JP2011510166A - Oriented electrical steel sheet with excellent magnetic properties and method for producing the same - Google Patents
Oriented electrical steel sheet with excellent magnetic properties and method for producing the same Download PDFInfo
- Publication number
- JP2011510166A JP2011510166A JP2010540586A JP2010540586A JP2011510166A JP 2011510166 A JP2011510166 A JP 2011510166A JP 2010540586 A JP2010540586 A JP 2010540586A JP 2010540586 A JP2010540586 A JP 2010540586A JP 2011510166 A JP2011510166 A JP 2011510166A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- weight
- temperature
- less
- range
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 37
- 229910000976 Electrical steel Inorganic materials 0.000 title claims description 47
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 76
- 229910001224 Grain-oriented electrical steel Inorganic materials 0.000 claims abstract description 67
- 229910052787 antimony Inorganic materials 0.000 claims abstract description 67
- 229910000831 Steel Inorganic materials 0.000 claims description 125
- 239000010959 steel Substances 0.000 claims description 125
- 238000000137 annealing Methods 0.000 claims description 108
- 239000013078 crystal Substances 0.000 claims description 86
- 238000002791 soaking Methods 0.000 claims description 66
- 229910052757 nitrogen Inorganic materials 0.000 claims description 62
- 229910052718 tin Inorganic materials 0.000 claims description 59
- 229910052717 sulfur Inorganic materials 0.000 claims description 27
- 238000005121 nitriding Methods 0.000 claims description 25
- 229910052748 manganese Inorganic materials 0.000 claims description 24
- 238000010438 heat treatment Methods 0.000 claims description 20
- 238000003303 reheating Methods 0.000 claims description 19
- 229910052799 carbon Inorganic materials 0.000 claims description 17
- 238000005098 hot rolling Methods 0.000 claims description 17
- 229910052710 silicon Inorganic materials 0.000 claims description 14
- 229910052796 boron Inorganic materials 0.000 claims description 11
- 229910052750 molybdenum Inorganic materials 0.000 claims description 10
- 229910052719 titanium Inorganic materials 0.000 claims description 10
- 229910052725 zinc Inorganic materials 0.000 claims description 10
- 239000010960 cold rolled steel Substances 0.000 claims description 8
- 229910052797 bismuth Inorganic materials 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 229910052745 lead Inorganic materials 0.000 claims description 5
- 229910052714 tellurium Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 230000005611 electricity Effects 0.000 claims 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 196
- 239000000463 material Substances 0.000 description 93
- 229910052742 iron Inorganic materials 0.000 description 91
- 238000001953 recrystallisation Methods 0.000 description 88
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 78
- 230000000694 effects Effects 0.000 description 59
- 238000000034 method Methods 0.000 description 48
- 239000012298 atmosphere Substances 0.000 description 47
- 238000005261 decarburization Methods 0.000 description 44
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 41
- 229910052739 hydrogen Inorganic materials 0.000 description 41
- 239000001257 hydrogen Substances 0.000 description 41
- 239000003112 inhibitor Substances 0.000 description 36
- 230000000052 comparative effect Effects 0.000 description 32
- 239000011572 manganese Substances 0.000 description 29
- 230000008569 process Effects 0.000 description 25
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 18
- 230000002829 reductive effect Effects 0.000 description 18
- 238000005097 cold rolling Methods 0.000 description 17
- 239000012535 impurity Substances 0.000 description 17
- 230000006872 improvement Effects 0.000 description 15
- 239000007789 gas Substances 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 230000008859 change Effects 0.000 description 12
- 230000001276 controlling effect Effects 0.000 description 12
- 239000002244 precipitate Substances 0.000 description 12
- 238000011160 research Methods 0.000 description 12
- 230000002411 adverse Effects 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 8
- 150000004767 nitrides Chemical group 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 230000008520 organization Effects 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 230000003247 decreasing effect Effects 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 6
- 239000012467 final product Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000005096 rolling process Methods 0.000 description 5
- 230000002195 synergetic effect Effects 0.000 description 5
- 230000004907 flux Effects 0.000 description 4
- 230000000670 limiting effect Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 3
- 229910001566 austenite Inorganic materials 0.000 description 3
- 229910052732 germanium Inorganic materials 0.000 description 3
- 238000005204 segregation Methods 0.000 description 3
- 230000005476 size effect Effects 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- -1 AlN Chemical class 0.000 description 1
- 229910000967 As alloy Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000005539 carbonized material Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000005262 decarbonization Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003631 expected effect Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000005381 magnetic domain Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1244—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
- C21D8/1255—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1244—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
- C21D8/1272—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2201/00—Treatment for obtaining particular effects
- C21D2201/05—Grain orientation
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/004—Dispersions; Precipitations
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Abstract
磁気特性に優れた方向性電気鋼板及びその製造方法を提供する。より詳細には、成分を調節して製造方法を改善することで、従来類似した成分系では期待することができなかった程度に磁気特性を画期的に改善した方向性電気鋼板及びその製造方法を提供する。この方向性電気鋼板は、Sn:0.03〜0.07重量%、Sb:0.01〜0.05重量%及びP:0.01〜0.05重量%を必須成分として含む。A grain-oriented electrical steel sheet having excellent magnetic properties and a method for producing the same are provided. In more detail, the grain-oriented electrical steel sheet and the manufacturing method thereof, which have improved magnetic properties to an extent that could not be expected with conventional similar component systems by adjusting the components and improving the manufacturing method. I will provide a. This grain-oriented electrical steel sheet contains Sn: 0.03-0.07 wt%, Sb: 0.01-0.05 wt%, and P: 0.01-0.05 wt% as essential components.
Description
本発明は、磁気特性に優れた方向性電気鋼板及びその製造方法に関し、より詳細には、成分を調節して製造方法を改善することで、従来類似した成分系では期待することができなかった程に磁気特性を画期的に改善した方向性電気鋼板及びその製造方法に関する。 The present invention relates to a grain-oriented electrical steel sheet having excellent magnetic properties and a method for producing the same, and more specifically, by adjusting the components and improving the production method, it has not been possible to expect with a similar component system in the past. The present invention relates to a grain-oriented electrical steel sheet and a method for producing the grain-oriented electrical steel sheet that have dramatically improved magnetic properties.
電気鋼板は、電気機械や電気器具の素材として使用される珪素鋼板を意味し、大きく分けて、方向性電気鋼板と無方向性電気鋼板とが挙げられる。その中で、方向性電気鋼板は、ゴス(Goss)が発見して提案したように、結晶面の方位が{110}面であり、圧延方向の結晶方位は<001>軸に平行する、いわゆるゴス集合組職を有する結晶粒で構成される。このような鋼板は、圧延方向に磁気特性に優れている。 The electric steel sheet means a silicon steel sheet used as a material for an electric machine or an electric appliance, and is roughly classified into a directional electric steel sheet and a non-oriented electric steel sheet. Among them, the grain-oriented electrical steel sheet is so-called that the orientation of the crystal plane is the {110} plane and the crystal orientation in the rolling direction is parallel to the <001> axis as discovered and proposed by Goss. Consists of crystal grains with Goth collective organization. Such a steel plate is excellent in magnetic properties in the rolling direction.
図1(参考文献:Arai ken等、「Recent Development of Electrical Steel Sheets」、日本鉄鋼協会、1995,pp15)を参照して、方向性電気鋼板の結晶方位が方向性電気鋼板の磁気特性に及ぼす影響を概略的に説明する。図1は、鋼板の実際の結晶方位がゴス方位から外れた程度と鉄損との関係を特定するために単結晶を利用して試験した結果を示す。図1のグラフから分かるように、ゴス方位から約2度(いわゆるβ角の絶対値を意味する。β角については後述する。)程外れた場合に最も低い鉄損を表している。よって、通常、方向性電気鋼板を製造する場合には、角度がなるべく2度に近いことで、結晶方位がゴス方位から外れるように製造している。但し、多結晶素材である電気鋼板の方位は、結晶粒の面積を考慮して、各結晶粒の方位がゴス方位から外れた程度(β角)の絶対値に対して、面積加重平均を計算することで、求めることができる。以下に、記載の便宜のために、上記「各粒子の方位がゴス方位から外れた程度の中でβ角の絶対値に対して求めた面積加重平均」を単に「ゴス方位から外れた程度」と表示する。 Referring to FIG. 1 (reference document: Arai ken et al., “Recent Development of Electrical Steel Sheets”, Japan Iron and Steel Institute, 1995, pp15), the effect of crystal orientation of grain-oriented electrical steel sheets on magnetic properties of grain-oriented electrical steel sheets Is schematically described. FIG. 1 shows the results of testing using a single crystal in order to identify the relationship between the degree to which the actual crystal orientation of the steel sheet deviates from the Goss orientation and the iron loss. As can be seen from the graph in FIG. 1, the lowest iron loss is represented when the angle deviates by about 2 degrees from the Goss direction (meaning the absolute value of the so-called β angle. The β angle will be described later). Therefore, normally, when manufacturing a grain-oriented electrical steel sheet, it manufactures so that a crystal orientation may remove | deviate from a goth orientation because an angle is as close to 2 degree | times as possible. However, the orientation of the electrical steel sheet, which is a polycrystalline material, calculates the area weighted average for the absolute value of the degree (β angle) that the orientation of each crystal grain deviates from the Goss orientation, considering the crystal grain area It can be obtained by doing. Hereinafter, for convenience of description, the above-mentioned “area weighted average obtained with respect to the absolute value of the β angle in the extent that the orientation of each particle deviates from the Goss orientation” is simply “excluded from the Goss orientation” Is displayed.
ゴス方位から外れた程度は、図2から分かるように、α、β及びγ角と表示されるが、通常は、β角を調節することが電気鋼板の磁気特性の制御に効果的であると知られている。よって、本明細書では、β角に対してゴス方位から外れた程度を上述したように「ゴス方位から外れた程度」と簡単に表示する。 As shown in FIG. 2, the degree of deviation from the Goss direction is expressed as α, β, and γ angles. Normally, adjusting the β angle is effective in controlling the magnetic properties of the electrical steel sheet. Are known. Therefore, in this specification, the degree of deviation from the Goth direction with respect to the β angle is simply displayed as “degree of deviation from the Goth direction” as described above.
鋼板の方位がゴス方位に近いように鋼板を製造するためには、全ての結晶の方位がゴス方位に一致する必要がある。しかし、スラブを圧延して製造する電気鋼板は、必然的に多結晶系組職を有するしかなく、その結果、結晶の方位は、結晶毎に異なるため、これをゴス方位に近いように一致させるためには特別な作業が必要である。 In order to manufacture a steel plate so that the orientation of the steel plate is close to the Goth orientation, the orientation of all crystals needs to coincide with the Goth orientation. However, an electrical steel sheet produced by rolling a slab inevitably has a polycrystalline structure, and as a result, the crystal orientation differs from crystal to crystal, so this is matched to be close to the Goth orientation. To do this, special work is required.
即ち、多結晶系組職を有する圧延鋼板には、ゴス方位に近い結晶も含まれることはあるが、大部分がゴス方位から大きく外れた方位を有する結晶が含まれるため、これらをそのまま使用する場合は、磁気特性に優れた電気鋼板を得ることが困難になる。よって、上記多結晶系組職の鋼板をゴス方位に近い結晶のみを存在させるように、再結晶化する必要がある。上記再結晶化時に優先的に成長する結晶の方位は、再結晶化温度によって決まることであり、再結晶化温度をうまく制御する場合は、ゴス方位に近い結晶が優先的に成長できるようになる。その結果、再結晶化の前にはゴス方位に近い結晶の分率が小さいが、再結晶化がなされた後は、ゴス方位に近い結晶の分率が大部分を占めるようになる。このような再結晶化を、先に起こる1次再結晶化(後述)と区別するために、2次再結晶化という。 That is, a rolled steel sheet having a polycrystalline structure may contain crystals close to the Goth orientation, but most contain crystals having an orientation greatly deviating from the Goth orientation, so these are used as they are. In this case, it becomes difficult to obtain an electric steel sheet having excellent magnetic properties. Therefore, it is necessary to recrystallize the steel sheet having the polycrystalline structure so that only crystals close to the Goth orientation exist. The crystal orientation that preferentially grows during the recrystallization is determined by the recrystallization temperature. When the recrystallization temperature is well controlled, crystals close to the Goth orientation can preferentially grow. . As a result, the fraction of crystals close to the Goth orientation is small before recrystallization, but after recrystallization, the fraction of crystals near the Goth orientation occupies the majority. Such recrystallization is referred to as secondary recrystallization in order to distinguish it from primary recrystallization (described later).
この際、上記2次再結晶化の前には、結晶が均一に分布するようにする1次再結晶化がなされる。上記1次再結晶化は、通常、冷間圧延以後に行われる脱炭焼鈍の直後、または脱炭焼鈍と同時になされ、上記1次再結晶化によって均一かつ適切な粒度の結晶粒が形成されるようになる。もちろん、上記結晶粒の方位は満遍なく分散されており、方向性電気鋼板で最終的に取得しようとするゴス方位を有する結晶粒の分率は非常に低い。 At this time, before the secondary recrystallization, primary recrystallization is performed so that the crystals are uniformly distributed. The primary recrystallization is usually performed immediately after the decarburization annealing performed after the cold rolling or simultaneously with the decarburization annealing, and uniform and appropriate crystal grains are formed by the primary recrystallization. It becomes like this. Of course, the orientation of the crystal grains is uniformly distributed, and the fraction of crystal grains having the Goth orientation that is finally obtained by the grain-oriented electrical steel sheet is very low.
上述したように、上記1次再結晶化された鋼板は、以後ゴス方位を備えるに適した温度で2次再結晶化されることで、磁気特性に優れたゴス方位を備えた鋼板に製造されることができる。ところが、上記1次再結晶化された鋼板のうちそれぞれ異なる方位を有する結晶粒のサイズが異なる場合は、たとえゴス方位を備えるに適した温度で2次再結晶化が起こるとしても、いわゆるサイズ効果、即ち、大きな結晶粒が小さな結晶粒より安定した効果によって、方位に関係なく、大きな結晶粒が優勢に成長する可能性が高くなり、その結果、ゴス方位から外れた結晶粒の分率が高くなる。 As described above, the primary recrystallized steel sheet is manufactured into a steel sheet having goth orientation with excellent magnetic properties by being secondarily recrystallized at a temperature suitable for providing the goth orientation thereafter. Can. However, when the sizes of crystal grains having different orientations among the primary recrystallized steel plates are different, even if secondary recrystallization occurs at a temperature suitable for providing the Goss orientation, a so-called size effect is achieved. In other words, the larger crystal grains have a more stable effect than the smaller ones, and there is a high possibility that the large grains will grow dominant regardless of the orientation. As a result, the fraction of grains outside the goth orientation is high. Become.
従って、結晶粒は、1次再結晶化時に均一かつ適切なサイズで分布されていなければならない。結晶粒のサイズが非常に微細な場合は、結晶界面面積の増加によって界面エネルギーが増加するようになり、結晶粒が不安定になる恐れがある。このような場合は、2次再結晶化が低過ぎる温度で起こって、ゴス方位を備えていない結晶粒が多量に生成される。このような適切な結晶粒のサイズは、添加される元素(抑制剤)の種類によって異なる(後述する)。 Therefore, the crystal grains must be distributed in a uniform and appropriate size during the primary recrystallization. When the size of the crystal grains is very fine, the interface energy increases due to the increase of the crystal interface area, and the crystal grains may become unstable. In such a case, secondary recrystallization occurs at a temperature that is too low, and a large amount of crystal grains having no Goth orientation are generated. The appropriate size of such crystal grains varies depending on the type of element (inhibitor) added (described later).
また、上記1次再結晶化された結晶粒が適切な温度で再結晶化されると、方向性電気鋼板に適したゴス方位を有した結晶粒が優勢に多量に形成される。よって、上記適切な温度まで結晶粒を昇温する必要があるが、適切な温度までの昇温過程までに不可避に低い温度範囲を経由する。このような低い温度範囲で再結晶化が起こってしまうと、ゴス方位が優勢で多量な結晶粒を得ることはできなくなる。従って、適切な温度まで昇温するまでは再結晶化が起こらないように、結晶粒の成長を抑制する手段が必要となる。鋼板の内部でこのような役割をする手段は、添加された成分の偏析や析出などによって得ることができ、このような役割をする元素を抑制剤という。 Further, when the primary recrystallized crystal grains are recrystallized at an appropriate temperature, a large amount of crystal grains having Goth orientation suitable for the grain-oriented electrical steel sheet are formed. Therefore, although it is necessary to raise the temperature of the crystal grains to the appropriate temperature, the temperature inevitably goes through a low temperature range until the temperature is raised to the appropriate temperature. If recrystallization occurs in such a low temperature range, the Goth orientation is dominant and a large amount of crystal grains cannot be obtained. Therefore, a means for suppressing the growth of crystal grains is required so that recrystallization does not occur until the temperature is raised to an appropriate temperature. The means for performing such a role inside the steel sheet can be obtained by segregation or precipitation of the added component, and the element having such a role is called an inhibitor.
結晶を適切な2次再結晶化温度に昇温する前までは、抑制剤は、析出物や偏析の形態で結晶粒界付近に存在することで結晶粒がこれ以上成長することを抑制しており、適切な温度(2次再結晶化温度)に昇温すると、抑制剤は、溶解されるか分解されて結晶粒の自由な成長を助長する役割をする。 Until the temperature of the crystal is raised to an appropriate secondary recrystallization temperature, the inhibitor is present in the vicinity of the grain boundary in the form of precipitates or segregation, thereby preventing further growth of the crystal grains. When the temperature is raised to an appropriate temperature (secondary recrystallization temperature), the inhibitor functions to promote free growth of crystal grains by being dissolved or decomposed.
上記のような抑制剤として広く用いられたものとして、MnSやMnSeなどのような元素を挙げることができる。 Examples of widely used inhibitors as described above include elements such as MnS and MnSe.
その例として、日本国特開昭51−13469号公報(特許文献1)を挙げることができるが、上記文献では、電気鋼板の製造方法を開示しており、方向性電気鋼板をスラブ加熱、熱間圧延、熱延板焼鈍、1次冷間圧延、中間焼鈍、2次冷間圧延、脱炭焼鈍及び最終焼鈍の過程を通じて製造し、抑制剤としてMnSeとSbを用いる。また、日本国特開昭30−3651号公報(特許文献2)では、方向性電気鋼板の製造技術を開示しており、抑制剤としてMnSを用いて中間焼鈍を含んだ2回の冷間圧延で電気鋼板を提供する。MnS系の抑制剤を用いるもう一つの例として、日本国特開昭40−15644号公報(特許文献3)を挙げることができるが、この方法では、MnSとAlNを抑制剤として用い、80%以上の高い圧延率で1回の冷間圧延をして磁束密度の高い製品を得ている。 As an example thereof, Japanese Patent Application Laid-Open No. 51-13469 (Patent Document 1) can be cited. However, the above document discloses a method for producing an electrical steel sheet, in which the directional electrical steel sheet is heated with slab, It is manufactured through the processes of hot rolling, hot rolled sheet annealing, primary cold rolling, intermediate annealing, secondary cold rolling, decarburization annealing, and final annealing, and MnSe and Sb are used as inhibitors. Japanese Laid-Open Patent Publication No. 30-3651 (Patent Document 2) discloses a technology for producing grain-oriented electrical steel sheets, and includes two cold rolling operations including intermediate annealing using MnS as an inhibitor. Provide electrical steel sheet at As another example of using an MnS-based inhibitor, Japanese Patent Application Laid-Open No. 40-15644 (Patent Document 3) can be cited. In this method, MnS and AlN are used as inhibitors, and 80% A product having a high magnetic flux density is obtained by performing the cold rolling once at the above high rolling rate.
ところが、上記のようにMnSを抑制剤として用いる方法は、MnSを形成するためにスラブを非常に高い温度に再加熱しなければならないという問題がある。即ち、スラブ内に存在するMnSは、粗大な析出物として存在する場合が多いので、方向性電気鋼板の製造に用いられる抑制剤の役割をすることができないことがある。よって、MnSを固溶させた後、均一に分布させる必要があるが、そのためには、スラブをMnSの固溶が可能な温度まで加熱しなければならない。ところが、MnSの固溶温度は、熱力学的な平衡状態を考慮するとしても、約1300℃以上と、非常に高い温度であり、実際に、多様な工業的に利用可能なように充分に速い速度でMnSを溶解されるためには、これより遥かに高い温度である約1400℃まで再加熱する必要がある。 However, the method using MnS as an inhibitor as described above has a problem that the slab must be reheated to a very high temperature in order to form MnS. That is, since MnS present in the slab often exists as coarse precipitates, it may not be able to serve as an inhibitor used in the manufacture of grain-oriented electrical steel sheets. Therefore, after MnS is dissolved, it is necessary to distribute it uniformly. To this end, the slab must be heated to a temperature at which MnS can be dissolved. However, even when considering the thermodynamic equilibrium state, the solid solution temperature of MnS is a very high temperature of about 1300 ° C. or higher, and is sufficiently fast so that it can actually be used in various industrial applications. In order to dissolve MnS at a rate, it is necessary to reheat to about 1400 ° C., which is a much higher temperature.
上記のように高い温度でスラブを加熱する場合は、スラブ加熱に使われるエネルギー消耗が激しくなり、スラブの表面が溶融されるという問題が発生して、再加熱炉の補修費が多くかかるだけでなく、加熱炉の寿命が短縮されるという問題をもたらす可能性があった。 When heating a slab at a high temperature as described above, the energy consumed for heating the slab becomes intense, causing the problem that the surface of the slab is melted. However, the life of the heating furnace may be shortened.
従って、スラブの再加熱温度を低下させることができる抑制剤の導入が必要である。このような要求にあわせて提供された抑制剤が窒化物系抑制剤である。上記窒化物系抑制剤の長所は、以下の通りである。脱炭焼鈍と同時に、または脱炭焼鈍の直後に、鋼板を窒素雰囲気に置くことで、窒素が鋼板内部に侵透し易い条件を形成させて、窒素を浸透することができる。侵透した窒素が鋼板中の窒化物形成元素と反応して窒化物を形成し、上記窒化物が抑制剤の役割をする。上記窒化物の例としては、AlN、(Al,Si)Nなどのような元素を挙げることができる。 Therefore, it is necessary to introduce an inhibitor capable of reducing the reheating temperature of the slab. An inhibitor provided in accordance with such a requirement is a nitride-based inhibitor. The advantages of the nitride-based inhibitor are as follows. By placing the steel sheet in a nitrogen atmosphere simultaneously with the decarburization annealing or immediately after the decarburization annealing, it is possible to form a condition in which nitrogen easily penetrates into the steel sheet and to permeate nitrogen. The infiltrated nitrogen reacts with a nitride-forming element in the steel sheet to form a nitride, and the nitride serves as an inhibitor. Examples of the nitride include elements such as AlN and (Al, Si) N.
冷延板の脱炭焼鈍と同時に、またはその後に適切な温度で冷延板を窒化すればよいので、冷延板の再加熱温度は通常の熱延時の再加熱温度と同様な温度にすればよい。方向性電気鋼板の製造分野では、このような再加熱パターンを「低温再加熱」という。 Since the cold-rolled sheet may be nitrided at an appropriate temperature simultaneously with the decarburization annealing of the cold-rolled sheet, the reheating temperature of the cold-rolled sheet should be similar to the reheating temperature during normal hot rolling. Good. In the field of production of grain-oriented electrical steel sheets, such a reheating pattern is called “low temperature reheating”.
上述した低温再加熱による方向性電気鋼板を製造する方法の一例としては、日本国特開平1−230721号公報(特許文献4)、日本国特開平1−283324号公報(特許文献5)、大韓民国公開特許第97−48184号公報(特許文献6)、及び大韓民国公開特許第97−28305号公報(特許文献7)を挙げることができるが、これらの方法では、窒素雰囲気を形成するためにアンモニアガスを用いている。上記アンモニアガスは、通常、約500℃以上の温度で水素と窒素に分解される性質があるため、このアンモニアの性質を利用して鋼板に窒素を供給する。 As an example of the method for producing the grain-oriented electrical steel sheet by the low temperature reheating described above, Japanese Patent Laid-Open No. 1-230721 (Patent Document 4), Japanese Patent Laid-Open No. 1-283324 (Patent Document 5), South Korea There are listed Japanese Patent No. 97-48184 (Patent Document 6) and Korean Patent No. 97-28305 (Patent Document 7). In these methods, ammonia gas is used to form a nitrogen atmosphere. Is used. Since the ammonia gas usually has a property of being decomposed into hydrogen and nitrogen at a temperature of about 500 ° C. or higher, nitrogen is supplied to the steel sheet using the property of ammonia.
ところが、上記のような窒化法を利用する低温再加熱方式も、窒素だけでは磁気特性向上に限界があるという短所があった。 However, the low-temperature reheating method using the nitriding method as described above has a disadvantage in that there is a limit in improving the magnetic characteristics with nitrogen alone.
方向性電気鋼板の磁気特性をさらに向上させるための方法としては、抑制剤の役割をする他の元素を添加して、2次再結晶化時にゴス方位に成長する結晶粒の分率をさらに上昇させる手段がある。また、1次再結晶化時にゴス方位を有した結晶の分率を高めて、2次再結晶化時にゴス方位を有した結晶粒の分率を高める手段がある。さらに、2次再結晶化時にサイズ効果によってゴス方位を有することができなかった結晶粒がより大きく成長することを防止するために、1次再結晶化された結晶粒のサイズを均一に分布させる手段などがある。 As a method for further improving the magnetic properties of grain-oriented electrical steel sheets, other elements that act as inhibitors are added to further increase the fraction of grains that grow in the Goth orientation during secondary recrystallization. There is a means to make it. There is also a means for increasing the fraction of crystals having goth orientation during primary recrystallization and increasing the fraction of crystal grains having goth orientation during secondary recrystallization. Further, the size of the primary recrystallized crystal grains is uniformly distributed in order to prevent larger growth of the crystal grains that could not have the Goth orientation due to the size effect during the secondary recrystallization. There are means.
従来提案された方法としては、鋼板の成分を改善する方法を挙げることができる。即ち、電気鋼板にSn、Sb及びPなどの元素を添加する場合は、電気鋼板の磁気特性を大きく向上できるが、その理由は下記の通りである。 As a conventionally proposed method, a method for improving the components of a steel sheet can be mentioned. That is, when elements such as Sn, Sb, and P are added to the electrical steel sheet, the magnetic properties of the electrical steel sheet can be greatly improved for the following reason.
即ち、SbとSnは、1次再結晶化集合組職において、{110}<001>方位を有する結晶粒の分率を増加させるという効果があるだけでなく、硫化物を均一に析出させるという効果がある。また、SbとSnの添加量が一定水準を超える場合は、脱炭焼鈍時の酸化反応を抑制するという効果を得ることができる。そのため、脱炭焼鈍時の温度を上昇させることができ、その結果、方向性電気鋼板の1次被膜形成をより簡単にすることができる。また、これらの元素は、結晶粒界で析出されて結晶粒の成長を抑制することができるため、2次再結晶化粒の粒子径を小さくすることができる。よって、2次再結晶粒の微細化の形成による磁区微細化の効果も得られる。 That is, Sb and Sn not only have the effect of increasing the fraction of crystal grains having the {110} <001> orientation in the primary recrystallization group organization, but also precipitate the sulfides uniformly. effective. Moreover, when the addition amount of Sb and Sn exceeds a fixed level, the effect that the oxidation reaction at the time of decarburization annealing is suppressed can be acquired. Therefore, the temperature at the time of decarburization annealing can be raised, and as a result, primary film formation of a grain-oriented electrical steel sheet can be made easier. In addition, since these elements are precipitated at the grain boundaries and can suppress the growth of the crystal grains, the particle diameter of the secondary recrystallized grains can be reduced. Therefore, the effect of refining the magnetic domain by forming the recrystallized secondary recrystallized grains can be obtained.
また、Pは、1次再結晶化時に集合組職を改善する効果があると知られている。即ち、1次再結晶化時にゴス方位を有した結晶粒の分率を高める機能を有する。 Further, P is known to have an effect of improving the collective organization at the time of primary recrystallization. That is, it has a function of increasing the fraction of crystal grains having Goth orientation during primary recrystallization.
方向性電気鋼板にSn、Sb及びPなどの元素を添加することは、日本国特開平2−294428号公報(特許文献8)、日本国特開2006−241503号公報(特許文献9)、日本国特開2007−254829号公報(特許文献10)、日本国特開2007−051338号公報(特許文献11)、日本国特開平11−335794号公報(特許文献12)に開示される。 Adding elements such as Sn, Sb, and P to grain-oriented electrical steel sheets is disclosed in Japanese Patent Laid-Open No. 2-294428 (Patent Document 8), Japanese Patent Laid-Open No. 2006-241503 (Patent Document 9), Japan. Japanese Unexamined Patent Application Publication No. 2007-254829 (Patent Document 10), Japanese Unexamined Patent Application Publication No. 2007-051338 (Patent Document 11), and Japanese Unexamined Patent Application Publication No. 11-335794 (Patent Document 12).
これらの中で、上記日本国特開平2−294428号公報には、方向性電気鋼板にP:0.0007〜0.045重量%を添加した高磁束密度を有する方向性電気鋼板が開示されており、また、上記日本国特開2006−241503号公報には、他の成分と共にP:0.015〜0.07重量%を含み、必要に応じてSb:0.005〜0.2重量%及びSn:0.01〜0.5重量%のうちから選択された1種または2種をさらに添加して、安定した磁気特性を有する珪素鋼板を製造する方法が開示されている。 Among these, the Japanese Patent Laid-Open No. 2-294428 discloses a grain-oriented electrical steel sheet having a high magnetic flux density obtained by adding P: 0.0007 to 0.045 wt% to the grain-oriented electrical steel sheet. In addition, the above Japanese Unexamined Patent Publication No. 2006-241503 contains P: 0.015 to 0.07% by weight together with other components, and Sb: 0.005 to 0.2% by weight as necessary. And Sn: A method for producing a silicon steel sheet having stable magnetic properties by further adding one or two selected from 0.01 to 0.5% by weight.
上記日本国特開2007−254829号公報には、必要に応じてSn、Sb及びPのうち一種以上を0.02〜0.30重量%含む磁気特性に優れた方向性電気鋼板の製造方法が開示されており、また、上記日本国特開2007−051338号公報には、P:0.2重量%以下を添加して、必要に応じてSb:0.001〜0.02及びSn:0.002〜0.1重量%のうちから選択される1種以上の元素をさらに含む45゜方向の磁気特性に優れた方向性電気鋼板の製造方法が開示されている。 In the above Japanese Unexamined Patent Application Publication No. 2007-254829, there is a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties including 0.02 to 0.30% by weight of one or more of Sn, Sb and P as required. In addition, P: 0.2 wt% or less is added to the above Japanese Unexamined Patent Publication No. 2007-051338, and Sb: 0.001 to 0.02 and Sn: 0 as necessary. A method for producing a grain-oriented electrical steel sheet excellent in magnetic properties in the 45 ° direction, which further contains one or more elements selected from 0.002 to 0.1% by weight is disclosed.
また、上記日本国特開平11−335794号公報には、電気鋼板の成分系にSn、Sb、P、B、Bi、Mo、Te及びGeからなる元素のうちから選択された1種以上の元素を0.0005〜2.0重量%添加した電気鋼板の製造方法が開示されている。 In addition, in the above Japanese Patent Laid-Open No. 11-335794, one or more elements selected from the elements consisting of Sn, Sb, P, B, Bi, Mo, Te and Ge in the component system of the electric steel sheet are disclosed. Discloses a method for producing an electric steel sheet to which 0.0005 to 2.0% by weight is added.
上述したように、上記特許文献では、Sn、Sb及びPなどの元素を添加する構成は開示されているが、これらの範囲は広範囲に記載されており、これらの元素を1種または2種以上含む程度にしか記載されていない。即ち、現在までの研究成果によると、上記Sn、Sb及びPの添加によって電気鋼板の磁気特性を向上することができるという程度だけが開示されており、各元素の適切な含量及びこれらの元素の相互作用による相乗効果については全く開示されていないので、上記元素の適切な添加を通じた電気鋼板の磁気特性向上のための具体的な手段の提供は、未だに不十分である。 As described above, the above patent document discloses a configuration in which elements such as Sn, Sb, and P are added. However, these ranges are described extensively, and one or more of these elements are included. It is described only to the extent that it is included. That is, according to the research results up to now, only the extent that the magnetic properties of the electrical steel sheet can be improved by the addition of Sn, Sb and P is disclosed, and the appropriate content of each element and the content of these elements are disclosed. Since there is no disclosure of a synergistic effect due to the interaction, provision of specific means for improving the magnetic properties of the electrical steel sheet through appropriate addition of the above elements is still insufficient.
そして、上記Sn、Sb及びPを含む電気鋼板は、従来の抑制剤のみが含まれた電気鋼板に比べて1次再結晶化及び2次再結晶化の挙動が異なるようになるが、上述した従来技術は、これに対する解決方法を提供していない。即ち、このような元素を添加する場合は、これらを添加しなかった鋼材に比べて1次再結晶粒のサイズが小さくなって2次再結晶化に対する抑制力は高くなるが、このような点に着目した焼鈍作業の制御方法は、従来技術に開示されていない。 And, the electrical steel sheet containing Sn, Sb and P has different behaviors of primary recrystallization and secondary recrystallization as compared with the electrical steel sheet containing only the conventional inhibitor. The prior art does not provide a solution to this. That is, when such elements are added, the size of the primary recrystallized grains is reduced compared to the steel material to which these elements are not added, and the suppressing power against secondary recrystallization is increased. The control method of the annealing work paying attention to is not disclosed in the prior art.
また、上記の事項とは別に、2次再結晶化は、スラブの熱間圧延−熱延板焼鈍−冷間圧延−脱炭焼鈍−最終焼鈍等の電気鋼板の製造方法の一連の過程の中で、最終焼鈍工程で起こるが、上記2次再結晶化のための初期の温度の昇温及び維持時間が過大で、生産性が低下されるという問題がある。 In addition to the above items, secondary recrystallization is performed during a series of processes of the method of manufacturing an electrical steel sheet, such as hot rolling of a slab, hot-rolled sheet annealing, cold rolling, decarburization annealing, and final annealing. However, although it occurs in the final annealing step, there is a problem that the initial temperature rise and maintenance time for the secondary recrystallization is excessive and productivity is lowered.
即ち、最終焼鈍は、コイル状の鋼板を高温で加熱すること行われるため、鋼板と鋼板とが付着してしまう恐れがあり、最終焼鈍前にコイル状の鋼板表面にMgOを主成分とする焼鈍分離制を塗布するが、各コイル状の鋼板の表面はMgOを水分と共にペースト形態で塗布されるので、各コイル状の鋼板に2段階の均熱過程がされる。2段階の均熱過程は、ペーストから水分を除去するための1次均熱過程と、上記1次均熱過程後に2次再結晶化温度にまで鋼板を加熱する昇温過程以後、適切な温度で鋼板を維持する2次均熱過程とに分けられる。 That is, since the final annealing is performed by heating the coiled steel plate at a high temperature, there is a risk that the steel plate and the steel plate adhere to each other, and the annealing is mainly performed on the coiled steel plate surface before the final annealing. Although the separation system is applied, since the surface of each coiled steel plate is coated with MgO in a paste form together with moisture, each coiled steel plate is subjected to a two-step soaking process. The two-stage soaking process includes a primary soaking process for removing moisture from the paste, and a heating process for heating the steel plate to the secondary recrystallization temperature after the primary soaking process. And a secondary soaking process for maintaining the steel sheet.
上記1次均熱過程で、MgOと共存した水分は除去され、鋼板中のSi成分が反応に寄与してMgOとSiO2の複合酸化物被膜が鋼板表面に形成されるようになる。 In the primary soaking process, moisture coexisting with MgO is removed, and the Si component in the steel sheet contributes to the reaction, so that a composite oxide film of MgO and SiO 2 is formed on the steel sheet surface.
上述したように、2次再結晶化温度によって、優先成長する結晶粒の方位が異なるので、上記2次再結晶化温度は精密に制御されなければならない。即ち、上記MnSやAlNなどの抑制剤が鋼板内に再固溶されれば、2次再結晶化が起こるようになるので、上記抑制剤はなるべく制限された温度範囲内で急に除去されることが最も好ましい。ところが、昇温を急激にする場合は、上記抑制剤が広い温度範囲で除去される恐れがあるので、多様な方位の結晶粒が共に成長するようになり、ゴス方位に近い結晶粒が優勢で多数であり磁気特性に優れた方向性電気鋼板を得ることは困難になる。よって、従来は、上記2次再結晶化温度まで鋼板を非常に遅く昇温し、特に10〜17℃の昇温速度である。このような遅い昇温速度では、2次均熱温度までの昇温に必要な時間を消耗し過ぎて、生産性低下の原因となる。 As described above, since the orientation of preferentially growing crystal grains differs depending on the secondary recrystallization temperature, the secondary recrystallization temperature must be precisely controlled. In other words, if the inhibitor such as MnS or AlN is re-dissolved in the steel sheet, secondary recrystallization occurs, and thus the inhibitor is abruptly removed within a temperature range limited as much as possible. Most preferred. However, when the temperature rise is rapid, the inhibitor may be removed in a wide temperature range, so that crystal grains with various orientations grow together, and crystal grains close to the Goss orientation predominate. It becomes difficult to obtain a grain-oriented electrical steel sheet having a large number and excellent magnetic properties. Therefore, conventionally, the steel sheet is heated very slowly to the secondary recrystallization temperature, particularly at a temperature rising rate of 10 to 17 ° C. At such a slow temperature increase rate, the time required for the temperature increase to the secondary soaking temperature is consumed excessively, causing a decrease in productivity.
また、これまで使用されてきた抑制剤であるAlNやMnSは、2次再結晶化時にゴス方位を有した結晶粒の分率を高めるために有用であり、最終方向性電気鋼板の磁気特性には、むしろ有害であるため、2次再結晶化が起こった後は除去されることが好ましい。電気鋼板を雰囲気が制御された高温で維持する場合は、これらの成分が除去されることができるので、上記2次均熱を高温で行うことになる。上記2次均熱では、N及びS成分が減少するだけでなく、島状結晶粒も減少するようになるため、上記過程は非常に有用な工程である。但し、大部分の電気鋼板では、抑制剤であるAlNとMnSなどを多量に形成させるために、鋼中にNとSとを多量に溶解した後、1次及び2次再結晶化作業をするため、上記多量含有されたNとSの除去に必要な2次均熱時間の過大化が原因となり、生産性の低下につながる。 In addition, AlN and MnS, which have been used so far, are useful for increasing the fraction of crystal grains having goth orientation during secondary recrystallization, and contribute to the magnetic properties of the final grain-oriented electrical steel sheet. Is rather harmful and is preferably removed after secondary recrystallization has occurred. When the electric steel sheet is maintained at a high temperature in which the atmosphere is controlled, these components can be removed, so that the secondary soaking is performed at a high temperature. In the second-order soaking, not only the N and S components are reduced, but also the island-like crystal grains are reduced. Therefore, the above process is a very useful process. However, in most electrical steel sheets, in order to form a large amount of inhibitors such as AlN and MnS, a large amount of N and S are dissolved in the steel, and then primary and secondary recrystallization operations are performed. For this reason, the secondary soaking time required for the removal of the large amount of N and S is excessive, leading to a decrease in productivity.
本発明は、上述した従来技術の問題点を解決するためになされたものであり、本発明の一側面によると、上記Sn、Sb及びPの含量を適切な範囲に制御して、元素間の相互関係を適正化し、かつ追加的な磁気特性向上元素を添加することで、磁気特性がより向上された方向性電気鋼板が提供される。 The present invention has been made to solve the above-described problems of the prior art, and according to one aspect of the present invention, the contents of Sn, Sb, and P are controlled within an appropriate range, so A grain-oriented electrical steel sheet with improved magnetic properties is provided by optimizing the mutual relationship and adding an additional magnetic property improving element.
本発明の別の側面によると、本発明による優れた特性を有する電気鋼板を製造するときに発生し易い生産性低下の問題を解決した方向性電気鋼板の製造方法が提供される。 According to another aspect of the present invention, there is provided a method for producing a grain-oriented electrical steel sheet that solves the problem of productivity reduction that is likely to occur when an electrical steel sheet having excellent characteristics according to the present invention is produced.
本発明のさらに別の側面によると、上述した成分系に適した加熱パターンを有する方向性電気鋼板の製造方法が提供される。 According to still another aspect of the present invention, a method for producing a grain-oriented electrical steel sheet having a heating pattern suitable for the above-described component system is provided.
本発明の一側面によればSn:0.03〜0.07重量%、Sb:0.01〜0.05重量%及びP:0.01〜0.05重量%を必須成分として含む、方向性電気鋼板を提供する。 According to one aspect of the present invention, the direction includes Sn: 0.03-0.07 wt%, Sb: 0.01-0.05 wt% and P: 0.01-0.05 wt% as essential components An electrical steel sheet is provided.
このとき、P+0.5Sbが0.0370〜0.0630(ここで、PとSは該当元素の含量(重量%)を意味する。)の範囲であることができる。 At this time, P + 0.5Sb may be in the range of 0.0370 to 0.0630 (where P and S mean the content (% by weight) of the corresponding element).
そして、As:1.40重量%以下、Cu:0.50重量%以下、Bi:0.1重量%以下、Te:1.40重量%以下、Ni:1.40重量%以下、Cr:0.35重量%以下、Pb:1.40重量%以下、及びMo、B、Ge、Nb、Ti及びZnからなるグループのうちから選択された少なくとも1種以上:合計1.40重量%以下のうち1種または2種以上をさらに含むことができる。 And: As: 1.40% by weight or less, Cu: 0.50% by weight or less, Bi: 0.1% by weight or less, Te: 1.40% by weight or less, Ni: 1.40% by weight or less, Cr: 0 .35% by weight or less, Pb: 1.40% by weight or less, and at least one selected from the group consisting of Mo, B, Ge, Nb, Ti and Zn: a total of 1.40% by weight or less 1 type or 2 or more types can further be included.
また、上記方向性電気鋼板は、Si:2.0〜4.0重量%、酸可溶性Al:0.020〜0.040重量%及びMn:0.01〜0.20重量%をさらに含むことができる。 The grain-oriented electrical steel sheet further includes Si: 2.0 to 4.0% by weight, acid-soluble Al: 0.020 to 0.040% by weight, and Mn: 0.01 to 0.20% by weight. Can do.
そして、上記電気鋼板の結晶方位がゴス方位から外れた程度が3度未満であることができる。 The degree of the crystal orientation of the electrical steel sheet deviating from the Goth orientation may be less than 3 degrees.
また、上記方向性鋼板は、C:0.04〜0.07重量%、N:10〜55ppm及びS:0.0010〜0.0055重量%をさらに含む鋼スラブから製造されることができる。 Moreover, the grain-oriented steel sheet can be manufactured from a steel slab further including C: 0.04 to 0.07 wt%, N: 10 to 55 ppm, and S: 0.0010 to 0.0055 wt%.
また、Sn:0.03〜0.07重量%、Sb:0.01〜0.05重量%及びP:0.01〜0.05重量%を必須成分として含む鋼スラブを熱間圧延、焼鈍及び冷間圧延して鋼板を製造する段階;上記冷間圧延された鋼板を800〜950℃の温度範囲で脱炭焼鈍及び窒化焼鈍する段階;及び上記焼鈍された鋼板を最終焼鈍する段階;を含み、上記最終焼鈍段階が1次均熱する段階、昇温する段階、及び2次均熱する段階を有する場合、初期に18〜75℃/hrの昇温速度で昇温温度を昇温した後、900〜1020℃の範囲内で10〜15℃/hrの範囲で昇温する、電気鋼板の製造方法を提供する。 Moreover, hot rolling and annealing a steel slab containing Sn: 0.03-0.07% by weight, Sb: 0.01-0.05% by weight and P: 0.01-0.05% by weight as essential components And a step of cold rolling to produce a steel plate; a step of decarburizing annealing and nitriding annealing of the cold rolled steel plate in a temperature range of 800 to 950 ° C .; and a step of final annealing the annealed steel plate; In the case where the final annealing stage includes a primary soaking stage, a temperature raising stage, and a secondary soaking stage, the temperature raising temperature is initially raised at a temperature raising rate of 18 to 75 ° C./hr. Then, the manufacturing method of an electrical steel sheet which heats up in the range of 10-15 degree-C / hr within the range of 900-1020 degreeC is provided.
このとき、P+0.5Sbが0.0370〜0.0630(ここで、PとSは該当元素の含量(重量%)を意味する。)の範囲であることができる。 At this time, P + 0.5Sb may be in the range of 0.0370 to 0.0630 (where P and S mean the content (% by weight) of the corresponding element).
そして、上記鋼スラブは、As:1.40重量%以下、Cu:0.50重量%以下、Bi:0.1重量%以下、Te:1.40重量%以下、Ni:1.40重量%以下、Cr:0.35重量%以下、Pb:1.40重量%以下、及びMo、B、Ge、Nb、Ti及びZnからなるグループのうちから選択された少なくとも1種以上:合計1.40重量%以下のうち1種または2種以上をさらに含むことができる。 And said steel slab is As: 1.40 weight% or less, Cu: 0.50 weight% or less, Bi: 0.1 weight% or less, Te: 1.40 weight% or less, Ni: 1.40 weight% Hereinafter, at least one selected from the group consisting of Cr: 0.35 wt% or less, Pb: 1.40 wt% or less, and Mo, B, Ge, Nb, Ti, and Zn: 1.40 in total One or more of the weight percents or less may be further included.
そして、上記鋼スラブは、Si:2.0〜4.0重量%、酸可溶性Al:0.020〜0.040重量%、Mn:0.01〜0.20重量%、C:0.04〜0.07重量%、N:10〜55ppm及びS:0.0010〜0.0055重量%をさらに含むことができる。 And the said steel slab is Si: 2.0-4.0 weight%, acid-soluble Al: 0.020-0.040 weight%, Mn: 0.01-0.20 weight%, C: 0.04 -0.07 wt%, N: 10-55 ppm and S: 0.0010-0.0055 wt%.
そして、上記鋼スラブを再加熱する段階は、再固溶されるNの含量が10〜40ppmの範囲となるように加熱温度を制御することを含むことができる。 And the step of reheating the steel slab can include controlling the heating temperature so that the content of N to be re-dissolved is in the range of 10 to 40 ppm.
また、上記鋼スラブの加熱温度は、1050〜1250℃の範囲であることができる。 In addition, the heating temperature of the steel slab may be in the range of 1050 to 1250 ° C.
さらに、上記2次均熱温度は、1150〜1250℃の範囲であることができる。 Further, the secondary soaking temperature may be in the range of 1150 to 1250 ° C.
本発明によれば、添加される成分元素の含量を最適化し、元素間の相乗効果を最大限に利用することで、磁気特性が向上された方向性電気鋼板を製造することができ、また、上記方向性電気鋼板を製造するときに発生し易い生産性低下の問題を解決することができる。 According to the present invention, it is possible to produce a grain-oriented electrical steel sheet with improved magnetic properties by optimizing the content of added component elements and making maximum use of the synergistic effect between the elements, The problem of the productivity fall which is easy to generate | occur | produce when manufacturing the said grain-oriented electrical steel sheet can be solved.
以下、本発明の例示的な実施形態を詳しく説明する。 Hereinafter, exemplary embodiments of the present invention will be described in detail.
本発明の発明者らは、Sn、Sb及びPを添加する従来の電気鋼板の成分系のSn、Sb及びPの量と、これらの元素を共に制御する場合に発生する磁気特性向上効果に対して深く研究した結果、元素の含有範囲と元素間の関係を適切に制御し、上記Sn、Sb及びP成分に加えてAsをさらに添加する場合に、従来期待した効果より顕著に優れた臨界的効果を有することができることを発見し、本発明に至った。 The inventors of the present invention are able to reduce the amount of Sn, Sb and P in the component system of conventional electrical steel sheets to which Sn, Sb and P are added, and the effect of improving the magnetic properties generated when these elements are controlled together. As a result of deep and extensive research, when the addition range of the Sn, Sb, and P components is further controlled by appropriately controlling the element content range and the relationship between the elements, the criticality remarkably superior to the conventionally expected effect. It was discovered that it can have an effect, and the present invention has been reached.
図3に、本発明の概念を示す。図3は、Sn、SbまたはPの含量に対して電気鋼板の鉄損が変化することを概念的に示したグラフである。図面の横軸はSn、SbまたはPの含量を示し、縦軸は鉄損を示す。 FIG. 3 shows the concept of the present invention. FIG. 3 is a graph conceptually showing that the iron loss of the electrical steel sheet changes with respect to the Sn, Sb or P content. In the drawing, the horizontal axis indicates the content of Sn, Sb or P, and the vertical axis indicates the iron loss.
図3に示すように、従来の含有範囲で設定された上記Sn、SbまたはP含量範囲によると、鉄損の変化は、適正範囲内で極小点を有する連続的な線の形態を表すと知られていたが、本発明の一実施形態では、上記の従来の含量範囲内で特定の条件を有する場合、鉄損が画期的に減少されることができることを発見した。即ち、図3を参照すると、従来の含有範囲内のSn、SbまたはP含量内では、鉄損に大きな差なしに鉄損の変化が連続的な線を表すと予想されるはずだが、本発明者らの実験結果によると、上記成分が一定の含量範囲内である場合では、その効果が従来は予測することができなかった程に顕著に向上する。 As shown in FIG. 3, according to the Sn, Sb or P content range set in the conventional content range, it is known that the change in iron loss represents a form of a continuous line having a minimum point within the appropriate range. However, in one embodiment of the present invention, it has been discovered that iron loss can be dramatically reduced when having certain conditions within the conventional content range described above. That is, referring to FIG. 3, within the Sn, Sb or P content within the conventional content range, it should be expected that the change in iron loss represents a continuous line without a large difference in iron loss. According to their experimental results, when the above components are within a certain content range, the effect is remarkably improved to the extent that it could not be predicted conventionally.
また、鉄損の向上された効果は、特定成分範囲内において該当元素の含量のみを制御して得られるものではなく、これらの三つの元素が同時に添加されなければ得られない。即ち、例えば単純にSbの含量を従来技術で提示された範囲内で変化させるとしても、図3に示されたものと同一の顕著な効果が得られるわけではなく、SnとPが同時に適正含量で存在する場合のみに顕著な効果が得られる。よって、これらは同時に添加されなければならず、それぞれの適切な範囲が同時に制御されなければ、本発明で追求する臨界的効果が得られないわけである。これを裏付ける実験結果として、Snを添加せずにSbとPのみを添加する場合、局所的に小さな結晶粒が存在することが観察されたが、このような局所的に小さな結晶粒は、ゴス方位ではなく他の方位の結晶粒の痕跡と判断され、その結果、電気鋼板への磁気特性を劣化させる恐れがある。しかし、Sn、Sb及びPを同時に添加する場合、均一な2次再結晶粒が得られ、また1次再結晶化された鋼板で集合組職(RD//[001])が強く成長することを確認することができた。 Further, the effect of improving the iron loss is not obtained by controlling only the content of the corresponding element within the specific component range, and cannot be obtained unless these three elements are added simultaneously. That is, for example, even if the content of Sb is simply changed within the range presented in the prior art, the same remarkable effect as that shown in FIG. A significant effect can be obtained only when it exists in Therefore, they must be added at the same time, and unless the appropriate ranges are controlled simultaneously, the critical effect pursued by the present invention cannot be obtained. As an experimental result to support this, it was observed that when only Sb and P were added without adding Sn, locally small crystal grains were observed. It is determined that it is a trace of crystal grains in other orientations instead of orientations, and as a result, there is a risk of deteriorating the magnetic properties of the electrical steel sheet. However, when Sn, Sb and P are added at the same time, uniform secondary recrystallized grains are obtained, and the aggregate organization (RD // [001]) grows strongly in the primary recrystallized steel sheet. I was able to confirm.
また、PとSbは、互いの含量範囲を共に制御する場合、また他の臨界的相乗効果を誘発することができるので、PとSbの含量は、一つの数式で制御される必要があった。 In addition, when P and Sb are controlled together, the content of P and Sb needs to be controlled by a single mathematical formula because other critical synergistic effects can be induced. .
その結果、本発明では、電気鋼板の成分のうち、上記Sn、Sb及びPの含量を下記のように制御し、かつ下記の数式で表されたPとSbの含量関係を適切な範囲で制御することを特徴とする。 As a result, in the present invention, among the components of the electrical steel sheet, the contents of Sn, Sb and P are controlled as follows, and the content relation of P and Sb expressed by the following formula is controlled within an appropriate range. It is characterized by doing.
1)Sn:0.03〜0.07重量%
2)Sb:0.01〜0.05重量%
3)P:0.01〜0.05重量%
4)P+0.5Sb:0.0370〜0.0630(ここで、PとSは各元素の含量(重量%)を意味する)
1) Sn: 0.03 to 0.07% by weight
2) Sb: 0.01 to 0.05% by weight
3) P: 0.01 to 0.05% by weight
4) P + 0.5Sb: 0.0370 to 0.0630 (where P and S mean the content (% by weight) of each element)
以下、各元素の含量を定めた理由について説明する。 Hereinafter, the reason for determining the content of each element will be described.
Sn:0.03〜0.07重量%
Snは、{110}<001>方位の2次核の数を増加させて2次結晶粒のサイズを減少させる役割をするが、その結果、Snを添加すると鉄損を向上させることができる。またSnは、結晶粒界に偏析を通じて結晶粒成長を抑制するのに重要な役割をし、これは、AlN粒子が粗大化され、Si含量を増加するにつれて結晶粒成長を抑制する効果が低下することを補償する。よって、結果的に、相対的に高いSi含有量を有しながらも、{110}<001>の方位の2次再結晶化集合組職の成功的な形成が保証されることができる。即ち、{110}<001>方位の2次再結晶化集合組織の完成度を低下させずに、Si含有量を増加させるだけでなく、最終厚さを減少させることができる。このようなSnの含量は、既に上述したように、他の成分の含量を適切に調整した範囲内で0.03〜0.07重量%であることが好ましい。即ち、上述したように、Snの含量範囲を0.03〜0.07重量%に制御するとき、従来は予測することができなかった不連続的かつ顕著な鉄損減少効果を確認することができたので、Snの含量範囲は上述した範囲で制御することが好ましい。また、Sn含量が多すぎる場合は、脆性が増加されるという問題もあり得るので、Snを上述した範囲で制御する場合は、脆性を低下させることができる。
Sn: 0.03-0.07% by weight
Sn serves to increase the number of secondary nuclei in the {110} <001> orientation and reduce the size of secondary crystal grains. As a result, the addition of Sn can improve iron loss. Sn also plays an important role in suppressing grain growth through segregation at the grain boundaries, and this reduces the effect of suppressing grain growth as the AlN grains become coarser and the Si content increases. To compensate. Therefore, as a result, it is possible to ensure the successful formation of the secondary recrystallized aggregate composition in the {110} <001> orientation while having a relatively high Si content. That is, it is possible not only to increase the Si content but also to decrease the final thickness without decreasing the completeness of the secondary recrystallization texture in the {110} <001> orientation. As described above, the Sn content is preferably 0.03 to 0.07% by weight within a range in which the content of other components is appropriately adjusted. That is, as described above, when the Sn content range is controlled to 0.03 to 0.07% by weight, it is possible to confirm a discontinuous and significant iron loss reduction effect that could not be predicted in the past. Thus, the Sn content range is preferably controlled within the above range. Moreover, since there exists a problem that brittleness will increase when there is too much Sn content, when controlling Sn in the range mentioned above, brittleness can be reduced.
Sb:0.01〜0.05重量%
Sbは、結晶粒界に偏析して1次再結晶粒の過度な成長を抑制する作用がある。Sbを添加して1次再結晶化段階で粒成長を抑制することで、鋼板の厚さ方向による1次再結晶粒のサイズの不均一性を除去し、同時に、2次再結晶粒を安定的に形成させることで、磁気特性により優れた方向性電気鋼板を製造することができる。特に、このようなSbの効果は、Sbが0.01〜0.05重量%であるときに、従来では予測することができなかった程に大きく向上することができる。上記のように、Sbは、結晶粒界に偏析して1次再結晶粒の過度な成長を抑制する作用があるが、Sbが0.01重量%以下であれば、その機能が適切に発揮され難く、Sbが0.05重量%以上で含有されると、1次再結晶粒のサイズが小くなり過ぎて2次再結晶化開始温度が低くなり磁気特性を劣化させるか、または粒成長に対する抑制力が大きくなり過ぎて2次再結晶粒が形成されない可能性もあるためである。
Sb: 0.01 to 0.05% by weight
Sb has an effect of segregating at the grain boundaries and suppressing excessive growth of primary recrystallized grains. By adding Sb and suppressing grain growth in the primary recrystallization stage, non-uniformity in the size of the primary recrystallized grains in the thickness direction of the steel sheet is removed, and at the same time, the secondary recrystallized grains are stabilized. By making it form, the grain-oriented electrical steel sheet which was excellent in the magnetic characteristic can be manufactured. In particular, the effect of Sb can be greatly improved as Sb was 0.01 to 0.05% by weight, which could not be predicted in the past. As described above, Sb segregates at the grain boundaries and suppresses excessive growth of the primary recrystallized grains. However, if Sb is 0.01% by weight or less, its function is properly exhibited. If Sb is contained in an amount of 0.05% by weight or more, the size of the primary recrystallized grains becomes too small and the secondary recrystallization start temperature is lowered to deteriorate the magnetic properties or the grain growth. This is because there is a possibility that the secondary recrystallized grains may not be formed due to an excessively large suppression force against.
P:0.01〜0.05重量%
Pは、低温加熱方式の方向性電気鋼板で1次再結晶粒の成長を促進させ、2次再結晶化温度を高めて最終製品で{110}<001>方位の集積度を高める。1次再結晶粒が過大すぎる場合は、2次再結晶化が不安定になるが、2次再結晶化が起こる限り、2次再結晶化温度を高めるためにも1次再結晶粒が大きい方が有利である。一方、Pは、1次再結晶化された鋼板で{110}<001>方位を有する結晶粒の数を増加させて最終製品の鉄損を低めるだけでなく、1次再結晶化された鋼板で{111}<112>集合組職を強く成長させて、最終製品の{110}<001>の方位の結晶粒の集積度を増加させるので、磁束密度も高くなる。また、Pは、2次再結晶化焼鈍時に約1000℃の高い温度で結晶粒界に偏析して、析出物の分解を遅滞させて抑制力を補強する作用も有する。このようなPの含量を0.01〜0.05重量%に制限する場合は、鉄損の改善で従来では予測することができなかった顕著な効果が得られる。Pの効果が十分に発揮されるためには、Pの含量は0.01重量%以上が必要である。Pが0.05重量%以上になると、1次再結晶粒のサイズがむしろ減少されて、2次再結晶化が不安定になるだけでなく、脆性を増加させて冷間圧延性を阻害するためである。
P: 0.01 to 0.05% by weight
P promotes the growth of primary recrystallized grains in a directional electrical steel sheet using a low temperature heating method, increases the secondary recrystallization temperature, and increases the degree of integration of {110} <001> orientations in the final product. When the primary recrystallized grains are too large, the secondary recrystallization becomes unstable, but as long as secondary recrystallization occurs, the primary recrystallized grains are large in order to increase the secondary recrystallization temperature. Is more advantageous. On the other hand, P is a primary recrystallized steel sheet that not only increases the number of crystal grains having {110} <001> orientation, thereby reducing the iron loss of the final product, but also the primary recrystallized steel sheet. Thus, the {111} <112> collective organization is strongly grown to increase the degree of accumulation of crystal grains in the {110} <001> orientation of the final product, so that the magnetic flux density is also increased. P also segregates at the crystal grain boundary at a high temperature of about 1000 ° C. during secondary recrystallization annealing, and has an action of reinforcing the inhibitory force by delaying the decomposition of the precipitate. When the P content is limited to 0.01 to 0.05% by weight, a remarkable effect that cannot be predicted in the past can be obtained by improving the iron loss. In order to fully exhibit the effect of P, the content of P needs to be 0.01% by weight or more. When P is 0.05% by weight or more, the size of primary recrystallized grains is rather reduced, and not only secondary recrystallization becomes unstable, but also brittleness is increased and cold rolling properties are hindered. Because.
P+0.5Sb:0.0370〜0.0630(PとSは各元素の含量(重量%)を意味する)
本発明の発明者らの実験結果によると、それぞれの元素を添加する場合以外にも、P+0.5Sbの含量を上述した範囲に制御する場合、さらに優れた鉄損向上効果が得られた。その理由は、いくつかの上記元素が共に添加されて相乗効果が得られ、また、相乗効果が上記数式範囲を満たすときに、他の数値範囲に比べて不連続的に最大化されるためであると判断される。よって、それぞれの元素の含量範囲を制御する以外にも、上記P+0.5Sbを上述した範囲に制御することがより好ましい。
P + 0.5Sb: 0.0370 to 0.0630 (P and S mean the content (% by weight) of each element)
According to the experimental results of the inventors of the present invention, in addition to the case where each element is added, when the content of P + 0.5Sb is controlled within the above-described range, a further excellent iron loss improvement effect is obtained. The reason is that some of the above elements are added together to obtain a synergistic effect, and when the synergistic effect satisfies the above formula range, it is discontinuously maximized compared to other numerical ranges. It is judged that there is. Therefore, in addition to controlling the content range of each element, it is more preferable to control the P + 0.5Sb to the above-described range.
電気鋼板の成分を上述した含量範囲に制限する場合は、鋼板の方位がゴス方位に近く形成されるため、磁気特性が大きく向上されることができる。よって、有利な効果を有する本発明の電気鋼板は、Sn:0.03〜0.07重量%、Sb:0.01〜0.05重量%及びP:0.01〜0.05重量%を必須成分として含む電気鋼板である。また、成分を上記範囲に制限する他にも、P+0.5Sbを0.0370〜0.0630(ここで、PとSは各元素の含量(重量%)を意味する)の範囲に制限することがより好ましい。 When the components of the electric steel sheet are limited to the above-described content range, the magnetic characteristics can be greatly improved because the orientation of the steel sheet is formed close to the Goth direction. Therefore, the electrical steel sheet of the present invention having advantageous effects includes Sn: 0.03 to 0.07% by weight, Sb: 0.01 to 0.05% by weight, and P: 0.01 to 0.05% by weight. It is an electrical steel sheet included as an essential component. In addition to limiting the components to the above range, P + 0.5Sb should be limited to a range of 0.0370 to 0.0630 (where P and S mean the content (% by weight) of each element). Is more preferable.
また、上述したようにSn、Sb及びPなどの成分を制限するに加えて、下記のようにAs、Cu、Bi、Te、Ni、Cr、Pb、Mo、B、Ge、Nb、Ti及びZnからなるグループのうちから選択された1種または2種以上の元素を適正な含量で添加する場合は、2次再結晶化温度の制御が有利であることや、結晶粒のサイズを均一化させることなどの効果によって、磁気特性をさらに向上させることができる。以下、各成分の添加理由について、より詳しく説明する。 In addition to limiting the components such as Sn, Sb and P as described above, As, Cu, Bi, Te, Ni, Cr, Pb, Mo, B, Ge, Nb, Ti and Zn as described below When adding one or two or more elements selected from the group consisting of a proper content, it is advantageous to control the secondary recrystallization temperature and to make the crystal grain size uniform. The magnetic characteristics can be further improved by such effects. Hereinafter, the reason for adding each component will be described in more detail.
As:1.40重量%以下
本発明者らの研究結果によると、Asは、上記P、Sb及びSnなどの抑制剤の機能を補助して磁気特性をさらに向上させるための元素であり、この元素を添加する場合、2次再結晶化開始温度を増加させ、よって、ゴス方位を有する結晶粒の成長に有利な温度で安定的に2次再結晶化する効果が得られる。但し、Asを1.40重量%を超えて添加すると、鋼板の焼鈍時に生成される被膜の劣化を避けることができず、磁気特性も劣化されるため、上記Asの含量の上限は1.40重量%に制限する。また、上記Asの含量が足らずとも、Asを全く添加しない場合に比べて磁気特性が不良になるわけではないが、添加による有利な効果を得難いため、上記有利な効果を得るためには、Asを0.003重量%以上で添加することがより好ましい。
As: 1.40% by weight or less According to the research results of the present inventors, As is an element for assisting the function of the inhibitor such as P, Sb and Sn to further improve the magnetic properties. When the element is added, the secondary recrystallization start temperature is increased, and therefore, the effect of stably performing secondary recrystallization at a temperature advantageous for the growth of crystal grains having goth orientation is obtained. However, if As is added in excess of 1.40% by weight, deterioration of the coating produced during annealing of the steel sheet cannot be avoided and the magnetic properties are also deteriorated, so the upper limit of the As content is 1.40. Limited to weight percent. Further, even if the content of As is insufficient, the magnetic properties are not deteriorated as compared with the case where As is not added at all. However, since it is difficult to obtain the advantageous effect due to the addition, in order to obtain the advantageous effect, As More preferably, 0.003% by weight or more is added.
Cu:0.50重量%以下
上記Cuは、熱間圧延段階で微細な粒子で析出して1次再結晶粒の成長に対する抑制剤として作用することができる。特に、脱炭を窒化と同時にを行う工程の場合、Cuの効果はより大きい。同時脱炭窒化は、脱炭後の窒化工程に比べて、1次再結晶粒のサイズの不均一性が増加するが、1次再結晶粒のサイズの不均一性が大きくなれば、過度に成長した結晶粒はサイズ効果によって2次再結晶化されるため、最終製品の磁気特性を劣化させることがある。このような問題点は、硫化物を形成するCuを適正量で添加すれば防止することができる。即ち、Cuを微量で添加する場合、硫化物を微細にし、個数を増加させることができる。換言すると、Cuは、熱間圧延段階で硫化物に微細に析出して、1次再結晶粒の過度な粒成長を抑制するので、結晶粒のサイズを均一にすることができ、結果的に、ゴス結晶粒のみが2次再結晶化で選択的に起こすことになるので、磁気特性により優れた方向性電気鋼板を製造することができる。但し、0.50重量%を超えて添加すると、1次再結晶粒のサイズが 小さくなり過ぎて、2次再結晶化開始温度が低くなり、それによって、磁気特性を劣化させ得るので、上記Cuの添加量の上限は、0.50重量%に制限するとよい。また、上記Cuの含量が足らずとも、Cuを全く添加しない場合に比べて磁気特性が不良になるわけではないが、Cuの添加による有利な効果を得難いため、上記有利な効果を得るためには、Cuを0.05重量%以上添加することがより好ましい。
Cu: 0.50% by weight or less Cu can precipitate as fine particles in the hot rolling stage and act as an inhibitor against the growth of primary recrystallized grains. In particular, the effect of Cu is larger in the process of performing decarburization simultaneously with nitriding. Simultaneous decarbonization increases the non-uniformity of the primary recrystallized grain size compared to the nitriding step after decarburization, but if the non-uniformity of the primary recrystallized grain size increases, Since the grown crystal grains are secondarily recrystallized due to the size effect, the magnetic properties of the final product may be deteriorated. Such a problem can be prevented by adding an appropriate amount of Cu that forms sulfide. That is, when adding a small amount of Cu, the sulfide can be made fine and the number can be increased. In other words, Cu precipitates finely on the sulfide in the hot rolling stage and suppresses excessive grain growth of the primary recrystallized grains, so that the size of the crystal grains can be made uniform, and consequently Since only Goss crystal grains are selectively caused by secondary recrystallization, it is possible to produce a grain-oriented electrical steel sheet that is superior in magnetic properties. However, if added over 0.50% by weight, the size of the primary recrystallized grains becomes too small and the secondary recrystallization start temperature becomes low, thereby degrading the magnetic properties. The upper limit of the amount added is preferably limited to 0.50% by weight. Further, even if the Cu content is insufficient, the magnetic properties are not deteriorated as compared with the case where Cu is not added at all. However, since it is difficult to obtain the advantageous effect due to the addition of Cu, in order to obtain the advantageous effect described above. It is more preferable to add 0.05% by weight or more of Cu.
Bi:0.1重量%以下
本発明では、上記有利な組成に加えて、Biを0.1重量%以下で添加することが好ましい。本発明者らの研究結果によれば、上記Biは補助抑制剤として作用して2次再結晶化開始温度を増加させ、2次再結晶化を安定的に形成させるため、上記Biを添加する場合は、磁気特性により優れた方向性電気鋼板を製造することができる。但し、Biを0.1重量%を超えて添加すると、鋼板の焼鈍時に生成される被膜の劣化を避けることができず、磁気特性も劣化されるため、上記Biの含量の上限は、0.1重量%に制限する。また、上記Biの含量が足らずとも、Biを全く添加しない場合に比べて磁気特性が不良になるわけではないが、Biの添加による有利な効果を得難いため、上記有利な効果を得るためには、Biを0.005重量%以上添加することがより好ましい。
Bi: 0.1 wt% or less In the present invention, in addition to the above advantageous composition, Bi is preferably added at 0.1 wt% or less. According to the research results of the inventors, the Bi is added to act as an auxiliary inhibitor to increase the secondary recrystallization start temperature and stably form the secondary recrystallization. In this case, it is possible to produce a grain-oriented electrical steel sheet that is superior in magnetic properties. However, if Bi is added in an amount exceeding 0.1% by weight, deterioration of the coating film produced during the annealing of the steel sheet cannot be avoided, and the magnetic properties are also deteriorated. Limit to 1% by weight. Further, even if the Bi content is insufficient, the magnetic properties are not deteriorated as compared with the case where Bi is not added at all. However, since it is difficult to obtain the advantageous effect due to the addition of Bi, in order to obtain the advantageous effect described above. It is more preferable to add 0.005% by weight or more of Bi.
Te:1.40重量%以下
本発明者らの研究結果によれば、Teは上記P、Sb及びSnなどの抑制剤の機能を補助して磁気特性をさらに向上させるための元素であり、Teの元素を添加する場合、2次再結晶化開始温度を増加させ、よって、ゴス方位を有する結晶粒の形成に有利な温度で安定的に2次再結晶化する効果が得られる。但し、1.40重量%を超えてTeを添加すると、鋼板の焼鈍時に生成される被膜の劣化を避けることができず、磁気特性も劣化されるため、上記Teの含量の上限は、1.40重量%に制限する。また、Teの含量が足りなくても、Teを全く添加しない場合に比べて磁気特性が不良になるわけではないが、Teの添加による有利な効果を得難いため、上記有利な効果を得るためには、Teを0.01重量%以上添加することがより好ましい。
Te: 1.40% by weight or less According to the research results of the present inventors, Te is an element for assisting the function of the inhibitor such as P, Sb and Sn to further improve the magnetic properties. When the element is added, the secondary recrystallization start temperature is increased, so that the effect of stably performing secondary recrystallization at a temperature advantageous for the formation of crystal grains having goth orientation is obtained. However, if Te is added in excess of 1.40% by weight, deterioration of the coating film produced during annealing of the steel sheet cannot be avoided and the magnetic properties are also deteriorated. Therefore, the upper limit of the Te content is 1. Limit to 40% by weight. Further, even if the Te content is insufficient, the magnetic properties are not deteriorated as compared with the case where Te is not added at all, but it is difficult to obtain the advantageous effect due to the addition of Te. More preferably, 0.01% by weight or more of Te is added.
Ni:1.40重量%以下
本発明者らの研究結果によれば、上記Niは、熱延板組職を改善し、補助抑制剤として作用して2次再結晶化開始温度を増加させ、2次再結晶化を安定的に形成させるので、Niを添加する場合、磁気特性により優れた方向性電気鋼板を製造することができる。但し、Niを1.40重量%を超えて添加すると、鋼板の焼鈍時に生成される被膜の劣化を避けることができず、磁気特性も劣化されるため、上記Niの含量の上限は、1.40重量%に制限する。また、Niの含量が足りなくても、Niを全く添加しない場合に比べて磁気特性が不良になるわけではないが、Niの添加による有利な効果を得難いため、上記有利な効果を得るためには、Niを0.01重量%以上添加することがより好ましい。
Ni: 1.40% by weight or less According to the research results of the present inventors, the Ni improves the hot-rolled sheet assembly, acts as an auxiliary inhibitor, increases the secondary recrystallization start temperature, Since secondary recrystallization is stably formed, when Ni is added, a grain-oriented electrical steel sheet having superior magnetic properties can be produced. However, if Ni is added in excess of 1.40% by weight, deterioration of the coating produced during annealing of the steel sheet cannot be avoided and magnetic properties are also deteriorated. Therefore, the upper limit of the Ni content is 1. Limit to 40% by weight. In addition, even if the Ni content is insufficient, the magnetic properties are not deteriorated as compared with the case where Ni is not added at all, but it is difficult to obtain the advantageous effect due to the addition of Ni. More preferably, Ni is added in an amount of 0.01% by weight or more.
Cr:0.35重量%以下
上記Crは、フェライト形成元素であり、1次再結晶粒を成長させる作用があり、1次再結晶板で{110}<001>方位の結晶粒の数を増加させることができるので、Crを添加すれば、鉄損が低くかつ磁束密度が高い方向性電気鋼板を製造することができる。但し、Crを0.35重量%を超えて添加すると、同時脱炭、窒化焼鈍工程で鋼板の表面部に緻密な酸化層を形成して浸窒を妨害するようになるので、上記Crの添加量の上限は、0.35重量%に制限する。また、Crの含量が足らずとも、Crを全く添加しない場合に比べて磁気特性が不良になるわけではないが、Crの添加による有利な効果を得難いため、上記有利な効果を得るためには、Crを0.02重量%以上添加することがより好ましい。
Cr: 0.35% by weight or less The above Cr is a ferrite-forming element and has the effect of growing primary recrystallized grains, increasing the number of {110} <001> oriented grains in the primary recrystallized plate. Therefore, if Cr is added, a grain-oriented electrical steel sheet having a low iron loss and a high magnetic flux density can be produced. However, if Cr is added in an amount exceeding 0.35% by weight, it will interfere with nitriding by forming a dense oxide layer on the surface of the steel sheet in the simultaneous decarburization and nitriding annealing process. The upper limit of the amount is limited to 0.35% by weight. In addition, even if the Cr content is insufficient, the magnetic properties are not deteriorated as compared with the case where Cr is not added at all, but it is difficult to obtain the advantageous effect due to the addition of Cr. It is more preferable to add 0.02% by weight or more of Cr.
Pb:1.40重量%以下
本発明では、上記有利な元素に加えて、Pbを1.40重量%以下で添加することが好ましい。本発明者らの研究結果によれば、上記Pbは、補助抑制剤として作用して2次再結晶化開始温度を増加させ、2次再結晶化を安定的に形成させるので、Pbを添加する場合、磁気特性により優れた方向性電気鋼板を製造することができる。但し、Pbを1.40重量%を超えて添加すると、鋼板の焼鈍時に生成される被膜の劣化を避けることができず、磁気特性も劣化されるため、上記Pbの含量の上限は、1.40重量%に制限する。また、Pbの含量が足りなくても、Pbを全く添加しない場合に比べて磁気特性が不良になるわけではないが、Pbの添加による有利な効果を得難いため、上記有利な効果を得るためには、Pbを0.005重量%以上添加することがより好ましい。
Pb: 1.40% by weight or less In the present invention, in addition to the above advantageous elements, it is preferable to add Pb at 1.40% by weight or less. According to the research results of the present inventors, the Pb acts as an auxiliary inhibitor to increase the secondary recrystallization start temperature and stably form the secondary recrystallization. Therefore, Pb is added. In this case, it is possible to produce a grain-oriented electrical steel sheet that is superior in magnetic properties. However, if Pb is added in excess of 1.40% by weight, deterioration of the coating film produced during annealing of the steel sheet cannot be avoided, and magnetic properties are also deteriorated. Therefore, the upper limit of the Pb content is 1. Limit to 40% by weight. Further, even if the Pb content is insufficient, the magnetic properties are not deteriorated as compared with the case where Pb is not added at all. However, it is difficult to obtain the advantageous effect due to the addition of Pb. More preferably, 0.005% by weight or more of Pb is added.
Mo、B、Ge、Nb、Ti及びZnからなるグループのうちから選択された少なくとも1種以上:合計1.40重量%以下
本発明では、上記有利な元素に加えて、Mo、B、Ge、Nb、Ti及びZnからなるグループから選択された少なくとも1種以上の元素を合計で1.40重量%以下で添加することが好ましい。本発明者らの研究結果によれば、これらの元素は、上記P、Sb及びSnなどの抑制剤の機能を補助して磁気特性をより向上させるための元素であり、これらの元素を添加する場合、2次再結晶化開始温度を増加させ、よって、ゴス方位を有する結晶粒の形成に有利な温度で安定的に2次再結晶化する効果が得られる。但し、1.40重量%を超えて添加すると、鋼板の焼鈍時に生成される被膜の劣化を避けることができず、磁気特性も劣化されるため、これらの元素の添加量の合計は、1.40重量%に制限する。また、各添加成分の含量が足りなくても、全く添加しない場合に比べて磁気特性が不良になるわけではないが、添加による有利な効果を得難いため、上記有利な効果を得るためには、これらの元素を合計で0.003重量%以上添加することがより好ましい。
At least one or more selected from the group consisting of Mo, B, Ge, Nb, Ti, and Zn: 1.40% by weight or less in total In the present invention, in addition to the above advantageous elements, Mo, B, Ge, Preferably, at least one element selected from the group consisting of Nb, Ti and Zn is added in a total amount of 1.40% by weight or less. According to the research results of the present inventors, these elements are elements for assisting the function of the inhibitor such as P, Sb and Sn to improve the magnetic properties, and these elements are added. In this case, the secondary recrystallization start temperature is increased, and therefore, the effect of stably performing secondary recrystallization at a temperature advantageous for the formation of crystal grains having goth orientation can be obtained. However, if added in excess of 1.40% by weight, deterioration of the coating produced during annealing of the steel sheet cannot be avoided and the magnetic properties are also deteriorated. Therefore, the total amount of these elements added is 1. Limit to 40% by weight. In addition, even if the content of each additive component is insufficient, the magnetic properties are not deteriorated compared to the case where it is not added at all, but it is difficult to obtain the advantageous effect due to the addition, in order to obtain the advantageous effect described above, It is more preferable to add 0.003% by weight or more of these elements in total.
従って、本発明の電気鋼板のより好ましい組成は、Sn:0.03〜0.07重量%、Sb:0.01〜0.05重量%及びP:0.01〜0.05重量%を必須成分として含み、必要に応じてAs:1.40重量%以下、Cu:0.50重量%以下、Bi:0.1重量%以下、Te:1.40重量%以下、Ni:1.40重量%以下、Cr:0.35重量%以下、Pb:1.40重量%以下、及びMo、B、Ge、Nb、Ti及びZnからなるグループのうちから選択された少なくとも1種以上:合計1.40重量%以下のうち1種または2種以上をさらに含むことができる。また、上記元素の含量を上記範囲に制限する他にも、P+0.5Sbを0.0370〜0.0630(ここで、PとSは各元素の含量(重量%)を意味する)の範囲に制限することがより好ましい。 Therefore, the more preferable composition of the electric steel sheet of the present invention is essential Sn: 0.03-0.07 wt%, Sb: 0.01-0.05 wt% and P: 0.01-0.05 wt%. As components, As: As: 1.40% by weight or less, Cu: 0.50% by weight or less, Bi: 0.1% by weight or less, Te: 1.40% by weight or less, Ni: 1.40% by weight %, Cr: 0.35 wt% or less, Pb: 1.40 wt% or less, and at least one selected from the group consisting of Mo, B, Ge, Nb, Ti and Zn: One or more of 40% by weight or less may be further included. In addition to limiting the content of the above elements to the above range, P + 0.5Sb is set in a range of 0.0370 to 0.0630 (where P and S mean the content (% by weight) of each element). More preferably, it is limited.
そして、本発明者らの研究結果によると、優れた鉄損を確保するためには、上記のような元素を含む本発明の電気鋼板の結晶方位がゴス方位から外れた程度が3度未満になるようにすることがより好ましい。 And according to the research results of the present inventors, in order to ensure excellent iron loss, the degree of the crystal orientation of the electrical steel sheet of the present invention containing the above elements deviating from the Goth orientation is less than 3 degrees. More preferably.
電気鋼板には、上述した元素以外にも、Si、Mn、Alなどのように電気鋼板で通常用いられる追加的な元素と、その他不可避に含まれる不純成分が含まれるが、これらの追加的な元素は、通常の電気鋼板で使用される種類の成分とその含量範囲から容易に類推して本発明の電気鋼板に適用することができるので、必ずしも追加的な元素の各含量範囲を限定する必要はなく、上記Sn、Sb及びPの含量、上記Sn、Sb及びPとこれらの関係、そして必要に応じて添加される追加的な元素を上述した範囲に限定することが重要である。 In addition to the elements described above, the electrical steel sheet includes additional elements usually used in the electrical steel sheet, such as Si, Mn, and Al, and other impure components contained unavoidably. The elements can be easily applied to the electrical steel sheet of the present invention by analogizing from the types of components used in ordinary electrical steel sheets and their content ranges, so it is necessary to limit each content range of additional elements. Rather, it is important to limit the contents of Sn, Sb and P, the Sn, Sb and P and their relationship, and additional elements added as necessary to the above-mentioned ranges.
但し、本発明の成分系に適したSi、Mn及びAlなどの追加的な元素のより好ましい例を以下に提供し、簡略に説明する。 However, more preferred examples of additional elements such as Si, Mn and Al suitable for the component system of the present invention are provided below and briefly described.
Si:2.0〜4.0重量%
Siは、電気鋼板の基本元素として使用され、素材の比抵抗を増加させて磁心損失、即ち、鉄損を低める役割をする。Si含量が2.0%未満の場合、比抵抗が減少して鉄損特性が劣化され、4.0重量%超過で含有されたときには、鋼の脆性が大きくなって冷間圧延が極めて難しくなり、2次再結晶粒の形成が不安定になる。よって、Siは2.0〜4.0重量%に定める。
Si: 2.0 to 4.0% by weight
Si is used as a basic element of the electrical steel sheet, and increases the specific resistance of the material to reduce the core loss, that is, the iron loss. When the Si content is less than 2.0%, the specific resistance is reduced and the iron loss characteristics are deteriorated. When the Si content is more than 4.0% by weight, the steel becomes brittle and cold rolling becomes extremely difficult. The formation of secondary recrystallized grains becomes unstable. Therefore, Si is set to 2.0 to 4.0% by weight.
酸可溶性Al:0.020〜0.040重量%
Alは、最終的にAlN、(Al、Si)N、(Al、Si、Mn)Nなどの窒化物の形態になって抑制剤として作用する成分であり、その含量が0.02%未満の場合は、抑制剤への十分な効果を期待することができず、高過ぎる場合は、Al系の窒化物が非常に粗大に析出、成長するため、抑制剤としての効果が足りなくなる。よって、Alの含量を0.020〜0.040重量%に定める。
Acid-soluble Al: 0.020-0.040% by weight
Al is a component that finally acts in the form of nitrides such as AlN, (Al, Si) N, (Al, Si, Mn) N and acts as an inhibitor, and its content is less than 0.02%. In this case, a sufficient effect on the inhibitor cannot be expected, and if it is too high, the Al-based nitride precipitates and grows very coarsely, so that the effect as the inhibitor is insufficient. Therefore, the content of Al is set to 0.020 to 0.040% by weight.
Mn:0.01〜0.20重量%
マンガン(Mn)は、Siと同様に比抵抗を増加させて鉄損を減少させる効果があり、Siと共に窒化処理によって導入される窒素と反応して、(Al、Si、Mn)Nの析出物を形成することで、1次再結晶粒の成長を抑制して、2次再結晶化を起こす。しかし、Mnを0.20重量%以上添加すると、熱延途中にオーステナイト相変態を促進するので、1次再結晶粒のサイズを減少させて2次再結晶化を不安定にする。よって、Mnは0.20重量%以下にする。また、Mnは、オーステナイト形成元素として熱延板再加熱時にオーステナイト分率を高めて析出物の量を多くし、析出物の微細化とMnS形成を通じる1次再結晶粒が過大に成長し過ぎないようにする効果があるので、0.01重量%以上含むことが必要である。よって、Mnは0.01重量%以上0.2重量%以下に限定する。
Mn: 0.01-0.20% by weight
Manganese (Mn), like Si, has the effect of increasing specific resistance and reducing iron loss, reacting with nitrogen introduced by nitriding with Si, and depositing (Al, Si, Mn) N As a result, the growth of primary recrystallized grains is suppressed and secondary recrystallization occurs. However, when Mn is added in an amount of 0.20% by weight or more, the austenite phase transformation is promoted during hot rolling, so that the size of the primary recrystallized grains is reduced and the secondary recrystallization is made unstable. Therefore, Mn is 0.20% by weight or less. In addition, Mn is an austenite-forming element that increases the austenite fraction during reheating of the hot-rolled sheet to increase the amount of precipitates, and primary recrystallized grains that grow through refinement of precipitates and MnS formation grow too much. It is necessary to contain 0.01% by weight or more because there is an effect of avoiding it. Therefore, Mn is limited to 0.01 wt% or more and 0.2 wt% or less.
Cは、冷間圧延後に脱炭焼鈍過程で除去されるものであり、NとSは、2次均熱処理時に雰囲気制御を通じて可能な限り除去されることが好ましいので、上記電気鋼板の成分系では不純物としてみなされる。但し、これらの成分は、冷間圧延されるまでは様々な理由によって電気鋼板内に存在するため、電気鋼板を製造するための鋼スラブ、熱延鋼板及び冷延鋼板(冷間圧延直後の鋼板)では、所定範囲で含まれることがあり、本発明では、下記の範囲内に制御されることがより好ましい。 C is removed in the decarburization annealing process after cold rolling, and N and S are preferably removed as much as possible through atmosphere control during the secondary soaking process. Regarded as an impurity. However, since these components exist in the electric steel sheet for various reasons until cold rolling, a steel slab, a hot-rolled steel sheet, and a cold-rolled steel sheet for producing the electric steel sheet (the steel sheet immediately after the cold rolling) ) May be included within a predetermined range, and in the present invention, it is more preferably controlled within the following range.
C:0.04〜0.07重量%
Cは、本発明で対象とする方向性電気鋼板の磁気特性の向上に殆ど役に立たない成分であるので、なるべく除去することが好ましい。しかし、Cが一定水準以上含まれている場合、圧延過程では、鋼のオーステナイト相変態を促進して、熱間圧延時に熱間圧延組職を形成させて、均一な微細組織を形成させることに役に立つので、上記Cは、0.04重量%以上含まれることが好ましい。しかし、Cの含量が多すぎると、粗大な炭化物が生成され、脱炭時に除去が困難になる。よって、Cは、最初に上記範囲で含まれることが好ましい。
C: 0.04 to 0.07% by weight
C is a component that is hardly useful for improving the magnetic properties of the grain-oriented electrical steel sheet that is the subject of the present invention, so it is preferably removed as much as possible. However, when C is contained above a certain level, in the rolling process, the austenite phase transformation of the steel is promoted and a hot rolling organization is formed during hot rolling to form a uniform microstructure. Since C is useful, it is preferable that 0.04% by weight or more of C is contained. However, when there is too much content of C, a coarse carbide | carbonized_material will be produced | generated and it will become difficult to remove at the time of decarburization. Therefore, it is preferable that C is initially included in the above range.
N:10〜55ppm
上記Nは、Alなどと反応して結晶粒を再微細化させる元素である。これらの元素が適切に分布される場合は、冷間圧延以後に組織を適切に微細にして適切な1次再結晶粒度を確保することに役立つが、Nの含量が多すぎると、1次再結晶粒が過度に微細化されて、その結果、2次再結晶化時に結晶粒の成長をもたらす駆動力が大きくなり、好ましくない方位の結晶粒まで成長し得る。また、N含量が多すぎると、最終焼鈍過程で除去するのに多くの時間がかかる。よって、上記窒素含量の上限は、55ppmに定める。但し、後述するように、スラブ再加熱時に固溶される窒素の含量が10ppm以上にならなければならないので、再固溶されることができるNの比率を勘案して、上記窒素含量の下限は、10ppmに定める。
N: 10 to 55 ppm
N is an element that reacts with Al or the like to re-fine crystal grains. When these elements are properly distributed, it is useful to ensure a fine structure after cold rolling to ensure an appropriate primary recrystallization grain size. The crystal grains are excessively refined, and as a result, the driving force that causes the crystal grains to grow during the secondary recrystallization is increased, and the crystal grains can be grown to an unfavorable orientation. Moreover, when there is too much N content, it will take much time to remove in the last annealing process. Therefore, the upper limit of the nitrogen content is set to 55 ppm. However, as described later, since the content of nitrogen dissolved at the time of reheating the slab must be 10 ppm or more, the lower limit of the nitrogen content is set in consideration of the ratio of N that can be dissolved again. Set to 10 ppm.
S:0.0010〜0.0055%
Sは、0.0055%超過でスラブに含有されると、熱間圧延スラブ加熱時に再固溶されて析出するので、1次再結晶粒のサイズを減少させて、2次再結晶化開始温度を低めて、鋼の磁気特性を劣化させる。また、最終焼鈍工程の2次均熱区間で固溶状態のSを除去するのに多くの時間が必要とされるので、方向性電気鋼板の生産性を落とす。一方、S含量が0.0055%未満と低い場合は、冷間圧延前の初期結晶粒のサイズが粗大になる効果があるので、1次再結晶化工程で変形バンドで核が生成される{110}<001>方位を有する結晶粒の数が増加される。よって、2次再結晶粒のサイズを減少させて、最終製品の磁気特性を向上させるので、Sは0.0055%以下に定める。Sは、MnSを形成して1次再結晶粒のサイズにある程度影響を与えるので、0.001重量%以上含むことができる。従って、Sの範囲を0.0010〜0.0055%に限定する。
S: 0.0010 to 0.0055%
When S is contained in the slab in excess of 0.0055%, it is re-dissolved and precipitated during heating of the hot-rolled slab, so the size of the primary recrystallized grains is reduced and the secondary recrystallization start temperature is reduced. To lower the magnetic properties of the steel. Moreover, since much time is required to remove S in the solid solution state in the secondary soaking section of the final annealing step, productivity of the grain-oriented electrical steel sheet is lowered. On the other hand, when the S content is as low as less than 0.0055%, there is an effect that the size of the initial crystal grains before cold rolling becomes coarse, so that nuclei are generated in the deformation band in the primary recrystallization step { 110} The number of crystal grains having <001> orientation is increased. Therefore, the size of the secondary recrystallized grains is reduced to improve the magnetic properties of the final product, so S is set to 0.0055% or less. Since S forms MnS and affects the size of the primary recrystallized grains to some extent, S can be contained in an amount of 0.001 wt% or more. Therefore, the range of S is limited to 0.0010 to 0.0055%.
上述した元素の他にも、方向性電気鋼板に含まれる多様な元素が本発明の電気鋼板の合金元素として含まれることができることは、本発明が属する技術分野で通常の知識を有する者なら理解することができるであろう。通常知られた元素の組み合せとその適用は、当然、本発明の権利範囲に属するものである。 In addition to the elements described above, various elements included in the grain-oriented electrical steel sheet can be included as alloy elements of the electrical steel sheet of the present invention, as understood by those having ordinary knowledge in the technical field to which the present invention belongs. Would be able to. Naturally known combinations of elements and their application naturally belong to the scope of the present invention.
本発明の芳香性電気鋼板は、当該技術分野で広く知られた電気鋼板の通常の製造方法によって製造されることもできるが、下記の製造方法を通じて製造することがより好ましい。以下に、より好ましい製造方法について詳細に説明する。以下で特に説明しない条件は、通常の条件に準ずることにする。 The aromatic electrical steel sheet of the present invention can be manufactured by a normal manufacturing method for electrical steel sheets widely known in the art, but it is more preferable to manufacture the aromatic electrical steel sheet through the following manufacturing method. Below, a more preferable manufacturing method is demonstrated in detail. Conditions that are not specifically described below are based on normal conditions.
冷間圧延された鋼板を製造する過程までは、通常の製造方法によって製造すれば良い。即ち、鋼スラブを熱間圧延した後、熱延板スラブを焼鈍して、以後、焼鈍された鋼スラブを冷間圧延する過程は、当該技術分野で広く知られた方法の中の一つから選択することができ、必要な場合、それに変形を加えて適用することができる。また、酸洗などの電気鋼板の熱延及び冷延過程で要求される付加的な工程も当然含まれて適用されることができる。 Until the process of manufacturing the cold-rolled steel sheet, it may be manufactured by a normal manufacturing method. That is, after the steel slab is hot-rolled, the hot-rolled sheet slab is annealed, and then the annealed steel slab is cold-rolled from one of the methods widely known in the art. It can be selected and can be applied with modifications if necessary. In addition, an additional process required in the hot rolling and cold rolling processes of the electric steel sheet such as pickling can be naturally included and applied.
但し、鋼スラブを熱間圧延するために再加熱するときは、再加熱温度を適切に調節して、NとSが不完全固溶体化されるようにすることが好ましい。特に、Nの含量は、10〜40ppmになるように制御することが好ましい。即ち、本発明の発明者らの研究結果によれば、全てのNの含量を適切な範囲に制御することが重要なのではなく、再加熱時に再固溶されて冷却時に析出される窒化物の量を制御することが重要であるため、再加熱時に再固溶されるNの含量を適切な範囲になるように制御する。即ち、析出される窒化物の量によって結晶粒の微細化程度が異なるが、結晶粒が微細化になり過ぎる場合は、ゴス方位とは異なる方位を有する結晶粒まで成長してしまう可能性があり、逆に結晶粒が粗大化になり過ぎると、2次再結晶化時に好ましくない結晶粒が除去されない可能性がある。よって、上記固溶されるNの含量を10〜40ppmの範囲に定めることが好ましい。上記固溶されるNの含量を制御するためのスラブ再加熱温度は、鋼中に含まれたAl含量を考慮して設定されることができるが、本発明で好ましく含まれることができるAl含量を考慮すると、上記再加熱温度は、1050〜1250℃であることがより好ましい。 However, when the steel slab is reheated for hot rolling, it is preferable to adjust the reheating temperature appropriately so that N and S are incompletely solid solution. In particular, the N content is preferably controlled to be 10 to 40 ppm. That is, according to the research results of the inventors of the present invention, it is not important to control the content of all N within an appropriate range. Since it is important to control the amount, the content of N dissolved again at the time of reheating is controlled so as to fall within an appropriate range. In other words, the degree of crystal grain refinement varies depending on the amount of nitride deposited, but if the crystal grain becomes too fine, it may grow to a crystal grain having an orientation different from the Goth orientation. Conversely, if the crystal grains become too coarse, undesirable crystal grains may not be removed during secondary recrystallization. Therefore, it is preferable to set the content of N to be dissolved in the range of 10 to 40 ppm. The slab reheating temperature for controlling the content of N to be dissolved can be set in consideration of the Al content contained in the steel, but the Al content that can be preferably contained in the present invention. In consideration of the above, the reheating temperature is more preferably 1050 to 1250 ° C.
以後、冷間圧延までの過程は、上述したように通常の方法の1つから適切に選択して適用すれば良いので、詳しい説明を省略する。但し、方向性電気鋼板を製造するための熱延鋼板の厚さは、通常1.8〜3.5mmであり、冷延鋼板の厚さは、通常0.18〜0.35mmであり、熱延板焼鈍のためには、1000〜1200℃まで加熱して850〜950℃で均熱処理した後に冷却する方法を利用する。上記のような過程を経る場合、熱間圧延の後または熱延板焼鈍後の析出物の平均サイズは、300〜3000Åである。 Thereafter, the process up to the cold rolling may be appropriately selected and applied from one of the usual methods as described above, and detailed description thereof will be omitted. However, the thickness of the hot-rolled steel sheet for producing the grain-oriented electrical steel sheet is usually 1.8 to 3.5 mm, the thickness of the cold-rolled steel sheet is usually 0.18 to 0.35 mm, For sheet annealing, a method of heating to 1000 to 1200 ° C., soaking at 850 to 950 ° C., and then cooling is used. When going through the above process, the average size of the precipitate after hot rolling or after hot-rolled sheet annealing is 300 to 3000 mm.
冷間圧延された鋼板は、以後、脱炭焼鈍と再結晶化焼鈍を経ることになるが、これについては詳しく説明する。 The cold-rolled steel sheet will subsequently undergo decarburization annealing and recrystallization annealing, which will be described in detail.
冷間圧延された鋼板は、アンモニア+水素+窒素の混合気体の雰囲気で脱炭及び窒化焼鈍をする。上記の脱炭及び窒化焼鈍方式は、従来の窒化焼鈍方式を容易に適用することができる。窒化焼鈍は、脱炭焼鈍と同時になされることもでき、脱炭焼鈍が終了した後になされることもできる。脱炭を先ずして、以後に窒化焼鈍する方法によると、Si3N4や(Si、Mn)Nなどのような析出物が形成されるようになるが、このような析出物は、熱的に不安定であり分解され易く、その結果、抑制剤としての役割をきちんと行うことができないので、AlNや(Al5、Si、Mn)Nなどの析出物に変化させるために長期間高温で維持する必要があるが、脱炭と窒化焼鈍を同時にすれば、上記AlNや(Al、Si)Nが同時に形成されるので、長い処理時間を要しない。よって、脱炭と窒化焼鈍を同時にする方法がより好ましい。しかし、ここで留意すべき点は、脱炭以後に窒化焼鈍をする方法もまた、本発明の有利な特性を備えた電気鋼板を製造するのと同じく有効に使用できるということである。即ち、同時脱炭窒化方法は、本発明の電気鋼板の製造方法においてより簡単かつ有用なだけであり、本発明はそれによって限定されない。 The cold-rolled steel sheet is decarburized and nitride-annealed in an atmosphere of a mixed gas of ammonia + hydrogen + nitrogen. The above-mentioned decarburization and nitridation annealing methods can easily apply the conventional nitridation annealing method. The nitridation annealing can be performed simultaneously with the decarburization annealing or can be performed after the decarburization annealing is finished. According to a method in which decarburization is first performed and thereafter nitridation annealing is performed, precipitates such as Si 3 N 4 and (Si, Mn) N are formed. It is unstable and easily decomposed. As a result, it cannot function properly as an inhibitor, so that it can be changed to precipitates such as AlN and (Al 5 , Si, Mn) N at a high temperature for a long time. However, if decarburization and nitridation annealing are performed at the same time, the above-described AlN and (Al, Si) N are formed at the same time, so a long processing time is not required. Therefore, a method of simultaneously performing decarburization and nitridation annealing is more preferable. However, it should be noted here that the method of performing nitridation annealing after decarburization can also be used as effectively as producing an electrical steel sheet having the advantageous characteristics of the present invention. That is, the simultaneous decarburizing and nitriding method is only simpler and more useful in the method for producing an electrical steel sheet of the present invention, and the present invention is not limited thereby.
本発明の発明者らの研究結果によると、本発明で提案する範囲にSn、Sb及びPの含量を制御する場合は、従来の成分系に比べて結晶粒のサイズ因子が大きく異なって作用するので、これを考慮することがより好ましい。即ち、元素の含量を上述した範囲に制御する場合は、1次再結晶粒のサイズを微細にするだけでなく、同一の1次再結晶化の条件下では、2次再結晶化が上手く起こらないようにすることがある。1次再結晶粒が微細化されれば2次再結晶化が上手く起こるが、これらの元素は同一の1次結晶化粒度下では、2次再結晶化が上手く起こらないようにする効果も有するので、これらの効果のうちどの効果がより優勢に作用するかによって、本発明の2次再結晶化が容易に起こるか、それとも従来の場合より容易ではないように起こるかを決めた後、これを脱炭焼鈍条件に適用する必要がある。本発明の発明者らの研究結果によると、上記1次再結晶粒の微細化による2次再結晶化を促進する駆動力の増加効果がより優勢であるので、上記元素を添加する場合は、1次再結晶化された組職のサイズが微細化になり過ぎないように脱炭焼鈍温度(即ち、1次再結晶化温度)を調節することがより好ましい。従って、脱炭焼鈍温度は、通常の場合より10〜30℃程高い温度である800〜950℃程に設定することが好ましい。脱炭焼鈍温度が低い場合は、十分な脱炭焼鈍効果が発生しないだけでなく、結晶粒が微細な状態に維持されて、2次再結晶化時に好ましくない方位の結晶粒が成長することがあり、逆に脱炭焼鈍温度が高過ぎると、1次再結晶粒が過度に成長することがある。本発明の成分系で好ましい1次再結晶粒のサイズは、18〜25μm程である。また、本発明の組成系の露点はSn、Sb及びPを含まない成分系に比べて露点が2〜4℃程低いように50〜70℃程にすることが酸化層管理に有利であり、最終製品の結晶粒方位制御や鉄損向上により有利である。 According to the research results of the inventors of the present invention, when the contents of Sn, Sb, and P are controlled within the range proposed in the present invention, the size factor of the crystal grains is greatly different from that of the conventional component system. Therefore, it is more preferable to consider this. That is, when the element content is controlled within the above-described range, not only the size of the primary recrystallized grains is reduced, but secondary recrystallization occurs well under the same primary recrystallization conditions. There may be no. If the primary recrystallized grains are refined, secondary recrystallization occurs well, but these elements also have the effect of preventing secondary recrystallization from occurring well under the same primary crystallization grain size. Therefore, after deciding whether the secondary recrystallization of the present invention occurs easily or less easily than in the conventional case, depending on which of these effects is more dominant, Must be applied to decarburization annealing conditions. According to the research results of the inventors of the present invention, the effect of increasing the driving force that promotes secondary recrystallization by refinement of the primary recrystallized grains is more dominant. It is more preferable to adjust the decarburization annealing temperature (that is, the primary recrystallization temperature) so that the size of the primary recrystallized organization does not become too fine. Therefore, it is preferable to set the decarburization annealing temperature to about 800 to 950 ° C., which is about 10 to 30 ° C. higher than usual. When the decarburization annealing temperature is low, not only a sufficient decarburization annealing effect does not occur, but also the crystal grains are maintained in a fine state, and crystal grains with an unfavorable orientation grow during secondary recrystallization. On the other hand, if the decarburization annealing temperature is too high, primary recrystallized grains may grow excessively. The preferred primary recrystallized grain size in the component system of the present invention is about 18 to 25 μm. Further, the dew point of the composition system of the present invention is advantageous for the management of the oxide layer so that the dew point is about 2 to 4 ° C. lower than the component system not containing Sn, Sb and P, and about 50 to 70 ° C. It is more advantageous for controlling grain orientation and improving iron loss in the final product.
上記脱炭焼鈍を経た鋼板は、上述したように、MgOを基本成分とする焼鈍分離剤を塗布した後、コイル状にして長期間最終焼鈍することで、ゴス方位の結晶粒が優勢に分布する電気鋼板に製造されるようになる。その詳細な過程は、上記コイル状の鋼板に塗布された焼鈍分離剤から水分を除去するために、1次均熱過程を経て、以後、既に1次再結晶化された鋼板を2次再結晶化させるために昇温する昇温過程と、後に再結晶化をさらに進行させると同時に、鋼中の不純物を除去するための2次均熱過程とを経る。このとき、制限された温度内で瞬間的に抑制剤が再溶解され、それによって結晶粒の成長の障壁が消えながら、制限された温度範囲内で2次再結晶化が始まるようにするために、昇温速度を非常に遅く制限して昇温を行い、以後に不純物を除去するために2次均熱時間を長期間に設定した。このような従来の方式は、生産性低下の大きな原因となるため、本発明者らは、このような問題を解決するために多方面で原因を分析した結果、1次均熱後に昇温速度を2段階に分けて適用することが好ましいということを確認することができた。 As described above, the steel sheet that has undergone the decarburization annealing is coated with an annealing separator containing MgO as a basic component, and then coiled into a final annealing for a long period of time, whereby Goth-oriented crystal grains are predominantly distributed. Manufactured into electrical steel sheets. The detailed process is as follows. In order to remove moisture from the annealing separator applied to the coiled steel sheet, a primary soaking process is performed, and then the primary recrystallized steel sheet is subjected to secondary recrystallization. A temperature raising process for raising the temperature for the purpose of heat treatment and a secondary soaking process for removing impurities in the steel at the same time as the recrystallization is further advanced later. At this time, in order to cause secondary recrystallization to begin within the limited temperature range while the inhibitor is re-dissolved instantaneously within the limited temperature, thereby eliminating the grain growth barrier. The temperature was increased while limiting the rate of temperature increase very slowly, and the secondary soaking time was set to a long period in order to remove impurities thereafter. Since such a conventional method causes a large decrease in productivity, the present inventors have analyzed the cause in many ways to solve such a problem, and as a result, the rate of temperature increase after primary soaking It was confirmed that it was preferable to apply the method in two stages.
即ち、抑制剤が溶解される温度以下の温度までは速く昇温しても、2次再結晶化が起こらず、初めに速い昇温速度を適用し、2次再結晶化が起こる温度からは従来と類似した遅い冷却速度で昇温すれば、同一の2次再結晶化効果が得られつつ、所要時間が減少されて生産性の向上に効果的である。本発明では、昇温速度を変化して適用する基準温度を900〜1020℃に定める。即ち、1次均熱後には速い昇温速度で鋼板を昇温し、その後、上記基準温度範囲で2次再結晶化を考慮して遅い昇温速度で昇温する。本発明では、上記初期の速い昇温速度区間の昇温速度を18〜75℃/hrに定め、2次再結晶化を考慮して遅い昇温速度を10〜15℃/hrに定める。また、本発明では、抑制剤として作用する窒素の再固溶される量を既に説明したように制限し、Sの全体含量も0.0055重量%以下に制限することで、これらの成分の除去に必要とされる時間も従来方法に比べてより短くできる。 That is, even if the temperature is rapidly raised to a temperature below the temperature at which the inhibitor is dissolved, secondary recrystallization does not occur. If the temperature is increased at a slow cooling rate similar to the conventional one, the same secondary recrystallization effect can be obtained, while the required time is reduced, which is effective in improving productivity. In the present invention, the reference temperature to be applied by changing the temperature rising rate is set to 900 to 1020 ° C. That is, after the primary soaking, the temperature of the steel sheet is increased at a high temperature increase rate, and then the temperature is increased at a low temperature increase rate in consideration of the secondary recrystallization within the reference temperature range. In the present invention, the heating rate in the initial fast heating rate section is set to 18 to 75 ° C./hr, and the slow heating rate is set to 10 to 15 ° C./hr in consideration of secondary recrystallization. Further, in the present invention, the amount of nitrogen re-dissolved that acts as an inhibitor is limited as described above, and the total content of S is also limited to 0.0055% by weight or less to remove these components. The time required for the process can be shortened as compared with the conventional method.
上記1次均熱温度と2次均熱温度は、通常の均熱温度内で制御すれば良いので、特に制限しない。但し、1次均熱温度の例としては、650〜850℃の温度範囲を挙げることができ、2次均熱温度の例としては、1150〜1250℃の範囲を挙げることができ、これらの温度範囲は、鋼板の成分によって、または、本発明の主要な特徴以外の他の些細な部分を変更することによって、少しずつ変更して適用することができる。 The primary soaking temperature and the secondary soaking temperature may be controlled within the normal soaking temperature, and are not particularly limited. However, examples of the primary soaking temperature may include a temperature range of 650 to 850 ° C., and examples of the secondary soaking temperature may include a range of 1150 to 1250 ° C. The range can be applied in small increments depending on the composition of the steel sheet or by changing other trivial parts other than the main features of the present invention.
つまり、本発明の電気鋼板の製造方法は、上記有利な本発明の組成を持った鋼スラブを再加熱する段階;上記再加熱された鋼スラブを熱間圧延、熱延板焼鈍及び焼鈍鋼板冷間圧延して鋼板を製造する段階;上記冷間圧延された鋼板を800〜950℃の温度範囲で脱炭焼鈍及び窒化焼鈍する段階;及び上記焼鈍された鋼板を最終焼鈍する段階;を含み、上記最終焼鈍段階が、1次均熱する段階、昇温する段階、及び2次均熱する段階を有する場合、初期に18〜75℃/hrの昇温速度で昇温温度を昇温した後、900〜1020℃の範囲内で10〜15℃/hrの範囲で昇温する。 That is, the method for producing an electrical steel sheet according to the present invention comprises a step of reheating a steel slab having the above-described advantageous composition of the present invention; hot rolling, hot-rolled sheet annealing and annealing steel sheet cooling of the reheated steel slab. A step of hot rolling to produce a steel plate; a step of decarburizing and nitriding annealing the cold-rolled steel plate in a temperature range of 800 to 950 ° C .; and a final annealing of the annealed steel plate; When the final annealing stage includes a primary soaking stage, a temperature raising stage, and a secondary soaking stage, after the temperature raising temperature is initially raised at a temperature raising rate of 18 to 75 ° C./hr. The temperature is raised in the range of 10 to 15 ° C./hr within the range of 900 to 1020 ° C.
以下、添付した図面を通じて、本発明の実施形態をより詳細に説明する。但し、下記の実施例は、本発明を例示して具体化するためのものであるだけであり、本発明の範囲を制限するものではない。本発明の精神及び範囲から逸脱することなく、それらを均等の範囲にすること、及び変形することは可能であることが理解される。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the following examples are only for illustrating and embodying the present invention, and do not limit the scope of the present invention. It will be understood that they can be made equal and modified without departing from the spirit and scope of the invention.
<Sn、Sb及びP添加量による鉄損変化>
重量%で、Si:3.26%、C:0.055%、Mn:0.12%、Sol.Al:0.026%、N:0.0042%、S:0.0045%、そしてSn、Sb及びP含量を表1〜表4のように変化させ、残部Feとその他不可避に含まれた不純物成分を含む方向性電気鋼板を使用した。電気鋼板のスラブを、再固溶されるNの量が25ppmになる温度1170℃で210分加熱した後、熱間圧延して、2.3mmの厚さの熱延板を製造した。この熱延板を1120℃まで加熱した後、920℃で90秒間維持し、水に急冷して酸洗した後、0.30mmの厚さに冷間圧延し冷延板を製造した。875℃に維持された炉中に露点温度が63℃である75%の水素と25%の窒素との混合気体と、1%の乾燥アンモニアガスとを同時に投入して、炉内で冷延板を180秒間維持して、脱炭及び窒化処理を同時にした。
<Iron loss change by Sn, Sb and P addition amount>
Wt.%, Si: 3.26%, C: 0.055%, Mn: 0.12%, Sol. Al: 0.026%, N: 0.0042%, S: 0.0045%, and the contents of Sn, Sb and P are changed as shown in Tables 1 to 4, and the remainder Fe and other impurities inevitably contained The grain-oriented electrical steel sheet containing a component was used. The slab of the electric steel sheet was heated for 210 minutes at a temperature of 1170 ° C. at which the amount of N dissolved again was 25 ppm, and then hot-rolled to produce a hot-rolled sheet having a thickness of 2.3 mm. The hot-rolled sheet was heated to 1120 ° C., maintained at 920 ° C. for 90 seconds, quenched in water and pickled, and then cold-rolled to a thickness of 0.30 mm to produce a cold-rolled sheet. In a furnace maintained at 875 ° C., a mixed gas of 75% hydrogen and 25% nitrogen having a dew point temperature of 63 ° C. and 1% dry ammonia gas were simultaneously charged, and cold-rolled sheets in the furnace Was maintained for 180 seconds, and decarburization and nitriding were performed simultaneously.
次に、加熱焼鈍鋼板に焼鈍分離剤であるMgOを塗布してコイル状に最終焼鈍した。最終焼鈍時に、1次均熱温度を700℃、2次均熱温度を1200℃にし、昇温速度は、700〜950℃の温度範囲では45℃/hr、950〜1200℃の温度範囲では15℃/hrにした。一方、1200℃での均熱時間は15時間にして処理した。最終焼鈍時の雰囲気は、1200℃までは25%窒素+75%水素の混合雰囲気にし、1200℃到達後には100%水素雰囲気で維持した後、炉冷した。それぞれの条件に対して測定した磁気特性は、表1〜表4の通りである。 Next, MgO which is an annealing separator was applied to the heat-annealed steel sheet and finally annealed into a coil shape. During the final annealing, the primary soaking temperature is 700 ° C., the secondary soaking temperature is 1200 ° C., and the rate of temperature rise is 45 ° C./hr in the temperature range of 700 to 950 ° C., and 15 in the temperature range of 950 to 1200 ° C. C./hr. On the other hand, the soaking time at 1200 ° C. was 15 hours. The atmosphere at the time of final annealing was a mixed atmosphere of 25% nitrogen + 75% hydrogen up to 1200 ° C., and after reaching 1200 ° C., it was maintained in a 100% hydrogen atmosphere and then cooled in the furnace. The magnetic characteristics measured for each condition are as shown in Tables 1 to 4.
上記の表1〜表4の実験結果をより具体的に確認するために、他の成分を固定した状態で、Sn、Sb及びPをそれぞれ変化させながら鉄損が異なることを確認した結果を、図4乃至図6に示した。その中で、図4は、SbとPの含量を固定した状態でSn含量を変化させた結果を示したグラフである。図4から分かるように、SbとP含量が本発明で規定する範囲を外れた場合は、鉄損が特別な臨界的変化なしに連続的な挙動を表していたが、Sb:0.025、P:0.035重量%の場合と、Sb:0.025、P:0.04重量%では、Snが0.03〜0.07重量%であるときに鉄損が急激に改善される特別な地点が表れることを確認することができた。よって、SbとPが共存する条件下で、Sbを0.03〜0.7重量%に制御するときに、鉄損減少が臨界値を超える効果が得られることを確認することができた。 In order to confirm the experimental results of Tables 1 to 4 more specifically, the results of confirming that the iron loss is different while changing Sn, Sb, and P in a state where other components are fixed, This is shown in FIGS. Among them, FIG. 4 is a graph showing the results of changing the Sn content with the Sb and P contents fixed. As can be seen from FIG. 4, when the Sb and P contents are out of the range defined in the present invention, the iron loss exhibited a continuous behavior without any special critical change, but Sb: 0.025, In the case of P: 0.035% by weight, Sb: 0.025, P: 0.04% by weight, the iron loss is drastically improved when Sn is 0.03 to 0.07% by weight. I was able to confirm that a certain point appeared. Therefore, when Sb was controlled to 0.03 to 0.7% by weight under the condition where Sb and P coexist, it was confirmed that the effect of reducing the iron loss exceeding the critical value was obtained.
また、図5は、SnとP成分を固定した状態で、Sb成分によって鉄損が変化することを示したグラフであるが、SnとPの含量が本発明で規定する範囲を満たす場合に、Sb含量を0.01〜0.05重量%に制御するときに、従来では期待することができない顕著な鉄損改善効果が表れた。 FIG. 5 is a graph showing that the iron loss changes depending on the Sb component in a state where the Sn and P components are fixed. When the Sn and P contents satisfy the range defined in the present invention, When the Sb content was controlled to 0.01 to 0.05% by weight, a remarkable iron loss improvement effect that could not be expected in the past appeared.
図6も、SnとSbを固定した状態で、P含量によって鉄損が変化することを示したグラフであるが、SnとSbが本発明で規定する範囲を満たす場合に、P含量を0.01〜0.05重量%に制御するときに、鉄損特性が不連続的に改善された。 FIG. 6 is also a graph showing that the iron loss changes depending on the P content in a state where Sn and Sb are fixed. When Sn and Sb satisfy the range defined in the present invention, the P content is reduced to 0.1%. When controlling to 01-0.05 weight%, the iron loss characteristic improved discontinuously.
従って、本発明で規定する範囲内でSn、Sb及びPを制御するときは、従来では期待することができない顕著な鉄損減少効果があることを確認することができた。 Therefore, when controlling Sn, Sb, and P within the range prescribed | regulated by this invention, it has confirmed that there was a remarkable iron loss reduction effect which cannot be anticipated conventionally.
図7は、Snを0.05重量%に固定したとき、PとSnの関係による鉄損の変化を示した図であり、図8は、上記図7のPとSnの関係を数式P+0.5Sbに代入したときに、鉄損が改善される効果を示した図であるが、上記数式P+0.5Sbが本発明で規定する0.0370〜0.0630の範囲内で変化したときは、鉄損が顕著に改善されることを確認することができた。 FIG. 7 is a diagram showing changes in iron loss due to the relationship between P and Sn when Sn is fixed at 0.05% by weight. FIG. 8 shows the relationship between P and Sn in FIG. It is a figure showing the effect that iron loss is improved when substituting 5Sb, but when the above formula P + 0.5Sb changes within the range of 0.0370 to 0.0630 defined in the present invention, It was confirmed that the loss was remarkably improved.
<スラブ再加熱時の固溶窒素量の制御での効果>
重量%で、Si:3.23%、C:0.058%、Mn:0.12%、Al:0.025%、P:0.032%、N:0.0053%及びS:0.0042%、Sb:0.032%、Sn:0.045%、P:0.038%、及び残部Feと不可避に含有された不純物を含む電気鋼板を使用した。この鋼板のスラブを再加熱するときに再固溶されるNの量を、表5のように変化させた後、熱間圧延して、2.3mmの厚さの熱延板を製造した。この熱延板を1100℃まで加熱した後、920℃で90秒間維持し、水で急冷して酸洗した後、0.30mmの厚さに冷間圧延し冷延板を製造した。875℃に維持された炉中に、露点温度が65℃である75%の水素と25%の窒素との混合気体と、1%の乾燥アンモニアガスとを同時に投入して、炉内で冷延板を180秒間維持して、脱炭及び窒化処理を同時にした。
<Effect of controlling the amount of dissolved nitrogen during slab reheating>
By weight, Si: 3.23%, C: 0.058%, Mn: 0.12%, Al: 0.025%, P: 0.032%, N: 0.0053% and S: 0.00. An electric steel sheet containing 0042%, Sb: 0.032%, Sn: 0.045%, P: 0.038%, and the balance Fe and impurities inevitably contained was used. After changing the amount of N re-dissolved when reheating the slab of the steel sheet as shown in Table 5, hot rolling was performed to produce a hot-rolled sheet having a thickness of 2.3 mm. The hot-rolled sheet was heated to 1100 ° C., maintained at 920 ° C. for 90 seconds, quenched with water and pickled, and then cold-rolled to a thickness of 0.30 mm to produce a cold-rolled sheet. In a furnace maintained at 875 ° C., a mixed gas of 75% hydrogen and 25% nitrogen having a dew point temperature of 65 ° C. and 1% dry ammonia gas are simultaneously charged and cold rolled in the furnace. The plate was maintained for 180 seconds, and decarburization and nitriding were performed simultaneously.
次に、加熱焼鈍鋼板に焼鈍分離剤であるMgOを塗布してコイル状に最終焼鈍した。最終焼鈍時に、1次均熱温度を700℃、2次均熱温度を1200℃にし、昇温速度は、700〜950℃の温度範囲では45℃/hr、950〜1200℃の温度範囲では15℃/hrにした。最終焼鈍時の雰囲気は、1200℃までは25%窒素+75%水素の混合雰囲気にし、1200℃到達後には100%水素雰囲気で15時間維持した後、炉冷した。それぞれの条件に対して測定した磁気特性は、表5の通りである。 Next, MgO which is an annealing separator was applied to the heat-annealed steel sheet and finally annealed into a coil shape. During the final annealing, the primary soaking temperature is 700 ° C., the secondary soaking temperature is 1200 ° C., and the rate of temperature rise is 45 ° C./hr in the temperature range of 700 to 950 ° C., and 15 in the temperature range of 950 to 1200 ° C. C./hr. The atmosphere during the final annealing was a mixed atmosphere of 25% nitrogen + 75% hydrogen up to 1200 ° C. After reaching 1200 ° C., the atmosphere was maintained in a 100% hydrogen atmosphere for 15 hours and then cooled in the furnace. The magnetic characteristics measured for each condition are shown in Table 5.
上記表5に示すように、スラブ再加熱時に再固溶されるNの含量が、本発明の範囲を満たす発明材25〜27は、比較材109及び110に比べて磁気特性が遥かに優れることがわかった。
As shown in Table 5 above, the inventive materials 25 to 27 in which the content of N re-dissolved during slab reheating satisfies the scope of the present invention are far superior in magnetic properties to the
<鋼板の厚さが鉄損に及ぼす影響>
鋼板の厚さが鉄損に及ぼす影響を究明するために、次のような実験を行った。
<Effect of steel sheet thickness on iron loss>
In order to investigate the influence of the steel sheet thickness on iron loss, the following experiment was conducted.
重量%で、Si:3.23%、C:0.058%、Mn:0.12%、Sol.Al:0.025%、N:0.0050%、S:0.0045%、Sb:0.032%、Sn:0.045%、P:0.038%、及び残部Feと不可避に含有された不純物を含む成分系1と、Si:3.25%、C:0.054%、Mn:0.11%、Sol.Al:0.025%、N:0.0050%及びS:0.0045%、Sn、Sb及びPを含まずに残部Fe及び不可避に含有される一部不純物を含む成分系2とを含む方向性電気鋼板を使用した。方向性電気鋼板のスラブを再固溶されるNの含量が23ppmになる温度1150℃で210分加熱した後、熱間圧延して、2.3mmの厚さの熱延板を製造した。この熱延板を1100℃まで加熱した後、920℃で90秒間維持し、水で急冷して酸洗した後、0.35mm、0.30mm、0.27mm、0.23mmの厚さに冷間圧延し冷延板を製造した。875℃に維持された炉中に、露点温度が63℃である75%の水素と25%の窒素との混合気体と、1%の乾燥アンモニアガスとを同時に投入して、炉内で冷延板を180秒間維持して、脱炭及び窒化処理を同時にした。
In weight percent, Si: 3.23%, C: 0.058%, Mn: 0.12%, Sol. Al: 0.025%, N: 0.0050%, S: 0.0045%, Sb: 0.032%, Sn: 0.045%, P: 0.038%, and the remainder Fe is unavoidably contained.
次に、加熱焼鈍鋼板に焼鈍分離剤であるMgOを塗布してコイル状に最終焼鈍した。最終焼鈍時に、1次均熱温度を700℃、2次均熱温度を1200℃にし、昇温速度は、700〜950℃の温度範囲では45℃/hr、950〜1200℃の温度範囲では15℃/hrにした。最終焼鈍時の雰囲気は、1200℃までは25%窒素+75%水素の混合雰囲気にし、1200℃到達後には100%水素雰囲気で15時間維持した後、炉冷した。それぞれの条件に対して測定した磁気特性は、表6の通りである。 Next, MgO which is an annealing separator was applied to the heat-annealed steel sheet and finally annealed into a coil shape. During the final annealing, the primary soaking temperature is 700 ° C., the secondary soaking temperature is 1200 ° C., and the rate of temperature rise is 45 ° C./hr in the temperature range of 700 to 950 ° C., and 15 in the temperature range of 950 to 1200 ° C. C./hr. The atmosphere during the final annealing was a mixed atmosphere of 25% nitrogen + 75% hydrogen up to 1200 ° C. After reaching 1200 ° C., the atmosphere was maintained in a 100% hydrogen atmosphere for 15 hours and then cooled in the furnace. The magnetic characteristics measured for each condition are shown in Table 6.
上記表6に示すように、Sb、Sn及びPを添加した成分系1の結果が、Sb、Sn及びPを添加しない成分系2に比べて非常に向上された鉄損を有していることを確認することができた。また、成分系に関係なく、鋼板の厚さが薄くなるにつれて鉄損も向上することを確認することができ、その結果、本発明で定義する成分系を有する発明材は、鋼板の厚さによって鉄損を予想することができ、鋼板の厚さによる鉄損理論値を下記の数式1のように定めることができた。
As shown in Table 6 above, the result of
(数式1)
鉄損[W/kg]≦0.46679+1.71622*厚さ[μm]
(Formula 1)
Iron loss [W / kg] ≦ 0.46679 + 1.72222 * thickness [μm]
<結晶方位測定>
重量%で、Si:3.18%、C:0.0556%、Mn:0.11%、Sol.Al:0.026%、N:0.0046%、S:0.0045%、Sb:0.028%、Sn:0.046%、P:0.037%、及び残部Feとその他不可避に含有される不純物を含む方向性電気鋼板を使用した。方向性電気鋼板のスラブを、再固溶されるNの量が21ppmになる温度1150℃で210分加熱した後、熱間圧延して、2.3mmの厚さの熱延板を製造した。この熱延板を1100℃まで加熱した後、920℃で90秒間維持し、水で急冷して酸洗した後、0.30mmの厚さに冷間圧延し冷延板を製造した。875℃に維持された炉中に、露点温度が63℃である75%の水素と25%の窒素との混合気体と、1%の乾燥アンモニアガスとを同時に投入して、炉内で冷延板を180秒間維持して、脱炭及び窒化処理を同時にした。
<Crystal orientation measurement>
Wt.%, Si: 3.18%, C: 0.0556%, Mn: 0.11%, Sol. Al: 0.026%, N: 0.0046%, S: 0.0045%, Sb: 0.028%, Sn: 0.046%, P: 0.037%, and the remainder Fe and other unavoidably contained The grain-oriented electrical steel sheet containing the impurities to be used was used. The slab of grain-oriented electrical steel sheet was heated for 210 minutes at a temperature of 1150 ° C. at which the amount of N to be re-dissolved was 21 ppm, and then hot-rolled to produce a hot-rolled sheet having a thickness of 2.3 mm. The hot-rolled sheet was heated to 1100 ° C., maintained at 920 ° C. for 90 seconds, quenched with water and pickled, and then cold-rolled to a thickness of 0.30 mm to produce a cold-rolled sheet. In a furnace maintained at 875 ° C., a mixed gas of 75% hydrogen and 25% nitrogen having a dew point temperature of 63 ° C. and 1% dry ammonia gas are simultaneously charged and cold rolled in the furnace. The plate was maintained for 180 seconds, and decarburization and nitriding were performed simultaneously.
次に、加熱焼鈍鋼板に焼鈍分離剤であるMgOを塗布してコイル状に最終焼鈍した。最終焼鈍時に、1次均熱温度を700℃、2次均熱温度を1200℃にし、昇温速度は、700〜950℃の温度範囲では45℃/hr、950〜1200℃の温度範囲では15℃/hrにした。最終焼鈍時の雰囲気は、1200℃までは25%窒素+75%水素の混合雰囲気にし、1200℃到達後には100%水素雰囲気で15時間維持した後、炉冷した。それぞれの条件に対して測定した磁気特性及びβ角(TD軸に対し[001]方位とRD間の角度)の面積加重平均は、表7の通りである。 Next, MgO which is an annealing separator was applied to the heat-annealed steel sheet and finally annealed into a coil shape. During the final annealing, the primary soaking temperature is 700 ° C., the secondary soaking temperature is 1200 ° C., and the rate of temperature rise is 45 ° C./hr in the temperature range of 700 to 950 ° C., and 15 in the temperature range of 950 to 1200 ° C. C./hr. The atmosphere during the final annealing was a mixed atmosphere of 25% nitrogen + 75% hydrogen up to 1200 ° C. After reaching 1200 ° C., the atmosphere was maintained in a 100% hydrogen atmosphere for 15 hours and then cooled in the furnace. Table 7 shows the magnetic properties measured for each condition and the area weighted average of β angle (angle between [001] orientation and RD with respect to TD axis).
上記表7に示すように、Sb、Sn及びP含量が本発明の範囲内に制御された発明材である場合、結晶方位がゴス方位から外れた程度が3度未満であり、その結果、磁気特性も優れたことがわかった。即ち、本発明の一実施形態による電気鋼板は、2次再結晶粒の方位を制御することで磁気特性に優れた方向性電気鋼板を製造することができることを確認することができた。 As shown in Table 7, when the Sb, Sn, and P contents are the inventive material controlled within the scope of the present invention, the degree of the crystal orientation deviating from the Goth orientation is less than 3 degrees. It was found that the characteristics were also excellent. That is, it was confirmed that the electrical steel sheet according to one embodiment of the present invention can produce a grain-oriented electrical steel sheet having excellent magnetic properties by controlling the orientation of secondary recrystallized grains.
<1次再結晶化方法の変形例>
本発明のより好ましい方法である同時脱炭窒化焼鈍ではなく、脱炭後、窒化焼鈍時に鉄損に及ぼす影響を究明するために、次のような実験を行った。
<Modification of primary recrystallization method>
In order to investigate the influence on iron loss at the time of nitridation annealing after decarburization rather than simultaneous decarburization and nitriding annealing which is a more preferable method of the present invention, the following experiment was conducted.
重量%で、Si:3.23%、C:0.058%、Mn:0.12%、Sol.Al:0.025%、N:0.0050%、S:0.0045%、Sn:0.045%、P:0.038%を含み、Sbを0、0.005、0.025、0.035、及び0.060%の異なる含量で含み、残部Feと不可避に含有された不純物を含む方向性電気鋼板を使用した。方向性電気鋼板スラブを、再固溶されるNの量が27ppmになる温度1170℃で210分加熱した後、再加熱した後に熱間圧延して、2.3mmの厚さの熱延板を製造した。この熱延板を1120℃まで加熱した後、920℃で90秒間維持し、水で急冷して酸洗した後、0.30mmの厚さに冷間圧延し冷延板を製造した。860℃に維持された炉中に、露点温度が62℃である75%の水素と25%の窒素との混合気体で、冷延板を脱炭焼鈍を行った。その後、N含有量を200±20ppmとして窒化処理を行った。 In weight percent, Si: 3.23%, C: 0.058%, Mn: 0.12%, Sol. Al: 0.025%, N: 0.0050%, S: 0.0045%, Sn: 0.045%, P: 0.038%, Sb is 0, 0.005, 0.025, 0 A grain-oriented electrical steel sheet containing different contents of 0.035 and 0.060% and containing the balance Fe and unavoidable impurities was used. The grain-oriented electrical steel slab was heated at a temperature of 1170 ° C. for 210 minutes at which the amount of N to be re-dissolved was 27 ppm, then re-heated and hot-rolled to obtain a hot-rolled sheet having a thickness of 2.3 mm. Manufactured. The hot-rolled sheet was heated to 1120 ° C., maintained at 920 ° C. for 90 seconds, quenched with water and pickled, and then cold-rolled to a thickness of 0.30 mm to produce a cold-rolled sheet. In a furnace maintained at 860 ° C., the cold rolled sheet was decarburized and annealed with a mixed gas of 75% hydrogen having a dew point temperature of 62 ° C. and 25% nitrogen. Thereafter, nitriding was performed with an N content of 200 ± 20 ppm.
次に、加熱焼鈍鋼板に焼鈍分離剤であるMgOを塗布してコイル状に最終焼鈍した。最終焼鈍時に、1次均熱温度を700℃、2次均熱温度を1200℃にし、昇温速度は昇温温度範囲全体で15℃/hrにした。最終焼鈍時の雰囲気は、1200℃までは25%窒素+75%水素の混合雰囲気にし、1200℃到達後には100%水素雰囲気で15時間維持した後、炉冷した。その後、通常の張力コーティングと平坦化処理を行った。それぞれの条件に対して測定した磁気特性は、表8の通りである。 Next, MgO which is an annealing separator was applied to the heat-annealed steel sheet and finally annealed into a coil shape. During the final annealing, the primary soaking temperature was 700 ° C., the secondary soaking temperature was 1200 ° C., and the heating rate was 15 ° C./hr over the entire heating temperature range. The atmosphere during the final annealing was a mixed atmosphere of 25% nitrogen + 75% hydrogen up to 1200 ° C. After reaching 1200 ° C., the atmosphere was maintained in a 100% hydrogen atmosphere for 15 hours and then cooled in the furnace. Thereafter, normal tension coating and planarization were performed. Table 8 shows the magnetic characteristics measured for each condition.
上記表8に示すように、Sb、Sn及びPを適正量で添加した発明材(成分系1)の結果が、Sb、Sn及びPを適正量で含有しない比較材(成分系2)に比べて、非常に向上された鉄損を有していることを確認することができた。また、窒化方法前の脱炭処理において、1次再結晶化される場合、本発明の成分の含有範囲で鉄損が臨界的に向上されることが分かった。 As shown in Table 8 above, the results of the inventive material (component system 1) with the appropriate amounts of Sb, Sn and P are compared to the comparative material (component system 2) which does not contain the appropriate amounts of Sb, Sn and P. It was confirmed that the iron loss was greatly improved. Further, it has been found that when primary recrystallization is performed in the decarburization treatment before the nitriding method, the iron loss is critically improved in the content range of the component of the present invention.
<As添加による鉄損変化>
重量%で、Si:3.15%、C:0.058%、Mn:0.1%、Sol.Al:0.03%、N:0.0049%、S:0.004%、Sn:0.05%、Sb:0.032%、P:0.04%を含み、Asを下記9に示された含量で添加し、残部Feとその他不可避に含まれた不純物を含む方向性電気鋼板を使用した。方向性電気鋼板のスラブを、1170℃で210分加熱した後、熱間圧延して、2.3mmの厚さの熱延板を製造した。この熱延板を1120℃まで加熱した後、910℃で90秒間維持し、水で急冷して酸洗した後、0.30mmの厚さに冷間圧延し冷延板を製造した。875℃に維持された炉中に、露点温度が62℃である75%の水素と25%の窒素との混合気体と、1%の乾燥アンモニアガスとを同時に投入して、炉内で冷延板を180秒間維持して、脱炭及び窒化処理を同時にした。
<Iron loss change by As addition>
In weight percent, Si: 3.15%, C: 0.058%, Mn: 0.1%, Sol. Al: 0.03%, N: 0.0049%, S: 0.004%, Sn: 0.05%, Sb: 0.032%, P: 0.04%, As is shown in 9 below The grain-oriented electrical steel sheet containing the remaining Fe and other impurities inevitably contained was used. A slab of grain-oriented electrical steel sheet was heated at 1170 ° C. for 210 minutes and then hot-rolled to produce a hot-rolled sheet having a thickness of 2.3 mm. The hot-rolled sheet was heated to 1120 ° C., maintained at 910 ° C. for 90 seconds, quenched with water and pickled, and then cold-rolled to a thickness of 0.30 mm to produce a cold-rolled sheet. In a furnace maintained at 875 ° C., a mixed gas of 75% hydrogen and 25% nitrogen having a dew point temperature of 62 ° C. and 1% dry ammonia gas are simultaneously charged and cold-rolled in the furnace. The plate was maintained for 180 seconds, and decarburization and nitriding were performed simultaneously.
次に、加熱焼鈍鋼板に焼鈍分離剤であるMgOを塗布してコイル状に最終焼鈍した。最終焼鈍時に、1次均熱温度を700℃、2次均熱温度を1200℃にし、昇温速度は、700〜45℃/hrの温度範囲では45℃/hr、950〜1200℃の温度範囲では15℃/hrにした。一方、1200℃での均熱時間は15時間にして処理した。最終焼鈍時の雰囲気は、1200℃までは25%窒素+75%水素の混合雰囲気にし、1200℃到達後には、100%水素雰囲気で維持した後、炉冷した。それぞれの条件に対して測定した磁気特性は、表9の通りである。 Next, MgO which is an annealing separator was applied to the heat-annealed steel sheet and finally annealed into a coil shape. At the time of final annealing, the primary soaking temperature is 700 ° C., the secondary soaking temperature is 1200 ° C., and the rate of temperature rise is 45 ° C./hr in the temperature range of 700 to 45 ° C./hr and the temperature range of 950 to 1200 ° C. Then, it was set to 15 ° C./hr. On the other hand, the soaking time at 1200 ° C. was 15 hours. The atmosphere at the time of final annealing was a mixed atmosphere of 25% nitrogen + 75% hydrogen up to 1200 ° C. After reaching 1200 ° C., it was maintained in a 100% hydrogen atmosphere and then cooled in the furnace. Table 9 shows the magnetic characteristics measured for each condition.
表9に示すように、Asの添加量が本発明で規定する範囲を満たす場合を便宜上発明材と規定し、これを外れる場合を比較材と規定した。上記表9において、発明材41乃至発明材43は、Asを本発明で規定する含量範囲で添加した場合を表し、比較材121は、Asの含量が過大な場合を表す。発明材の場合は、Asを添加するにつれて鉄損が減少することを確認することができた。しかし、As添加量が過多な比較材121の場合は、むしろ鉄損が増加して、鉄材の改善に不利に作用することを確認することができた。 As shown in Table 9, a case where the addition amount of As satisfies the range defined in the present invention is defined as an invention material for convenience, and a case where it is outside this is defined as a comparative material. In Table 9 above, the inventive material 41 to the inventive material 43 represent the case where As is added in the content range defined in the present invention, and the comparative material 121 represents the case where the content of As is excessive. In the case of the inventive material, it was confirmed that the iron loss decreased as As was added. However, in the case of the comparative material 121 in which the amount of As added is excessive, it was confirmed that the iron loss rather increased and adversely affected the improvement of the iron material.
従って、上記Asは、1.40重量%以下に添加されることが有利であることを確認することができた。 Therefore, it was confirmed that the above As is advantageously added to 1.40% by weight or less.
<Cu添加による鉄損変化>
重量%で、Si:3.0%、C:0.052%、Mn:0.12%、Sol.Al:0.026%、N:0.0042%、S:0.0045%、Sn:0.05%、Sb:0.027%、P:0.039%を含み、Cuを下記表10に示された異なる含量で添加し、残部Feとその他不可避に含まれた不純物を含む方向性電気鋼板を使用した。方向性電気鋼板のスラブを、再固溶されるNの量が25ppmになる1170℃で210分加熱した後、熱間圧延して、2.3mmの厚さの熱延板を製造した。この熱延板を1120℃まで加熱した後、910℃で90秒間維持し、水で急冷して酸洗した後、0.30mmの厚さに冷間圧延し冷延板を製造した。875℃に維持された炉中に、露点温度が62℃である75%の水素と25%の窒素との混合気体と、1%の乾燥アンモニアガスとを同時に投入して、炉内で冷延板を180秒間維持して、脱炭及び窒化処理を同時にした。
<Iron loss change due to Cu addition>
Wt%, Si: 3.0%, C: 0.052%, Mn: 0.12%, Sol. Al: 0.026%, N: 0.0042%, S: 0.0045%, Sn: 0.05%, Sb: 0.027%, P: 0.039%, Cu is shown in Table 10 below A grain-oriented electrical steel sheet was used which was added at the indicated different contents and contained the remainder Fe and other unavoidable impurities. The slab of grain-oriented electrical steel sheet was heated at 1170 ° C. for 210 minutes at which the amount of N dissolved again was 25 ppm, and then hot-rolled to produce a hot-rolled sheet having a thickness of 2.3 mm. The hot-rolled sheet was heated to 1120 ° C., maintained at 910 ° C. for 90 seconds, quenched with water and pickled, and then cold-rolled to a thickness of 0.30 mm to produce a cold-rolled sheet. In a furnace maintained at 875 ° C., a mixed gas of 75% hydrogen and 25% nitrogen having a dew point temperature of 62 ° C. and 1% dry ammonia gas are simultaneously charged and cold-rolled in the furnace. The plate was maintained for 180 seconds, and decarburization and nitriding were performed simultaneously.
次に、加熱焼鈍鋼板に焼鈍分離剤であるMgOを塗布してコイル状に最終焼鈍した。最終焼鈍時に、1次均熱温度を700℃、2次均熱温度を1200℃にし、昇温速度は、700〜45℃/hrの温度範囲では45℃/hr、950〜1200℃の温度範囲では15℃/hrにした。一方、1200℃での均熱時間は15時間にして処理した。最終焼鈍時の雰囲気は、1200℃までは25%窒素+75%水素の混合雰囲気にし、1200℃到達後には100%水素雰囲気で維持した後、炉冷した。それぞれの条件に対して測定した磁気特性は、表10の通りである。 Next, MgO which is an annealing separator was applied to the heat-annealed steel sheet and finally annealed into a coil shape. At the time of final annealing, the primary soaking temperature is 700 ° C., the secondary soaking temperature is 1200 ° C., and the rate of temperature rise is 45 ° C./hr in the temperature range of 700 to 45 ° C./hr and the temperature range of 950 to 1200 ° C. Then, it was set to 15 ° C./hr. On the other hand, the soaking time at 1200 ° C. was 15 hours. The atmosphere at the time of final annealing was a mixed atmosphere of 25% nitrogen + 75% hydrogen up to 1200 ° C., and after reaching 1200 ° C., it was maintained in a 100% hydrogen atmosphere and then cooled in the furnace. Table 10 shows the magnetic characteristics measured for each condition.
表10に示すように、各元素の添加量が本発明で規定する範囲を満たす場合を、便宜上発明材と規定し、これを外れる場合を比較材と規定した。上記の表10において、発明材44乃至発明材48は、Cuを本発明で規定する範囲に添加した場合を表し、比較材122はCuの含量が過多な場合を表す。特に、発明材45乃至48は、本発明で規定するより好ましい範囲、即ち、0.05重量%以上でCuを添加する場合を表し、発明材44は、上記範囲よりは少なくCuを添加した場合を表す。比較的Cu含量が低い発明材44は、Cuを全く添加しない一般的な成分系と類似した水準の鉄損を表したが、Cu添加量が増加した発明材45乃至48の場合は、鉄損の減少がより顕著であることを確認することができた。しかし、Cu添加量が過多な比較材122の場合は、むしろ鉄損が増加して、鉄損の改善に不利に作用することを確認することができた。 As shown in Table 10, the case where the addition amount of each element satisfies the range defined in the present invention is defined as an invention material for convenience, and the case where it is outside this is defined as a comparative material. In Table 10 above, the inventive material 44 to the inventive material 48 represent the case where Cu is added to the range defined by the present invention, and the comparative material 122 represents the case where the Cu content is excessive. In particular, the inventive materials 45 to 48 represent a case where Cu is added in a more preferable range defined by the present invention, that is, 0.05% by weight or more, and the inventive material 44 is a case where Cu is added less than the above range. Represents. Inventive material 44 with a relatively low Cu content exhibited a level of iron loss similar to that of a general component system in which no Cu was added, but in the case of inventive materials 45 to 48 with an increased amount of Cu added, It was possible to confirm that the decrease in was more remarkable. However, in the case of the comparative material 122 having an excessive amount of added Cu, it was confirmed that the iron loss increased rather, which adversely affected the improvement of the iron loss.
従って、上記Cuは、0.50重量%以下に添加されることが有利であることを確認することができた。 Therefore, it was confirmed that the Cu was advantageously added to 0.50% by weight or less.
<Bi添加による鉄損変化>
重量%で、Si:3.15%、C:0.058%、Mn:0.1%、Sol.Al:0.03%、N:0.0049%、S:0.004%、Sn:0.05%、Sb:0.032%、P:0.04%を含み、Biを下記表11に示された異なる含量で添加し、残部Feとその他不可避に含まれた不純物を含む方向性電気鋼板を使用した。方向性電気鋼板のスラブを、1170℃で210分加熱した後、熱間圧延して、2.3mmの厚さの熱延板を製造した。この熱延板を1120℃まで加熱した後、910℃で90秒間維持し、水で急冷して酸洗した後、0.30mmの厚さに冷間圧延し冷延板を製造した。875℃に維持された炉中に、露点温度が62℃である75%の水素と25%の窒素との混合気体と、1%の乾燥アンモニアガスとを同時に投入して、炉内で冷延板を180秒間維持して、脱炭及び窒化処理を同時にした。
<Iron loss change by Bi addition>
In weight percent, Si: 3.15%, C: 0.058%, Mn: 0.1%, Sol. Al: 0.03%, N: 0.0049%, S: 0.004%, Sn: 0.05%, Sb: 0.032%, P: 0.04%, Bi is shown in Table 11 below A grain-oriented electrical steel sheet was used which was added at the indicated different contents and contained the remainder Fe and other unavoidable impurities. A slab of grain-oriented electrical steel sheet was heated at 1170 ° C. for 210 minutes and then hot-rolled to produce a hot-rolled sheet having a thickness of 2.3 mm. The hot-rolled sheet was heated to 1120 ° C., maintained at 910 ° C. for 90 seconds, quenched with water and pickled, and then cold-rolled to a thickness of 0.30 mm to produce a cold-rolled sheet. In a furnace maintained at 875 ° C., a mixed gas of 75% hydrogen and 25% nitrogen having a dew point temperature of 62 ° C. and 1% dry ammonia gas are simultaneously charged and cold-rolled in the furnace. The plate was maintained for 180 seconds, and decarburization and nitriding were performed simultaneously.
次に、加熱焼鈍鋼板に焼鈍分離剤であるMgOを塗布してコイル状に最終焼鈍した。最終焼鈍時に、1次均熱温度を700℃、2次均熱温度を1200℃にし、昇温速度は、700〜45℃/hrの温度範囲では45℃/hr、950〜1200℃の温度範囲では15℃/hrにした。一方、1200℃での均熱時間は15時間にして処理した。最終焼鈍時の雰囲気は、1200℃までは25%窒素+75%水素の混合雰囲気にし、1200℃到達後には100%水素雰囲気で維持した後、炉冷した。それぞれの条件に対して測定した磁気特性は、表11の通りである。 Next, MgO which is an annealing separator was applied to the heat-annealed steel sheet and finally annealed into a coil shape. At the time of final annealing, the primary soaking temperature is 700 ° C., the secondary soaking temperature is 1200 ° C., and the rate of temperature rise is 45 ° C./hr in the temperature range of 700 to 45 ° C./hr and the temperature range of 950 to 1200 ° C. Then, it was set to 15 ° C./hr. On the other hand, the soaking time at 1200 ° C. was 15 hours. The atmosphere at the time of final annealing was a mixed atmosphere of 25% nitrogen + 75% hydrogen up to 1200 ° C., and after reaching 1200 ° C., it was maintained in a 100% hydrogen atmosphere and then cooled in the furnace. Table 11 shows the magnetic characteristics measured for each condition.
表11に示すように、Biの添加量が本発明で規定する範囲を満たす場合を、便宜上発明材と規定し、これから外れる場合を比較材と規定した。上記表11において、発明材49乃至発明材52は、Biを本発明で規定する範囲で添加した場合を表し、比較材123は、Biの含量が過多な場合を表す。発明材の場合は、Biを添加するにつれて鉄損が減少することを確認することができた。しかし、Bi添加量が過多な比較材123の場合は、むしろ鉄損が増加して、鉄損の改善に不利に作用することを確認することができた。 As shown in Table 11, a case where the amount of Bi added satisfies the range defined in the present invention was defined as an invention material for convenience, and a case where it was outside this range was defined as a comparative material. In Table 11 above, the inventive material 49 to the inventive material 52 represent the case where Bi is added within the range specified in the present invention, and the comparative material 123 represents the case where the Bi content is excessive. In the case of the inventive material, it was confirmed that the iron loss decreased as Bi was added. However, in the case of the comparative material 123 with an excessive amount of Bi added, it was confirmed that the iron loss increased rather, which adversely affected the improvement of the iron loss.
従って、上記Biは、0.1重量%以下に添加されることが有利であることを確認することができた。 Therefore, it was confirmed that the Bi was advantageously added to 0.1% by weight or less.
<Te添加による鉄損変化>
重量%で、Si:3.15%、C:0.058%、Mn:0.1%、Sol.Al:0.03%、N:0.0049%、S:0.004%、Sn:0.05%、Sb:0.032%、P:0.04%を含み、Teを下記表12に示された異なる含量で添加し、残部Feとその他不可避に含まれた不純物を含む方向性電気鋼板を使用した。方向性電気鋼板のスラブを、1170℃で210分加熱した後、熱間圧延して、2.3mmの厚さの熱延板を製造した。この熱延板を1120℃まで加熱した後、910℃で90秒間維持し、水で急冷して酸洗した後、0.30mmの厚さに冷間圧延し冷延板を製造した。875℃に維持された炉中に、露点温度が62℃である75%の水素と25%の窒素との混合気体と、1%の乾燥アンモニアガスとを同時に投入して、炉内で冷延板を180秒間維持して、脱炭及び窒化処理を同時にした。
<Iron loss change due to Te addition>
In weight percent, Si: 3.15%, C: 0.058%, Mn: 0.1%, Sol. Al: 0.03%, N: 0.0049%, S: 0.004%, Sn: 0.05%, Sb: 0.032%, P: 0.04%, Te is shown in Table 12 below A grain-oriented electrical steel sheet was used which was added at the indicated different contents and contained the remainder Fe and other unavoidable impurities. A slab of grain-oriented electrical steel sheet was heated at 1170 ° C. for 210 minutes and then hot-rolled to produce a hot-rolled sheet having a thickness of 2.3 mm. The hot-rolled sheet was heated to 1120 ° C., maintained at 910 ° C. for 90 seconds, quenched with water and pickled, and then cold-rolled to a thickness of 0.30 mm to produce a cold-rolled sheet. In a furnace maintained at 875 ° C., a mixed gas of 75% hydrogen and 25% nitrogen having a dew point temperature of 62 ° C. and 1% dry ammonia gas are simultaneously charged and cold-rolled in the furnace. The plate was maintained for 180 seconds, and decarburization and nitriding were performed simultaneously.
次に、加熱焼鈍鋼板に焼鈍分離剤であるMgOを塗布してコイル状に最終焼鈍した。最終焼鈍時に、1次均熱温度を700℃、2次均熱温度を1200℃にし、昇温速度は、700〜45℃/hrの温度範囲では45℃/hr、950〜1200℃の温度範囲では15℃/hrにした。一方、1200℃での均熱時間は15時間にして処理した。最終焼鈍時の雰囲気は、1200℃までは25%窒素+75%水素の混合雰囲気にし、1200℃到達後には100%水素雰囲気で維持した後、炉冷した。それぞれの条件に対して測定した磁気特性は、表12の通りである。 Next, MgO which is an annealing separator was applied to the heat-annealed steel sheet and finally annealed into a coil shape. At the time of final annealing, the primary soaking temperature is 700 ° C., the secondary soaking temperature is 1200 ° C., and the rate of temperature rise is 45 ° C./hr in the temperature range of 700 to 45 ° C./hr and the temperature range of 950 to 1200 ° C. Then, it was set to 15 ° C./hr. On the other hand, the soaking time at 1200 ° C. was 15 hours. The atmosphere at the time of final annealing was a mixed atmosphere of 25% nitrogen + 75% hydrogen up to 1200 ° C., and after reaching 1200 ° C., it was maintained in a 100% hydrogen atmosphere and then cooled in the furnace. Table 12 shows the magnetic characteristics measured for each condition.
表12に示すように、各元素の添加量が本発明で規定する範囲を満たす場合を、便宜上発明材と規定し、これから外れる場合を比較材と規定した。上記表12において、発明材53乃至発明材56は、Teを本発明で規定する範囲内で添加した場合を表し、比較材124は、Teの含量が過多な場合を表す。発明材の場合は、Teを添加するにつれて鉄損が減少することを確認することができた。しかし、Te添加量が過多な比較材124の場合は、むしろ鉄損が増加して、鉄損の改善に不利に作用することを確認することができた。 As shown in Table 12, the case where the addition amount of each element satisfies the range defined in the present invention is defined as an invention material for convenience, and the case where it is outside this range is defined as a comparative material. In Table 12 above, the inventive material 53 to the inventive material 56 represent the case where Te is added within the range defined by the present invention, and the comparative material 124 represents the case where the Te content is excessive. In the case of the inventive material, it was confirmed that the iron loss decreased as Te was added. However, in the case of the comparative material 124 in which the amount of Te added is excessive, it was confirmed that the iron loss rather increased and adversely affected the improvement of the iron loss.
従って、上記Teは、1.40重量%以下に添加されることが有利であることを確認することができた。 Therefore, it was confirmed that the Te is advantageously added to 1.40% by weight or less.
<Ni添加による鉄損変化>
重量%で、Si:3.1%、C:0.051%、Mn:0.1%、Sol.Al:0.026%、N:0.0041%、S:0.005%、Sn:0.045%、Sb:0.028%、P:0.038%を含み、Niを下記表13に示された異なる含量で添加し、残部Feとその他不可避に含まれた不純物を含む方向性電気鋼板を使用した。方向性電気鋼板のスラブを、1170℃で210分加熱した後、熱間圧延して、2.3mmの厚さの熱延板を製造した。この熱延板を1120℃まで加熱した後、910℃で90秒間維持し、水で急冷して酸洗した後、0.30mmの厚さに冷間圧延し冷延板を製造した。875℃に維持された炉中に、露点温度が62℃である75%の水素と25%の窒素との混合気体と、1%の乾燥アンモニアガスとを同時に投入して、炉内で冷延板を180秒間維持して、脱炭及び窒化処理を同時にした。
<Iron loss change due to Ni addition>
By weight, Si: 3.1%, C: 0.051%, Mn: 0.1%, Sol. Al: 0.026%, N: 0.0041%, S: 0.005%, Sn: 0.045%, Sb: 0.028%, P: 0.038%, Ni is shown in Table 13 below. A grain-oriented electrical steel sheet was used which was added at the indicated different contents and contained the remainder Fe and other unavoidable impurities. A slab of grain-oriented electrical steel sheet was heated at 1170 ° C. for 210 minutes and then hot-rolled to produce a hot-rolled sheet having a thickness of 2.3 mm. The hot-rolled sheet was heated to 1120 ° C., maintained at 910 ° C. for 90 seconds, quenched with water and pickled, and then cold-rolled to a thickness of 0.30 mm to produce a cold-rolled sheet. In a furnace maintained at 875 ° C., a mixed gas of 75% hydrogen and 25% nitrogen having a dew point temperature of 62 ° C. and 1% dry ammonia gas are simultaneously charged and cold-rolled in the furnace. The plate was maintained for 180 seconds, and decarburization and nitriding were performed simultaneously.
次に、加熱焼鈍鋼板に焼鈍分離剤であるMgOを塗布してコイル状に最終焼鈍した。最終焼鈍時に、1次均熱温度を700℃、2次均熱温度を1200℃にし、昇温速度は、700〜45℃/hrの温度範囲では45℃/hr、950〜1200℃の温度範囲では15℃/hrにした。一方、1200℃での均熱時間は15時間にして処理した。最終焼鈍時の雰囲気は、1200℃までは25%窒素+75%水素の混合雰囲気にし、1200℃到達後には100%水素雰囲気で維持した後、炉冷した。それぞれの条件に対して測定した磁気特性は、表13の通りである。 Next, MgO which is an annealing separator was applied to the heat-annealed steel sheet and finally annealed into a coil shape. At the time of final annealing, the primary soaking temperature is 700 ° C., the secondary soaking temperature is 1200 ° C., and the rate of temperature rise is 45 ° C./hr in the temperature range of 700 to 45 ° C./hr and the temperature range of 950 to 1200 ° C. Then, it was set to 15 ° C./hr. On the other hand, the soaking time at 1200 ° C. was 15 hours. The atmosphere at the time of final annealing was a mixed atmosphere of 25% nitrogen + 75% hydrogen up to 1200 ° C., and after reaching 1200 ° C., it was maintained in a 100% hydrogen atmosphere and then cooled in the furnace. Table 13 shows the magnetic properties measured for each condition.
表13に示すように、Niの添加量が本発明で規定する範囲を満たす場合を、便宜上発明材と規定し、これから外れる場合を比較材と規定した。上記表13において、発明材57乃至発明材60は、Niを本発明で規定する範囲内で添加した場合を表し、比較材125は、Niの含量が過多な場合を表す。発明材の場合は、Niを添加するにつれて鉄損が減少することを確認することができた。しかし、Ni添加量が過多な比較材125の場合は、むしろ鉄損が増加して、鉄損の改善に不利に作用することを確認することができた。 As shown in Table 13, the case where the addition amount of Ni satisfies the range defined in the present invention is defined as an invention material for convenience, and the case where it is outside this range is defined as a comparative material. In Table 13 above, the inventive material 57 to the inventive material 60 represent the case where Ni was added within the range defined by the present invention, and the comparative material 125 represents the case where the Ni content is excessive. In the case of the inventive material, it was confirmed that the iron loss decreased as Ni was added. However, in the case of the comparative material 125 having an excessive amount of added Ni, it was confirmed that the iron loss increased rather, which adversely affected the improvement of the iron loss.
従って、上記Niは、1.40重量%以下に添加されることが有利であることを確認することができた。 Therefore, it was confirmed that the Ni was advantageously added to 1.40% by weight or less.
<Cr添加による鉄損変化>
重量%で、Si:3.105%、C:0.057%、Mn:0.09%、Sol.Al:0.027%、N:0.0051%、S:0.005%、Sn:0.05%、Sb:0.031%、P:0.037%を含み、Crを下記表14に示された異なる含量で添加し、残部Feとその他不可避に含まれた不純物を含む方向性電気鋼板を使用した。方向性電気鋼板のスラブを、1170℃で210分加熱した後、熱間圧延して、2.3mmの厚さの熱延板を製造した。この熱延板を1120℃まで加熱した後、910℃で90秒間維持し、水で急冷して酸洗した後、0.30mmの厚さに冷間圧延し冷延板を製造した。875℃に維持された炉中に、露点温度が62℃である75%の水素と25%の窒素との混合気体と、1%の乾燥アンモニアガスとを同時に投入して、炉内で冷延板を180秒間維持して、脱炭及び窒化処理を同時にした。
<Iron loss change due to Cr addition>
In weight percent, Si: 3.105%, C: 0.057%, Mn: 0.09%, Sol. Al: 0.027%, N: 0.0051%, S: 0.005%, Sn: 0.05%, Sb: 0.031%, P: 0.037%, Cr is shown in Table 14 below A grain-oriented electrical steel sheet was used which was added at the indicated different contents and contained the remainder Fe and other unavoidable impurities. A slab of grain-oriented electrical steel sheet was heated at 1170 ° C. for 210 minutes and then hot-rolled to produce a hot-rolled sheet having a thickness of 2.3 mm. The hot-rolled sheet was heated to 1120 ° C., maintained at 910 ° C. for 90 seconds, quenched with water and pickled, and then cold-rolled to a thickness of 0.30 mm to produce a cold-rolled sheet. In a furnace maintained at 875 ° C., a mixed gas of 75% hydrogen and 25% nitrogen having a dew point temperature of 62 ° C. and 1% dry ammonia gas are simultaneously charged and cold-rolled in the furnace. The plate was maintained for 180 seconds, and decarburization and nitriding were performed simultaneously.
次に、加熱焼鈍鋼板に焼鈍分離剤であるMgOを塗布してコイル状に最終焼鈍した。最終焼鈍時に、1次均熱温度を700℃、2次均熱温度を1200℃にし、昇温速度は、700〜45℃/hrの温度範囲では45℃/hr、950〜1200℃の温度範囲では15℃/hrにした。一方、1200℃での均熱時間は15時間にして処理した。最終焼鈍時の雰囲気は、1200℃までは25%窒素+75%水素の混合雰囲気にし、1200℃到達後には100%水素雰囲気で維持した後、炉冷した。それぞれの条件に対して測定した磁気特性は、表14の通りである。 Next, MgO which is an annealing separator was applied to the heat-annealed steel sheet and finally annealed into a coil shape. At the time of final annealing, the primary soaking temperature is 700 ° C., the secondary soaking temperature is 1200 ° C., and the rate of temperature rise is 45 ° C./hr in the temperature range of 700 to 45 ° C./hr and the temperature range of 950 to 1200 ° C. Then, it was set to 15 ° C./hr. On the other hand, the soaking time at 1200 ° C. was 15 hours. The atmosphere at the time of final annealing was a mixed atmosphere of 25% nitrogen + 75% hydrogen up to 1200 ° C., and after reaching 1200 ° C., it was maintained in a 100% hydrogen atmosphere and then cooled in the furnace. Table 14 shows the magnetic characteristics measured for each condition.
表14に示すように、各元素の添加量が本発明で規定する範囲を満たす場合を、便宜上発明材と規定し、これから外れる場合を比較材と規定した。上記表14において、発明材61乃至発明材65は、Crを本発明で規定する範囲内で添加した場合を表し、比較材126は、Crの含量が過多な場合を表す。特に、発明材62乃至65は、本発明で規定するより好ましい範囲、即ち、0.05重量%以上でCrを添加する場合を表し、発明材61は、上記範囲よりは少なく添加した場合を表す。比較的Cr含量が低い発明材61は、Crを全く添加しない一般的な成分系と類似した水準の鉄損を表したが、Cr添加量が増加した発明材62乃至65の場合は、鉄損の減少がより顕著であることを確認することができた。しかし、Cr添加量が過多な比較材126の場合は、むしろ鉄損が増加して、鉄損の改善に不利に作用することを確認することができた。 As shown in Table 14, the case where the addition amount of each element satisfies the range defined in the present invention is defined as an invention material for convenience, and the case where it is outside this range is defined as a comparative material. In Table 14 above, the inventive material 61 to the inventive material 65 represent the case where Cr is added within the range defined by the present invention, and the comparative material 126 represents the case where the Cr content is excessive. In particular, the inventive materials 62 to 65 represent the case where Cr is added in a more preferable range defined by the present invention, that is, 0.05% by weight or more, and the inventive material 61 represents the case where it is added less than the above range. . Inventive material 61 having a relatively low Cr content exhibited a level of iron loss similar to that of a general component system in which no Cr was added, but in the case of inventive materials 62 to 65 in which the amount of Cr added was increased, the iron loss was reduced. It was possible to confirm that the decrease in was more remarkable. However, in the case of the comparative material 126 with an excessive amount of Cr added, it was confirmed that the iron loss increased rather, which adversely affected the improvement of the iron loss.
従って、上記Crは、0.35重量%以下に添加されることが有利であることを確認することができた。 Therefore, it was confirmed that the Cr was advantageously added to 0.35% by weight or less.
<Pb添加による鉄損変化>
重量%で、Si:3.12%、C:0.055%、Mn:0.11%、Sol.Al:0.029%、N:0.0049%、S:0.0045%、Sn:0.05%、Sb:0.031%、P:0.039%を含み、Pbを下記表15に示された異なる含量で添加し、残部Feとその他不可避に含まれた不純物を含む方向性電気鋼板を使用した。方向性電気鋼板のスラブを、1170℃で210分加熱した後、熱間圧延して、2.3mmの厚さの熱延板を製造した。この熱延板を1120℃まで加熱した後、910℃で90秒間維持し、水で急冷して酸洗した後、0.30mmの厚さに冷間圧延し冷延板を製造した。875℃に維持された炉中に、露点温度が62℃である75%の水素と25%の窒素の混合気体と、1%の乾燥アンモニアガスとを同時に投入して、炉内で冷延板を180秒間維持して、脱炭及び窒化処理を同時にした。
<Iron loss change by adding Pb>
Wt.%, Si: 3.12%, C: 0.055%, Mn: 0.11%, Sol. Al: 0.029%, N: 0.0049%, S: 0.0045%, Sn: 0.05%, Sb: 0.031%, P: 0.039%, Pb is shown in Table 15 below A grain-oriented electrical steel sheet was used which was added at the indicated different contents and contained the remainder Fe and other unavoidable impurities. A slab of grain-oriented electrical steel sheet was heated at 1170 ° C. for 210 minutes and then hot-rolled to produce a hot-rolled sheet having a thickness of 2.3 mm. The hot-rolled sheet was heated to 1120 ° C., maintained at 910 ° C. for 90 seconds, quenched with water and pickled, and then cold-rolled to a thickness of 0.30 mm to produce a cold-rolled sheet. In a furnace maintained at 875 ° C., a mixed gas of 75% hydrogen and 25% nitrogen having a dew point temperature of 62 ° C. and 1% dry ammonia gas are simultaneously charged, and cold-rolled sheets are used in the furnace. Was maintained for 180 seconds, and decarburization and nitriding were performed simultaneously.
次に、加熱焼鈍鋼板に焼鈍分離剤であるMgOを塗布してコイル状に最終焼鈍した。最終焼鈍時に、1次均熱温度を700℃、2次均熱温度を1200℃にし、昇温速度は、700〜45℃/hrの温度範囲では45℃/hr、950〜1200℃の温度範囲では15℃/hrにした。一方、1200℃での均熱時間は15時間にして処理した。最終焼鈍時の雰囲気は、1200℃までは25%窒素+75%水素の混合雰囲気にし、1200℃到達後には100%水素雰囲気で維持した後、炉冷した。それぞれの条件に対して測定した磁気特性は、表15の通りである。 Next, MgO which is an annealing separator was applied to the heat-annealed steel sheet and finally annealed into a coil shape. At the time of final annealing, the primary soaking temperature is 700 ° C., the secondary soaking temperature is 1200 ° C., and the rate of temperature rise is 45 ° C./hr in the temperature range of 700 to 45 ° C./hr and the temperature range of 950 to 1200 ° C. Then, it was set to 15 ° C./hr. On the other hand, the soaking time at 1200 ° C. was 15 hours. The atmosphere at the time of final annealing was a mixed atmosphere of 25% nitrogen + 75% hydrogen up to 1200 ° C., and after reaching 1200 ° C., it was maintained in a 100% hydrogen atmosphere and then cooled in the furnace. Table 15 shows the magnetic characteristics measured for each condition.
表15に示すように、Pbの添加量が本発明で規定する範囲を満たす場合を、便宜上発明材と規定し、これから外れる場合を比較材と規定した。上記表15において、発明材66乃至発明材69は、Pbを本発明で規定する範囲内で添加した場合を表し、比較材127は、Pbの含量が過多な場合を表す。発明材の場合は、Pbを添加するにつれて鉄損が減少することを確認することができた。しかし、Pb添加量が過多な比較材127の場合は、むしろ鉄損が増加して、鉄損の改善に不利に作用することを確認することができた。 As shown in Table 15, the case where the amount of Pb added satisfies the range defined in the present invention is defined as an invention material for convenience, and the case where it is outside this is defined as a comparative material. In Table 15 above, the inventive material 66 to the inventive material 69 represent the case where Pb was added within the range defined by the present invention, and the comparative material 127 represents the case where the Pb content is excessive. In the case of the inventive material, it was confirmed that the iron loss decreased as Pb was added. However, in the case of the comparative material 127 with an excessive amount of Pb added, it was confirmed that the iron loss increased rather, which adversely affected the improvement of the iron loss.
従って、上記Pbは、1.40重量%以下に添加されることが有利であることを確認することができた。 Therefore, it was confirmed that the Pb was advantageously added to 1.40% by weight or less.
<Mo、B、Ge、Nb、Ti及びZnのうちから選択される少なくとも1種の添加による鉄損変化>
重量%で、Si:3.15%、C:0.058%、Mn:0.1%、Sol.Al:0.03%、N:0.0049%、S:0.004%、Sn:0.05%、Sb:0.032%、P:0.04%を含み、Mo、B、Ge、Nb、Ti及びZnからなるグループのうちから選択された1種の元素を下記表16に湿された異なる含量で添加し、残部Feとその他不可避に含まれた不純物を含む方向性金属鋼板を使用した。方向性電気鋼板のスラブを、1170℃で210分加熱した後、熱間圧延して、2.3mmの厚さの熱延板を製造した。この熱延板を1120℃まで加熱した後、910℃で90秒間維持し、水で急冷して酸洗した後、0.30mmの厚さに冷間圧延し冷延板を製造した。875℃に維持された炉中に、露点温度が62℃である75%の水素と25%の窒素との混合気体と、1%の乾燥アンモニアガスとを同時に投入して、炉内で冷延板を180秒間維持して、脱炭及び窒化処理を同時にした。
<Change in iron loss due to addition of at least one selected from Mo, B, Ge, Nb, Ti and Zn>
In weight percent, Si: 3.15%, C: 0.058%, Mn: 0.1%, Sol. Al: 0.03%, N: 0.0049%, S: 0.004%, Sn: 0.05%, Sb: 0.032%, P: 0.04%, Mo, B, Ge, One element selected from the group consisting of Nb, Ti and Zn is added at different wet contents in Table 16 below, and the grain-oriented steel sheet containing the remainder Fe and other unavoidable impurities is used. did. A slab of grain-oriented electrical steel sheet was heated at 1170 ° C. for 210 minutes and then hot-rolled to produce a hot-rolled sheet having a thickness of 2.3 mm. The hot-rolled sheet was heated to 1120 ° C., maintained at 910 ° C. for 90 seconds, quenched with water and pickled, and then cold-rolled to a thickness of 0.30 mm to produce a cold-rolled sheet. In a furnace maintained at 875 ° C., a mixed gas of 75% hydrogen and 25% nitrogen having a dew point temperature of 62 ° C. and 1% dry ammonia gas are simultaneously charged and cold-rolled in the furnace. The plate was maintained for 180 seconds, and decarburization and nitriding were performed simultaneously.
次に、加熱焼鈍鋼板に焼鈍分離剤であるMgOを塗布してコイル状に最終焼鈍した。最終焼鈍時に、1次均熱温度を700℃、2次均熱温度を1200℃にし、昇温速度は、700〜45℃/hrの温度範囲では45℃/hr、950〜1200℃の温度範囲では15℃/hrにした。一方、1200℃での均熱時間は15時間にして処理した。最終焼鈍時の雰囲気は1200℃までは25%窒素+75%水素の混合雰囲気にし、1200℃到達後には100%水素雰囲気で維持した後、炉冷した。それぞれの条件に対して測定した磁気特性は、表16の通りである。 Next, MgO which is an annealing separator was applied to the heat-annealed steel sheet and finally annealed into a coil shape. At the time of final annealing, the primary soaking temperature is 700 ° C., the secondary soaking temperature is 1200 ° C., and the rate of temperature rise is 45 ° C./hr in the temperature range of 700 to 45 ° C./hr and the temperature range of 950 to 1200 ° C. Then, it was set to 15 ° C./hr. On the other hand, the soaking time at 1200 ° C. was 15 hours. The atmosphere at the time of final annealing was a mixed atmosphere of 25% nitrogen + 75% hydrogen up to 1200 ° C. After reaching 1200 ° C., the atmosphere was maintained in a 100% hydrogen atmosphere and then cooled in the furnace. Table 16 shows the magnetic properties measured for each condition.
表16に示すように、各元素の添加量が本発明で規定する範囲を満たす場合を、便宜上発明材と規定し、これから外れる場合を比較材と規定した。上記表16において、発明材70乃至発明材72は、Moを本発明で規定する範囲内で添加した場合を表し、比較材128は、Moの含量が過多な場合を表す。特に、発明材71と72は、本発明で規定するより好ましい範囲、即ち、0.003重量%以上にMoを添加する場合を表し、発明材70は、上記範囲よりは少なく添加した場合を表す。比較的Mo含量が低い発明材70は、Moを全く添加しない一般的な成分系と類似した水準の鉄損を表したが、Mo添加量が増加した発明材71と72の場合は、鉄損の減少がより顕著であることを確認することができた。しかし、Mo添加量が過多な比較材128の場合は、むしろ鉄損が増加して、鉄損の改善に不利に作用することを確認することができた。 As shown in Table 16, the case where the addition amount of each element satisfies the range defined in the present invention is defined as an invention material for convenience, and the case where it is outside this range is defined as a comparative material. In Table 16 above, the inventive material 70 to the inventive material 72 represent the case where Mo is added within the range defined by the present invention, and the comparative material 128 represents the case where the Mo content is excessive. In particular, the inventive materials 71 and 72 represent a more preferable range defined in the present invention, that is, the case where Mo is added to 0.003% by weight or more, and the inventive material 70 represents a case where the addition is less than the above range. . Inventive material 70 having a relatively low Mo content exhibited iron loss at a level similar to that of a general component system in which no Mo was added, but in the case of inventive materials 71 and 72 in which the amount of added Mo was increased, the iron loss was reduced. It was possible to confirm that the decrease in was more remarkable. However, in the case of the comparative material 128 having an excessive amount of added Mo, it was confirmed that the iron loss increased rather, which adversely affected the improvement of the iron loss.
発明材73乃至発明材75及び比較材129は、鉄損の改善についてBの影響を観察した結果を表したものであり、発明材76乃至発明材78及び比較材130は、鉄損の改善についてGeの影響を観察した結果を表したものであり、発明材79乃至発明材81及び比較材131は、鉄損の改善についてZnの影響を観察した結果を表したものであり、発明材82乃至発明材84及び比較材131は、鉄損の改善についてNbの影響を観察した結果を表したものであり、そして発明材85乃至発明材87及び比較材132は、鉄損の改善についてTiの影響を観察した結果を表したものであるが、鋼間で鉄損値の減少には若干の差はあったが、発明材と比較材は鉄損の減少で類似した効果を表すことを確認することができた。 Inventive Material 73 to Inventive Material 75 and Comparative Material 129 represent the results of observing the effect of B on iron loss improvement, and Inventive Material 76 to Inventive Material 78 and Comparative Material 130 are about iron loss improvement. The results of observing the influence of Ge are shown. Inventive material 79 to inventive material 81 and comparative material 131 are the results of observing the influence of Zn on the improvement of iron loss, and the inventive materials 82 to 82 are shown. Inventive material 84 and comparative material 131 show the results of observing the effect of Nb on iron loss improvement, and inventive material 85 to inventive material 87 and comparative material 132 show the influence of Ti on iron loss improvement. Although there was a slight difference in the reduction of iron loss values between steels, it was confirmed that the inventive material and the comparative material showed similar effects in reducing iron loss. I was able to.
従って、上記添加元素は、1.40重量%以下に添加されることが有利であり、より確実な鉄損向上効果を得るためには、0.003重量%以上添加されることがより有利であることを確認することができた。 Therefore, the additive element is advantageously added to 1.40% by weight or less, and in order to obtain a more reliable effect of improving iron loss, it is more advantageous to add 0.003% by weight or more. I was able to confirm that there was.
Claims (13)
前記冷間圧延された鋼板を800〜45℃/hrの温度範囲で脱炭焼鈍及び窒化焼鈍する段階;及び
前記焼鈍された鋼板を最終焼鈍する段階;を含み、
前記最終焼鈍段階が、1次均熱する段階、昇温する段階、及び2次均熱する段階を有する場合、初期に18〜75℃/hrの昇温速度で昇温温度を昇温した後、900〜1020℃の範囲内で10〜15℃/hrの範囲で昇温する、鋼板の製造方法。 A steel slab containing Sn: 0.03-0.07 wt%, Sb: 0.01-0.05 wt% and P: 0.01-0.05 wt% as essential components is hot-rolled, annealed and cooled. A step of hot rolling to produce a steel plate;
Decarburizing and nitriding annealing the cold-rolled steel sheet at a temperature range of 800 to 45 ° C./hr; and finally annealing the annealed steel sheet;
In the case where the final annealing stage includes a primary soaking stage, a temperature raising stage, and a secondary soaking stage, after the temperature raising temperature is initially raised at a temperature raising rate of 18 to 75 ° C./hr. The manufacturing method of the steel plate which heats up in the range of 10-15 degree-C / hr within the range of 900-1020 degreeC.
Applications Claiming Priority (19)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2007-0140116 | 2007-12-28 | ||
KR1020070140116A KR100957911B1 (en) | 2007-12-28 | 2007-12-28 | Grain oriented electrical steel having excellent magnetic properties and manufacturing method for the same |
KR10-2008-0119208 | 2008-11-27 | ||
KR1020080119202A KR101053321B1 (en) | 2008-11-27 | 2008-11-27 | Oriented electrical steel sheet with excellent magnetic properties and manufacturing method thereof |
KR10-2008-0119209 | 2008-11-27 | ||
KR10-2008-0119200 | 2008-11-27 | ||
KR1020080119203A KR101053281B1 (en) | 2008-11-27 | 2008-11-27 | Oriented electrical steel sheet with excellent magnetic properties and manufacturing method thereof |
KR10-2008-0119201 | 2008-11-27 | ||
KR1020080119207A KR101053294B1 (en) | 2008-11-27 | 2008-11-27 | Oriented electrical steel sheet with excellent magnetic properties and manufacturing method thereof |
KR10-2008-0119204 | 2008-11-27 | ||
KR10-2008-0119207 | 2008-11-27 | ||
KR1020080119200A KR101053283B1 (en) | 2008-11-27 | 2008-11-27 | Oriented electrical steel sheet with excellent magnetic properties and manufacturing method thereof |
KR10-2008-0119202 | 2008-11-27 | ||
KR1020080119208A KR101053270B1 (en) | 2008-11-27 | 2008-11-27 | Oriented electrical steel sheet with excellent magnetic properties and manufacturing method thereof |
KR1020080119204A KR101053362B1 (en) | 2008-11-27 | 2008-11-27 | Oriented electrical steel sheet with excellent magnetic properties and manufacturing method thereof |
KR1020080119201A KR101053382B1 (en) | 2008-11-27 | 2008-11-27 | Oriented electrical steel sheet with excellent magnetic properties and manufacturing method thereof |
KR1020080119209A KR101053304B1 (en) | 2008-11-27 | 2008-11-27 | Oriented electrical steel sheet with excellent magnetic properties and manufacturing method thereof |
KR10-2008-0119203 | 2008-11-27 | ||
PCT/KR2008/007727 WO2009091127A2 (en) | 2007-12-28 | 2008-12-27 | Grain oriented electrical steel having excellent magnetic properties and manufacturing method for the same |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2011510166A true JP2011510166A (en) | 2011-03-31 |
JP2011510166A5 JP2011510166A5 (en) | 2013-06-06 |
JP5793305B2 JP5793305B2 (en) | 2015-10-14 |
Family
ID=40885754
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010540586A Active JP5793305B2 (en) | 2007-12-28 | 2008-12-27 | Oriented electrical steel sheet with excellent magnetic properties and method for producing the same |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5793305B2 (en) |
CN (1) | CN101952462B (en) |
WO (1) | WO2009091127A2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014013615A1 (en) * | 2012-07-20 | 2014-01-23 | 新日鐵住金株式会社 | Process for producing grain-oriented electrical steel sheet |
JP2016513358A (en) * | 2012-12-28 | 2016-05-12 | ポスコ | Oriented electrical steel sheet and manufacturing method thereof |
KR20160074348A (en) * | 2014-12-18 | 2016-06-28 | 주식회사 포스코 | Grain-oriented electrical steel sheet and method for manufacturing the same |
KR20160078133A (en) * | 2014-12-24 | 2016-07-04 | 주식회사 포스코 | Grain-oriented electrical steel sheet and method for manufacturing the same |
JP2018508647A (en) * | 2014-12-24 | 2018-03-29 | ポスコPosco | Oriented electrical steel sheet and manufacturing method thereof |
JP2019501282A (en) * | 2015-11-10 | 2019-01-17 | ポスコPosco | Oriented electrical steel sheet and manufacturing method thereof |
JP2019507239A (en) * | 2015-12-18 | 2019-03-14 | ポスコPosco | INSULATION COATING COMPOSITION FOR DIRECTIONAL ELECTRIC STEEL STEEL, INSULATION COATING FORMATION METHOD FOR DIRECTIONAL ELECTRIC STEEL STEEL |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011102455A1 (en) * | 2010-02-18 | 2011-08-25 | 新日本製鐵株式会社 | Manufacturing method for grain-oriented electromagnetic steel sheet |
EP2548977B1 (en) * | 2010-03-17 | 2015-06-03 | Nippon Steel & Sumitomo Metal Corporation | Method for producing directional electromagnetic steel sheet |
KR101620763B1 (en) * | 2011-10-20 | 2016-05-12 | 제이에프이 스틸 가부시키가이샤 | Grain-oriented electrical steel sheet and method of producing the same |
WO2013094777A1 (en) * | 2011-12-19 | 2013-06-27 | 주식회사 포스코 | Grain-oriented electrical steel sheet having low core loss and high magnetic flux density, and method for manufacturing same |
CN104726796A (en) * | 2013-12-23 | 2015-06-24 | Posco公司 | Oriented electrical steel sheets and method for manufacturing the same |
KR20150074933A (en) * | 2013-12-24 | 2015-07-02 | 주식회사 포스코 | Grain oriented electrical steel and preparation method thereof |
KR101642281B1 (en) | 2014-11-27 | 2016-07-25 | 주식회사 포스코 | Oriented electrical steel sheet and method for manufacturing the same |
KR101633255B1 (en) * | 2014-12-18 | 2016-07-08 | 주식회사 포스코 | Grain-orientied electrical shteel sheet and method for manufacturing the same |
CN105128316A (en) * | 2015-09-14 | 2015-12-09 | 芜湖奕辰模具科技有限公司 | Blow-molding mould for liquid medicine tank of sprayer |
CN105128242A (en) * | 2015-09-14 | 2015-12-09 | 芜湖奕辰模具科技有限公司 | Cold press forming die of pipes |
CN105349917A (en) * | 2015-12-24 | 2016-02-24 | 常熟市新冶机械制造有限公司 | Oil slinger for wire rod mill |
KR101887605B1 (en) * | 2016-12-22 | 2018-08-10 | 주식회사 포스코 | Oriented electrical steel sheet and method for manufacturing the same |
KR101899453B1 (en) * | 2016-12-23 | 2018-09-17 | 주식회사 포스코 | Method for manufacturing grain oriented electrical steel sheet |
KR102142511B1 (en) * | 2018-11-30 | 2020-08-07 | 주식회사 포스코 | Grain oriented electrical steel sheet and manufacturing method of the same |
CN112391512B (en) * | 2019-08-13 | 2022-03-18 | 宝山钢铁股份有限公司 | High magnetic induction oriented silicon steel and manufacturing method thereof |
KR102325011B1 (en) * | 2019-12-20 | 2021-11-11 | 주식회사 포스코 | Non-oriented electrical steel sheet and method for manufacturing the same |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5633450B2 (en) * | 1977-09-07 | 1981-08-04 | ||
JPH0313527A (en) * | 1989-06-13 | 1991-01-22 | Kawasaki Steel Corp | Manufacture of grain-oriented silicon steel sheet having extremely high magnetic flux density |
JPH06330174A (en) * | 1993-05-26 | 1994-11-29 | Kawasaki Steel Corp | Production of low iron loss grain oriented silicon steel sheet |
JP2001152250A (en) * | 1999-09-09 | 2001-06-05 | Nippon Steel Corp | Method for producing grain-oriented silicon steel sheet excellent in magnetic property |
JP2003166019A (en) * | 2001-12-03 | 2003-06-13 | Nippon Steel Corp | Grain-oriented electromagnetic steel sheet superior in magnetic property, and manufacturing method therefor |
JP2003193134A (en) * | 2001-12-28 | 2003-07-09 | Jfe Steel Kk | Method of producing grain oriented silicon steel sheet having excellent magnetic property and coating property |
JP2007138199A (en) * | 2005-11-15 | 2007-06-07 | Jfe Steel Kk | Method for producing grain oriented silicon steel sheet |
JP2007247022A (en) * | 2006-03-17 | 2007-09-27 | Jfe Steel Kk | Method for producing grain-oriented electrical steel sheet |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0949023A (en) * | 1995-08-10 | 1997-02-18 | Nippon Steel Corp | Production of grain oriented silicon steel sheet excellent in iron loss |
WO2001098550A1 (en) * | 2000-06-19 | 2001-12-27 | Nkk Corporation | Non-oriented electromagnetic steel sheet and method for production thereof |
CN1258608C (en) * | 2003-10-27 | 2006-06-07 | 宝山钢铁股份有限公司 | Method for manufacturing cold-rolled orientation-free electrical sheet |
KR101131729B1 (en) * | 2004-12-28 | 2012-03-28 | 주식회사 포스코 | Method for manufacturing grain-oriented electrical steel sheet having high permeability |
JP4613748B2 (en) * | 2005-08-18 | 2011-01-19 | Jfeスチール株式会社 | Manufacturing method of electrical steel sheet |
KR100721822B1 (en) * | 2005-12-20 | 2007-05-28 | 주식회사 포스코 | The grain-oriented electrical steel sheet manufacturing method with low iron core loss, high magnetic induction |
-
2008
- 2008-12-27 JP JP2010540586A patent/JP5793305B2/en active Active
- 2008-12-27 CN CN200880127334.8A patent/CN101952462B/en active Active
- 2008-12-27 WO PCT/KR2008/007727 patent/WO2009091127A2/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5633450B2 (en) * | 1977-09-07 | 1981-08-04 | ||
JPH0313527A (en) * | 1989-06-13 | 1991-01-22 | Kawasaki Steel Corp | Manufacture of grain-oriented silicon steel sheet having extremely high magnetic flux density |
JPH06330174A (en) * | 1993-05-26 | 1994-11-29 | Kawasaki Steel Corp | Production of low iron loss grain oriented silicon steel sheet |
JP2001152250A (en) * | 1999-09-09 | 2001-06-05 | Nippon Steel Corp | Method for producing grain-oriented silicon steel sheet excellent in magnetic property |
JP2003166019A (en) * | 2001-12-03 | 2003-06-13 | Nippon Steel Corp | Grain-oriented electromagnetic steel sheet superior in magnetic property, and manufacturing method therefor |
JP2003193134A (en) * | 2001-12-28 | 2003-07-09 | Jfe Steel Kk | Method of producing grain oriented silicon steel sheet having excellent magnetic property and coating property |
JP2007138199A (en) * | 2005-11-15 | 2007-06-07 | Jfe Steel Kk | Method for producing grain oriented silicon steel sheet |
JP2007247022A (en) * | 2006-03-17 | 2007-09-27 | Jfe Steel Kk | Method for producing grain-oriented electrical steel sheet |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014013615A1 (en) * | 2012-07-20 | 2014-01-23 | 新日鐵住金株式会社 | Process for producing grain-oriented electrical steel sheet |
JP2016513358A (en) * | 2012-12-28 | 2016-05-12 | ポスコ | Oriented electrical steel sheet and manufacturing method thereof |
US10023932B2 (en) | 2012-12-28 | 2018-07-17 | Posco | Grain-oriented electrical steel sheet, and method for manufacturing the same |
KR20160074348A (en) * | 2014-12-18 | 2016-06-28 | 주식회사 포스코 | Grain-oriented electrical steel sheet and method for manufacturing the same |
KR101677551B1 (en) | 2014-12-18 | 2016-11-18 | 주식회사 포스코 | Grain-oriented electrical steel sheet and method for manufacturing the same |
KR20160078133A (en) * | 2014-12-24 | 2016-07-04 | 주식회사 포스코 | Grain-oriented electrical steel sheet and method for manufacturing the same |
KR101667617B1 (en) * | 2014-12-24 | 2016-10-19 | 주식회사 포스코 | Grain-oriented electrical steel sheet and method for manufacturing the same |
JP2018508647A (en) * | 2014-12-24 | 2018-03-29 | ポスコPosco | Oriented electrical steel sheet and manufacturing method thereof |
US11180819B2 (en) | 2014-12-24 | 2021-11-23 | Posco | Grain-oriented electrical steel plate and production method therefor |
JP2019501282A (en) * | 2015-11-10 | 2019-01-17 | ポスコPosco | Oriented electrical steel sheet and manufacturing method thereof |
JP2019507239A (en) * | 2015-12-18 | 2019-03-14 | ポスコPosco | INSULATION COATING COMPOSITION FOR DIRECTIONAL ELECTRIC STEEL STEEL, INSULATION COATING FORMATION METHOD FOR DIRECTIONAL ELECTRIC STEEL STEEL |
Also Published As
Publication number | Publication date |
---|---|
CN101952462B (en) | 2013-02-13 |
JP5793305B2 (en) | 2015-10-14 |
CN101952462A (en) | 2011-01-19 |
WO2009091127A3 (en) | 2009-10-08 |
WO2009091127A2 (en) | 2009-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5793305B2 (en) | Oriented electrical steel sheet with excellent magnetic properties and method for producing the same | |
JP2011510166A5 (en) | ||
KR100957911B1 (en) | Grain oriented electrical steel having excellent magnetic properties and manufacturing method for the same | |
JP6350398B2 (en) | Oriented electrical steel sheet and manufacturing method thereof | |
KR101988142B1 (en) | Method for manufacturing grain-oriented electrical steel sheet, and nitriding apparatus | |
JP5782527B2 (en) | Low iron loss high magnetic flux density grained electrical steel sheet and manufacturing method thereof | |
JP5757693B2 (en) | Low iron loss unidirectional electrical steel sheet manufacturing method | |
CN108474079B (en) | Oriented electrical steel sheet and method for manufacturing the same | |
KR101053321B1 (en) | Oriented electrical steel sheet with excellent magnetic properties and manufacturing method thereof | |
CN113166892A (en) | Oriented electrical steel sheet and method for manufacturing the same | |
JPH059666A (en) | Grain oriented electrical steel sheet and its manufacture | |
KR101623872B1 (en) | Grain oriented electrical steel having excellent rolling and magnetic properties and method for manufacturing the same | |
KR101509637B1 (en) | Oriented electrical steel sheet and method for manufacturing the same | |
KR101053281B1 (en) | Oriented electrical steel sheet with excellent magnetic properties and manufacturing method thereof | |
KR101053304B1 (en) | Oriented electrical steel sheet with excellent magnetic properties and manufacturing method thereof | |
CN111566250B (en) | Oriented electrical steel sheet and method for manufacturing the same | |
CN111566244A (en) | Oriented electrical steel sheet and method for manufacturing the same | |
JP6228956B2 (en) | Low iron loss high magnetic flux density grained electrical steel sheet and manufacturing method thereof | |
KR101053382B1 (en) | Oriented electrical steel sheet with excellent magnetic properties and manufacturing method thereof | |
JP7312256B2 (en) | Grain-oriented electrical steel sheet and manufacturing method thereof | |
KR101263843B1 (en) | Grain-oriented electrical steel sheets with extremely low core-loss and high flux-density and Method for manufacturing the same | |
KR101263846B1 (en) | Grain-oriented electrical steel sheets with extremely low core-loss and high flux-density and method for manufacturing the same | |
KR101318275B1 (en) | Method for manufacturing grain-oriented electrical steel sheets with extremely low core-loss and high flux-density | |
KR101263848B1 (en) | Grain-oriented electrical steel sheets with extremely low core-loss and high flux-density and method for manufacturing the same | |
KR101053294B1 (en) | Oriented electrical steel sheet with excellent magnetic properties and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130108 |
|
A524 | Written submission of copy of amendment under article 19 pct |
Free format text: JAPANESE INTERMEDIATE CODE: A524 Effective date: 20130405 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20131210 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140401 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20140414 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20140606 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150518 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150810 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5793305 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |