secondary recrystallization failure. 3) The slab surface is melted and becomes noro for maintenance of the heating furnace. A large amount of labor is required. 4) Problems such as a large edge crack occurring in the steel strip after hot rolling and a decrease in yield occur.
[0005]
As an improvement technique of this technique, an attempt is made to stabilize the secondary recrystallization by performing nitriding after the primary recrystallization based on the above method as disclosed in JP-A-1-168817. Although the method is known, the problem that can be solved by this method is only the problem 1), and there are still difficulties in solving the problems 2) to 4) in actual production.
[0006]
The second technique uses AlN as an inhibitor and slab heating at 1280 ° C. as disclosed in JP 59-56522 A, JP 5-1112827 A, JP 9-118964 A, and the like. This is a combination of a nitriding process after decarburization annealing and before the start of secondary recrystallization. In such a method, for example, as shown in JP-A-2-182866, the average particle size of primary recrystallized grains after decarburization annealing is controlled within a certain range, usually within a range of 18 to 35 μm. This is very important for good secondary recrystallization.
[0007]
Furthermore, Japanese Patent Application Laid-Open No. 5-295443 discloses that the amount of solid solution in a steel having an inhibitor ability such as solid solution nitrogen during hot rolling heating determines the grain growth property of primary recrystallization. A method is disclosed in which components are adjusted so as to keep the dissolved nitrogen and the like during hot rolling heating low so that the size of the crystal grains is uniform.
However, in this method, no matter how precisely the components are adjusted, there is a deviation in the slab such as the amount of dissolved nitrogen, and the difference in the inhibitor capacity in the slab, that is, the difference in the primary recrystallized grain size in the slab. It is impossible to eliminate it strictly. As a result, there is a problem that it may be difficult to make the secondary recrystallization uniform in the slab, and the above method is not an industrially extremely stable production method. .
[0008]
As disclosed in JP-A-6-322443 and the like, the third technique is Cu as an inhibitor.xS (x = 1.8 or 2) is used, and the slab heating temperature is set to Cu.xThis is a method of setting the solution temperature to be not less than the complete solution temperature of S and not more than the complete solution temperature of MnS. The feature of this method is that an additional step such as nitriding treatment adopted in the second technique is not required after the slab heating temperature is lowered.
[0009]
However, the above method has a problem similar to the problem of the second technique because the slab heating temperature is not more than the complete solution temperature of MnS, and it is also an industrially extremely stable production method. is not. In the first place, CuxAlthough S is known as an inhibitor for controlling secondary recrystallization, it is not particularly suitable for the production of a high magnetic flux density unidirectional electrical steel sheet having a final cold rolling rate exceeding 80% (“Iron and Steel”). P.2049, N0.15, Vol.70, N0.1984).
[0010]
In addition to the above, JP-A-51-73922, JP-A-51-145422, etc. disclose a method using B addition. Since the N affinity of B is stronger than that of Al, it is considered that BN was used as an inhibitor that is stable up to a higher temperature than that of AlN. However, it seems difficult to secure an amount for industrially stabilizing secondary recrystallization, Currently, industrial production is not carried out by this method.
[0011]
[Problems to be solved by the invention]
In general, whether or not secondary recrystallization with good magnetic properties can be achieved is mainly determined by the primary recrystallization grain size and the secondary inhibitor that controls the secondary recrystallization. Although the primary recrystallized grain size in the first technique is about 10 μm, while that in the second technique is 18 to 35 μm, each primary recrystallized grain size is greatly different. In addition, it is possible to realize a good secondary recrystallization by any method. The primary recrystallization necessary for realizing a secondary recrystallization with a well-equipped Goss orientation ({110} <001> orientation). This indicates that the combination of recrystallized particle size and secondary inhibitor is not necessarily unique.
[0012]
Therefore, the present inventors have the idea that, by adjusting the secondary inhibitor, secondary recrystallization with well-aligned Goss orientation can be realized regardless of the primary crystal grain size. , Have been researching. Based on the above idea, the present inventors, from the viewpoint of establishing a stable production method, for the inhibitor essential to the production of the unidirectional electrical steel sheet, the primary reactivation is performed by the stage of exerting its function. It was classified into a primary inhibitor that controls the crystal grain size and a secondary inhibitor that controls the secondary recrystallized grain size, and the production of unidirectional electrical steel sheets with excellent magnetic properties was studied.
[0013]
By the way, although the combination of the primary recrystallization grain size and the secondary inhibitor necessary for realizing secondary recrystallization with well-aligned Goss orientation is not unique, for example, the primary crystal grain size is the entire slab (coil). If the secondary inhibitor strength is not properly controlled for each slab site, a good secondary recrystallization orientation cannot be obtained. Therefore, a production method in which both the primary recrystallization particle size and the secondary recrystallization particle size do not vary throughout the slab is a stable production method.
[0014]
Further, since the primary crystal grain size is determined by the primary inhibitor strength and the temperature of decarburization annealing for performing primary recrystallization, it is desirable that the primary inhibitor strength does not vary throughout the slab. That is, from the viewpoint of establishing a stable production method, the biggest problem is how to build both the primary inhibitor and the secondary inhibitor without fluctuation over the entire slab.
[0015]
In this regard, each of the first to third techniques has the following problems.
In the first technique, it is necessary to heat the slab in a very narrow temperature range that is not less than the complete solution temperature of the inhibitor and not more than the coarse grain formation temperature during hot rolling heating that causes instability of secondary recrystallization. In addition, it is very difficult to ensure both the strength of the inhibitor necessary for the secondary recrystallization and the industrially stable quality.
[0016]
In the second technique, it is easy to secure the secondary inhibitor strength by nitriding between decarburization annealing and secondary recrystallization during finish annealing, but in terms of uniformity of primary inhibitor strength A finite amount of solute nitrogen and the like are unevenly distributed in the slab (coil), which causes fluctuations in the primary recrystallized grain size. In this case, since the primary inhibitor also acts as a secondary inhibitor, the fluctuation of the primary inhibitor throughout the slab (coil) also leads to the fluctuation of the secondary inhibitor.
[0017]
In the third technique, MnS is not subjected to a complete solution treatment, and since it is a production method in which 60% or more of AlN is precipitated after hot rolling, as in the second technique, in the slab (coil) of the primary inhibitor. The secondary inhibitor does not change from the primary inhibitor, and the secondary inhibitor varies from slab site to industrial site. It is difficult to ensure stable quality. Furthermore, as mentioned above, CuxAlthough S is known as an inhibitor for controlling secondary recrystallization, it is not particularly suitable for producing a high magnetic flux density unidirectional electrical steel sheet having a final cold rolling rate exceeding 80%.
[0018]
That is, the present invention was invented in view of the above-described circumstances, and a method capable of extremely stably producing a unidirectional electrical steel sheet having excellent magnetic properties by making secondary recrystallization even more complete. The purpose is to provide.
[0019]
[Means for Solving the Problems]
  The present invention has been made to solve the above problems, and the gist thereof is as follows.
(1) A slab for a unidirectional electrical steel sheet containing Al is heated at a temperature of 1200 ° C. or higher and then hot-rolled to form a hot-rolled sheet, which is then annealed or not subjected to 1 In the method for producing a unidirectional electrical steel sheet, which is subjected to cold rolling at least twice with intermediate or intermediate annealing, then decarburized annealing, then applied with an annealing separator and subjected to finish annealing, the slab has a mass %: C: 0.025-0.10%, Si: 2.5-4.0%, acid-soluble Al (solAl): 0.01-0.10%, N: 0.0054% or less, Mn : 0.02 to 0.20%, Seq = S + 0.406 × Se: 0.003 to 0.05%, B: 0.0005 to 0.0070%Sn: 0.02-0.3%, Cr: 0.02-0.3%The balance is composed of Fe and inevitable impurities, and [] represents the mass% of the component elements in [],
  [B] ≧ 0.771 × [N]
And the heating of the slab is expressed by the following formula:
  T1 = 10062 / (2.72−log ([solAl] × [N])) − 273,
  T2 = 14855 / (6.82-log ([Mn] × [S]))-273, and
  T3 = 10733 / (4.08-log ([Mn] × [Se]))-273,
Secondary recrystallization of finish annealing after decarburization annealing is performed at a slab heating temperature Ts (° C) higher than the maximum temperature among T1 (° C), T2 (° C) and T3 (° C) defined by It is characterized by nitriding the steel sheet before the start.RuichiA method for producing grain-oriented electrical steel sheets.
[0020]
  (2) The slab further contains, by mass%, Cu: 0.01 to 0.30%, and the slab is heated by the following formula (where [] is a component element in []). Mass%), T4 = 43091 / (25.09-log ([Cu] × [Cu] × [S]))-273, T4 (° C.), T1 (° C.), T2 (° C.) T3 ( (1), which is performed at a slab heating temperature Ts (° C) higher than the maximum temperature inOneA method for producing grain-oriented electrical steel sheets.
[0021]
  (3) The heating of the slab is performed at a temperature of 1350 ° C. or less, as described in (1) or (2)OneA method for producing grain-oriented electrical steel sheets.
  (4) The average particle size of the primary recrystallized grains after completion of the decarburization annealing is 7 μm or more and less than 18 μm, according to any one of (1) to (3)OneA method for producing grain-oriented electrical steel sheets.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
The inventors have taken the starting point that, when a slab is heated, complete solution of a substance having inhibitor ability is the optimum method for uniformizing the primary inhibitor in the slab (coil) to the limit. When the concentration in the slab of the substance having the ability is lower than that of the conventional method, attention is paid to the fact that the complete solution temperature is lowered. As a technique for achieving complete solution of an inhibitor during hot rolling heating, there is the first technique described above. However, in this technique, when the concentration in the slab of the substance having inhibitor ability is lowered, secondary recrystallization occurs due to a decrease in inhibitor strength. Was not established as a stable industrial production technology.
[0023]
The inventors have conducted research and experiments based on the belief that the secondary recrystallization instability can be avoided by performing nitriding after the first recrystallization until the start of the secondary recrystallization. It has been found that by containing at least N equivalents of B as a component, it is possible to make the strength of the primary inhibitor uniform over the entire slab and to introduce a secondary inhibitor that exhibits an inhibitor effect up to a higher temperature than AlN.
[0024]
That is, by containing B as a slab component in an amount equal to or more than N equivalents, first, regarding the fluctuation of the primary inhibitor strength in the slab (coil), it was caused by non-uniform precipitation of AlN during hot rolling. By adding B having a stronger N affinity to N equivalents or more, it is possible to minimize solute N that can become AlN. Furthermore, BN existing from the above process (hot rolling) is more stable than AlN, so it has been found that it can function strongly as a secondary inhibitor up to high temperature.
[0025]
On the other hand, it was also found that sulfide and selenide inhibitors do not affect as much as nitride inhibitors in the homogenization of inhibitors in the hot rolling process, and as primary inhibitors, mainly sulfides and selenides. It has also been found effective to use inhibitors.
Although the cause of the difference in the action effect of this nitride inhibitor and sulfide or selenide inhibitor is not clear, the solubility of AlN is greatly different between the α phase and the γ phase, and during hot rolling, It is considered that the cause is that AlN precipitates non-uniformly when the matrix phase transitions from the γ phase in which AlN is easily dissolved to the α phase in which it is difficult to dissolve. Similarly to AlN, BN is considered to have a difference in solubility in the α phase and γ phase. However, since the N affinity of B is larger than that of Al, the precipitation of BN starts at a higher temperature than that of AlN. It is believed that the precipitates are deposited before reaching the late stage of hot rolling, where the temperature difference due to is large, and the uniformity of precipitation due to the sites is not as bad as that of AlN.
[0026]
By the above method (reduction of the nitrogen concentration in the slab component), the difference in primary inhibitor ability (strength) between slab (coil) sites can be extremely reduced, while it is excellent in secondary recrystallization. In order to obtain a sharp Goss orientation with magnetic properties, in addition to sulfide and selenide, an inhibitor that is stable up to high temperature is necessary. In the present invention, in addition to BN, AlN is formed by nitriding treatment. Secure by doing.
[0027]
That is, the present invention reduces the complete solution temperature of the inhibitor by lowering the concentration of the substance having inhibitor ability in the slab component as compared with the conventional method, and raises the slab heating temperature above that temperature. Nitrogen treatment between decarburization annealing and start of secondary recrystallization after decarburization annealing, due to uniform primary inhibitor strength regardless of site and lowering inhibitor component concentration By applying nitride (AlN, SiThreeNFour, MnN, etc. alone or composite precipitates) and function as an inhibitor to compensate, thereby enabling stable production of a unidirectional electrical steel sheet with good magnetic properties.
[0028]
In other words, the object of the present invention is to metallurgically separate the function exhibiting stages of inhibitors that have a large role in the production of unidirectional electrical steel sheets, and to express their functions using different substances at each function exhibiting stage. To provide a very stable production method.
Moreover, since the temperature of decarburization annealing in which primary recrystallization is performed in the production of unidirectional electrical steel sheets is generally as low as 930 ° C. or less, at this stage, it is as powerful as that formed by high-temperature hot rolling in the conventional method. Inhibitors are not required. In the present invention, since sulfide or selenide is mainly used as the primary inhibitor, the temperature dependence of primary recrystallization grain growth is extremely small, and the primary recrystallization annealing (actually decarburization annealing) temperature is greatly changed. There is no need. As a result, the constituent composition of the primary oxide layer and the nitriding amount in the subsequent nitriding treatment are remarkably stabilized, and the effect of drastically reducing the primary film defects can be obtained.
[0029]
Next, the reasons for limiting the component composition of the slab in the present invention will be described.
When C is less than 0.025%, the primary recrystallization texture becomes unsuitable, and when it exceeds 0.10%, decarburization becomes difficult and unsuitable for industrial production.
If Si is less than 2.5%, good iron loss cannot be obtained, and if it exceeds 4.0%, cold rolling becomes extremely difficult and is not suitable for industrial production.
[0030]
Acid-soluble Al (solAl) combines with N to form AlN, and mainly functions as a secondary inhibitor. This AlN includes both those formed before nitriding and those formed at the time of high-temperature annealing after nitriding, and 0.01 to 0.10% is necessary to secure the amount of both AlN. When it is less than 0.01%, the function as a secondary inhibitor becomes insufficient, and secondary recrystallized grains having good Goss orientation cannot be stably obtained, and when it exceeds 0.10% In this case, the amount of nitriding required in the subsequent process increases, and the film is seriously damaged.
[0031]
If N exceeds 0.0054%, it causes non-uniform precipitation during hot rolling, so the upper limit was made 0.0054%. More preferably, it is 0.0030% or less.
S and Se combine with Mn and Cu and mainly act as primary inhibitors. The S and Se contents are limited to Seq = S + 0.406 × Se, but if Seq exceeds 0.05%, it is not preferable because the time required for purification by final finish annealing becomes too long. Moreover, since the effect as a primary inhibitor will become weak when it is less than 0.003%, it is necessary to make a minimum into 0.003%.
[0032]
  If Mn is less than 0.02%, cracks are likely to occur in the hot-rolled steel strip, and the yield decreases. On the other hand, if it exceeds 0.20%, MnS and MnSe increase too much, the degree of solid solution becomes uneven depending on the location, and stable production becomes difficult, so the upper limit is made 0.2%.
  When B is less than 0.0005%, the inhibitor effect as BN is not exhibited, and when it exceeds 0.007%, the amount of nitridation required when forming an inhibitor by nitriding becomes too large. As a result, primary film defects in which the ground iron is exposed frequently occur. Furthermore, it is one of the main points of the present invention that B is N equivalent (= 0.711 × N mass%) or more. B has a stronger N affinity than Al, and by containing more than N equivalents of B, it is possible to reduce the precipitation of AlN, which causes precipitation differences depending on the coil position, particularly during the hot rolling stage, until the primary recrystallization is completed. It becomes possible. Furthermore, adjusting the B and N of the slab components and the slab heating temperature so as to completely dissolve BN during slab heating prior to hot rolling works more effectively because it increases the uniformity of the primary inhibitor.
  Sn, Cr is advantageously suitable as an inhibitor-forming component. The preferred addition range of these components is 0.02 to 0.3%, respectively.
[0033]
When hot rolling is performed under the conditions of the present invention in which the slab is heated at 1200 ° C. or higher, Cu forms fine precipitates together with S and Se and exhibits a primary inhibitor effect. The precipitates also serve as precipitation nuclei that make the dispersion of AlN more uniform, and also play the role of a secondary inhibitor, and this effect makes secondary recrystallization good. If the content is less than 0.01%, the above effect is reduced and stable production becomes difficult. If the content exceeds 0.30%, the above effect is saturated, and it causes surface flaws such as “copper lashes” during hot rolling.
[0034]
Furthermore, about each content of Al, N, S, Se, Mn, and Cu, it is 1400 even if one of T1 (degreeC)-T4 (degreeC) defined by the following formula calculated | required from the component density | concentration in those slabs. If it is higher than ° C., it is necessary to make the slab heating temperature Ts (° C.) very high in order to completely dissolve these components. There is.
[0035]
T1 = 10062 / (2.72−log ([solAl] × [N])) − 273
T2 = 14855 / (6.82-log ([Mn] × [S]))-273
T3 = 10733 / (4.08-log ([Mn] × [Se]))-273
T4 = 43091 / (25.09-log ([Cu] * [Cu] * [S]))-273
Here, [] in the formula represents mass% of the component elements in [].
[0036]
  As described above, in the present invention, primary recrystallized grains are controlled mainly using sulfide or selenide as the primary inhibitor, and N in the slab component needs to be reduced as much as possible. The following is desirable. However, this alone is insufficient to control the secondary recrystallization, so that a nitriding treatment described later is required.
  In addition, as an inhibitor formation component, the above-mentioned Al, N, S, Se, Mn, Cu, B, Sn, CrOther, Sb, P, Mo, Cd, Ge, Te, Bi, etc. are also advantageously adapted, and since Ni has a significant effect on the uniform dispersion of precipitates as primary and secondary inhibitors, each can be included in small amounts. .
[0037]
  The preferred range of addition of the above components is, Sb and P: 0.02-0.3%, Mo and Cd: 0.008-0.3%, Ge, Te and Bi: 0.005-0.1%, and Ni: 0.03-0.3% Each of these components can be used alone or in combination.
  Next, the reason for limiting the conditions relating to the manufacturing process in the present invention will be described.
[0038]
Regarding the average particle size of primary recrystallized grains after completion of decarburization annealing, for example, in JP-A-7-252532, the average particle size of primary recrystallized grains is set to 18 to 35 μm. By making the average particle size of the grains 7 μm or more and less than 18 μm, the magnetic properties (particularly iron loss) can be further improved.
That is, if the primary recrystallized grain size is small, it means that the number of primary recrystallized grains existing in the unit volume increases. Furthermore, when the primary recrystallized grains are small in size, the volume fraction of Goss-oriented grains that become the nucleus of secondary recrystallization at the primary recrystallization stage increases from the viewpoint of grain growth (“Materials Science Forum” Vol. .204-206, Part2: pp: 631).
[0039]
As a result, the absolute number of Goss orientation grains is about five times as large as the average grain size of primary recrystallized grains, for example, from 18 to 35 μm. As a result, the iron loss is remarkably improved.
In addition, if the average grain size of the primary recrystallized grains is small, the driving force of secondary recrystallization will increase, and secondary recrystallization should be started during the final finish annealing at an early stage (at a lower temperature) of the temperature raising stage. Can do. In the present situation where final finish annealing is performed in a coil shape, the temperature difference at each point of the coil (temperature history difference) increases as the temperature increases, so the temperature history at each point of the coil is reduced by lowering the secondary recrystallization temperature described above. Can be recrystallized in a temperature region where the temperature is more uniform (the rate of temperature rise at each point of the coil is constant), and the non-uniformity between the coil parts is remarkably reduced and the magnetic characteristics are extremely stable.
[0040]
However, when the average grain size of the primary recrystallized grains is less than 7 μm, the secondary recrystallization temperature is considered to be too low due to the large driving force for grain growth, but from the Goss orientation of the secondary recrystallized grain orientations. Increases the dispersion of the magnetic flux density.
It is essential in the present invention that the steel sheet is subjected to nitriding treatment after decarburization annealing and before the start of secondary recrystallization. As the method, there are a method of mixing nitride (CrN, MnN, etc.) with an annealing separator at the time of finish annealing, and a method of nitriding in an atmosphere containing ammonia under the condition of running the strip after decarburization annealing. . Either method may be adopted, but the latter method is industrially stable.
[0041]
The amount of nitrogen increased by this nitriding treatment (nitrogen increase) is limited to 0.001 to 0.03% by mass. However, if it is less than 0.001%, secondary recrystallization becomes unstable. When it exceeds, the primary film defect in which the ground iron is exposed frequently occurs. A preferable nitrogen increase is 0.003 to 0.025%.
The slab heating temperature prior to hot rolling is an important point of the present invention. If the slab heating temperature is less than 1200 ° C., the primary inhibitor, which is the key point of the present invention, is not sufficiently produced, causing problems such as a large variation in the primary recrystallized grain size with respect to the decarburization annealing temperature.
[0042]
On the other hand, by making the slab heating temperature higher than the complete solution temperature of the substance having inhibitor ability, the difference in strength of the primary inhibitor at each slab site can be made extremely small. However, when the slab heating temperature is set immediately above the complete solution temperature of the inhibitor, the time required to hold the heating temperature for the solution of the inhibitor becomes longer, so at least about 20 ° C. from the viewpoint of productivity. The above is preferably set high. Note that heating at an ultrahigh temperature exceeding 1400 ° C. is extremely difficult in industrial production and should be avoided.
[0043]
On actual production, the slab heating temperature is 1200 to 1350 ° C., which is easy to hot-roll and excellent in the shape (crown) of the hot-rolled steel strip, and is not accompanied by actual harm related to melting of the slab surface layer and occurrence of mineralization preferable.
In the method of the present invention, first, a slab having an initial thickness of 150 mm to 300 mm, preferably 200 mm to 250 mm, is manufactured by a known continuous casting method. Instead of this slab, a so-called thin slab having an initial thickness of about 30 mm to 70 mm may be used. In this case, when manufacturing a hot-rolled steel strip, there is an advantage that it is not necessary to perform rough processing to an intermediate thickness. There is. Moreover, it is also possible to manufacture a unidirectional electrical steel sheet by the method of the present invention using a slab or steel strip having a thinner initial thickness produced by steel strip casting.
[0044]
In addition, on industrial production, a normal gas heating method may be used as a heating method for hot rolling, but in addition to this method, it is desirable to use induction heating and direct current heating in terms of uniform annealing, In these special heating methods, there is no problem even if the ingot slab is subjected to ingot rolling in order to ensure the required shape. Moreover, when heating temperature becomes 1300 degreeC or more, the texture may be improved by this partial rolling and the amount of C may be reduced. These are within the scope of the prior art.
[0045]
If the final cold rolling reduction in cold rolling is less than 80%, it is difficult to obtain a desired orientation accumulation degree in the Goss orientation grains in the primary recrystallization texture, and it is difficult to ensure a high magnetic flux density. On the other hand, if the final cold rolling reduction exceeds 95%, the number of Goss orientation grains in the primary recrystallization texture becomes extremely small, and secondary recrystallization becomes unstable.
[0046]
The annealing of the hot-rolled steel strip is mainly performed to remove the unevenness of the structure / inhibitor dispersion in the steel strip that has occurred during hot-rolling. Annealing in a hot-rolled steel strip may be sufficient, and annealing before the last cold rolling may be sufficient. That is, before the final cold rolling, it is desirable to perform at least one annealing in order to eliminate non-uniformity due to the difference in temperature history during hot rolling.
The final cold rolling may be performed at room temperature, but if at least one pass is maintained at a temperature of 100 to 300 ° C. for 1 minute or longer, the primary recrystallization texture is improved and the magnetic properties are extremely good.
[0047]
【Example】
[Example 1]
Table 1 shows the results of the molten steel components melted by the usual method, the production conditions, and the product characteristics.
Hot-rolled sheet annealing was held at 1100 ° C. for 50 seconds for cooling. The plate was pickled and cold-rolled, and then decarburized and annealed at 850 ° C. for 90 to 150 seconds. Thereafter, nitridation annealing was performed in a mixed gas of hydrogen, nitrogen, and ammonia at 750 ° C. for 30 seconds, and the total nitrogen content of the steel sheet after nitriding was adjusted to around 200 ppm. Next, MgO, TiO2After applying an annealing separation agent mainly composed of No. 1 and heating to 1200 ° C. at a rate of temperature increase of 15 ° C./hour, finish annealing was performed at 1200 ° C. for 20 hours. Thereafter, a generally used insulating tension coating was applied and planarized. The results are shown in Table 2.
[0048]
From Table 1, the difference between the hot rolling heating temperature (Ts) and the precipitate inhibitor complete solution temperature (maximum value of T1 to T4) and the amount obtained by subtracting N equivalents from B (= B−0.771 × N) FIG. 1 shows an extracted relationship between the magnetic characteristics in the coil.
From the slab belonging to the component composition of the present invention, it can be seen that when manufactured according to the process conditions of the present invention, excellent magnetic properties are stably obtained over the entire length of the product coil.
[0049]
[Table 1]
Figure 0004585144
[0050]
[Table 2]
Figure 0004585144
[0051]
【The invention's effect】
According to the present invention, it is possible to industrially produce a unidirectional electrical steel sheet having excellent magnetic properties by eliminating non-uniformity of secondary recrystallization.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between magnetic properties with respect to the difference between hot rolling heating temperature and precipitate inhibitor complete solution temperature, and the amount obtained by subtracting N equivalents from B (= B−0.771 × N).

Claims (4)

Alを含有する一方向性電磁鋼板用のスラブを、1200℃以上の温度で加熱した後熱間圧延して熱延板とし、次いで、これに焼鈍を施すかもしくは施こさず、1回もしくは中間焼鈍を挟む2回以上の冷間圧延をし、その後、脱炭焼鈍、次いで、焼鈍分離剤を塗布し、仕上焼鈍を施す一方向性電磁鋼板の製造方法において、前記スラブが、質量%で、
C:0.025〜0.10%、
Si:2.5〜4.0%、
酸可溶性Al(solAl):0.01〜0.10%、
N:0.0075%以下、
Mn:0.02〜0.20%、
Seq=S+0.406×Se:0.003〜0.05%、
B:0.0005〜0.0100%
Sn:0.02〜0.3%、
Cr:0.02〜0.3%
を含有し、残部がFe及び不可避的不純物からなり、[ ]が[ ]内の成分元素の質量%を表すとして、
[B]≧0.771×[N]
を満足する関係を満たし、かつ、該スラブの加熱を、下記式(式中[ ]は、[ ]内の成分元素の質量%)、
T1=10062/(2.72−log([solAl]×[N]))−273、
T2=14855/(6.82−log([Mn]×[S]))−273、
及び、
T3=10733/(4.08−log([Mn]×[Se]))−273、
で定義するT1(℃)、T2(℃)及びT3(℃)の中で最大の温度よりも高いスラブ加熱温度Ts(℃)で行い、更に、脱炭焼鈍後、仕上焼鈍の二次再結晶開始までの間に、鋼板に窒化処理を行うことを特徴とする一方向性電磁鋼板の製造方法。
A slab for a unidirectional electrical steel sheet containing Al is heated at a temperature of 1200 ° C. or higher and then hot-rolled to form a hot-rolled sheet, which is then annealed or not applied once or in the middle. In the manufacturing method of the unidirectional electrical steel sheet, which is cold-rolled twice or more sandwiching annealing, then decarburized annealing, then applying an annealing separator and performing finish annealing, the slab is in mass%,
C: 0.025 to 0.10%,
Si: 2.5-4.0%
Acid-soluble Al (solAl): 0.01 to 0.10%,
N: 0.0075% or less
Mn: 0.02 to 0.20%,
Seq = S + 0.406 × Se: 0.003 to 0.05%,
B: 0.0005~0.0100%,
Sn: 0.02-0.3%,
Cr: 0.02-0.3%
The balance is composed of Fe and inevitable impurities, and [] represents the mass% of the component elements in [],
[B] ≧ 0.771 × [N]
And the heating of the slab with the following formula (where [] is the mass% of the component elements in []),
T1 = 10062 / (2.72−log ([solAl] × [N])) − 273,
T2 = 14855 / (6.82-log ([Mn] × [S]))-273,
as well as,
T3 = 10733 / (4.08-log ([Mn] × [Se]))-273,
Secondary crystallization of finish annealing after decarburization annealing is performed at slab heating temperature Ts (° C) higher than the maximum temperature among T1 (° C), T2 (° C) and T3 (° C) defined by until the start, manufacturing method of an oriented electrical steel sheet you and performing a nitriding treatment of the steel sheet.
請求項1に記載のスラブが、更に、質量%で、Cu:0.01〜0.30%を含有し、かつ、該スラブの加熱を、下記式(式中[ ]は、[ ]内の成分元素の質量%)、
T4=43091/(25.09−log([Cu]×[Cu]×[S]))−273
で定義するT4(℃)及びT1(℃)、T2(℃)T3(℃)の中で最大の温度よりも高いスラブ加熱温度Ts(℃)で行うことを特徴とする請求項1に記載の一方向性電磁鋼板の製造方法。
The slab according to claim 1 further contains Cu: 0.01 to 0.30% by mass%, and the slab is heated according to the following formula (where [] is in []. % By weight of component elements)
T4 = 43091 / (25.09-log ([Cu] * [Cu] * [S]))-273
In definition to T4 (° C.) and T1 (℃), T2 (℃ ) T3 according to claim 1, characterized in that the largest high slab heating temperature Ts than the temperature in (℃) (℃) manufacturing method of an oriented electrical steel sheet.
前記スラブの加熱を、1350℃以下の温度で行うことを特徴とする請求項1または2に記載の一方向性電磁鋼板の製造方法。Manufacturing method of an oriented electrical steel sheet according to claim 1 or 2 heating of the slab, and performing at 1350 ° C. or lower. 前記脱炭焼鈍完了後の一次再結晶粒の平均粒径を7μm以上18μm未満とすることを特徴とする、請求項1〜3項のいずれかの項に記載の一方向性電磁鋼板の製造方法。Characterized by an average particle size of the primary recrystallization grains after the completion of decarburization annealing less than 7μm or 18 [mu] m, the manufacturing method one oriented electrical steel sheet according to any one of claims 1 to 3, wherein .
JP2001152728A 2001-05-22 2001-05-22 Method for producing unidirectional electrical steel sheet with excellent magnetic properties Expired - Fee Related JP4585144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001152728A JP4585144B2 (en) 2001-05-22 2001-05-22 Method for producing unidirectional electrical steel sheet with excellent magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001152728A JP4585144B2 (en) 2001-05-22 2001-05-22 Method for producing unidirectional electrical steel sheet with excellent magnetic properties

Publications (2)

Publication Number Publication Date
JP2002348611A JP2002348611A (en) 2002-12-04
JP4585144B2 true JP4585144B2 (en) 2010-11-24

Family

ID=18997355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001152728A Expired - Fee Related JP4585144B2 (en) 2001-05-22 2001-05-22 Method for producing unidirectional electrical steel sheet with excellent magnetic properties

Country Status (1)

Country Link
JP (1) JP4585144B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103314126A (en) * 2011-01-12 2013-09-18 新日铁住金株式会社 Grain-oriented magnetic steel sheet and process for manufacturing same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100514790B1 (en) * 2000-12-19 2005-09-14 주식회사 포스코 A method for manufacturing grain-oriented electrical steel sheet with superior magnetic property using the low temperature heating method
WO2011007771A1 (en) * 2009-07-13 2011-01-20 新日本製鐵株式会社 Method for producing grain-oriented electromagnetic steel plate
CN102471819B (en) * 2009-07-17 2014-06-04 新日铁住金株式会社 Process for production of oriented electromagnetic steel sheet
KR101318527B1 (en) * 2010-03-17 2013-10-16 신닛테츠스미킨 카부시키카이샤 Method for producing directional electromagnetic steel sheet
KR101621056B1 (en) 2016-02-11 2016-05-13 주식회사 포스코 Method for manufacturing oriented electrical steel sheet
CN112742868B (en) * 2020-12-10 2022-09-13 安阳钢铁股份有限公司 Cold rolling process for one time of cold continuous rolling of six-roller five-stand common oriented silicon steel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000503726A (en) * 1997-06-27 2000-03-28 ポーハング アイアン アンド スティール シーオー.,エルティディ. Manufacturing method of grain oriented electrical steel sheet with high magnetic flux density based on low temperature slab heating method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000503726A (en) * 1997-06-27 2000-03-28 ポーハング アイアン アンド スティール シーオー.,エルティディ. Manufacturing method of grain oriented electrical steel sheet with high magnetic flux density based on low temperature slab heating method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103314126A (en) * 2011-01-12 2013-09-18 新日铁住金株式会社 Grain-oriented magnetic steel sheet and process for manufacturing same
CN103314126B (en) * 2011-01-12 2015-03-11 新日铁住金株式会社 Grain-oriented magnetic steel sheet and process for manufacturing same

Also Published As

Publication number Publication date
JP2002348611A (en) 2002-12-04

Similar Documents

Publication Publication Date Title
JP2782086B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic and film properties
JP4954876B2 (en) Oriented electrical steel sheet with extremely excellent magnetic properties and method for producing the same
KR100442100B1 (en) Method for producing a grain-oriented electrical steel sheet excellent in magnetic properties
JP4203238B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP3481491B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP4673937B2 (en) Method for processing steel for grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
JP3488181B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH0686631B2 (en) Method for manufacturing unidirectional electrical steel sheet with high magnetic flux density
JP4272557B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP2002212639A (en) Method for producing grain oriented silicon steel sheet having excellent magnetic property
JP4585144B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPS602624A (en) Manufacture of grain-oriented silicon steel sheet having superior surface property and magnetic characteristic
JPH059580A (en) Production of grain-oriented silicon steel sheet extremely excellent in magnetic property
JPH08100216A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP4279993B2 (en) Method for producing unidirectional silicon steel sheet
JP2002030340A (en) Method for producing grain-oriented silicon steel sheet excellent in magnetic property
JP2521585B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP4473357B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP3879149B2 (en) Method for producing unidirectional silicon steel sheet
JPH02258929A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
JP3849310B2 (en) Method for producing grain-oriented electrical steel sheet without ear cracks
JP4267320B2 (en) Manufacturing method of unidirectional electrical steel sheet
KR970007162B1 (en) Making method of oriented electrical steel sheet having excellent from loss properties
JPH06306474A (en) Production of grain-oriented magnetic steel sheet excellent in magnetic property
JPH0699750B2 (en) Method for producing grain-oriented silicon steel sheet having good electromagnetic characteristics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100903

R151 Written notification of patent or utility model registration

Ref document number: 4585144

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees