JP5954527B2 - Ultra-thin electrical steel sheet with excellent high-frequency iron loss characteristics - Google Patents

Ultra-thin electrical steel sheet with excellent high-frequency iron loss characteristics Download PDF

Info

Publication number
JP5954527B2
JP5954527B2 JP2012044935A JP2012044935A JP5954527B2 JP 5954527 B2 JP5954527 B2 JP 5954527B2 JP 2012044935 A JP2012044935 A JP 2012044935A JP 2012044935 A JP2012044935 A JP 2012044935A JP 5954527 B2 JP5954527 B2 JP 5954527B2
Authority
JP
Japan
Prior art keywords
mass
steel sheet
iron loss
plate thickness
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012044935A
Other languages
Japanese (ja)
Other versions
JP2013181193A (en
Inventor
今村 猛
今村  猛
稔 高島
高島  稔
多津彦 平谷
多津彦 平谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012044935A priority Critical patent/JP5954527B2/en
Publication of JP2013181193A publication Critical patent/JP2013181193A/en
Application granted granted Critical
Publication of JP5954527B2 publication Critical patent/JP5954527B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、リアクトル等のコア材に使用される、板厚が0.1mm未満で、高周波励磁時の鉄損特性に優れる極薄電磁鋼板に関するものである。   The present invention relates to an ultrathin electrical steel sheet that is used for a core material such as a reactor and that has a plate thickness of less than 0.1 mm and excellent iron loss characteristics during high frequency excitation.

一般に、電磁鋼板の鉄損は、励磁周波数が高くなると急激に上昇することが知られている。ところが、トランスやリアクトルの駆動周波数は、鉄心の小型化や高効率化のために、高周波化しているのが実状である。そのため、電磁鋼板の鉄損による発熱が問題となる場合が多くなってきている。   In general, it is known that the iron loss of an electromagnetic steel sheet rapidly increases as the excitation frequency increases. However, the actual driving frequency of transformers and reactors is increased in order to reduce the size and increase the efficiency of the iron core. For this reason, heat generation due to iron loss of electromagnetic steel sheets has become a problem in many cases.

鋼板の鉄損を低減するには、Siの含有量を高めて鋼の固有抵抗を高める方法が有効である。しかし、鋼中のSi量が3.5mass%を超えると、加工性が著しく低下し、従来の圧延法を利用した電磁鋼板の製造方法では、製造することが難しくなる。そのため、高Si量の鋼板を製造する種々の方法が提案されている。たとえば、特許文献1には、1023〜1200℃の温度でSiClを含む無酸化性ガスを鋼板面に吹き付けて浸珪処理し、Si量の高い電磁鋼板を得る方法が開示されている。また、特許文献2には、加工性の悪い4.5〜7mass%の高Si鋼を、連続式熱間圧延における圧延条件を適正化して圧延することで、冷間圧延性が良好な熱延板を得る方法が開示されている。 In order to reduce the iron loss of the steel sheet, a method of increasing the specific resistance of the steel by increasing the Si content is effective. However, when the amount of Si in the steel exceeds 3.5 mass%, the workability is remarkably lowered, and it is difficult to manufacture the electromagnetic steel sheet using the conventional rolling method. Therefore, various methods for producing a steel sheet having a high Si content have been proposed. For example, Patent Document 1 discloses a method of obtaining a magnetic steel sheet having a high Si content by spraying a non-oxidizing gas containing SiCl 4 onto a steel sheet surface at a temperature of 1023 to 1200 ° C. and performing a siliconization treatment. Patent Document 2 discloses hot rolling with good cold rollability by rolling 4.5-7 mass% high Si steel with poor workability by optimizing rolling conditions in continuous hot rolling. A method of obtaining a plate is disclosed.

Si量を増加する以外の鉄損を低減する方法としては、板厚を低減することが有効である。しかし、高Si鋼を素材として圧延法で鋼板を製造する場合には、板厚を低減するには限界がある。そこで、低Si鋼を所定の最終板厚まで冷間圧延した後、SiCl含有雰囲気中で浸珪処理し、鋼中のSi含有量を増やす方法が開発され、既に工業化されている。この方法は、板厚方向のSi濃度に勾配をつけることが可能であり、高励磁周波数における鉄損低減に有効であることが開示されている(特許文献3〜5参照。)。 As a method of reducing iron loss other than increasing the amount of Si, it is effective to reduce the plate thickness. However, when manufacturing a steel plate by a rolling method using high Si steel as a raw material, there is a limit in reducing the plate thickness. Therefore, a method of increasing the Si content in the steel by cold rolling a low Si steel to a predetermined final plate thickness and then performing a siliconizing treatment in an SiCl 4 containing atmosphere has been developed and already industrialized. It is disclosed that this method can give a gradient to the Si concentration in the plate thickness direction and is effective in reducing iron loss at a high excitation frequency (see Patent Documents 3 to 5).

しかしながら、高周波励磁下でさらなる低鉄損を実現するため、板厚方向にSi濃度勾配をつけた鋼板の板厚を0.10mmよりも薄くしても、期待するほどの鉄損低減効果が得られないことが明らかとなっている。例えば、特許文献には、Si濃度勾配をつけて成分を規定することで高周波磁気特性を向上させた板厚0.05mmの鋼板が記載されているが、鉄損W1/10kは4.43W/kg程度で、低いレベルとはいえない。 However, in order to achieve even lower iron loss under high frequency excitation, the expected iron loss reduction effect can be obtained even if the plate thickness of the steel plate with the Si concentration gradient in the plate thickness direction is made thinner than 0.10 mm. It is clear that this is not possible. For example, Patent Document 6 describes a steel plate having a thickness of 0.05 mm in which high-frequency magnetic characteristics are improved by providing a component with a Si concentration gradient, but the iron loss W1 / 10k is 4.43 W. / Kg, it is not a low level.

また、特許文献には、板厚を0.03〜0.15mmと薄くした場合に、鋼板の集合組織をGoss方位に集積させることで良好な高周波磁気特性が得られることが開示されている。しかし、この方法は二次再結晶という時間もコストも大幅にかかる工程を採用することで集合組織を改善する技術が開示されている。 Patent Document 7 discloses that when the plate thickness is reduced to 0.03 to 0.15 mm, good high-frequency magnetic characteristics can be obtained by accumulating the texture of the steel plate in the Goss orientation. . However, this method discloses a technique for improving the texture by adopting a process that requires a lot of time and cost for secondary recrystallization.

特公平05−049745号公報Japanese Patent Publication No. 05-049745 特公平06−057853号公報Japanese Patent Publication No. 06-057853 特許第3948113号公報Japanese Patent No. 3948113 特許第3948112号公報Japanese Patent No. 3948112 特許第4073075号公報Japanese Patent No. 4073075 特開平11−199988号公報JP-A-11-199988 特開2009−235529号公報JP 2009-235529 A

しかしながら、特許文献7に開示の技術のような工程を採用して集合組織を制御した鋼板は、磁気特性は優れるものの製品コストの大幅増加は免れない。   However, a steel sheet that employs a process such as the technique disclosed in Patent Document 7 to control the texture is excellent in magnetic properties, but cannot avoid a significant increase in product cost.

本発明は、従来技術が抱える上記問題点に鑑みてなされたものであり、その目的は、鋼板の集合組織を制御することなく、すなわち、Goss方位が少ない集合組織の鋼板でも、良好な高周波磁気特性を有する電磁鋼板を提供することにある。   The present invention has been made in view of the above-mentioned problems of the prior art, and the object thereof is to control the texture of the steel sheet, that is, to achieve a good high-frequency magnetism even in a textured steel sheet with less Goss orientation. An object of the present invention is to provide an electrical steel sheet having characteristics.

本発明らは、板厚が0.10mm未満と薄くかつ鋼板の集合組織においてGoss方位が少ない場合でも、良好な高周波磁気特性を有する電磁鋼板を開発するべく、鋭意研究を重ねた。その結果、鋼板の板厚方向のSi濃度勾配を極めて大きくさせると共に、板厚貫通粒の割合を高めてやることが有効であることを見出し、本発明を完成させるに至った。   The present inventors conducted extensive research to develop an electromagnetic steel sheet having good high-frequency magnetic properties even when the sheet thickness is as thin as less than 0.10 mm and the Goss orientation is small in the texture of the steel sheet. As a result, it has been found that it is effective to increase the Si concentration gradient in the plate thickness direction of the steel plate and to increase the ratio of the plate thickness penetrating grains, thereby completing the present invention.

上記知見に基く本発明は、C:0.010mass%未満、Si:2〜10mass%を含有し、残部がFeおよび不可避的不純物からなり、板厚が0.01〜0.08mmである電磁鋼板において、鋼板中のSi濃度が、板厚表層が高くて中心部が低く、板厚方向の濃度勾配が30mass%/mm以上である濃度分布を有すると共に、板厚貫通粒の個数割合が50%以上で、かつ、Goss方位からのずれ角が15°以下である結晶粒の個数割合が4%以下である鋼板組織を有することを特徴とする極薄電磁鋼板である。 The present invention based on the above findings is an electrical steel sheet containing C: less than 0.010 mass%, Si: 2-10 mass%, the balance being Fe and inevitable impurities, and a plate thickness of 0.01-0.08 mm. In the steel plate, the Si concentration in the steel plate is high in the plate thickness surface layer and low in the central portion, has a concentration distribution in which the concentration gradient in the plate thickness direction is 30 mass% / mm or more, and the number ratio of the plate thickness through grains is 50%. It is an ultrathin electrical steel sheet characterized by having a steel sheet structure in which the number ratio of crystal grains whose deviation angle from the Goss orientation is 15 ° or less is 4% or less.

本発明の前記電磁鋼板は、上記成分組成に加えてさらに、Mn:0.005〜1.0mass%、Ni:0.010〜1.50mass%、Cr:0.01〜0.50mass%、Cu:0.01〜0.50mass%、P:0.005〜0.50mass%、Sn:0.005〜0.50mass%、Sb:0.005〜0.50mass%、Bi:0.005〜0.50mass%、Mo:0.005〜0.100mass%およびAl:0.02〜6.0mass%のうちから選ばれる1種または2種以上を含有することを特徴とする。   In addition to the above component composition, the electrical steel sheet according to the present invention further includes Mn: 0.005 to 1.0 mass%, Ni: 0.010 to 1.50 mass%, Cr: 0.01 to 0.50 mass%, Cu : 0.01 to 0.50 mass%, P: 0.005 to 0.50 mass%, Sn: 0.005 to 0.50 mass%, Sb: 0.005 to 0.50 mass%, Bi: 0.005 to 0 It contains one or more selected from .50 mass%, Mo: 0.005 to 0.100 mass%, and Al: 0.02 to 6.0 mass%.

本発明によれば、板厚が0.1mm未満で、高周波鉄損特性に優れる極薄電磁鋼板を製造することができる。したがって、本発明によれば、高周波鉄損特性が求められる小型の変圧器や、モーター、リアクトル等の鉄心材料に用いて好適な極薄の電磁鋼板を提供することができる。   According to the present invention, an ultra-thin electrical steel sheet having a plate thickness of less than 0.1 mm and excellent in high-frequency iron loss characteristics can be manufactured. Therefore, according to the present invention, it is possible to provide an ultra-thin electrical steel sheet suitable for use in iron core materials such as small transformers, motors, reactors, and the like that are required to have high-frequency iron loss characteristics.

板厚方向のSi濃度勾配と高周波鉄損W0.5/20kとの関係を示すグラフである。It is a graph which shows the relationship between the Si concentration gradient of a plate | board thickness direction, and the high frequency iron loss W0.5 / 20k .

まず、本発明を開発する契機となった実験について説明する。
C:0.0082mass%、Si:3.10mass%を含有する鋼スラブを熱間圧延して板厚2.2mmの熱延板とし、酸洗してスケールを除去した後、冷間圧延して最終板厚0.08mmの冷延板とした。次いで、この冷延板を、1000〜1200℃の温度で100〜1400秒の時間、10vol%SiCl+90vol%N雰囲気中で浸珪処理を施し、さらに、浸珪処理後、Siの板厚方向の濃度勾配を緩やかにする目的で、1100℃で0〜1200秒の拡散焼鈍をN雰囲気下で施して、種々のSi濃度勾配を有する鋼板を作製した。なお、上記浸珪処理では、どの条件でも板厚方向の平均Si量が5.5mass%程度となるように処理条件を調整した。
First, an experiment that triggered the development of the present invention will be described.
A steel slab containing C: 0.0082 mass%, Si: 3.10 mass% is hot-rolled to form a hot-rolled sheet having a thickness of 2.2 mm, pickled to remove the scale, and then cold-rolled. A cold-rolled sheet having a final thickness of 0.08 mm was used. Next, this cold-rolled sheet was subjected to a siliconizing treatment in a 10 vol% SiCl 4 +90 vol% N 2 atmosphere at a temperature of 1000 to 1200 ° C. for a time of 100 to 1400 seconds. In order to moderate the concentration gradient in the direction, diffusion annealing was performed at 1100 ° C. for 0 to 1200 seconds in an N 2 atmosphere to produce steel sheets having various Si concentration gradients. In the above-mentioned siliconization treatment, the treatment conditions were adjusted so that the average Si amount in the thickness direction was about 5.5 mass% under any conditions.

上記のようにして得た鋼板の磁気特性を、JIS C2550に記載の方法で測定した。また、上記鋼板の断面をEPMAでライン分析し、板厚方向のSi濃度勾配を測定した。さらに、X線回折法により、鋼板表層の集合組織を測定した。なお、上記Si濃度勾配は、Siの最高濃度と最低濃度の差を板厚の1/2で割った値と定義する。   The magnetic properties of the steel sheet obtained as described above were measured by the method described in JIS C2550. Moreover, the cross section of the said steel plate was line-analyzed by EPMA, and the Si concentration gradient of the plate | board thickness direction was measured. Furthermore, the texture of the steel sheet surface layer was measured by X-ray diffraction. The Si concentration gradient is defined as a value obtained by dividing the difference between the maximum concentration and the minimum concentration of Si by ½ of the plate thickness.

図1は、Si濃度勾配と鉄損W0.5/20k(磁束密度0.05T、周波数20000Hzで励磁した時の鉄損)との関係を示したものである。この結果から、Si濃度勾配が大きいほど鉄損が低くなること、および、Si濃度勾配が30mass%/mm程度までは、濃度勾配の増加による鉄損減少代が大きいが、30mass%/mmを超えると減少代が小さくなることがわかる。すなわち、板厚が0.08mmと薄い鋼板では、Siの濃度勾配を30mass%/mm以上に大きくしないと、良好な鉄損が得られないことがわかる。 FIG. 1 shows the relationship between the Si concentration gradient and the iron loss W 0.5 / 20k (iron loss when excited at a magnetic flux density of 0.05 T and a frequency of 20000 Hz). From this result, the iron loss decreases as the Si concentration gradient increases, and the iron loss reduction margin due to the increase in the concentration gradient is large until the Si concentration gradient is about 30 mass% / mm, but exceeds 30 mass% / mm. It can be seen that the reduction allowance becomes smaller. That is, it can be seen that in a thin steel plate having a thickness of 0.08 mm, good iron loss cannot be obtained unless the Si concentration gradient is increased to 30 mass% / mm or more.

また、X線回折による測定結果では、鋼板表層の集合組織は、浸珪処理条件の違いによらずほぼ同じであり、Goss方位を有する結晶粒の個数割合は全体の0.6〜1.2%の範囲内であった。ここで、上記のGoss方位を有する粒とは、Goss方位からのずれ角が15°以下の方位である結晶粒のことをいう。このことは、Goss方位が少なくても、図1に示した通り、良好な鉄損特性の鋼板が得られることを示している。   Moreover, in the measurement result by X-ray diffraction, the texture of the steel sheet surface layer is almost the same regardless of the difference in the siliconizing treatment conditions, and the number ratio of the crystal grains having Goss orientation is 0.6 to 1.2 in the whole. %. Here, the grain having the Goss orientation means a crystal grain having an orientation with a deviation angle of 15 ° or less from the Goss orientation. This indicates that a steel sheet having good iron loss characteristics can be obtained as shown in FIG. 1 even when the Goss orientation is small.

板厚が薄いと、Siの濃度勾配を大きくしなければ良好な高周波鉄損特性が得られない理由は、まだ十分に明らかとはなってはいないが、発明者らは次のように考えている。
特許文献3に記載されているように、板厚が厚い場合には、高周波励磁したときの磁束は鋼板の表層付近に集中するため、表層付近の透磁率を高めることで、渦電流損を低減できる。しかし、板厚を薄くすると、表層と中心層との距離が縮まるため、中心層にもある程度の磁束が流れるようになる。
The reason why good high-frequency iron loss characteristics cannot be obtained without increasing the Si concentration gradient when the plate thickness is thin is not yet clear enough, but the inventors think as follows. Yes.
As described in Patent Document 3, when the plate thickness is thick, the magnetic flux when high-frequency excitation is concentrated near the surface layer of the steel plate, so the eddy current loss is reduced by increasing the permeability near the surface layer. it can. However, when the plate thickness is reduced, the distance between the surface layer and the center layer is reduced, so that a certain amount of magnetic flux also flows through the center layer.

ここで、Si濃度勾配をつけた場合、中心層のSi濃度は高くないことから透磁率も高くはなく、中心層の渦電流損が増大すると予想される。その結果、鋼板表層では透磁率の影響で渦電流損が低減するが、中心層の渦電流損が増大する影響で、鋼板全体としてみたときの鉄損低減効果が得られなくなる。これが、板厚が薄くなると、良好な鉄損特性が得られない原因と推測している。   Here, when the Si concentration gradient is applied, since the Si concentration in the center layer is not high, the permeability is not high, and the eddy current loss in the center layer is expected to increase. As a result, although the eddy current loss is reduced due to the magnetic permeability in the steel sheet surface layer, the effect of reducing the iron loss when viewed as the whole steel sheet cannot be obtained due to the increase in the eddy current loss in the center layer. It is presumed that this is the reason why good iron loss characteristics cannot be obtained when the plate thickness is reduced.

この考え方に立つと、Si濃度勾配が大きくなるほど鉄損が増大することが予想されるが、前記の実験結果はそのようになっていない。
そこで、発明者らは、Siが固溶した時の鉄の格子定数の変化に着目して考察した。Fe格子は、常温では体心立方格子であるが、Siが固溶してFe原子がSi原子で置換された場合、Fe格子は縮まることが知られている。すなわち、浸珪処理して鋼板表層のSi量を高めると、鋼板表層は収縮しようとする。しかし、鋼板中心層はSi量が低く収縮量も少ないため、鋼板表層は中心層から引張応力を付与された状態になる。これは、正に鋼板表面に張力コーティングを付与したときと同じであり、この引張応力の効果で、渦電流損が低減するものと考えられる。
From this point of view, it is expected that the iron loss increases as the Si concentration gradient increases, but the above experimental results do not.
Therefore, the inventors focused on the change in the lattice constant of iron when Si was dissolved. The Fe lattice is a body-centered cubic lattice at room temperature, but it is known that the Fe lattice contracts when Si is dissolved and Fe atoms are replaced with Si atoms. That is, when the silicon content is increased by increasing the Si content of the steel sheet surface layer, the steel sheet surface layer tends to shrink. However, since the steel sheet center layer has a low Si content and a small amount of shrinkage, the steel sheet surface layer is in a state where tensile stress is applied from the center layer. This is exactly the same as when a tension coating is applied to the steel sheet surface, and it is considered that the eddy current loss is reduced by the effect of this tensile stress.

上記鋼板表面に生ずる引張応力の大きさは、Si濃度勾配に依存すると考えられることから、Si濃度勾配を増加させることで鋼板表面の引張応力を増加させ、渦電流損低減代を増大させることが可能となるものと考えられる。すなわち、中心層まで磁束が流れることによる鉄損の劣化分は、Si濃度勾配を大きくすることで相殺されると考えられる。   Since the magnitude of the tensile stress generated on the steel sheet surface is considered to depend on the Si concentration gradient, increasing the Si concentration gradient can increase the tensile stress on the steel plate surface and increase the eddy current loss reduction allowance. It is considered possible. That is, it is considered that the iron loss degradation due to the magnetic flux flowing to the center layer is offset by increasing the Si concentration gradient.

さらに、上記考え方に立つと、鋼板中の応力分布に、結晶粒界が影響を及ぼしてくることが推測される。つまり、結晶粒界は、応力を緩和する効果があると考えられることから、引張応力に平行(板面と平行な方向)な結晶粒界は少ない方が好ましく、したがって、鋼板内の存在する結晶粒は、鋼板表面と平行な結晶粒界が存在しない板厚貫通粒であることが望ましいと考えられる。   Furthermore, based on the above idea, it is presumed that the crystal grain boundary affects the stress distribution in the steel sheet. That is, since it is considered that the crystal grain boundary has an effect of relaxing the stress, it is preferable that the crystal grain boundary that is parallel to the tensile stress (in the direction parallel to the plate surface) is smaller, and therefore the crystal existing in the steel sheet is present. It is considered that the grains are desirably plate-thickness through grains in which there are no crystal grain boundaries parallel to the steel plate surface.

以上説明したように、発明者らは、板厚が薄い電磁鋼板において、Si濃度勾配を極めて大きくすることに加えて、結晶粒における板厚貫通粒の割合を高めることで、高周波励磁時の鉄損を大幅に低減できることを見出し、本発明を完成させた。   As described above, the inventors of the present invention have made it possible to increase the ratio of the plate thickness through grains in the crystal grains in addition to extremely increasing the Si concentration gradient in the electromagnetic steel sheet having a small thickness, thereby increasing the iron during high frequency excitation. The inventors have found that the loss can be greatly reduced, and have completed the present invention.

次に、本発明の電磁鋼板(製品板)の成分組成について説明する。
本発明の電磁鋼板は、C:0.010mass%未満、Si:2〜10mass%の成分組成を有することが必要である。
C:0.010mass%未満
Cは、磁気時効を起こして磁気特性を劣化させるため、少ないほど望ましい。しかし、Cの過度の低減は、製造コストの上昇を招く。そこで、Cは、磁気時効が実用上問題とならない0.010mass%未満に制限する。好ましくは0.005mass%未満である。
Next, the component composition of the electrical steel sheet (product board) of the present invention will be described.
The electrical steel sheet of the present invention needs to have a component composition of C: less than 0.010 mass% and Si: 2 to 10 mass%.
C: Less than 0.010 mass% C is more desirable as it is smaller because C causes magnetic aging and deteriorates magnetic properties. However, excessive reduction of C causes an increase in manufacturing cost. Therefore, C is limited to less than 0.010 mass% where magnetic aging does not cause a practical problem. Preferably it is less than 0.005 mass%.

Si:2〜10mass%
Siは、鋼の比抵抗を高め、鉄損特性を改善する必須の元素であり、全板厚の平均で2mass%以上含有させる必要がある。その理由は、板厚方向にSi濃度勾配を大きく付けることを前提とする本発明では、表層付近のSi最高濃度を、透磁率が増加する4mass%超えとする必要があるが、その際のSiの最低濃度を0mass%とすると、板厚平均では2mass%となるからである。しかし、10mass%を超えて含有させると、飽和磁束密度が顕著に低下するようになる。よって、本発明では、Siは全板厚の平均で2〜10mass%の範囲とする。
Si: 2 to 10 mass%
Si is an indispensable element that increases the specific resistance of steel and improves iron loss characteristics, and it is necessary to contain 2 mass% or more on the average of the total thickness. The reason for this is that in the present invention, which presupposes a large Si concentration gradient in the plate thickness direction, the Si maximum concentration in the vicinity of the surface layer needs to exceed 4 mass% at which the magnetic permeability increases. This is because if the minimum density of 0 is 0 mass%, the average thickness is 2 mass%. However, if the content exceeds 10 mass%, the saturation magnetic flux density is significantly reduced. Therefore, in this invention, Si is taken as the range of 2-10 mass% on the average of all the board thickness.

また、本発明の電磁鋼板は、図1からわかるように、鋼板中のSi濃度が板厚表層が高くて中心部が低く、かつ、板厚方向の濃度勾配が30mass%/mm以上である濃度分布を有することが必要である。好ましくは、50mass%/mm以上である。   In addition, as can be seen from FIG. 1, the electrical steel sheet of the present invention has a concentration in which the Si concentration in the steel sheet is high in the plate thickness surface layer and low in the center, and the concentration gradient in the plate thickness direction is 30 mass% / mm or more. It is necessary to have a distribution. Preferably, it is 50 mass% / mm or more.

本発明の電磁鋼板は、上記C,Si以外の残部は、Feおよび不可避的不純物である。ただし、熱間加工性の改善や、鉄損、磁束密度等の磁気特性の改善を目的として、Mn,Ni,Cr,Cu,P,Sn,Sb,Bi,MoおよびAlを下記の範囲で含有させるのが好ましい。   In the electrical steel sheet of the present invention, the balance other than C and Si is Fe and inevitable impurities. However, Mn, Ni, Cr, Cu, P, Sn, Sb, Bi, Mo, and Al are contained in the following ranges for the purpose of improving hot workability and improving magnetic properties such as iron loss and magnetic flux density. It is preferable to do so.

Mn:0.005〜1.0mass%
Mnは、熱間圧延時の加工性を改善するために0.005〜1.0mass%の範囲で含有させるのが好ましい。0.005mass%未満では、上記加工性改善効果が小さく、一方、1.0mass%を超えると、磁気特性が低下するからである。ただし、Mnは低減することが困難な元素であり、不純物レベルとして0.01mass%程度混入していることから、敢えて添加しなくてもよい。
Mn: 0.005 to 1.0 mass%
Mn is preferably contained in the range of 0.005 to 1.0 mass% in order to improve the workability during hot rolling. This is because, if it is less than 0.005 mass%, the effect of improving the workability is small, whereas if it exceeds 1.0 mass%, the magnetic properties are deteriorated. However, Mn is an element that is difficult to reduce, and since it is mixed in an impurity level of about 0.01 mass%, it does not have to be added.

Ni:0.010〜1.50mass%
Niは、磁気特性を向上させる効果があるため添加することができる。添加量が0.010mass%未満では磁気特性向上効果が小さく、一方、1.50mass%を超えると、飽和磁束密度が低下する。よって、Niは、0.010〜1.50mass%の範囲で添加するのが好ましい。
Ni: 0.010 to 1.50 mass%
Ni can be added because it has the effect of improving the magnetic properties. When the addition amount is less than 0.010 mass%, the effect of improving the magnetic properties is small. On the other hand, when the addition amount exceeds 1.50 mass%, the saturation magnetic flux density decreases. Therefore, it is preferable to add Ni in the range of 0.010 to 1.50 mass%.

Cr:0.01〜0.50mass%、Cu:0.01〜0.50mass%、P:0.005〜0.50mass%、Al:0.02〜6.0mass%、Sn:0.005〜0.50mass%、Sb:0.005〜0.50mass%、Bi:0.005〜0.50mass%およびMo:0.005〜0.100mass%のうちから選ばれる1種または2種以上
これらは、いずれも鉄損の低減に有効な元素であり、斯かる効果を得るためには、上記範囲内で1種または2種以上を含有させることが好ましい。含有量が上記下限値より少ない場合には鉄損低減効果がなく、一方、上記上限値を超えると、飽和磁束密度が低下するので好ましくない。
Cr: 0.01 to 0.50 mass%, Cu: 0.01 to 0.50 mass%, P: 0.005 to 0.50 mass%, Al: 0.02 to 6.0 mass%, Sn: 0.005 One or more selected from 0.50 mass%, Sb: 0.005-0.50 mass%, Bi: 0.005-0.50 mass%, and Mo: 0.005-0.100 mass%. These are all effective elements for reducing iron loss. In order to obtain such an effect, it is preferable to contain one or more elements within the above range. When the content is less than the lower limit, there is no effect of reducing iron loss. On the other hand, when the content exceeds the upper limit, the saturation magnetic flux density is lowered, which is not preferable.

次に、本発明の電磁鋼板の板厚および結晶組織について説明する。
本発明の電磁鋼板の板厚は、0.10mm未満とする。というのは、本発明で明らかにした板厚に起因する問題は、0.10mm未満の板厚で発生するからである。しかし、0.01mm未満となると、最終板厚まで圧延することや、浸珪処理設備に通板させることが困難となり、生産性が著しく阻害されるので、板厚の下限は0.01mmとする。
Next, the plate thickness and crystal structure of the electrical steel sheet of the present invention will be described.
The thickness of the electromagnetic steel sheet of the present invention is less than 0.10 mm. This is because the problem caused by the plate thickness clarified in the present invention occurs at a plate thickness of less than 0.10 mm. However, if the thickness is less than 0.01 mm, it is difficult to roll to the final plate thickness or pass through the siliconization equipment, and the productivity is significantly hindered, so the lower limit of the plate thickness is 0.01 mm. .

また、本発明の電磁鋼板は、全結晶粒のうち、板厚貫通粒が個数割合で50%以上であることが必要である。前述したように、板面と平行な結晶粒界は、鋼板表面に発生した引張応力を緩和する効果があるため、板面と平行な結晶粒界のない板厚貫通粒が多いほど望ましいからである。そこで、本発明では、板厚貫通粒の個数割合を50%以上とする。好ましくは、75%以上である。   Moreover, the electrical steel sheet of the present invention requires that the number of through-thickness grains is 50% or more of all crystal grains. As described above, since the grain boundaries parallel to the plate surface have the effect of relaxing the tensile stress generated on the steel plate surface, it is desirable that there are more through-thickness through-grains without crystal grain boundaries parallel to the plate surface. is there. Therefore, in the present invention, the ratio of the number of plate-thickness through grains is 50% or more. Preferably, it is 75% or more.

また、本発明の電磁鋼板は、その集合組織が、Goss方位からのずれ角が15°以下である結晶粒が全結晶粒に対する個数割合で4%以下であることが必要である。というのは、本発明は、Goss方位が少ない鋼板を対象としているためである。なお、本発明の電磁鋼板の集合組織の測定は、板厚が薄く、板厚貫通粒が多いことから、鋼板表層を測定すれば十分である。   The electrical steel sheet of the present invention is required to have a texture of 4% or less in terms of the number of crystal grains whose deviation angle from the Goss orientation is 15 ° or less with respect to all crystal grains. This is because the present invention is intended for a steel sheet with a small Goss orientation. Note that the texture of the electrical steel sheet according to the present invention is sufficient if the steel sheet surface layer is measured because the sheet thickness is thin and there are many through-grains.

次に、本発明の電磁鋼板の製造方法について説明する。
本発明の電磁鋼板は、電磁鋼板の製造方法として一般的な方法を利用して製造することができる。すなわち、前記した所定の成分組成に調整した鋼を溶製して鋼スラブとし、熱間圧延し、得られた熱延板に必要に応じて熱延板焼鈍を施した後、1回もしくは中間焼鈍を挟む2回以上の冷間圧延をして最終板厚の冷延板とし、浸珪処理を施し、必要に応じて絶縁被膜をコーティングして製造する。
Next, the manufacturing method of the electrical steel sheet of this invention is demonstrated.
The electromagnetic steel sheet of the present invention can be manufactured using a general method as a manufacturing method of the electromagnetic steel sheet. That is, the steel adjusted to the above-mentioned predetermined component composition is melted to form a steel slab, hot-rolled, and the obtained hot-rolled sheet is subjected to hot-rolled sheet annealing as necessary, once or in the middle Cold rolling at least twice with annealing is performed to obtain a cold-rolled sheet having a final thickness, and a siliconizing treatment is performed, and an insulating coating is coated as necessary.

前述した成分組成を有する鋼スラブは、通常の造塊−分塊圧延法や連続鋳造法で製造してもよいし、100mm以下の厚さの薄鋳片を直接鋳造法で製造してもよい。その後、上記鋼スラブは、通常の方法で再加熱して熱間圧延に供するが、再加熱することなく、鋳造後、直ちに熱間圧延してもよい。また、薄鋳片の場合には、熱間圧延してもよいし、熱間圧延を省略して次の工程に進めてもよい。   The steel slab having the component composition described above may be manufactured by a normal ingot-bundling rolling method or a continuous casting method, or a thin cast piece having a thickness of 100 mm or less may be manufactured by a direct casting method. . Thereafter, the steel slab is reheated by an ordinary method and subjected to hot rolling, but may be hot rolled immediately after casting without being reheated. In the case of a thin cast slab, hot rolling may be performed, or hot rolling may be omitted and the process may proceed to the next step.

熱間圧延前にスラブを再加熱する場合の加熱温度は、エネルギーコストの観点から、1250℃以下とするのが好ましい。   The heating temperature when the slab is reheated before hot rolling is preferably 1250 ° C. or less from the viewpoint of energy cost.

次いで、必要に応じて熱延板焼鈍を施す。この熱延板焼鈍の焼鈍温度は、良好な磁気特性を得るため、および、鋼板にリジングと呼ばれる凹凸欠陥を発生させないためには、800〜1150℃の温度範囲とするのが好ましい。焼鈍温度が800℃未満では、熱延でのバンド組織が残留し、整粒の一次再結晶組織を得ることが難しくなり、磁気特性が低下する。一方、焼鈍温度が1150℃を超えると、熱延板焼鈍後の粒径が粗大化し過ぎて、整粒の一次再結晶組織を得ることが難しくなる。   Next, hot-rolled sheet annealing is performed as necessary. The annealing temperature of this hot-rolled sheet annealing is preferably set to a temperature range of 800 to 1150 ° C. in order to obtain good magnetic properties and not to generate irregularities called ridging on the steel sheet. When the annealing temperature is less than 800 ° C., a band structure in hot rolling remains, and it becomes difficult to obtain a primary recrystallized structure of sized particles, and magnetic characteristics are deteriorated. On the other hand, when the annealing temperature exceeds 1150 ° C., the grain size after the hot-rolled sheet annealing becomes too coarse, and it becomes difficult to obtain a primary recrystallized structure of sized particles.

熱間圧延後あるいは熱延板焼鈍後の熱延板は、酸洗して脱スケールし、1回または中間焼鈍を挟む2回以上の冷間圧延により最終板厚の冷延板とする。なお、冷間圧延の温度を100〜300℃の温度に上昇させて行うことや、冷間圧延の途中で、100〜300℃の温度範囲で時効処理を1回または複数回施すことは、磁気特性の向上には有効である。   The hot-rolled sheet after hot rolling or after hot-rolled sheet annealing is pickled and descaled to obtain a cold-rolled sheet having a final sheet thickness by one or more cold rollings sandwiching intermediate annealing. In addition, performing the temperature of cold rolling to the temperature of 100-300 degreeC, or performing an aging treatment once or in the temperature range of 100-300 degreeC in the middle of cold rolling is magnetic. It is effective for improving the characteristics.

上記冷間圧延後の冷延板は、その後、浸珪処理を施す。上記浸珪処理は、既に工業化されている、SiClを反応雰囲気として用いる気相浸珪方式を適用することできる。ただし、そのような気相反応方式でなくとも、シリカシートで鋼板を挟み、焼鈍して浸珪処理する固相浸珪方式でも、板厚方向にSi濃度勾配を付与することができるので、用いてもよい。 Thereafter, the cold-rolled sheet after the cold rolling is subjected to a siliconizing treatment. For the above-described siliconization treatment, a vapor phase siliconization method using SiCl 4 as a reaction atmosphere, which has already been industrialized, can be applied. However, even if it is not such a gas phase reaction method, even a solid phase siliconization method in which a steel sheet is sandwiched between silica sheets and annealed and siliconized, a Si concentration gradient can be imparted in the thickness direction. May be.

浸珪処理に上記の気相浸珪方式の場合には、Siの濃度勾配を制御するためには、処理温度、処理時間および雰囲気ガス(反応ガス)を適宜調節することが望ましい。また、浸珪処理後は、Siの拡散による濃度勾配の低下を抑制するため、直ちに冷却することが好ましい。また、製品板における結晶粒の板厚貫通粒の割合を高めるためには、浸珪処理温度を1050℃以上とするのが好ましく、1150℃以上がより好ましい。
浸珪処理した鋼板は、その後、積層して使用するときの鋼板の絶縁性を確保するため、絶縁コーティングを付与することが好ましい。
In the case of the above-described vapor phase siliconization method for the siliconization treatment, in order to control the Si concentration gradient, it is desirable to appropriately adjust the treatment temperature, treatment time, and atmospheric gas (reaction gas). In addition, it is preferable to cool immediately after the siliconization treatment in order to suppress a decrease in concentration gradient due to Si diffusion. Moreover, in order to raise the ratio of the plate | board thickness penetration grain of the crystal grain in a product board, it is preferable that the siliconization process temperature shall be 1050 degreeC or more, and 1150 degreeC or more is more preferable.
It is preferable to apply an insulating coating to the steel plate that has been subjected to the siliconization treatment in order to ensure the insulating properties of the steel plate when used after being laminated.

C:0.0035mass%、Si:2.58mass%を含有し、残部がFeおよび不可避的不純物からなる鋼を溶製し、連続鋳造して鋼スラブとし、その鋼スラブを1150℃の温度に再加熱した後、熱間圧延して板厚1.8mmの熱延板とし、酸洗し、冷間圧延して最終板厚が0.05mmの冷延板とした。次いで、上記冷延板に、10vol%SiCl+90vol%Ar雰囲気中で、1200℃×180秒の浸珪処理を施した。なお、浸珪処理後の鋼板板厚方向のSi濃度勾配を調査したところ、74mass%/mmであった。その後、上記Si濃度勾配を低減する目的で、1100℃の温度で、表1に記載した0〜1200秒の範囲の時間で拡散焼鈍を施した。 C: 0.0035% by mass, Si: 2.58% by mass, the remainder comprising Fe and unavoidable impurities is melted and continuously cast into a steel slab. The steel slab is reheated to a temperature of 1150 ° C. After heating, it was hot-rolled to obtain a hot-rolled sheet having a thickness of 1.8 mm, pickled, and cold-rolled to obtain a cold-rolled sheet having a final thickness of 0.05 mm. Subsequently, the cold-rolled sheet was subjected to a silicon dip treatment at 1200 ° C. for 180 seconds in a 10 vol% SiCl 4 +90 vol% Ar atmosphere. In addition, it was 74 mass% / mm when the Si density | concentration gradient of the steel plate thickness direction after a siliconization process was investigated. Thereafter, in order to reduce the Si concentration gradient, diffusion annealing was performed at a temperature of 1100 ° C. for a time in the range of 0 to 1200 seconds described in Table 1.

斯くして得られた鋼板表層の集合組織をX線回折法で調査したところ、いずれの鋼板も、Goss方位からのずれ角が15°以下である結晶粒の割合は0.4〜0.8%の範囲内であった。
また、得られた鋼板の磁気特性を、JIS C2550に記載の方法で測定した。さらに、得られた鋼板の断面を長さ50mmにわたって光学顕微鏡で観察し、全結晶粒に対する板厚貫通粒の割合を測定し、それらの結果を表1に併記した。
When the texture of the steel sheet surface layer thus obtained was examined by an X-ray diffraction method, the ratio of crystal grains having a deviation angle of 15 ° or less from the Goss orientation in any steel sheet was 0.4 to 0.8. %.
Further, the magnetic properties of the obtained steel sheet were measured by the method described in JIS C2550. Furthermore, the cross section of the obtained steel plate was observed with an optical microscope over a length of 50 mm, the ratio of the plate thickness through grains to the total crystal grains was measured, and the results are also shown in Table 1.

Figure 0005954527
Figure 0005954527

表1から、本発明に適合するSi濃度勾配を有する鋼板は、高周波励磁時の磁気特性が極めて良好であることがわかる。因みに、特許文献6には、Si濃度勾配をつけて高周波磁気特性を向上させた板厚0.05mmで鉄損W1/10kが4.43W/kgの鋼板が記載されている。W1/10kとW0.5/20kは、測定条件が異なるため直接比較することはできないが、経験的にほぼ同じ値を示す。そこで、両者の鉄損値を対比すると、本発明の電磁鋼板の方が、鉄損が格段に低いことがわかる。この違いは、本発明では、Si濃度勾配を大きくしたことに加えて、板厚貫通粒の割合を高めたことが寄与しているものと推測される。 From Table 1, it can be seen that a steel sheet having a Si concentration gradient suitable for the present invention has extremely good magnetic characteristics during high-frequency excitation. Incidentally, Patent Document 6 describes a steel plate having a thickness of 0.05 mm and an iron loss W 1 / 10k of 4.43 W / kg with an Si concentration gradient and improved high-frequency magnetic characteristics. W 1 / 10k and W 0.5 / 20k cannot be directly compared because the measurement conditions are different, but show almost the same value empirically. Therefore, comparing the iron loss values of the two, it can be seen that the iron steel sheet of the present invention has a much lower iron loss. This difference is presumed that, in the present invention, in addition to increasing the Si concentration gradient, increasing the ratio of the plate thickness through grains contributed.

C:0.0071mass%、Si:3.75mass%、Mn:0.07mass%を含有し、残部がFeおよび不可避的不純物からなる鋼を溶製し、連続鋳造して鋼スラブとし、その鋼スラブを1200℃の温度に再加熱した後、熱間圧延して板厚2.3mmの熱延板とし、1000℃×30秒の熱延板焼鈍を施した後、酸洗し、冷間圧延して最終板厚が0.03mmの冷延板とした。その後、上記冷延板に、20vol%SiCl+80vol%N雰囲気中で、表2に記載の温度と時間を変化させた条件で浸珪処理を施した。 C: 0.0071 mass%, Si: 3.75 mass%, Mn: 0.07 mass%, the remainder of which is made of Fe and inevitable impurities are melted and continuously cast into a steel slab, and the steel slab Is heated again to a temperature of 1200 ° C., hot rolled to a hot rolled sheet with a thickness of 2.3 mm, annealed at 1000 ° C. for 30 seconds, pickled and cold rolled. Thus, a cold-rolled sheet having a final thickness of 0.03 mm was obtained. Thereafter, the cold-rolled sheet was subjected to a siliconizing treatment in a 20 vol% SiCl 4 +80 vol% N 2 atmosphere under the conditions of changing the temperature and time shown in Table 2.

斯くして得られた鋼板表層の集合組織をX線回折法で測定したところ、Goss方位からのずれ角が15°以下である結晶粒の割合はいずれも0.8〜3.2%の範囲内であった。また、得られた鋼板の磁気特性をJIS C2550に記載の方法で測定し、さらに、得られた鋼板の断面を長さ50mmにわたって光学顕微鏡で観察し、全結晶粒のうちの板厚貫通粒の割合を測定した。   When the texture of the steel sheet surface layer thus obtained was measured by an X-ray diffraction method, the proportion of crystal grains whose deviation angle from the Goss orientation was 15 ° or less was in the range of 0.8 to 3.2%. It was in. Further, the magnetic properties of the obtained steel sheet were measured by the method described in JIS C2550, and the cross section of the obtained steel sheet was observed with an optical microscope over a length of 50 mm. The percentage was measured.

上記の測定の結果を表2に併記した。表2から、Si濃度勾配および板厚貫通粒がいずれも本発明に適合する鋼板では、高周波励磁時の磁気特性が極めて良好であることがわかる。   The results of the above measurements are also shown in Table 2. From Table 2, it can be seen that a steel sheet in which both the Si concentration gradient and the plate thickness penetrating grain are compatible with the present invention has extremely good magnetic characteristics during high-frequency excitation.

Figure 0005954527
Figure 0005954527

Siを除き、表3に示した種々の成分組成からなる鋼を溶製し、連続鋳造して鋼スラブとし、1200℃の温度に再加熱した後、熱間圧延して板厚2.7mmの熱延板とし、酸洗し、冷間圧延して板厚0.080mmの最終冷延板とし、その後、上記冷延板に、15vol%SiCl+85vol%N雰囲気中で1200℃×100秒の浸珪処理を施した。 Except for Si, steels having various composition shown in Table 3 were melted, continuously cast into steel slabs, reheated to a temperature of 1200 ° C., and then hot-rolled to obtain a plate thickness of 2.7 mm. A hot-rolled sheet, pickled, and cold-rolled to obtain a final cold-rolled sheet having a thickness of 0.080 mm. Thereafter, the cold-rolled sheet is 1200 ° C. × 100 seconds in a 15 vol% SiCl 4 +85 vol% N 2 atmosphere. The siliconization treatment was applied.

斯くして得られた鋼板を成分分析した結果と、板厚方向のSi濃度勾配を測定した結果を表3に示した。なお、表3中のSi量は、浸珪処理後の板厚方向の平均値である。また、得られた鋼板表層の集合組織をX線回折法で測定したところ、Goss方位からのずれ角が15°以下である結晶粒の割合はいずれも0.3〜0.8%の範囲内であった。
また、得られた鋼板の磁気特性をJIS C2550に記載の方法で測定した。さらに、得られたサンプルの断面を長さ50mmにわたって光学顕微鏡で観察し、全結晶粒のうちの板厚貫通粒の割合を測定した。
Table 3 shows the results of component analysis of the steel sheet thus obtained and the results of measuring the Si concentration gradient in the thickness direction. In addition, the amount of Si in Table 3 is an average value in the thickness direction after the siliconization treatment. Moreover, when the texture of the obtained steel sheet surface layer was measured by an X-ray diffraction method, the ratio of crystal grains whose deviation angle from the Goss orientation was 15 ° or less was within the range of 0.3 to 0.8%. Met.
Further, the magnetic properties of the obtained steel sheet were measured by the method described in JIS C2550. Furthermore, the cross section of the obtained sample was observed with an optical microscope over a length of 50 mm, and the ratio of the plate thickness penetrating grains among the total crystal grains was measured.

上記測定の結果を表3に併記した。表3から、鋼成分、Si濃度勾配および板厚貫通粒の割合すべてが本発明範囲内である鋼板は、高周波励磁時の磁気特性が極めて良好であることがわかる。   The measurement results are also shown in Table 3. From Table 3, it can be seen that a steel sheet in which the steel component, Si concentration gradient, and the ratio of the plate thickness penetrating grains are all within the scope of the present invention has extremely good magnetic properties during high-frequency excitation.

Figure 0005954527
Figure 0005954527

Claims (2)

C:0.010mass%未満、Si:2〜10mass%を含有し、残部がFeおよび不可避的不純物からなり、板厚が0.01〜0.08mmである電磁鋼板において、
鋼板中のSi濃度が、板厚表層が高くて中心部が低く、板厚方向の濃度勾配が30mass%/mm以上である濃度分布を有すると共に、
板厚貫通粒の個数割合が50%以上で、かつ、Goss方位からのずれ角が15°以下である結晶粒の個数割合が4%以下である鋼板組織を有することを特徴とする極薄電磁鋼板。
In the electrical steel sheet containing C: less than 0.010 mass%, Si: 2-10 mass%, the balance being Fe and inevitable impurities, and having a plate thickness of 0.01-0.08 mm ,
The Si concentration in the steel sheet has a concentration distribution in which the plate thickness surface layer is high and the central portion is low, and the concentration gradient in the plate thickness direction is 30 mass% / mm or more,
An ultra-thin electromagnetic wave characterized by having a steel sheet structure in which the number ratio of through-thickness grains is 50% or more and the number ratio of crystal grains whose deviation angle from Goss orientation is 15 ° or less is 4% or less steel sheet.
前記電磁鋼板は、上記成分組成に加えてさらに、Mn:0.005〜1.0mass%、Ni:0.010〜1.50mass%、Cr:0.01〜0.50mass%、Cu:0.01〜0.50mass%、P:0.005〜0.50mass%、Sn:0.005〜0.50mass%、Sb:0.005〜0.50mass%、Bi:0.005〜0.50mass%、Mo:0.005〜0.100mass%およびAl:0.02〜6.0mass%のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1に記載の極薄電磁鋼板。 In addition to the above component composition, the magnetic steel sheet further comprises Mn: 0.005 to 1.0 mass%, Ni: 0.010 to 1.50 mass%, Cr: 0.01 to 0.50 mass%, Cu: 0.00. 01-0.50 mass%, P: 0.005-0.50 mass%, Sn: 0.005-0.50 mass%, Sb: 0.005-0.50 mass%, Bi: 0.005-0.50 mass% The ultra-thin electromagnetic according to claim 1, comprising one or more selected from Mo: 0.005 to 0.100 mass% and Al: 0.02 to 6.0 mass%. steel sheet.
JP2012044935A 2012-03-01 2012-03-01 Ultra-thin electrical steel sheet with excellent high-frequency iron loss characteristics Active JP5954527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012044935A JP5954527B2 (en) 2012-03-01 2012-03-01 Ultra-thin electrical steel sheet with excellent high-frequency iron loss characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012044935A JP5954527B2 (en) 2012-03-01 2012-03-01 Ultra-thin electrical steel sheet with excellent high-frequency iron loss characteristics

Publications (2)

Publication Number Publication Date
JP2013181193A JP2013181193A (en) 2013-09-12
JP5954527B2 true JP5954527B2 (en) 2016-07-20

Family

ID=49272070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012044935A Active JP5954527B2 (en) 2012-03-01 2012-03-01 Ultra-thin electrical steel sheet with excellent high-frequency iron loss characteristics

Country Status (1)

Country Link
JP (1) JP5954527B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11459646B2 (en) 2017-09-25 2022-10-04 National Institute Of Advanced Industrial Science And Technology Magnetic material and method for producing same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11199988A (en) * 1998-01-13 1999-07-27 Nkk Corp Silicon steel sheet having gradient of silicon concentration
JP4269348B2 (en) * 1998-01-26 2009-05-27 Jfeスチール株式会社 Silicon steel sheet
JP3458689B2 (en) * 1998-01-26 2003-10-20 Jfeスチール株式会社 Low residual magnetic flux density silicon steel sheet with excellent practical magnetic properties
JP3948112B2 (en) * 1998-04-07 2007-07-25 Jfeスチール株式会社 Silicon steel sheet
US5993568A (en) * 1998-03-25 1999-11-30 Nkk Corporation Soft magnetic alloy sheet having low residual magnetic flux density
JPH11293446A (en) * 1998-04-13 1999-10-26 Nkk Corp Production of high silicon steel products having excellent high-freouency magnetic characteristic and low residual magnetic flux density

Also Published As

Publication number Publication date
JP2013181193A (en) 2013-09-12

Similar Documents

Publication Publication Date Title
KR102093590B1 (en) Method for producing non-oriented electrical steel sheets
KR101558292B1 (en) Method for producing grain-oriented electrical steel sheet
JP6236470B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties
JP5610084B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5533958B2 (en) Non-oriented electrical steel sheet with low iron loss degradation by punching
JP6123960B1 (en) High silicon steel sheet and manufacturing method thereof
US11505845B2 (en) Soft high-silicon steel sheet and manufacturing method thereof
JP5896112B2 (en) Oriented electrical steel sheet, method of manufacturing the same, and transformer
JP2017222898A (en) Production method of grain oriented magnetic steel sheet
KR101620768B1 (en) Electrical steel sheet
TWI692534B (en) Multilayer electromagnetic steel plate
WO2014017591A1 (en) Oriented electromagnetic steel plate production method
JP2012031498A (en) Grain-oriented electromagnetic steel plate and production method for the same
WO2017105112A1 (en) Annealing separator for oriented electrical steel sheet, oriented electrical steel sheet, and manufacturing method of oriented electrical steel sheet
JP5206017B2 (en) Method for producing high silicon steel sheet
JP5939190B2 (en) Electrical steel sheet
JP5954527B2 (en) Ultra-thin electrical steel sheet with excellent high-frequency iron loss characteristics
JP6048282B2 (en) Electrical steel sheet
TW201928086A (en) Multilayer electromagnetic steel sheet
JP6292146B2 (en) Method for producing grain-oriented electrical steel sheet
JP6292147B2 (en) Method for producing grain-oriented electrical steel sheet
JP5846390B2 (en) Method for producing grain-oriented electrical steel sheet
JP2022030684A (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5600991B2 (en) Method for producing grain-oriented electrical steel sheet
JP7465354B2 (en) Non-oriented electrical steel sheet and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160115

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160531

R150 Certificate of patent or registration of utility model

Ref document number: 5954527

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250