JP5206017B2 - Method for producing high silicon steel sheet - Google Patents
Method for producing high silicon steel sheet Download PDFInfo
- Publication number
- JP5206017B2 JP5206017B2 JP2008042489A JP2008042489A JP5206017B2 JP 5206017 B2 JP5206017 B2 JP 5206017B2 JP 2008042489 A JP2008042489 A JP 2008042489A JP 2008042489 A JP2008042489 A JP 2008042489A JP 5206017 B2 JP5206017 B2 JP 5206017B2
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- silicon steel
- high silicon
- iron loss
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000976 Electrical steel Inorganic materials 0.000 title claims description 46
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- 229910052742 iron Inorganic materials 0.000 claims description 31
- 229910000831 Steel Inorganic materials 0.000 claims description 27
- 239000010959 steel Substances 0.000 claims description 27
- 238000005096 rolling process Methods 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 18
- 238000005097 cold rolling Methods 0.000 claims description 15
- 239000013078 crystal Substances 0.000 claims description 10
- 230000009467 reduction Effects 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 7
- 229910052748 manganese Inorganic materials 0.000 claims description 5
- 229910052797 bismuth Inorganic materials 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 72
- 238000009792 diffusion process Methods 0.000 description 14
- 230000004907 flux Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 6
- 230000002159 abnormal effect Effects 0.000 description 5
- 238000001953 recrystallisation Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000010354 integration Effects 0.000 description 4
- 229910003902 SiCl 4 Inorganic materials 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 229910001224 Grain-oriented electrical steel Inorganic materials 0.000 description 1
- 229910000565 Non-oriented electrical steel Inorganic materials 0.000 description 1
- 238000005162 X-ray Laue diffraction Methods 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910021426 porous silicon Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000005475 siliconizing Methods 0.000 description 1
Images
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
Description
本発明は、連続浸珪処理により高周波鉄損の低い高珪素鋼板を製造する方法に関する。 The present invention relates to a method for producing a high silicon steel sheet with low high-frequency iron loss by continuous siliconization treatment.
変圧器、モータ、リアクトルなどの鉄心として使用される軟磁性材料には、高い磁束密度、低い鉄損が要求され、このような軟磁性材料としては珪素鋼板が用いられている。特に優れた磁気特性を有する方向性珪素鋼板は、Siを3質量%程度含有させ、二次再結晶により{110}<001>方位いわゆるゴス方位への集積度の高い集合組織を形成させる方法により製造されている。 High magnetic flux density and low iron loss are required for soft magnetic materials used as iron cores such as transformers, motors, and reactors, and silicon steel plates are used as such soft magnetic materials. A grain-oriented silicon steel sheet with particularly excellent magnetic properties contains about 3% by mass of Si, and a method of forming a texture with a high degree of integration in the {110} <001> orientation, the so-called Goth orientation, by secondary recrystallization. It is manufactured.
近年、エネルギー損失を一層低下させる目的で、鉄損、特に高周波鉄損がより低い材料が要求されているが、こうした要求に応えるべく特許文献1には、4.0質量%以下のSiを含有する方向性珪素鋼板にSiCl4ガスを利用した連続浸珪処理を施し、Si量を4.0〜7.0質量%とした方向性珪素鋼板の製造方法が提案されている。また、特許文献2には、磁束密度B8の高い方向性電磁鋼帯(珪素鋼帯)を冷間圧延して板厚150μm以下とし、一次再結晶焼鈍を施した後、SiCl4ガスを利用した連続浸珪処理を施し、次いで非酸化性雰囲気下でSiを鋼中に拡散させて、{110}<001>方位への集積度が高く、高周波鉄損の低い極薄厚の電磁鋼帯の製造方法が開示されている。
しかしながら、特許文献1に記載の方法で得られた高珪素鋼板では、50〜60Hzの商用周波数での鉄損の改善は認められるものの、400Hz以上の高周波数での鉄損は十分に低くない。また、特許文献2に記載の方法では、連続浸珪処理に加え、さらにSi濃度を板厚方向に均一化する目的で1000℃×5時間の長時間拡散処理が必要であり、著しいコスト増を招くことになり、工業的に生産することが困難である。
However, in the high silicon steel sheet obtained by the method described in Patent Document 1, although iron loss improvement at a commercial frequency of 50 to 60 Hz is recognized, the iron loss at a high frequency of 400 Hz or higher is not sufficiently low. In addition to the continuous siliconization treatment, the method described in
本発明は、著しいコスト高を招くことなく、高周波数で低鉄損の高珪素鋼板を製造できる方法を提供することを目的とする。 An object of this invention is to provide the method which can manufacture the high silicon steel plate of a high frequency and a low iron loss, without inviting remarkably high cost.
本発明者らは、著しいコスト高を招かないために連続浸珪処理のみを用いて、高周波数で低鉄損の高珪素鋼板の製造方法について種々検討した結果、以下のことを見出した。
(1)質量%で、Si:2.0〜5.0%を含有する{110}<001>方位に集積した方向性珪素鋼板を冷間圧延板とした後、連続浸珪処理を施す際に、被処理鋼板の張力を0.9〜1.5MPaとすることが高周波鉄損の低減に効果的である。
As a result of various investigations on a method of manufacturing a high silicon steel sheet having a high frequency and a low iron loss using only continuous siliconization treatment in order to prevent a significant increase in cost, the present inventors have found the following.
(1) After the directional silicon steel sheet accumulated in the {110} <001> orientation containing Si: 2.0-5.0% by mass% is used as a cold-rolled sheet, it is treated when performing continuous siliconization treatment. It is effective to reduce the high-frequency iron loss by setting the tension of the steel sheet to 0.9 to 1.5 MPa.
本発明は、このような知見に基づきなされたもので、質量%で、Si:2.0〜5.0%、Mn:2.5%以下を含有し、残部がFeおよび不可避的不純物からなる成分を有し、かつFeの体心立方格子の[100]結晶軸を圧延面に垂直に射影した方向と圧延方向とのなす角のうち最小となるα角の平均値<α>が15°以下の方向性珪素鋼板に、圧下率50〜90%の冷間圧延を施して板厚0.03〜0.20mmの冷間圧延板とした後、該冷間圧延板に、1050〜1300℃の温度で連続浸珪処理を施す高珪素鋼板の製造方法において、該連続浸珪処理における被処理鋼板の張力を0.9〜1.5MPaとすることを特徴とする高珪素鋼板の製造方法を提供する。 The present invention has been made on the basis of such findings, and contains, by mass%, Si: 2.0 to 5.0%, Mn: 2.5% or less, with the balance being composed of Fe and inevitable impurities, and Directional silicon steel sheet having an average α angle <α> of 15 ° or less among the angles formed by the direction in which the [100] crystal axis of Fe body-centered cubic lattice is projected perpendicularly to the rolling surface and the rolling direction Then, after cold rolling with a reduction ratio of 50 to 90% to obtain a cold rolled sheet having a thickness of 0.03 to 0.20 mm, the cold rolled sheet is subjected to continuous siliconization at a temperature of 1050 to 1300 ° C. In the manufacturing method of a high silicon steel plate, the tension | tensile_strength of the to-be-processed steel plate in this continuous siliconization process shall be 0.9-1.5MPa, The manufacturing method of the high silicon steel plate characterized by the above-mentioned is provided.
本発明の高珪素鋼板の製造方法では、冷間圧延前の鋼板に、さらに、質量%で、C:0.003〜0.02%が含有されることが好ましい。 In the method for producing a high silicon steel sheet of the present invention, it is preferable that C: 0.003 to 0.02% is further contained in mass% in the steel sheet before cold rolling.
また、さらに、Sb:0.005〜0.5%、Sn:0.005〜0.5%、Bi:0.001〜0.05%のうちから選ばれた少なくとも1種の元素や、Cr:0.01〜0.8%、Ni:0.01〜1.0%、Cu:0.01〜0.5%のうちから選ばれた少なくとも1種の元素を含有させることが好ましい。 Furthermore, at least one element selected from Sb: 0.005 to 0.5%, Sn: 0.005 to 0.5%, Bi: 0.001 to 0.05%, Cr: 0.01 to 0.8%, Ni: 0.01 to 1.0% Cu: It is preferable to contain at least one element selected from 0.01 to 0.5%.
本発明により、著しいコスト高を招くことなく、高周波数で低鉄損の高珪素鋼板を製造できるようになった。 According to the present invention, a high silicon steel sheet having a high frequency and low iron loss can be produced without incurring a significant increase in cost.
以下に、本発明の詳細を説明する。(なお、成分に関する「%」表示は、特に断らない限り質量%を意味するものとする。)
1)素材
本発明の高珪素鋼板の製造方法では、連続浸珪処理前の素材として、Si:2.0〜5.0%、Mn:2.5%以下を含有し、残部がFeおよび不可避的不純物からなる成分を有し、かつ{110}<001>方位に集積した方向性珪素鋼板、具体的にはFeの体心立方格子の[100]結晶軸を圧延面に垂直に射影した方向と圧延方向とのなす角のうち最小となるα角の平均値<α>が15°以下の方向性珪素鋼板を用いる。
Details of the present invention will be described below. (Note that “%” in relation to ingredients means mass% unless otherwise specified.)
1) Material In the method for producing a high silicon steel sheet of the present invention, as a material before continuous siliconization treatment, Si: 2.0 to 5.0%, Mn: 2.5% or less is contained, and the balance is composed of Fe and inevitable impurities. A directional silicon steel sheet having a {110} <001> orientation and, specifically, a direction in which the [100] crystal axis of the Fe-centered cubic lattice is projected perpendicularly to the rolling surface and the rolling direction. A grain oriented silicon steel sheet having an average value <α> of α angles that is the smallest of the angles is 15 ° or less.
1-1)成分
Siは、磁気特性を改善するのに有効な元素であるが、その量が5.0%を超えると冷間圧延が困難になる。一方、その量が2.0%未満では浸珪処理においてオーステナイト相が生成し、Siの拡散速度が遅くなり、高周波数で十分な低鉄損を得ることができない。したがって、Si量は2.0〜5.0%とする。
1-1) Ingredients
Si is an effective element for improving the magnetic properties, but if the amount exceeds 5.0%, cold rolling becomes difficult. On the other hand, if the amount is less than 2.0%, an austenite phase is generated in the siliconization treatment, the diffusion rate of Si is slow, and a sufficiently low iron loss cannot be obtained at a high frequency. Therefore, the Si content is set to 2.0 to 5.0%.
Mnも、磁気特性を改善するのに有効な元素であるが、その量が2.5%を超えると飽和磁束密度が大きく低下し、鉄損が増大する。したがって、Mn量は2.5%以下とする。 Mn is also an element effective for improving the magnetic properties. However, when the amount exceeds 2.5%, the saturation magnetic flux density is greatly reduced and the iron loss is increased. Therefore, the Mn content is 2.5% or less.
残部はFeおよび不可避的不純物であるが、以下の理由により、さらに、C:0.003〜0.02%、Sb:0.005〜0.5%、Sn:0.005〜0.5%、Bi:0.001〜0.05%、Cr:0.01〜0.8%、Ni:0.01〜1.0%、Cu:0.01〜0.5%のうちから選ばれた少なくとも1種の元素を含有させることが好ましい。 The balance is Fe and inevitable impurities, but for the following reasons, C: 0.003-0.02%, Sb: 0.005-0.5%, Sn: 0.005-0.5%, Bi: 0.001-0.05%, Cr: 0.01- It is preferable to contain at least one element selected from 0.8%, Ni: 0.01 to 1.0%, and Cu: 0.01 to 0.5%.
C量が0.003%未満であると連続浸珪処理時に粒界が酸化されやすく、脆くなり、加工性が劣化する。一方、その量が0.02%を超えると微細な炭化物が析出し、高周波鉄損を増大させる。そのため、C量は0.003〜0.02%とする。 If the amount of C is less than 0.003%, the grain boundaries are easily oxidized during the continuous siliconization treatment, become brittle, and workability deteriorates. On the other hand, if the amount exceeds 0.02%, fine carbides are precipitated, increasing the high-frequency iron loss. Therefore, the C content is 0.003 to 0.02%.
Sb量が0.005%以上、Sn量が0.005%以上、Bi量が0.001%以上であると、浸珪処理あるいは需要家での歪取焼鈍時に発生する窒化による高周波鉄損の増大を抑制する効果がある。一方、Sb量が0.5%を超える、Sn量が0.5%を超える、Bi量が0.05%を超えると脆化し、冷間圧延が困難となる。そのため、Sb量は0.005〜0.5%、Sn量は0.005〜0.5%、Bi量は0.001〜0.05%とする。 When the Sb content is 0.005% or more, the Sn content is 0.005% or more, and the Bi content is 0.001% or more, the effect of suppressing an increase in high-frequency iron loss due to nitriding that occurs during siliconization treatment or strain relief annealing at the customer is effective. is there. On the other hand, when the Sb content exceeds 0.5%, the Sn content exceeds 0.5%, and the Bi content exceeds 0.05%, embrittlement occurs and cold rolling becomes difficult. Therefore, the Sb amount is 0.005 to 0.5%, the Sn amount is 0.005 to 0.5%, and the Bi amount is 0.001 to 0.05%.
Cr量が0.01%以上、Ni量が0.01%以上、Cu量が0.01%以上であると比抵抗を高め、高周波鉄損を低減させる効果がある。一方、Cr量が0.8%を超える、Cu量が0.5%を超えると飽和磁束密度が低下する。また、Ni量が1.0%を超えると硬化が著しくなり、冷間圧延が困難となる。そのため、Cr量は0.01〜0.8%、Ni量は0.01〜1.0%、Cu量は0.01〜0.5%とする。 When the Cr content is 0.01% or more, the Ni content is 0.01% or more, and the Cu content is 0.01% or more, there is an effect of increasing specific resistance and reducing high-frequency iron loss. On the other hand, when the Cr content exceeds 0.8% and the Cu content exceeds 0.5%, the saturation magnetic flux density decreases. On the other hand, if the Ni content exceeds 1.0%, the curing becomes remarkable and cold rolling becomes difficult. Therefore, the Cr amount is 0.01 to 0.8%, the Ni amount is 0.01 to 1.0%, and the Cu amount is 0.01 to 0.5%.
1-2){110}<001>方位の集積度
連続浸珪処理後にも優れた軟磁気性特性が得られるように、素材としては方向性珪素鋼板を用いる必要がある。特に、Feの体心立方格子の[100]結晶軸を圧延面に垂直に射影した方向と圧延方向とのなす角のうち最小となるα角の平均値<α>が15°以下の方向性珪素鋼板を用いることにより、後述する本発明の連続浸珪処理の条件で十分に低い高周波鉄損を実現できる。なお、α角の平均値<α>は30mm×300mmに切り出した試料について、X線回折によるラウエ法により5mmピッチで格子状に結晶方位を測定し、個々の測定点におけるα角を算出し、それを算術平均して求めた。
1-2) Accumulation degree of {110} <001> orientation It is necessary to use grain-oriented silicon steel as a material so that excellent soft magnetic properties can be obtained even after continuous siliconization. In particular, the average value <α> of the minimum α angle among the angles formed by the direction in which the [100] crystal axis of the Fe center-centered cubic lattice is projected perpendicularly to the rolling surface and the rolling direction is a directivity of 15 ° or less. By using a silicon steel plate, a sufficiently low high-frequency iron loss can be realized under the conditions of the continuous siliconization treatment of the present invention described later. In addition, the average value <α> of the α angle is about 30 mm × 300 mm, and the crystal orientation is measured in a lattice shape with a 5 mm pitch by the Laue method by X-ray diffraction, and the α angle at each measurement point is calculated. It was obtained by arithmetic averaging.
このような素材としての鋼板は、公知の方向性珪素鋼板の製造方法、例えば、上記のような組成の熱延鋼板を、冷間圧延後、脱炭焼鈍し、加熱速度を例えば10℃/hr以下に制御して高温でバッチ焼鈍して二次再結晶を起こさせる方法により製造できる。このとき、二次再結晶の駆動力としては、インヒビターや粒界エネルギーの差を利用できる。 A steel sheet as such a material is a known method for producing a grain-oriented silicon steel sheet, for example, a hot-rolled steel sheet having the above composition is cold-rolled and then decarburized and annealed at a heating rate of 10 ° C./hr, for example. It can be manufactured by a method in which secondary recrystallization is caused by batch annealing at a high temperature under the following control. At this time, as a driving force for secondary recrystallization, a difference in inhibitor or grain boundary energy can be used.
2)製造条件
素材の鋼板は、圧下率50〜90%で板厚0.03〜0.2mmに冷間圧延された後、連続浸珪処理される。
2) Manufacturing conditions The raw steel sheet is cold-rolled to a sheet thickness of 0.03 to 0.2 mm at a reduction ratio of 50 to 90%, and then continuously siliconized.
冷間圧延における圧下率が50%未満あるいは90%を超えると、浸珪処理後の集合組織が劣化し、高周波数で低い鉄損が得られない。冷間圧延後の板厚は、渦電流損と履歴損からなる鉄損のうち渦電流損失を低減するために0.2mm以下に、また、0.03mm未満では渦電流損失低減の効果が飽和するとともにコスト高を招くので0.03mm以上にする必要がある。 When the rolling reduction in cold rolling is less than 50% or more than 90%, the texture after the siliconization treatment deteriorates, and a low iron loss cannot be obtained at a high frequency. The sheet thickness after cold rolling is less than 0.2mm to reduce eddy current loss out of iron loss consisting of eddy current loss and hysteresis loss, and if less than 0.03mm, the effect of reducing eddy current loss is saturated. It is necessary to make it 0.03mm or more because it causes high cost.
連続浸珪処理は、図1に示すような連続浸珪処理設備で行われる。コイル状に巻かれた素材の鋼板1は、ペイオフリール2から払い出され、加熱帯3で1050〜1300℃の温度域まで加熱され、浸珪処理帯4で該温度域でSiCl4を含む雰囲気中で浸珪処理が施され、次いで、必要に応じて拡散処理帯5で該温度域に保持後、冷却帯6で室温付近まで冷却され、ブライドル7で張力が調整され、テンションリール8でコイル状に巻き取られて、高珪素鋼板9となる。このとき、処理される鋼板の張力は、常に0.9〜1.5MPaに制御される。
The continuous siliconization treatment is performed in a continuous siliconization treatment facility as shown in FIG. The coiled material steel plate 1 is unwound from the
上述したように、浸珪処理やSiの拡散処理に長時間を要すると著しいコスト高を招く。そのため、浸珪処理やSiの拡散処理は各々20分以下で行う必要があるが、それには浸珪処理やSiの拡散処理を1050〜1300℃の温度で行う必要がある。これは、1050℃未満では浸珪処理やSiの拡散処理の効果が不十分で、高周波鉄損の低減が十分に図れず、1300℃を超えると鋼板表面が溶融する危険があるためである。 As described above, if a long time is required for the siliconization process or the Si diffusion process, the cost is significantly increased. Therefore, it is necessary to perform the siliconization treatment and the Si diffusion treatment in 20 minutes or less, respectively. For this purpose, it is necessary to perform the siliconization treatment and the Si diffusion treatment at a temperature of 1050 to 1300 ° C. This is because if the temperature is lower than 1050 ° C., the effect of the siliconization treatment or Si diffusion treatment is insufficient, and the high-frequency iron loss cannot be sufficiently reduced. If the temperature exceeds 1300 ° C., the steel sheet surface may be melted.
本発明の高珪素鋼板の製造方法において最も重要な点は、連続浸珪処理中、鋼板に付加される張力を0.9〜1.5MPa(0.09〜0.15kg/mm2)とすることである。従来、無方向性電磁鋼板の素材に対する連続浸珪処理における鋼板張力は板の蛇行と破断を抑止する目的から特許文献3の技術では0.08〜0.23kg/mm2、特許文献4の技術では0.05〜0.25kg/mm2に調整する方法が開示されている。一方、方向性電磁鋼板を素材としている本発明では、良好な高周波鉄損を実現するために、これらの技術より狭い範囲へと高精度に張力制御することが必要となるのである。これは、以下の理由による。すなわち、Feの体心立方格子の[100]結晶軸を圧延面に垂直に射影した方向と圧延方向とのなす角のうち最小となるα角の平均値<α>が15°以下の方向性珪素鋼板を冷間圧延し、加熱すると700℃付近で一次再結晶した後、粒成長するが、このときはまだ磁気特性に好ましい{110}<001>方位の集積度が維持されている。しかし、1050℃以上に加熱すると、磁気特性に好ましくない結晶方位の粒が{110}<001>方位の粒を蚕食して、異常粒成長して粗大化し、高周波鉄損を増大させる。特に、C量が0.003〜0.02%含有される鋼板の場合に顕著である。しかし、連続浸珪処理中に鋼板の張力を従来の0.05〜0.25kg/mm2(0.5〜2.4MPa)から0.9〜1.5MPaに変更するとこうした異常粒成長が抑止され、高周波鉄損の低減が確実に図れるようになる。このように、鋼板に与える張力が異常粒成長を抑止するメカニズムは必ずしも明らかではないが、以下のように考えられる。すわなち、{110}<001>方位に集積した一次再結晶組織の中では、多くの結晶粒界は、{110}<001>方位に近い方位の粒から構成されているため、小角粒界となり、易動度が小さい。一方、{110}<001>方位から大きく離れた方位を有する粒(磁気特性に好ましくない粒)は、一次再結晶組織の中にわずかしか含まれていないが、{110}<001>方位に近い粒に囲まれているため、易動度の大きな高角粒界で囲まれている。そのため、1050℃以上の高温では、{110}<001>方位から大きく離れた方位を有する粒が優先的に成長し、粗大化、すなわち異常粒成長する。このとき、0.9MPa以上の張力が与えられていると鋼板はクリープによりわずかに変形し、粒界内に転位が蓄積され、高角粒界の易動度が小さくなり、異常粒成長が抑止される。しかし、張力が1.5MPaを超えると変形が大きくなり、いわゆる歪誘起粒成長により、再び異常粒成長が助長される。 The most important point in the method for producing a high silicon steel sheet of the present invention is that the tension applied to the steel sheet during continuous siliconization treatment is 0.9 to 1.5 MPa (0.09 to 0.15 kg / mm 2 ). Conventionally, the steel plate tension in the continuous siliconization treatment for the material of the non-oriented electrical steel plate is 0.08 to 0.23 kg / mm 2 in the technique of Patent Document 3 and 0.05 to 0.02 in the technique of Patent Document 4 for the purpose of suppressing the meandering and breaking of the plate. A method for adjusting to 0.25 kg / mm 2 is disclosed. On the other hand, in the present invention using a grain-oriented electrical steel sheet as a raw material, it is necessary to control the tension with high accuracy in a narrower range than these techniques in order to realize a good high-frequency iron loss. This is due to the following reason. That is, the average value <α> of the minimum α angle among the angles formed by the direction in which the [100] crystal axis of the Fe body-centered cubic lattice is projected perpendicularly to the rolling surface and the rolling direction is 15 ° or less. When a silicon steel sheet is cold-rolled and heated, it undergoes primary recrystallization at around 700 ° C. and then grain growth. At this time, the degree of integration of {110} <001> orientation, which is preferable for magnetic properties, is still maintained. However, when heated to 1050 ° C. or higher, grains with crystal orientations that are undesirable for the magnetic properties engulf grains with {110} <001> orientation, grow abnormally and become coarse, and increase high-frequency iron loss. This is particularly noticeable in the case of a steel sheet containing 0.003 to 0.02% of C. However, if the steel sheet tension is changed from 0.05 to 0.25kg / mm 2 (0.5 to 2.4MPa) to 0.9 to 1.5MPa during continuous siliconization, such abnormal grain growth is suppressed and high-frequency iron loss is surely reduced. Can come to the plan. Thus, although the mechanism in which the tension | tensile_strength given to a steel plate suppresses abnormal grain growth is not necessarily clear, it thinks as follows. In other words, in the primary recrystallized structure accumulated in the {110} <001> orientation, many grain boundaries are composed of grains with an orientation close to the {110} <001> orientation. It becomes a world and mobility is small. On the other hand, grains with an orientation greatly distant from the {110} <001> orientation (grains that are undesirable for magnetic properties) are included in the primary recrystallized structure only slightly, but in the {110} <001> orientation. Because it is surrounded by close grains, it is surrounded by high-angle grain boundaries with high mobility. Therefore, at a high temperature of 1050 ° C. or higher, grains having an orientation far from the {110} <001> orientation grow preferentially and become coarse, that is, grow abnormal grains. At this time, when a tension of 0.9 MPa or more is applied, the steel sheet is slightly deformed by creep, dislocations are accumulated in the grain boundary, mobility of the high angle grain boundary is reduced, and abnormal grain growth is suppressed. . However, when the tension exceeds 1.5 MPa, deformation increases and so-called strain-induced grain growth promotes abnormal grain growth again.
なお、鋼板の張力は、ブライドルロールにより制御するが、特に高精度な制御が求められるので、特許文献5に記載のピンチ式ブライドル装置を使用することが好ましい。 The tension of the steel plate is controlled by a bridle roll. However, since particularly high-precision control is required, it is preferable to use the pinch-type bridle device described in Patent Document 5.
図1の拡散処理帯5では、浸珪処理後の鋼板の板厚方向にSi濃度を均一にするためSiの拡散処理が施されるが、これは、板厚方向のSi濃度が均一であるほど磁歪が小さくなり、機器に適用したときの騒音をより小さくできるためである。しかし、この拡散処理より高周波鉄損がやや増大するため、必要とされる特性によってその処理の要否は適宜選択すればよい。 In the diffusion treatment zone 5 in FIG. 1, the Si diffusion treatment is performed in order to make the Si concentration uniform in the plate thickness direction of the steel plate after the siliconization treatment. This is because the Si concentration in the plate thickness direction is uniform. This is because the magnetostriction becomes smaller and the noise when applied to the device can be further reduced. However, since the high-frequency iron loss is slightly increased as compared with this diffusion treatment, the necessity of the treatment may be appropriately selected depending on the required characteristics.
本発明の方法では、連続浸珪処理後の鋼板表面に絶縁皮膜を形成することもできる。 In the method of the present invention, an insulating film can be formed on the surface of the steel sheet after the continuous siliconization treatment.
Si:3.2%、Mn:0.05%、C:0.0020%を含有し、残部Feおよび不可避的不純物よりなり、表1に示すFeの体心立方格子の[100]結晶軸を圧延面に垂直に射影した方向と圧延方向とのなす角のうち最小となるα角の平均値<α>が15°以下の方向性珪素鋼板を、表1に示す圧下率で冷間圧延後、表1に示す張力を付加しながら、図2に示す雰囲気およびヒートパターンで連続浸珪処理を施して高珪素鋼板No.1〜15を製造した。そして、圧延方向にエプスタイン試験片を採取し、周波数10kHz、最大磁束密度0.10Tの条件で鉄損を測定した。 Containing Si: 3.2%, Mn: 0.05%, C: 0.0020%, consisting of the balance Fe and inevitable impurities, and projecting the [100] crystal axis of Fe body-centered cubic lattice shown in Table 1 perpendicular to the rolling surface After the cold rolling at a rolling reduction shown in Table 1, a directional silicon steel sheet having an average value <α> of the minimum α angle of 15 ° or less among the angles formed by the rolling direction and the rolling direction, the tension shown in Table 1 High silicon steel plates Nos. 1 to 15 were manufactured by performing continuous siliconization treatment in the atmosphere and heat pattern shown in FIG. Then, an Epstein specimen was taken in the rolling direction, and the iron loss was measured under the conditions of a frequency of 10 kHz and a maximum magnetic flux density of 0.10 T.
結果を表1に示す。本発明範囲内の圧下率で冷間圧延され、連続浸珪処理時に本発明範囲内である0.9〜1.5MPaの張力が付加されながら処理された高珪素鋼板では低い高周波鉄損が得られていることがわかる。 The results are shown in Table 1. Low high-frequency iron loss is obtained in the high silicon steel sheet that is cold-rolled at a reduction rate within the range of the present invention and processed while applying a tension of 0.9 to 1.5 MPa, which is within the range of the present invention, during continuous siliconization treatment. I understand that.
Si:3.5%、Mn:0.10%、C:0.0010%を含有し、残部Feおよび不可避的不純物よりなり、表2に示すFeの体心立方格子の[100]結晶軸を圧延面に垂直に射影した方向と圧延方向とのなす角のうち最小となるα角の平均値<α>が15°以下の方向性珪素鋼板を、圧下率70%で板厚0.075mmに冷間圧延後、表2に示す張力を付加しながら、また表2に示す処理温度と処理時間で、図3に示す雰囲気およびヒートパターンで連続浸珪処理を施して高珪素鋼板No.1〜12を製造した。ここで、Siの拡散処理を施したのは高珪素鋼板No.9〜12のみである。したがって、高珪素鋼板No.1〜8は拡散処理帯を通過させただけで処理は施されていない。そして、圧延方向にエプスタイン試験片を採取し、周波数10kHz、最大磁束密度0.10Tの条件で鉄損を測定した。また、このエプスタイン試験片を用いて、周波数400Hz、最大磁束密度1.0Tの条件で光学的磁歪測定装置により磁歪を測定した。なお、浸珪処理温度が1320℃の高珪素鋼板No.8では、鋼板表面が溶融したため磁気特性の測定は行わなかった。 Containing Si: 3.5%, Mn: 0.10%, C: 0.0010%, consisting of the balance Fe and inevitable impurities, and projecting the [100] crystal axis of Fe body-centered cubic lattice shown in Table 2 perpendicular to the rolling surface Table 2 after cold rolling a directional silicon steel sheet with an average α angle <α> of 15 ° or less among the angles formed by the rolling direction and the rolling direction to a sheet thickness of 0.075 mm at a reduction rate of 70%. High silicon steel plates Nos. 1 to 12 were manufactured by applying continuous siliconizing treatment in the atmosphere and heat pattern shown in FIG. Here, only the high silicon steel plates No. 9 to 12 were subjected to the Si diffusion treatment. Therefore, the high silicon steel plates Nos. 1 to 8 are only subjected to the diffusion treatment zone and are not treated. Then, an Epstein specimen was taken in the rolling direction, and the iron loss was measured under the conditions of a frequency of 10 kHz and a maximum magnetic flux density of 0.10 T. In addition, magnetostriction was measured with an optical magnetostriction measuring device using the Epstein test piece under the conditions of a frequency of 400 Hz and a maximum magnetic flux density of 1.0 T. In the case of high silicon steel plate No. 8 having a siliconization temperature of 1320 ° C., the magnetic properties were not measured because the steel plate surface was melted.
結果を表2に示す。連続浸珪処理時に本発明範囲内の処理温度で、本発明範囲内である0.9〜1.5MPaの張力が付加されながら処理された高珪素鋼板では低い高周波鉄損が得られていることがわかる。また、Siの拡散処理を本発明範囲内の処理温度で行えば、磁歪を大幅に低減できることがわかる。 The results are shown in Table 2. It can be seen that low high-frequency iron loss is obtained in the high silicon steel sheet treated while applying a tension of 0.9 to 1.5 MPa, which is within the scope of the present invention, at a treatment temperature within the scope of the present invention during continuous siliconization treatment. It can also be seen that magnetostriction can be greatly reduced if Si diffusion treatment is performed at a treatment temperature within the range of the present invention.
表3に示す成分を含有し、残部Feおよび不可避的不純物よりなり、Feの体心立方格子の[100]結晶軸を圧延面に垂直に射影した方向と圧延方向とのなす角のうち最小となるα角の平均値<α>が15°以下の方向性珪素鋼板を、圧下率80%で板厚0.050mmに冷間圧延後、表3に示す張力を付加しながら、図1に示す雰囲気およびヒートパターンで連続浸珪処理を施して高珪素鋼板No.1〜28を製造した。そして、圧延方向にエプスタイン試験片を採取し、周波数10kHz、最大磁束密度0.10Tの条件で鉄損を測定した。また、圧延方向に採取した短冊状の試験片を種々の径の棒に巻きつけて、割れが発生しない最小曲げ径を測定し、加工性を評価した。なお、高珪素鋼板No.6は冷間圧延時に割れ、その後の連続浸珪処理を行えなかった。 Containing the components shown in Table 3, consisting of the balance Fe and inevitable impurities, the [100] crystal axis of the Fe body-centered cubic lattice perpendicular to the rolling surface and the minimum of the angles formed by the rolling direction The orientation shown in FIG. 1 is applied to a grain oriented silicon steel sheet with an average α angle <α> of 15 ° or less, after cold rolling to a plate thickness of 0.050 mm at a reduction rate of 80%, while applying the tension shown in Table 3. And the high silicon steel plate No. 1-28 was manufactured by performing the continuous siliconization process with the heat pattern. Then, an Epstein specimen was taken in the rolling direction, and the iron loss was measured under the conditions of a frequency of 10 kHz and a maximum magnetic flux density of 0.10 T. Moreover, the strip-shaped test piece extract | collected in the rolling direction was wound around the bar | burr of various diameters, the minimum bending diameter which does not generate | occur | produce a crack was measured, and workability was evaluated. The high silicon steel plate No. 6 was cracked during cold rolling and could not be subsequently subjected to continuous siliconization.
表3に結果を示す。本発明範囲内の成分と{110}<001>方位の集積度を有し、連続浸珪処理時に本発明範囲内である0.9〜1.5MPaの張力が付加されながら処理された高珪素鋼板では低い高周波鉄損が得られていることがわかる。また、C量が0.0030〜0.020%であれば、最小曲げ径がより小さくなり、良好な加工性を有していることがわかる。 Table 3 shows the results. It has a degree of integration of components within the scope of the present invention and {110} <001> orientation, and is low for high silicon steel sheets treated while applying a tension of 0.9 to 1.5 MPa, which is within the scope of the present invention, during continuous siliconization. It can be seen that high-frequency iron loss is obtained. Moreover, when the C content is 0.0030 to 0.020%, the minimum bending diameter becomes smaller and it can be seen that the processability is good.
1 素材の鋼板
2 ペイオフリール
3 加熱帯
4 浸珪処理帯
5 拡散処理帯
6 冷却帯
7 ブライドル
8 テンションリール
9 高珪素鋼板
1 Steel plate
2 Payoff reel
3 Heating zone
4 Silica treatment zone
5 Diffusion treatment zone
6 Cooling zone
7 Bridle
8 Tension reel
9 High silicon steel sheet
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008042489A JP5206017B2 (en) | 2008-02-25 | 2008-02-25 | Method for producing high silicon steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008042489A JP5206017B2 (en) | 2008-02-25 | 2008-02-25 | Method for producing high silicon steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009197299A JP2009197299A (en) | 2009-09-03 |
JP5206017B2 true JP5206017B2 (en) | 2013-06-12 |
Family
ID=41141124
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008042489A Active JP5206017B2 (en) | 2008-02-25 | 2008-02-25 | Method for producing high silicon steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5206017B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110607496A (en) * | 2018-06-14 | 2019-12-24 | 东北大学 | Preparation method of Fe-Si alloy with Goss texture |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6044093B2 (en) * | 2011-03-28 | 2016-12-14 | 新日鐵住金株式会社 | Fe-based metal plate and manufacturing method thereof |
JP6064443B2 (en) * | 2012-08-29 | 2017-01-25 | Jfeスチール株式会社 | Method for producing high silicon steel sheet |
KR102012319B1 (en) | 2017-12-26 | 2019-08-20 | 주식회사 포스코 | Oriented electrical steel sheet and manufacturing method of the same |
CN114807559B (en) * | 2022-05-09 | 2023-07-18 | 国网智能电网研究院有限公司 | Low-loss low-magnetostriction oriented silicon steel material and preparation method thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0459928A (en) * | 1990-06-29 | 1992-02-26 | Nippon Steel Corp | Production of extra thin silicon steel strip having high (110)<001> orientation integration degree and reduced in iron loss |
JP3209131B2 (en) * | 1997-02-10 | 2001-09-17 | 日本鋼管株式会社 | Continuous production method and equipment for high silicon steel strip |
JP4269350B2 (en) * | 1998-04-10 | 2009-05-27 | Jfeスチール株式会社 | Method for producing high silicon steel sheet |
JP4120121B2 (en) * | 2000-01-06 | 2008-07-16 | Jfeスチール株式会社 | Method for producing grain-oriented electrical steel sheet |
-
2008
- 2008-02-25 JP JP2008042489A patent/JP5206017B2/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110607496A (en) * | 2018-06-14 | 2019-12-24 | 东北大学 | Preparation method of Fe-Si alloy with Goss texture |
CN110607496B (en) * | 2018-06-14 | 2021-03-26 | 东北大学 | Preparation method of Fe-Si alloy with Goss texture |
Also Published As
Publication number | Publication date |
---|---|
JP2009197299A (en) | 2009-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5610084B2 (en) | Oriented electrical steel sheet and manufacturing method thereof | |
JP5668460B2 (en) | Method for producing non-oriented electrical steel sheet | |
JP5439866B2 (en) | Method for producing grain-oriented electrical steel sheet with extremely high magnetic flux density | |
RU2580776C1 (en) | Method of making sheet of textured electrical steel | |
JP5446377B2 (en) | Oriented electrical steel sheet and manufacturing method thereof | |
EP2878689A1 (en) | Oriented electromagnetic steel plate production method | |
JP2017222898A (en) | Production method of grain oriented magnetic steel sheet | |
TW201221652A (en) | Method for producing non-oriented magnetic steel sheet | |
JP2012031498A (en) | Grain-oriented electromagnetic steel plate and production method for the same | |
TW201331384A (en) | Method of producing a non-oriented electrical steel sheet | |
JP6160649B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP5206017B2 (en) | Method for producing high silicon steel sheet | |
JP6344263B2 (en) | Method for producing grain-oriented electrical steel sheet | |
EP3733895B1 (en) | Low-iron-loss grain-oriented electrical steel sheet and production method for same | |
JP5760506B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP5287615B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP2020056105A (en) | Method for manufacturing grain-oriented electrical steel sheet | |
JP2008261013A (en) | Method of producing grain-oriented magnetic steel sheet with markedly high magnetic flux density | |
JPH055126A (en) | Production of nonoriented silicon steel sheet | |
EP4265802A1 (en) | Non-oriented electrical steel sheet, and method for manufacturing same | |
JP4972773B2 (en) | Method for producing high silicon steel sheet | |
JP2008050663A (en) | Method for producing high-silicon steel sheet | |
JP6056675B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP5130993B2 (en) | High frequency electrical steel sheet | |
JP5600991B2 (en) | Method for producing grain-oriented electrical steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100823 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20120321 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120327 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120726 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120807 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121001 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130122 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130204 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160301 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5206017 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |