JP6160649B2 - Method for producing grain-oriented electrical steel sheet - Google Patents
Method for producing grain-oriented electrical steel sheet Download PDFInfo
- Publication number
- JP6160649B2 JP6160649B2 JP2015086082A JP2015086082A JP6160649B2 JP 6160649 B2 JP6160649 B2 JP 6160649B2 JP 2015086082 A JP2015086082 A JP 2015086082A JP 2015086082 A JP2015086082 A JP 2015086082A JP 6160649 B2 JP6160649 B2 JP 6160649B2
- Authority
- JP
- Japan
- Prior art keywords
- annealing
- steel sheet
- grain
- less
- electrical steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910001224 Grain-oriented electrical steel Inorganic materials 0.000 title claims description 33
- 238000004519 manufacturing process Methods 0.000 title claims description 32
- 238000000137 annealing Methods 0.000 claims description 163
- 238000001953 recrystallisation Methods 0.000 claims description 120
- 229910000831 Steel Inorganic materials 0.000 claims description 84
- 239000010959 steel Substances 0.000 claims description 84
- 238000005097 cold rolling Methods 0.000 claims description 43
- 238000001816 cooling Methods 0.000 claims description 42
- 238000000034 method Methods 0.000 claims description 36
- 238000010438 heat treatment Methods 0.000 claims description 33
- 239000003112 inhibitor Substances 0.000 claims description 33
- 238000011282 treatment Methods 0.000 claims description 30
- 230000032683 aging Effects 0.000 claims description 25
- 238000005121 nitriding Methods 0.000 claims description 20
- 229910052757 nitrogen Inorganic materials 0.000 claims description 16
- 230000005381 magnetic domain Effects 0.000 claims description 15
- 229910052710 silicon Inorganic materials 0.000 claims description 15
- 230000008569 process Effects 0.000 claims description 12
- 229910052717 sulfur Inorganic materials 0.000 claims description 12
- 229910052799 carbon Inorganic materials 0.000 claims description 11
- 239000006104 solid solution Substances 0.000 claims description 9
- 229910052748 manganese Inorganic materials 0.000 claims description 7
- 229910052804 chromium Inorganic materials 0.000 claims description 6
- 229910052720 vanadium Inorganic materials 0.000 claims description 6
- 229910052787 antimony Inorganic materials 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims description 5
- 229910052758 niobium Inorganic materials 0.000 claims description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims description 5
- 229910000976 Electrical steel Inorganic materials 0.000 claims description 4
- 238000010894 electron beam technology Methods 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 4
- 150000004763 sulfides Chemical class 0.000 claims description 4
- QYHFIVBSNOWOCQ-UHFFFAOYSA-N selenic acid Chemical class O[Se](O)(=O)=O QYHFIVBSNOWOCQ-UHFFFAOYSA-N 0.000 claims description 3
- 150000003346 selenoethers Chemical class 0.000 claims description 3
- 150000003467 sulfuric acid derivatives Chemical class 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 33
- 230000004907 flux Effects 0.000 description 24
- 239000000047 product Substances 0.000 description 23
- 239000010410 layer Substances 0.000 description 20
- 229910052742 iron Inorganic materials 0.000 description 15
- 230000002829 reductive effect Effects 0.000 description 15
- 239000000463 material Substances 0.000 description 14
- 238000002791 soaking Methods 0.000 description 14
- 238000005098 hot rolling Methods 0.000 description 13
- 238000005096 rolling process Methods 0.000 description 13
- 239000011669 selenium Substances 0.000 description 13
- 230000000694 effects Effects 0.000 description 12
- 239000013078 crystal Substances 0.000 description 11
- 229910052711 selenium Inorganic materials 0.000 description 10
- 239000011248 coating agent Substances 0.000 description 9
- 238000000576 coating method Methods 0.000 description 9
- 238000005261 decarburization Methods 0.000 description 8
- 230000006866 deterioration Effects 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 230000009467 reduction Effects 0.000 description 7
- 229910019142 PO4 Inorganic materials 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 6
- 239000010452 phosphate Substances 0.000 description 6
- 239000002244 precipitate Substances 0.000 description 6
- 238000001556 precipitation Methods 0.000 description 6
- 229910052581 Si3N4 Inorganic materials 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000009413 insulation Methods 0.000 description 5
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 230000002401 inhibitory effect Effects 0.000 description 4
- 230000000630 rising effect Effects 0.000 description 4
- 241000612118 Samolus valerandi Species 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- XLJMAIOERFSOGZ-UHFFFAOYSA-M cyanate Chemical compound [O-]C#N XLJMAIOERFSOGZ-UHFFFAOYSA-M 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005315 distribution function Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000009290 primary effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000000754 repressing effect Effects 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Description
本発明は、結晶粒がミラー指数で板面に{110}面、圧延方向に<001>方位が集積したいわゆる方向性電磁鋼板の製造方法に関するものである。方向性電磁鋼板は、軟磁性材料であり、主に変圧器等の電気機器の鉄芯として用いられる。 The present invention relates to a method for producing a so-called grain-oriented electrical steel sheet in which crystal grains are Miller indices and {110} planes are accumulated on the plate surface and <001> orientation is accumulated in the rolling direction. The grain-oriented electrical steel sheet is a soft magnetic material and is mainly used as an iron core of electrical equipment such as a transformer.
方向性電磁鋼板は、二次再結晶焼鈍により、結晶粒を{110}<001>方位(以降、ゴス方位という)に集積させることで、優れた磁気特性を示すことが知られている(例えば、特許文献1参照)。
そして、磁気特性の指標としては、磁場の強さ:800A/mにおける磁束密度B8および励磁周波数:50Hzの交流磁場で1.7Tまで磁化したときの鋼板1kgあたりの鉄損W17/50が主に用いられている。
It is known that grain oriented electrical steel sheets exhibit excellent magnetic properties by accumulating crystal grains in {110} <001> orientation (hereinafter referred to as Goth orientation) by secondary recrystallization annealing (for example, , See Patent Document 1).
And, as an index of magnetic characteristics, the main component is iron loss W 17/50 per kg of steel plate when magnetized up to 1.7T with magnetic field strength: magnetic flux density B 8 at 800A / m and excitation frequency: 50Hz AC magnetic field. It is used for.
方向性電磁鋼板における低鉄損化手段の一つとして、二次再結晶焼鈍後の結晶粒をゴス方位に高度に集積させることが挙げられる。二次再結晶焼鈍後に、ゴス方位の集積度を高めるためには、先鋭なゴス方位粒のみが優先的に成長するように粒界易動度差をつけること、つまり一次再結晶板の集合組織を所定の組織に形成すること、およびインヒビタ−と呼ばれる析出物を利用してゴス方位以外の再結晶粒の成長を抑制することが重要である。 One of the means for reducing iron loss in grain-oriented electrical steel sheets is to highly accumulate crystal grains after secondary recrystallization annealing in the Goth direction. In order to increase the Goss orientation accumulation degree after secondary recrystallization annealing, the grain boundary mobility difference is set so that only sharp Goss orientation grains grow preferentially, that is, the texture of the primary recrystallization plate. It is important to suppress the growth of recrystallized grains other than the Goss orientation by using a precipitate called an inhibitor.
ここに、先鋭なゴス方位粒のみが優先成長できる所定の一次再結晶組織としては、{554}<225>方位粒、{12 4 1]<014>方位粒が知られている。これらの方位粒を、一次再結晶板のマトリックス中にバランス良くかつ高度に集積させることによって、二次再結晶焼鈍後にゴス方位粒を高度に集積させることができる。
例えば、特許文献2には、一次再結晶焼鈍板において、鋼板の表層近傍の集合組織が、Bungeのオイラー角表示で、φ1=0°、Φ=15°、φ2=0°の方位から10°以内、またはφ1=5°、Φ=20°、φ2=70°の方位から10°以内に極大方位を有し、かつ鋼板の中心層の集合組織が、同じくBungeのオイラー角表示で、φ1=90°、Φ=60°、φ2=45°の方位から5°以内に極大方位を有する場合に、安定して優れた磁気特性を示す二次再結晶焼鈍板が得られることが開示されている。
Here, as a predetermined primary recrystallized structure in which only sharp goth-oriented grains can preferentially grow, {554} <225> -oriented grains and {12 4 1] <014> -oriented grains are known. By accumulating these oriented grains in a well-balanced and highly integrated manner in the matrix of the primary recrystallization plate, Goss oriented grains can be highly accumulated after the secondary recrystallization annealing.
For example, in Patent Document 2, in the primary recrystallization annealed plate, the texture near the surface layer of the steel plate is represented by Bunge's Euler angle from directions of φ 1 = 0 °, φ = 15 °, φ 2 = 0 °. Within 10 ° or the maximum orientation within 10 ° from the orientation of φ 1 = 5 °, Φ = 20 °, φ 2 = 70 °, and the texture of the central layer of the steel sheet is also indicated by Bunge's Euler angle In the case where the maximum orientation is within 5 ° from the orientation of φ 1 = 90 °, Φ = 60 °, and φ 2 = 45 °, a secondary recrystallized annealing plate showing stable and excellent magnetic properties can be obtained. It is disclosed.
インヒビター利用技術としては、例えば特許文献1に、AlN、MnSを利用する方法が、また特許文献3に、MnS、MnSeを利用する方法が開示されており、いずれも工業的に実用化されている。
これらのインヒビターを用いる方法は、インヒビターの均一微細分散が理想状態であるが、その達成のためには熱延前のスラブ加熱を1300℃以上の高温で行わなければならない。しかしながら、高温スラブ加熱に伴い、スラブ結晶組織の過度な粗大化が起こる。スラブ組織は、主に熱延安定方位である{100}<011>方位であり、このようなスラブ組織の粗大化は、結果的に二次再結晶を大きく阻害し、磁気特性を大きく劣化させる原因となる。このため、インヒビターを用いた高温スラブ加熱型の方向性電磁鋼板では、熱延時のα−γ変態を利用して粗大スラブ組織を破壊する目的で、素材中にCを0.03〜0.08%程度含有させることが必須である。とはいえ、製品板中にCが残存すると製品板の磁気特性を著しく劣化させるため、熱延後のいずれかの工程において脱炭焼鈍を行い、製品板中のC量を0.003%以下程度に低減させることも必須となる。
As an inhibitor utilization technique, for example,
In the method using these inhibitors, uniform fine dispersion of the inhibitor is an ideal state, but in order to achieve this, slab heating before hot rolling must be performed at a high temperature of 1300 ° C. or higher. However, excessive coarsening of the slab crystal structure occurs with high-temperature slab heating. The slab structure is the {100} <011> direction, which is mainly a hot-rolling stable direction, and such coarsening of the slab structure results in significant inhibition of secondary recrystallization and greatly deteriorates magnetic properties. Cause. For this reason, in a high-temperature slab heating type grain-oriented electrical steel sheet using an inhibitor, about 0.03 to 0.08% of C is contained in the material for the purpose of destroying a coarse slab structure by utilizing α-γ transformation during hot rolling. It is essential. Nonetheless, if C remains in the product plate, the magnetic properties of the product plate will be significantly deteriorated. Therefore, decarburization annealing is performed in any process after hot rolling, and the C content in the product plate is reduced to about 0.003% or less. Reduction is also essential.
このように、従来のインヒビターを用いた方向性電磁鋼板の製造方法においては、高温スラブ加熱に多大なエネルギーを要すること、また脱炭焼鈍工程を必要とすることなどから、製造コストが高くなるという問題があった。 Thus, in the manufacturing method of the grain-oriented electrical steel sheet using the conventional inhibitor, it requires a lot of energy for high-temperature slab heating, and requires a decarburization annealing process, which increases the manufacturing cost. There was a problem.
上記の問題を解決すべく、例えば特許文献4には、スラブの加熱温度を1200℃以下の低いものとして、スラブ加熱段階では、インヒビター形成元素、例えばAl,N,Mn,S等の鋼中への固溶を完全には行わず、脱炭焼鈍後、強還元性雰囲気中、例えばNH3とH2の混合雰囲気中にて鋼板を走行させる状態下で焼鈍することにより、(Al,Si)Nを主組成とするインヒビターを形成することによって、低温スラブ加熱においても高温スラブ加熱並みの磁気特性を発現させる、いわゆる窒化処理技術が開示されている。 In order to solve the above problem, for example, in Patent Document 4, the slab heating temperature is set to a low temperature of 1200 ° C. or less, and in the slab heating stage, an inhibitor-forming element such as Al, N, Mn, S or the like is introduced into the steel. (Al, Si) after decarburization annealing and annealing in a strongly reducing atmosphere, for example, in a mixed atmosphere of NH 3 and H 2 , while annealing the steel plate A so-called nitriding treatment technique has been disclosed in which an inhibitor having N as a main composition is formed so that a magnetic property equivalent to that of high-temperature slab heating is exhibited even in low-temperature slab heating.
また、特許文献5には、C≦0.02%を含む珪素鋼スラブについて、粗熱延開始温度を1250℃以下とし、900℃以上での累積圧下率が80%以上で、かつ少なくとも1パスは35%以上の圧下を加えて再結晶熱延後、900℃以下での累積圧下率が40%以上となるような歪蓄積圧延を行うことにより、低C素材においてもスラブ組織を破壊する方法が開示されている。
しかしながら、この方法では、Al,N等のインヒビター元素を含有しているにもかかわらず、高温スラブ加熱を行っていないため、インヒビターの微細析出が起こらず、また上述したような窒化処理も施していないため、一次再結晶粒成長抑制力が不足し、磁気特性が劣化する問題があった。加えて、最終冷間圧延前の焼鈍後の冷却条件に規定がないため、固溶元素(C、N等)量の制御もできていなかった。
However, this method does not cause high-temperature slab heating even though it contains an inhibitor element such as Al or N, so that fine precipitation of the inhibitor does not occur, and nitriding as described above is also performed. Therefore, there is a problem that the primary recrystallized grain growth inhibiting ability is insufficient and the magnetic characteristics are deteriorated. In addition, since there is no regulation in the cooling conditions after annealing before the final cold rolling, the amount of solid solution elements (C, N, etc.) could not be controlled.
さらに、特許文献6には、C:0.0005〜0.004%を含む珪素鋼スラブについて、1000℃から1200℃の温度域で粗熱延を開始し、必要に応じて700℃から1100℃の温度域で短時間焼鈍を行ったのち、1回または中間焼鈍を挟む2回以上の冷間圧延を行い、850℃から1050℃の温度域で1秒以上200秒以内の加熱後、鋼板を走行せしめる状態で窒化処理を行う方法が開示されている。
しかしながら、この方法でも、やはりAl,N等のインヒビター元素を含有しているにもかかわらず、高温スラブ加熱を行っていないため、インヒビターの微細析出が起こらず、また上述したような窒化処理も施していないため、一次再結晶粒成長抑制力が不足し、磁気特性が劣化する問題があった。加えて、最終冷間圧延前の焼鈍後の冷却条件に規定がないため、固溶元素(C、N等)量の制御ができないところに問題を残していた。
Furthermore, in Patent Document 6, for a silicon steel slab containing C: 0.0005 to 0.004%, rough hot rolling is started in a temperature range of 1000 ° C to 1200 ° C, and if necessary, in a temperature range of 700 ° C to 1100 ° C. After annealing for a short time, cold rolling at least once with one or intermediate annealing in between, and heating the steel plate in the temperature range of 850 ℃ to 1050 ℃ for more than 1 second and less than 200 seconds. A method for performing nitriding is disclosed.
However, even in this method, although inhibitor elements such as Al and N are contained, high temperature slab heating is not performed, so that fine precipitation of the inhibitor does not occur, and nitriding treatment as described above is also performed. Therefore, there is a problem that the primary recrystallized grain growth inhibiting ability is insufficient and the magnetic characteristics are deteriorated. In addition, since there is no regulation in the cooling conditions after annealing before the final cold rolling, there remains a problem in that the amount of solid solution elements (C, N, etc.) cannot be controlled.
一方、特許文献7では、そもそもスラブにインヒビター成分を含有させずに二次再結晶を発現させる技術について検討が進められ、インヒビター成分を含有させなくとも二次再結晶を生じさせることができる技術(インヒビターレス法)が開発された。このインヒビターレス法は、より高純度化した鋼を利用し、テクスチャー(集合組織の制御)によって二次再結晶を発現させる技術である。
インヒビターレス法では、高温でのスラブ加熱が不要であり、低コストで方向性電磁鋼板を製造することが可能であるが、インヒビターを有しないが故に製造時、途中工程での温度ばらつきなどの影響を受けて、製品で磁気特性にばらつきが生じやすいという問題があった。
また、この技術では、集合組織の制御が重要な要素であるため、集合組織制御のための温間圧延など多くの技術が提案されているが、この集合組織制御が十分に行えない場合は、インヒビターを用いる技術に比べると、二次再結晶後のゴス方位への集積度は低く、磁束密度も低くなる傾向にあった。
On the other hand, in Patent Document 7, a technique for developing secondary recrystallization without including an inhibitor component in the slab is being studied, and a technique capable of causing secondary recrystallization without containing an inhibitor component ( Inhibitorless method) was developed. This inhibitorless method is a technology that uses secondary steel with higher purity and develops secondary recrystallization by texture (control of texture).
Inhibitorless method does not require slab heating at high temperature, and it is possible to produce grain-oriented electrical steel sheets at a low cost. As a result, there is a problem that the magnetic characteristics of the products are likely to vary.
In addition, in this technique, since control of the texture is an important factor, many techniques such as warm rolling for texture control have been proposed, but if this texture control cannot be performed sufficiently, Compared to the technique using an inhibitor, the degree of integration in the Goth direction after secondary recrystallization was low, and the magnetic flux density tended to be low.
上述したとおり、例えば特許文献2のような従来の一次再結晶集合組織制御技術は、インヒビターを用いた高温スラブ加熱型(加熱温度:1200℃以上)の製造技術であるため、熱延時のα−γ変態を利用して粗大スラブの組織を破壊する目的で、素材中にCを0.03〜0.08%程度含有させることが必須であるという制約があり、その制約の中での良好な範囲を規定する技術にすぎなかった。 As described above, for example, the conventional primary recrystallization texture control technique such as Patent Document 2 is a manufacturing technique of a high-temperature slab heating type (heating temperature: 1200 ° C. or more) using an inhibitor. For the purpose of destroying the structure of coarse slabs using the γ transformation, there is a restriction that it is essential to contain about 0.03 to 0.08% of C in the material, and a good range within the restriction is specified. It was just technology.
本発明は、上記の問題を解決するもので、比較的多量のCを含有させるという制約なしに、ゴス方位粒を効果的に成長させて良好な磁気特性を得ることができ、かつ高歩留まり、低コスト、高生産性を有する方向性電磁鋼板の製造方法を提案することを目的とする。 The present invention solves the above-mentioned problem, without restricting the inclusion of a relatively large amount of C, it is possible to effectively grow goth-oriented grains to obtain good magnetic properties, and high yield, It aims at proposing the manufacturing method of the grain-oriented electrical steel sheet which has low cost and high productivity.
さて、発明者らは、上記の課題を解決すべく、最終冷間圧延前の鋼板の固溶C量に着目して、鋭意検討を重ねた。
その結果、最終冷間圧延前の鋼板の固溶C量を極限まで低減することによって製品板の磁気特性が格段に向上することを見出した。
具体的には、スラブ中のC量を質量%で0.0005%以上0.005%以下、Si量を質量%で2.0以上4.5%以下の範囲に制限するとともに、最終冷間圧延の直前の加熱工程後の800〜200℃間の平均冷却速度を、スラグ中の固溶C量およびSi量との関係で適正範囲に制御することで、最終冷間圧延前の鋼板の時効指数AI(Aging Index)を70MPa以下とすることができ、これにより磁気特性が向上することが明らかとなった。
Now, in order to solve the above-mentioned problems, the inventors have made extensive studies by paying attention to the solute C amount of the steel sheet before the final cold rolling.
As a result, it has been found that the magnetic properties of the product plate are remarkably improved by reducing the solute C amount of the steel plate before the final cold rolling to the limit.
Specifically, the amount of C in the slab is limited to 0.0005% or more and 0.005% or less in terms of mass%, the amount of Si is limited to a range of 2.0 to 4.5% in mass%, and after the heating step immediately before the final cold rolling. By controlling the average cooling rate between 800 and 200 ° C within an appropriate range in relation to the amount of dissolved C and Si in the slag, the aging index AI (Aging Index) of the steel plate before final cold rolling is 70 MPa. It has become clear that the magnetic properties are improved.
さらに、一次再結晶焼鈍の昇温速度を10℃/s以上200℃/s以下に調整することにより、一次再結晶焼鈍板の板厚中心層の集合組織について、ランダム強度に対する{554}<225>強度比が12以上で、かつ{554}<225>強度の{111}<110>強度に対する比を7以上とすることができ、これにより磁気特性が一層向上することが明らかとなった。 Further, by adjusting the temperature increase rate of primary recrystallization annealing to 10 ° C./s or more and 200 ° C./s or less, {554} <225 with respect to the random strength of the texture of the central layer of the thickness of the primary recrystallization annealing plate. > The strength ratio was 12 or more, and the ratio of {554} <225> strength to {111} <110> strength could be 7 or more, and it was revealed that the magnetic characteristics were further improved.
前述したとおり、これまで提案されてきた製造方法では、良好な磁気特性を安定的に実現することが難しい場合があった。
本発明は、sol.Alを100ppm未満に抑制したインヒビターレス成分に準じた成分を用い、高温スラブ加熱を回避しつつ、窒化を適用することでAlNではなく窒化珪素(Si3N4)を析出させて、正常粒成長の抑制力として機能させることにより、特性のバラつきを大幅に低減し、工業的に安定して良好な特性を有する方向性電磁鋼板の製造を可能ならしめたものである。
As described above, in the manufacturing methods proposed so far, it may be difficult to stably realize good magnetic properties.
The present invention uses a component according to an inhibitorless component in which sol.Al is suppressed to less than 100 ppm, and precipitates silicon nitride (Si 3 N 4 ) instead of AlN by applying nitriding while avoiding high-temperature slab heating. Thus, by functioning as a suppressive force for normal grain growth, variation in characteristics is greatly reduced, and it is possible to produce a grain-oriented electrical steel sheet having industrially stable and good characteristics.
本発明は、上記の知見に立脚するもので、その要旨構成は次のとおりである。
1.質量%で、C:0.0005〜0.005%、Si:2.0〜4.5%、Mn:0.005〜0.3%、Sおよび/またはSe(合計):0.05%以下、sol.Al:0.010%未満、N:(14.00/26.98)×[%sol.Al]以上、0.008%以下を含有し、残部はFeおよび不可避的不純物の組成からなる鋼スラブを、加熱後、熱間圧延し、必要に応じて熱延板焼鈍を施したのち、1回または中間焼鈍を挟む2回以上の冷間圧延により最終板厚とし、ついで一次再結晶焼鈍を施し、さらに二次再結晶焼鈍を施す一連の工程によって方向性電磁鋼板を製造するにあたり、
下記(1)式から算出される固溶C量パラメーターXを用い、最終冷間圧延の直前の加熱工程後の800〜200℃間の平均冷却速度R(℃/s)を、下記(2)式から算出される上限平均冷却速度RH以下とすることで、最終冷間圧延前の鋼板の時効指数AIを70MPa以下とすることを特徴とする方向性電磁鋼板の製造方法。
記
X=[%Si]/28.09+100[%C]/12.01 ・・・ (1)
RH =10/X ・・・ (2)
但し、(1)式中、[%M]はM元素の含有量を示す(質量%)
The present invention is based on the above findings, and the gist of the present invention is as follows.
1. In mass%, C: 0.0005 to 0.005%, Si: 2.0 to 4.5%, Mn: 0.005 to 0.3%, S and / or Se (total): 0.05% or less, sol. Al: less than 0.010%, N: (14.00 /26.98) x [% sol.Al] or more and 0.008% or less, the remainder of the steel slab composed of Fe and inevitable impurities is heated and then hot-rolled, and hot-rolled sheet annealed as necessary After the above, the grain thickness of the grain-oriented electrical steel sheet is obtained by a series of processes in which a final thickness is obtained by cold rolling at least once with intermediate or intermediate annealing, followed by primary recrystallization annealing and further secondary recrystallization annealing. In manufacturing,
Using the solid solution C amount parameter X calculated from the following equation (1), the average cooling rate R (° C./s) between 800 and 200 ° C. after the heating step immediately before the final cold rolling is expressed as (2) A method for producing a grain-oriented electrical steel sheet, wherein the aging index AI of the steel sheet before final cold rolling is set to 70 MPa or less by making the upper limit average cooling rate RH or less calculated from the equation.
X = [% Si] /28.09+100 [% C] /12.01 (1)
R H = 10 / X (2)
However, in the formula (1), [% M] indicates the content of M element (mass%)
2.前記一次再結晶焼鈍の500〜700℃間の平均昇温速度を10℃/s以上200℃/s以下に調整することにより、一次再結晶焼鈍板の板厚中心層の集合組織について、ランダム強度に対する{554}<225>強度の比を12以上、かつ{554}<225>強度の{111}<110>強度に対する比を7以上とすることを特徴とする前記1に記載の方向性電磁鋼板の製造方法。 2. By adjusting the average temperature increase rate between 500-700 ° C. of the primary recrystallization annealing to 10 ° C./s or more and 200 ° C./s or less, the random strength of the texture of the thickness center layer of the primary recrystallization annealing plate 2. The directional electromagnetic wave according to 1 above, wherein a ratio of {554} <225> intensity to 12 or more and a ratio of {554} <225> intensity to {111} <110> intensity is 7 or more Manufacturing method of steel sheet.
3.前記鋼スラブが、質量%でさらに、Ni:0.005〜1.5%、Sn:0.005〜0.50%、Sb:0.005〜0.50%、Cu:0.005〜1.5%、Cr:0.005〜0.10%、P:0.005〜0.50%およびMo:0.005〜0.50%のうちから選んだ1種または2種以上を含有することを特徴とする前記1または2に記載の方向性電磁鋼板の製造方法。 3. The steel slab is further in mass%, Ni: 0.005-1.5%, Sn: 0.005-0.50%, Sb: 0.005-0.50%, Cu: 0.005-1.5%, Cr: 0.005-0.10%, P: 0.005-0.50 % And Mo: 1 or 2 types or more selected from 0.005-0.50% are contained, The manufacturing method of the grain-oriented electrical steel sheet of said 1 or 2 characterized by the above-mentioned.
4.前記鋼スラブが、質量%でさらに、Ti:0.001〜0.1%、Nb:0.001〜0.1%およびV:0.001〜0.1%のうちから選んだ1種または2種以上を含有することを特徴とする前記1〜3のいずれか一項に記載の方向性電磁鋼板の製造方法。 4). The steel slab further contains one or more kinds selected from Ti: 0.001 to 0.1%, Nb: 0.001 to 0.1%, and V: 0.001 to 0.1% by mass%. The manufacturing method of the grain-oriented electrical steel sheet as described in any one of 1-3.
5.前記一次再結晶焼鈍から前記二次再結晶焼鈍までのいずれかの段階で追加インヒビター処理を施すことを特徴とする前記1〜4のいずれか一項に記載の方向性電磁鋼板の製造方法。
5. The method for producing a grain-oriented electrical steel sheet according to any one of
6.前記追加インヒビター処理として、窒化処理を施すことを特徴とする前記5に記載の方向性電磁鋼板の製造方法。 6). 6. The method for producing a grain-oriented electrical steel sheet according to 5, wherein a nitriding treatment is performed as the additional inhibitor treatment.
7.前記追加インヒビター処理として、二次再結晶焼鈍前に鋼板に塗布する焼鈍分離剤中に硫化物、硫酸塩、セレン化物およびセレン酸塩のうちから選んだ一種または二種以上を添加することを特徴とする前記5に記載の方向性電磁鋼板の製造方法。 7). As the additional inhibitor treatment, one or more selected from sulfides, sulfates, selenides and selenates are added to the annealing separator applied to the steel plate before the secondary recrystallization annealing. The method for producing a grain-oriented electrical steel sheet according to 5 above.
8.前記最終冷間圧延以降のいずれかの段階で、磁区細分化処理を施すことを特徴とする前記1〜7のいずれか一項に記載の方向性電磁鋼板の製造方法。 8). The method for producing a grain-oriented electrical steel sheet according to any one of 1 to 7, wherein a magnetic domain refinement process is performed at any stage after the final cold rolling.
9.前記磁区細分化処理が、二次再結晶焼鈍後の鋼板への電子ビーム照射によるものである前記8に記載の方向性電磁鋼板の製造方法。 9. 9. The method for producing a grain-oriented electrical steel sheet according to 8, wherein the magnetic domain subdividing treatment is performed by electron beam irradiation on the steel sheet after the secondary recrystallization annealing.
10.前記磁区細分化処理が、二次再結晶焼鈍後の鋼板へのレーザー照射によるものである前記8に記載の方向性電磁鋼板の製造方法。 Ten. 9. The method for producing a grain-oriented electrical steel sheet according to 8 above, wherein the magnetic domain refinement treatment is performed by laser irradiation of the steel sheet after the secondary recrystallization annealing.
本発明によれば、製品板においてゴス方位に強く集積するように一次再結晶板集合組織を制御することができ、そのため、二次再結晶焼鈍後に、従来にも増して優れた磁気特性を有する方向性電磁鋼板を製造することが可能となる。特に、高磁束密度化が困難とされる板厚:0.23mmのような薄い鋼板であっても、二次再結晶焼鈍後の磁束密度B8が1.92T以上という優れた磁気特性を得ることができる。
また、一次再結晶焼鈍の500〜700℃間の平均昇温速度を10℃/s以上200℃/s以下に調整することで、磁束密度B8が1.93T以上という優れた磁気特性を得ることができる。
さらに、追加インヒビター処理を施した場合には、磁束密度B8がそれぞれ1.94T以上、さらには1.95T以上という極めて優れた磁気特性を得ることができる。
しかも、磁区細分化処理後の鉄損W17/50が0.70W/kg以下という優れた鉄損特性を達成することができる。
さらに特筆すべきは、スラブ加熱温度の低温化、また場合によっては脱炭焼鈍の省略化、さらにコイルの長手方向、幅方向および板厚方向での均一組織化による製品歩留りの向上により、低コスト化を達成できる。
加えて、低C化による圧延荷重低減により極薄材の製造が可能となり、コストの増加なしに更なる低鉄損化が可能となる。
According to the present invention, the primary recrystallized plate texture can be controlled so as to be strongly accumulated in the Goss direction in the product plate. Therefore, after the secondary recrystallization annealing, it has superior magnetic properties as compared with the conventional case. It becomes possible to manufacture a grain-oriented electrical steel sheet. In particular, even with a thin steel plate with a thickness of 0.23 mm for which it is difficult to achieve a high magnetic flux density, excellent magnetic properties such that the magnetic flux density B 8 after secondary recrystallization annealing is 1.92 T or more can be obtained. it can.
In addition, by adjusting the average temperature increase rate between 500-700 ° C. of primary recrystallization annealing to 10 ° C./s or more and 200 ° C./s or less, excellent magnetic properties with a magnetic flux density B 8 of 1.93 T or more can be obtained. Can do.
Further, when the additional inhibitor treatment is performed, extremely excellent magnetic properties such that the magnetic flux density B 8 is 1.94 T or more and further 1.95 T or more can be obtained.
Moreover, it is possible to achieve an excellent iron loss characteristic in which the iron loss W 17/50 after the magnetic domain subdivision treatment is 0.70 W / kg or less.
Also noteworthy is the low cost by lowering the slab heating temperature, possibly eliminating decarburization annealing, and improving the product yield by uniform organization in the longitudinal direction, width direction and thickness direction of the coil. Can be achieved.
In addition, it is possible to manufacture an ultrathin material by reducing the rolling load due to the low C, and it is possible to further reduce the iron loss without increasing the cost.
以下、本発明を具体的に説明する。
まず、本発明に至った実験について説明する。なお、鋼板成分に関する「%」表示は特に断らない限り質量%を意味するものとする。
残部はFeおよび不可避的不純物からなる3種類の鋼、鋼A(C:0.0009%、Si:2.91%、Mn:0.08%、S:0.003%、Se:0.008%、sol.Al:0.0057%、N:0.0034%)、鋼B(C:0.0024%、Si:3.44%、Mn:0.07%、S:0.004%、Se:0.008%、sol.Al:0.0062%、N:0.0035%)および鋼C(C:0.0042%、Si:3.97%、Mn:0.07%、S:0.003%、Se:0.008%、sol.Al:0.0061%、N:0.0033%)のスラブを、1200℃に加熱したのち、2.3mm厚まで熱間圧延した。ついで、1000℃で60sの熱延板焼鈍後、800〜200℃間を平均冷却速度:20〜100℃/sで冷却したのち、0.23mm厚まで冷間圧延してから、800℃で30sの一次再結晶焼鈍を施した。この一次再結晶焼鈍時での500〜700℃間の昇温速度は30℃/sとした。
ついで、鋼板表面にMgOを主成分とする焼鈍分離剤を塗布してから、1200℃で50時間の純化焼鈍を兼ねた二次再結晶焼鈍を行い、引き続きリン酸塩系の絶縁張力コーティングの塗布、焼付けと鋼帯の平坦化を目的とする平坦化焼鈍を施して製品とし、それぞれの条件下での試験片を得た。
Hereinafter, the present invention will be specifically described.
First, the experiment that led to the present invention will be described. In addition, unless otherwise indicated, "%" display regarding a steel plate component shall mean the mass%.
The balance is three types of steel consisting of Fe and inevitable impurities, Steel A (C: 0.0009%, Si: 2.91%, Mn: 0.08%, S: 0.003%, Se: 0.008%, sol.Al: 0.0057%, N : 0.0034%), Steel B (C: 0.0024%, Si: 3.44%, Mn: 0.07%, S: 0.004%, Se: 0.008%, sol.Al: 0.0062%, N: 0.0035%) and Steel C (C : 0.0042%, Si: 3.97%, Mn: 0.07%, S: 0.003%, Se: 0.008%, sol.Al: 0.0061%, N: 0.0033%) After heating to 1200 ° C, 2.3mm thickness Until hot rolled. Next, after hot-rolled sheet annealing at 1000 ° C for 60 s, after cooling between 800-200 ° C at an average cooling rate of 20-100 ° C / s, cold rolling to 0.23 mm thickness, then at 800 ° C for 30 s Primary recrystallization annealing was performed. The temperature rising rate between 500 and 700 ° C. during the primary recrystallization annealing was 30 ° C./s.
Next, after applying an annealing separator containing MgO as the main component to the steel sheet surface, secondary recrystallization annealing is performed at 1200 ° C for 50 hours, followed by application of phosphate-based insulation tension coating. Then, flattening annealing for the purpose of baking and flattening of the steel strip was performed to obtain a product, and a test piece under each condition was obtained.
図1に、熱延板焼鈍板(最終冷間圧延前の鋼板)の時効指数AI(Aging Index)に及ぼす熱延板焼鈍後の冷却速度の影響について調べた結果を示す。
なお、時効指数AIについては、最終冷延前の鋼板の板厚全厚サンプルからJIS Z 2241に準拠して5号引張試験片を切り出し、初期ひずみ速度1×10-3で公称ひずみ7.5%まで予ひずみを付与した後、100℃で30分の熱処理を施し、再度初期ひずみ速度1×10-3で引張試験を行い、焼鈍後試験時の降伏応力(降伏点現象が起こる場合は下降伏点)から7.5%予ひずみ付与時の引張応力を減じた値とした。
FIG. 1 shows the results of examining the effect of the cooling rate after hot-rolled sheet annealing on the aging index AI (Aging Index) of a hot-rolled sheet annealed sheet (steel sheet before final cold rolling).
As for the aging index AI, a No. 5 tensile test piece was cut out from the full thickness sample of the steel sheet before the final cold rolling according to JIS Z 2241, and the initial strain rate was 1 × 10 -3 and the nominal strain was 7.5%. After pre-straining, heat treatment at 100 ° C for 30 minutes, perform tensile test again at initial strain rate of 1 × 10 -3 , and yield stress during post-annealing test (if yield point phenomenon occurs, lower yield point) ) To a value obtained by reducing the tensile stress when 7.5% pre-strain was applied.
ここで、固溶C量パラメーターとして次式(1)に示したXを設定し、このXを用いて、各鋼板の熱延板焼鈍後の800〜200℃間における平均冷却速度の上限値RHを次式(2)に示すように設定したとき、鋼A、B、Cの鋼組成から算出される熱延板焼鈍後の800〜200℃間の本発明の上限平均冷却速度RHはそれぞれ、90℃/s、70℃/s、57℃/sとなる。
X=[%Si]/28.09+100[%C]/12.01 ・・・ (1)
RH =10/X ・・・ (2)
図1に示したとおり、素材C量が減少するにつれて時効指数AIは低減した。そして、熱延板焼鈍後の800〜200℃間の平均冷却速度RがR≦RHを満足する場合には、時効指数AIは70MPa以下となった。
Here, X shown in the following formula (1) is set as a solid solution C amount parameter, and using this X, an upper limit value R of an average cooling rate between 800 and 200 ° C. after hot-rolled sheet annealing of each steel sheet. When H is set as shown in the following formula (2), the upper limit average cooling rate R H of the present invention between 800 and 200 ° C. after annealing of the hot rolled sheet calculated from the steel compositions of steels A, B and C is They are 90 ° C / s, 70 ° C / s, and 57 ° C / s, respectively.
X = [% Si] /28.09+100 [% C] /12.01 (1)
R H = 10 / X (2)
As shown in FIG. 1, the aging index AI decreased as the amount of material C decreased. And when the average cooling rate R between 800-200 degreeC after hot-rolled sheet annealing satisfy | fills R <= RH , the aging index AI became 70 MPa or less.
次に、図2に、一次再結晶焼鈍板(一次再結晶焼鈍後の鋼板)の板厚中心層の対ランダム強度比({554}<225>強度、および{554}<225>強度の{111}<110>強度に対する比)に及ぼす熱延板焼鈍板の時効指数AIの影響について調べた結果を示す。
一次再結晶焼鈍板の結晶方位については、板厚中心層まで研磨して減厚したサンプルを10%硝酸で30秒間エッチングし、X線シュルツ法にて(110)、(200)、(211)面を測定し、そのデータからODF(Orientation Distribution Function)解析を行い、各結晶方位の強度を算出した。解析にはResMat社のソフトウェアTextoolsを用い、ADC(Arbitrarily Defind Cell)法で算出した。ランダム強度に対する{554}<225>方位の強度比については、Bungeのオイラー角表示で(φ1、Φ、φ2)=(90、60、45)、また{111}<110>方位の強度比については(φ1、Φ、φ2)=(60、55、45)とした。
図2に示したとおり、熱延板焼鈍板の時効指数AIの低減に伴い、一次再結晶焼鈍板の板厚中心層の{554}<225>強度が増加し、{554}<225>強度の{111}<110>強度に対する比も増加した。
Next, FIG. 2 shows {{}} <225> strength and {554} <225> strength of the center thickness layer of the primary recrystallization annealed plate (the steel plate after the primary recrystallization annealing). 111} <ratio to <110> strength) shows the results of examining the influence of the aging index AI of the hot-rolled sheet annealed sheet.
Regarding the crystal orientation of the primary recrystallized annealed plate, the thinned sample polished to the thickness center layer was etched with 10% nitric acid for 30 seconds and X-ray Schulz method (110), (200), (211) The surface was measured, ODF (Orientation Distribution Function) analysis was performed from the data, and the intensity of each crystal orientation was calculated. The analysis was performed by ADC (Arbitrarily Defind Cell) method using ResMat software Textools. As for the intensity ratio of {554} <225> orientation with respect to random intensity, (φ 1 , Φ, φ 2 ) = (90, 60, 45) in Bunge's Euler angle display, and intensity of {111} <110> orientation The ratio was (φ 1 , Φ, φ 2 ) = (60, 55, 45).
As shown in FIG. 2, as the aging index AI of the hot-rolled sheet annealed sheet decreases, the {554} <225> strength of the center thickness layer of the primary recrystallized annealed sheet increases, and the {554} <225> strength. To {111} <110> strength also increased.
次に、図3に、製品板の磁束密度B8に及ぼす熱延板焼鈍板の時効指数AIの影響について調べた結果を示す。
図3に示したとおり、熱延板焼鈍板の時効指数AIの低減に伴い、磁束密度は向上した。特に、AI≦70MPaに制御することで磁束密度B8≧1.92Tとなった。
Next, FIG. 3 shows the results of examining the influence of the aging index AI of the hot-rolled sheet annealing plate on the magnetic flux density B 8 of the product plate.
As shown in FIG. 3, the magnetic flux density improved as the aging index AI of the hot-rolled sheet annealed plate decreased. In particular, the magnetic flux density B 8 ≧ 1.92T was achieved by controlling AI ≦ 70 MPa.
さらに、一次再結晶焼鈍時の昇温速度の影響について詳細に検討した。
C:0.0037%、Si:3.26%、Mn:0.08%、sol.Al:0.004%、N:0.0027%、S:0.005%およびSe:0.017%を含有し、残部はFeおよび不可避的不純物からなる種々のスラブを、1180℃に加熱したのち、2.5mmの厚みまで熱間圧延した。ついで、1000℃で60sの熱延板焼鈍後、800〜200℃間を、平均冷却速度:30℃/sで冷却した。ここで、X=[%Si]/28.09+100[%C]/12.01とすると、鋼組成から算出される熱延板焼鈍後の800〜200℃間の本発明の上限平均冷却速度RH (=10/X)は68℃/sとなる。ついで、0.23mm厚まで冷間圧延してから、800℃で20sの一次再結晶焼鈍を施した。一次再結晶焼鈍時における500〜700℃間の昇温速度を、10〜300℃/sの範囲で種々変化させた。
ついで、鋼板表面にMgOを主成分とする焼鈍分離剤を塗布してから、1220℃で50時間の純化焼鈍を兼ねた二次再結晶焼鈍を行い、引き続きリン酸塩系の絶縁張力コーティングの塗布、焼付けと鋼帯の平坦化を目的とする平坦化焼鈍を施して製品とし、それぞれの条件下での試験片を得た。
Furthermore, the influence of the temperature rising rate during the primary recrystallization annealing was examined in detail.
Contains C: 0.0037%, Si: 3.26%, Mn: 0.08%, sol.Al: 0.004%, N: 0.0027%, S: 0.005% and Se: 0.017%, with the balance being Fe and inevitable impurities The slab was heated to 1180 ° C. and then hot-rolled to a thickness of 2.5 mm. Subsequently, after hot-rolled sheet annealing at 1000 ° C. for 60 s, 800 to 200 ° C. was cooled at an average cooling rate of 30 ° C./s. Here, when X = [% Si] /28.09+100 [% C] /12.01, the upper limit average cooling rate R H (= 800 to 200 ° C.) after hot-rolled sheet annealing calculated from the steel composition. 10 / X) is 68 ° C./s. Next, after cold rolling to a thickness of 0.23 mm, primary recrystallization annealing was performed at 800 ° C. for 20 s. The rate of temperature increase between 500 and 700 ° C. during primary recrystallization annealing was varied in the range of 10 to 300 ° C./s.
Next, after applying an annealing separator containing MgO as the main component to the steel sheet surface, secondary recrystallization annealing is performed at 1220 ° C for 50 hours, followed by application of phosphate-based insulation tension coating. Then, flattening annealing for the purpose of baking and flattening of the steel strip was performed to obtain a product, and a test piece under each condition was obtained.
図4に、一次再結晶焼鈍板の板厚中心層の対ランダム強度比({554}<225>強度、および{554}<225>強度の{111}<110>強度に対する比)に及ぼす一次再結晶焼鈍時における500〜700℃間の昇温速度の影響について調べた結果を示す。 FIG. 4 shows the primary effects on the ratio of the center thickness of the primary recrystallized annealing plate to the random strength ({554} <225> strength and the ratio of {554} <225> strength to {111} <110> strength). The result of having investigated about the influence of the temperature increase rate between 500-700 degreeC at the time of recrystallization annealing is shown.
図4に示したとおり、一次再結晶焼鈍時における500〜700℃間の昇温速度が低下するに伴って、一次再結晶焼鈍板の板厚中心層の{554}<225>強度が増加し、{554}<225>強度の{111}<110>強度に対する比も増加した。また、一次再結晶焼鈍の昇温速度を200℃/s以下にすることで{554}<225>強度比を12以上、かつ{554}<225>強度の{111}<110>強度に対する比を7以上とすることができた。 As shown in FIG. 4, the {554} <225> strength of the central thickness layer of the primary recrystallization annealed plate increases as the rate of temperature increase between 500 and 700 ° C. during the primary recrystallization anneal decreases. , {554} <225> strength to {111} <110> strength also increased. Further, by setting the temperature increase rate of primary recrystallization annealing to 200 ° C./s or less, the {554} <225> strength ratio is 12 or more, and the ratio of {554} <225> strength to {111} <110> strength. Was able to be 7 or more.
図5に、製品板の磁束密度(B8)に及ぼす一次再結晶焼鈍板の板厚中心層の対ランダム強度比({554}<225>強度、および{554}<225>強度の{111}<110>強度に対する比)の影響ついて調べた結果を示す。
同図に示されるとおり、一次再結晶焼鈍板の板厚中心層において{554}<225>強度比を12以上、かつ{554}<225>強度の{111}<110>強度に対する比を7以上とすることで、磁束密度(B8)≧1.93Tとなった。
FIG. 5 shows the {111} strength ratio ({554} <225> strength and {554} <225> strength) of the thickness center layer of the primary recrystallization annealed plate on the magnetic flux density (B 8 ) of the product plate. } <Ratio to <110> strength) The results of the investigation are shown.
As shown in the figure, the {554} <225> strength ratio is 12 or more and the ratio of {554} <225> strength to {111} <110> strength is 7 in the thickness center layer of the primary recrystallization annealed plate. with more became magnetic flux density (B 8) ≧ 1.93T.
以上の結果より、製品板の高磁束密度化には、熱延板焼鈍後の800〜200℃間の冷却速度を、素材C量およびSi量より算出される上限平均冷却速度RH以下に制御することで、最終冷延前における鋼板の時効指数AIを低減できること、つまり固溶C量を低減させることが重要であることが明らかとなった。
加えて、一次再結晶焼鈍の500〜700℃間の平均昇温速度を200℃/s以下に調整し、一次再結晶焼鈍板の板厚中心層において、{554}<225>強度比を12以上、かつ{554}<225>強度の{111}<110>強度に対する比を7以上とすることで、さらに高磁束密度化できることが明らかとなった。
From the above results, in order to increase the magnetic flux density of the product plate, the cooling rate between 800-200 ° C. after the hot-rolled sheet annealing is controlled to be lower than the upper limit average cooling rate RH calculated from the material C amount and the Si amount. By doing this, it became clear that the aging index AI of the steel sheet before the final cold rolling can be reduced, that is, it is important to reduce the amount of solute C.
In addition, the average temperature increase rate between 500 to 700 ° C. of primary recrystallization annealing is adjusted to 200 ° C./s or less, and the {554} <225> strength ratio is set to 12 in the thickness center layer of the primary recrystallization annealing plate. As described above, it is clear that the magnetic flux density can be further increased by setting the ratio of {554} <225> strength to {111} <110> strength to 7 or more.
最終冷間圧延前における鋼板の時効指数の低減、すなわち固溶C量の減少に伴い、一次再結晶焼鈍板の{554}<225>強度、および{554}<225>強度の{111}<110>強度に対する比が増加した理由については必ずしも明確ではないが、発明者らは以下のように考えている。
素材C量が低減すると、粒内の固溶C量が減少すると共に、粒界への炭化物の析出量が減少するため、粒界拘束力が低減し、その結果、冷間圧延時のせん断帯による局所変形領域が減少し、先鋭な冷間圧延集合組織が形成される。また、熱延板焼鈍後の800〜200℃間の冷却速度を、素材C量およびSi量より算出される上限平均冷却速度RH以下に制御することで、最終冷延前における鋼板の時効指数AIを効果的に低減させることができる結果、一次再結晶焼鈍において主方位である{554}<225>が先鋭化したものと考えられる。
As the aging index of the steel sheet decreases before the final cold rolling, that is, the amount of dissolved C decreases, the {554} <225> strength and {554} <225> strength {111} < The reason why the ratio of 110> intensity has increased is not necessarily clear, but the inventors consider as follows.
When the amount of material C is reduced, the amount of solid solution C in the grains is reduced and the amount of carbides precipitated at the grain boundaries is reduced, so that the grain boundary restraint force is reduced. As a result, the shear band during cold rolling is reduced. As a result, the local deformation region is reduced and a sharp cold-rolled texture is formed. Moreover, the aging index of the steel plate before the final cold rolling is controlled by controlling the cooling rate between 800-200 ° C. after the hot-rolled sheet annealing to the upper limit average cooling rate RH calculated from the material C amount and the Si amount. As a result of effectively reducing AI, it is considered that {554} <225>, which is the main orientation, is sharpened in the primary recrystallization annealing.
一次再結晶焼鈍の昇温速度を200℃/s以下に調整することにより、一次再結晶焼鈍板の{554}<225>強度、および{554}<225>強度の{111}<110>強度に対する比が増加した理由については必ずしも明確ではないが、発明者らは以下のように考えている。
一次再結晶焼鈍時には、圧延で蓄積されたエネルギーが各結晶方位で異なることから、蓄積エネルギーの高い方位から再結晶が開始することが知られている。一次再結晶焼鈍の昇温速度を増加させることはこの蓄積エネルギー差をなくす方向に作用し、一次再結晶集合組織はランダム化する方向であるため、本発明の技術思想とは逆の効果をもたらすことになる。よって、昇温速度は低速側が好ましく、本発明では、500〜700℃間における昇温速度が200℃/s以下であれば、良好な一次再結晶集合組織が形成されることが明らかとなった。より好ましくは、500〜700℃間を10℃/s以上100℃/s以下である。なお、昇温速度の下限については、連続焼鈍を想定して、短時間で一次再結晶が完了する速度が好ましく、この観点から10℃/sとした。
By adjusting the temperature increase rate of the primary recrystallization annealing to 200 ° C./s or less, the {554} <225> strength of the primary recrystallization annealing plate and the {111} <110> strength of the {554} <225> strength The reason why the ratio to the ratio has increased is not necessarily clear, but the inventors consider as follows.
At the time of primary recrystallization annealing, it is known that recrystallization starts from an orientation with high accumulated energy because energy accumulated by rolling differs in each crystal orientation. Increasing the rate of temperature increase in primary recrystallization annealing acts in the direction to eliminate this accumulated energy difference, and the primary recrystallization texture is in the direction of randomization, and therefore has the opposite effect to the technical idea of the present invention. It will be. Therefore, it is clear that the rate of temperature rise is preferably on the low speed side, and in the present invention, a good primary recrystallization texture is formed when the rate of temperature rise between 500 and 700 ° C. is 200 ° C./s or less. . More preferably, the temperature between 500 and 700 ° C. is 10 ° C./s or more and 100 ° C./s or less. The lower limit of the temperature increase rate is preferably a rate at which primary recrystallization is completed in a short time, assuming continuous annealing, and is 10 ° C./s from this viewpoint.
また、一次再結晶焼鈍板の{554}<225>強度および{554}<225>/{111}<110>強度比の増加に伴い二次再結晶焼鈍板(二次再結晶焼鈍後の鋼板)の磁束密度が向上した理由については必ずしも明確ではないが、発明者らは以下のように考えている。
非特許文献1にあるように、高エネルギー粒界説による二次再結晶理論に立脚すれば、方位差角が25°〜40°の粒界が高易動度である。つまり、ゴス方位に対して25°〜40°を有する一次再結晶集合組織を形成することで二次再結晶時に先鋭なゴス方位が選択されることになる。ゴス方位に対する方位差角は、{554}<225>については29.5°、{111}<110>については46.0°である。一方、ゴス方位からND//<110>を軸として20°回転した方位に対する方位差角は、{554}<225>については35.5°、{111}<110>については36.6°である。つまり、{111}<110>一次再結晶粒の存在は、二次再結晶核選択時にゴス方位からND//<110>を軸としてずれた方位粒の選択を促進することになり、製品板の磁気特性の劣化を引き起こす。よって、二次再結晶焼鈍板の高磁束密度化を達成するには、{554}<225>一次再結晶粒を増加させると共に、{111}<110>を減少させることが本質であると考えられる。
Further, as the {554} <225> strength and {554} <225> / {111} <110> strength ratio of the primary recrystallized annealed plate increases, the secondary recrystallized annealed plate (steel plate after secondary recrystallized anneal) The reason why the magnetic flux density is improved is not necessarily clear, but the inventors consider as follows.
As described in
一次再結晶焼鈍時には、圧延で蓄積されたエネルギーが各結晶方位で異なることから、蓄積エネルギーの高い方位から再結晶が開始することが知られている。一次再結晶焼鈍の昇温速度を増加させることはこの蓄積エネルギー差をなくす方向に働き、一次再結晶集合組織はランダム化する方向であるため、本発明の技術思想とは逆の効果をもたらすことになる。よって、昇温速度は低速側が好ましく、本発明では、500〜700℃間における昇温速度が200℃/s以下であれば、良好な一次再結晶集合組織が形成されることが明らかとなった。一方、昇温速度の下限については、連続焼鈍を想定して、短時間で一次再結晶が完了する速度が好ましく、この観点から10℃/sとした。 At the time of primary recrystallization annealing, it is known that recrystallization starts from an orientation with high accumulated energy because energy accumulated by rolling differs in each crystal orientation. Increasing the rate of temperature increase in primary recrystallization annealing works to eliminate this accumulated energy difference, and primary recrystallization texture is in the direction of randomization, and therefore has the opposite effect to the technical idea of the present invention. become. Therefore, it is clear that the rate of temperature rise is preferably on the low speed side, and in the present invention, a good primary recrystallization texture is formed when the rate of temperature rise between 500 and 700 ° C. is 200 ° C./s or less. . On the other hand, the lower limit of the rate of temperature rise is preferably a rate at which primary recrystallization is completed in a short time assuming continuous annealing, and is 10 ° C./s from this viewpoint.
また、sol.Alが0.01%未満の成分系において、窒化により特性のバラツキが抑制され、さらに良好な磁気特性が発現した理由については、必ずしも明確ではないが、以下のように考えている。
すなわち、従来のAlNの粒内析出型インヒビターに対し、本発明では方向性電磁鋼板で一般に数%程度含有される珪素を途中工程での窒化処理により窒化珪素(Si3N4)として析出させ、インヒビターとして利用することで、窒化物形成元素(Al、Ti、Cr、V等)の多寡によらず同等の粒成長抑制力が得られている。窒化珪素は、AlN中にSiが固溶した(Al, Si)Nとは異なり、鋼の結晶格子との整合性が悪く、また共有結合性の複雑な結晶構造を有するため、粒内に微細に析出させることは極めて困難であることが知られており、本発明鋼においても粒界に選択的に粗大析出している。また、従来のAlNの粒内析出型に対して、多量に含有している珪素を利用した本発明鋼では析出量自体も増大しており、全長全厚において均一なインヒビション効果を付与でき、特性バラツキが抑制されるものと考えられる。
Moreover, in the component system having a sol.Al content of less than 0.01%, the variation in characteristics is suppressed by nitriding, and the reason why even better magnetic characteristics are manifested is not necessarily clear, but is considered as follows.
That is, in contrast to the conventional intragranular precipitation type inhibitor of AlN, in the present invention, silicon generally contained in the grain-oriented electrical steel sheet by about several percent is precipitated as silicon nitride (Si 3 N 4 ) by nitriding in an intermediate step, By using it as an inhibitor, the same grain growth inhibiting power is obtained regardless of the number of nitride-forming elements (Al, Ti, Cr, V, etc.). Silicon nitride, unlike (Al, Si) N, in which Si is dissolved in AlN, has poor consistency with the crystal lattice of steel and has a complex crystal structure with covalent bonds, so it is fine in the grains. It is known that it is extremely difficult to precipitate in the steel, and the steel according to the present invention also selectively precipitates at the grain boundaries. Moreover, compared with the conventional intragranular precipitation type of AlN, the amount of precipitation in the steel of the present invention using a large amount of silicon is also increased, and a uniform inhibition effect can be imparted over the entire length. It is considered that the characteristic variation is suppressed.
以下、素材である鋼スラブの成分組成について説明する。
C:0.0005%以上0.005%以下
Cは、本発明における特徴の1つである。前述したとおり、特性の向上および脱炭焼鈍の省略等の観点からからは、C量は低ければ低いほど好ましいので、0.005%以下に限定した。一方、成分調整時の脱炭負荷増大によるコストアップおよび現代における精錬技術を考慮し、現実的な含有量として0.0005%を下限とした。ただし、0.005%を超える場合も、最終冷間圧延前に析出処理、具体的には100〜500℃で長時間焼鈍したのち、炉冷程度の徐冷を施すことで固溶C量を低減することができれば、本発明と同等の効果を発揮することもできる。
Hereinafter, the component composition of the steel slab which is a raw material will be described.
C: 0.0005% or more and 0.005% or less C is one of the characteristics in the present invention. As described above, from the viewpoint of improving the characteristics and omitting decarburization annealing, the lower the amount of C, the better. Therefore, the amount is limited to 0.005% or less. On the other hand, considering the cost increase due to the increased decarburization load at the time of component adjustment and modern refining technology, the practical content was set to 0.0005% as the lower limit. However, even when it exceeds 0.005%, after the precipitation treatment before the final cold rolling, specifically, annealing at 100 to 500 ° C. for a long time, the amount of solid solution C is reduced by performing slow cooling about the furnace cooling. If possible, the same effect as the present invention can be exhibited.
Si:2.0%以上4.5%以下
Siは、鋼の電気抵抗を増大させ、鉄損の一部を構成する渦電流損を低減するのに極めて有効な元素である。鋼板に、Siを添加していった場合、含有量が11%までは、電気抵抗が単調に増加するものの、含有量が4.5%を超えたところで、加工性が著しく低下する。一方、含有量が2.0%未満では、電気抵抗が小さくなり良好な鉄損特性を得ることができない。そのため、Si量は2.0%以上4.5%以下とした。
Si: 2.0% to 4.5%
Si is an extremely effective element for increasing the electrical resistance of steel and reducing eddy current loss that constitutes a part of iron loss. When Si is added to the steel sheet, the electrical resistance increases monotonously up to a content of 11%, but the workability is significantly reduced when the content exceeds 4.5%. On the other hand, if the content is less than 2.0%, the electric resistance becomes small and good iron loss characteristics cannot be obtained. Therefore, the Si content is set to 2.0% to 4.5%.
Mn:0.005%以上0.3%以下
Mnは、SやSeと結合してMnSやMnSeを形成し、これらのMnSやMnSeが二次再結晶焼鈍の昇温過程において正常粒成長を抑制するインヒビターとして作用する。しかしながら、Mn量が0.005%に満たないと、インヒビターの絶対量が不足するために、正常粒成長の抑制力不足となる。一方、Mn量が0.3%を超えると、熱延前のスラブ加熱過程において、Mnを完全固溶させるためには高温でのスラブ加熱が必要となるだけでなく、インヒビターが粗大析出してしまうために、正常粒成長の抑制力が低下する。そのため、Mn量は0.005%以上0.3%以下とした。
Mn: 0.005% to 0.3%
Mn combines with S and Se to form MnS and MnSe, and these MnS and MnSe act as an inhibitor that suppresses the growth of normal grains in the temperature rising process of secondary recrystallization annealing. However, if the amount of Mn is less than 0.005%, the absolute amount of the inhibitor is insufficient, so that the ability to suppress normal grain growth is insufficient. On the other hand, if the amount of Mn exceeds 0.3%, in order to completely dissolve Mn in the slab heating process before hot rolling, not only slab heating at high temperature is required, but also the inhibitor precipitates coarsely. In addition, the ability to suppress normal grain growth is reduced. Therefore, the Mn content is set to 0.005% or more and 0.3% or less.
Sおよび/またはSe(合計):0.05%以下
SおよびSeは、Mnと結合してインヒビターを形成するが、1種または2種の合計含有量が0.001%未満では、微量インヒビターとしての絶対量が不足し、正常粒成長の抑制力不足となるので、SやSeは0.001%以上含有させることが好ましい。一方、含有量が0.05%を超えると、二次再結晶焼鈍において、脱S、脱Seが不完全となるため、鉄損劣化を引き起こす。そのため、SおよびSeのうちから選んだ1種または2種は、合計量で0.05%以下とした。なお、SやSeの添加効果をより効果的に発揮させるためには0.01%以上とすることが好ましい。
S and / or Se (total): 0.05% or less S and Se combine with Mn to form an inhibitor, but if the total content of one or two species is less than 0.001%, the absolute amount as a trace inhibitor is S and Se are preferably contained in an amount of 0.001% or more because they are insufficient and the suppression of normal grain growth is insufficient. On the other hand, if the content exceeds 0.05%, de-S and De-Se are incomplete in secondary recrystallization annealing, which causes iron loss deterioration. Therefore, the total amount of one or two selected from S and Se is 0.05% or less. In addition, in order to exhibit the addition effect of S and Se more effectively, it is preferable to set it as 0.01% or more.
sol.Al:0.010%未満
Alは、表面に緻密な酸化膜を形成し、窒化の際にその窒化量の制御を困難にしたり、脱炭も阻害することがあるため、Alはsol.Al量で0.010%未満に抑制する。但し、酸素親和力の高いAlは、製鋼で微量添加することにより鋼中の溶存酸素量を低減し、特性劣化につながる酸化物系介在物の低減などを見込めるので、この観点からはsol.Alを0.003%以上含有させることが好ましく、これにより磁気特性の劣化を抑制することができる。
sol.Al: less than 0.010%
Al forms a dense oxide film on the surface, making it difficult to control the amount of nitridation during nitridation or inhibiting decarburization. Therefore, Al is suppressed to less than 0.010% in terms of sol.Al. . However, Al, which has a high oxygen affinity, can reduce the amount of dissolved oxygen in the steel by adding a small amount in steelmaking and reduce oxide inclusions that lead to deterioration of properties. It is preferable to contain 0.003% or more, and this can suppress deterioration of magnetic characteristics.
N:(14.00/26.98)×[%sol.Al]以上、0.008%以下
本発明では、窒化珪素を析出させることが特徴であるため、含有するAl量に対してAlNとして析出するN以上のNを事前に含有させておくことが肝要である。AlNはそれぞれ1:1で結合しているため、原子量比で1以上のN、すなわちAl含有量[%sol.Al]に対し(14.00/26.98)以上のNを含有させておくことで、鋼中に含まれる微量Nを窒化珪素として析出させることができる。一方で、Nは、スラブ加熱時にフクレなどの欠陥の原因となることもあるため、0.008%以下に抑制する必要がある。望ましくは0.006%以下である。
N: (14.00 / 26.98) × [% sol.Al] or more and 0.008% or less In the present invention, silicon nitride is precipitated, and therefore, N or more N deposited as AlN with respect to the amount of Al contained. It is important to contain in advance. Since AlN is bonded at a ratio of 1: 1, by adding N of 1 or more in atomic weight ratio, that is, (14.00 / 26.98) or more to Al content [% sol.Al], steel is contained. The trace amount N contained therein can be deposited as silicon nitride. On the other hand, since N may cause defects such as blisters during slab heating, it is necessary to suppress N to 0.008% or less. Desirably, it is 0.006% or less.
以上、本発明の基本成分について説明したが、本発明では、その他にも必要に応じて、以下に示す元素を適宜含有させることができる。
Ni:0.005%以上1.5%以下
Niは、オーステナイト生成元素であるため、オーステナイト変態を利用することで熱延板組織を改善し、磁気特性を向上させる上で有用な元素である。しかしながら、含有量が0.005%未満では、磁気特性の向上効果が小さく、一方含有量が1.5%超では、加工性が低下するため通板性が悪くなるほか、二次再結晶が不安定となり磁気特性が劣化するので、Niは0.005〜1.5%の範囲とした。
The basic components of the present invention have been described above. However, in the present invention, the following elements can be appropriately contained as necessary.
Ni: 0.005% to 1.5%
Since Ni is an austenite-forming element, Ni is a useful element for improving the hot rolled sheet structure and improving magnetic properties by utilizing the austenite transformation. However, if the content is less than 0.005%, the effect of improving the magnetic properties is small. On the other hand, if the content is more than 1.5%, the workability deteriorates and the plateability deteriorates, and the secondary recrystallization becomes unstable and magnetic. Since the characteristics deteriorate, Ni is set in the range of 0.005 to 1.5%.
Sn:0.005%以上0.50%以下、Sb:0.005%以上0.50%以下、Cu:0.005%以上1.5%以下、Cr:0.005%以上0.10%以下、P:0.005%以上0.50%以下およびMo:0.005%以上0.50%
以下
Sn、Sb、Cu、Cr、PおよびMoはいずれも、磁気特性向上に有用な元素であるが、それぞれの含有量が上記範囲の下限値に満たないと、磁気特性の改善効果が乏しく、一方それぞれの含有量が上記範囲の上限値を超えると、二次再結晶が不安定になり磁気特性の劣化を招く。従って、Snは0.005%以上0.50%以下、Sbは0.005%以上0.50%以下、Cuは0.005%以上1.5%以下、Crは0.005%以上0.10%以下、Pは0.005%以上0.50%以下およびMoは0.005%以上0.50%以下の範囲でそれぞれ含有させることにした。
Sn: 0.005% to 0.50%, Sb: 0.005% to 0.50%, Cu: 0.005% to 1.5%, Cr: 0.005% to 0.10%, P: 0.005% to 0.50% and Mo: 0.005% or more 0.50%
Less than
Sn, Sb, Cu, Cr, P and Mo are all useful elements for improving the magnetic properties. However, if the respective contents are less than the lower limit of the above range, the effect of improving the magnetic properties is poor. When the respective contents exceed the upper limit of the above range, secondary recrystallization becomes unstable, leading to deterioration of magnetic properties. Therefore, Sn is 0.005% to 0.50%, Sb is 0.005% to 0.50%, Cu is 0.005% to 1.5%, Cr is 0.005% to 0.10%, P is 0.005% to 0.50%, and Mo is 0.005. % To 0.50% or less, respectively.
Ti:0.001%以上0.1%以下、Nb:0.001%以上0.1%以下およびV:0.001%以上0.1%以下
Ti、NbおよびVはいずれも、炭化物および窒化物として析出し、固溶CおよびNの低減に有効な元素であるが、それぞれの含有量が上記範囲の下限値に満たないと、磁気特性改善効果が乏しく、一方それぞれの含有量が上記範囲の上限値を超えると、製品板に残存した当該元素から成る析出物が鉄損の劣化を引き起こす。従って、Tiは0.001%以上0.1%以下、Nbは0.001%以上0.1%以下およびVは0.001%以上0.1%以下の範囲でそれぞれ含有させることにした。
Ti: 0.001% to 0.1%, Nb: 0.001% to 0.1% and V: 0.001% to 0.1%
Ti, Nb, and V are all elements that precipitate as carbides and nitrides and are effective in reducing solid solution C and N. However, if the respective contents are less than the lower limit of the above range, the magnetic properties are improved. On the other hand, if the respective contents exceed the upper limit of the above range, precipitates composed of the elements remaining on the product plate cause deterioration of iron loss. Accordingly, Ti is contained in the range of 0.001% to 0.1%, Nb is contained in the range of 0.001% to 0.1%, and V is contained in the range of 0.001% to 0.1%.
次に、本発明の製造方法について説明する。
上記の成分組成を有する鋼スラブを、スラブ加熱後、熱間圧延を行う。スラブ加熱温度は1200℃以下とする。スラブ加熱温度の低温化に伴い、スラブ粒径の微細化および熱間圧延時の蓄積ひずみ量が増大するため、熱延板組織の微細化に有効となるためである。
Next, the manufacturing method of this invention is demonstrated.
The steel slab having the above component composition is hot-rolled after slab heating. Slab heating temperature shall be 1200 ℃ or less. This is because as the slab heating temperature is lowered, the slab particle size is refined and the amount of accumulated strain during hot rolling increases, which is effective for refinement of the hot-rolled sheet structure.
熱間圧延後、必要であれば、熱延板焼鈍することで熱延板組織の改善を行う。この時の熱延板焼鈍は、均熱温度:800℃以上1200℃以下、均熱時間:2s以上300s以下の条件で行うことが好ましい。
熱延板焼鈍の均熱温度が800℃未満では、熱延板組織の改善が完全ではなく、未再結晶部が残存するため、所望の組織を得ることができないおそれがある。一方、均熱温度が1200℃超では、AlN、MnSeおよびMnSの溶解が進行し、二次再結晶過程でインヒビターの抑制力が不足して、二次再結晶しなくなる結果、磁気特性の劣化を引き起こすこととなる。従って、熱延板焼鈍の均熱温度は800℃以上1200℃以下とすることが好ましい。
また、均熱時間を2sに満たないと、高温保持時間が短いために、未再結晶部が残存し、所望の組織を得ることができなくなるおそれがある。一方、均熱時間が300sを超えると、AlN、MnSeおよびMnSの溶解が進行し、微量インヒビターの効果が弱まり、窒化処理前組織の不均質化が進行する結果、二次再結晶焼鈍板の磁気特性が劣化する。従って、熱延板焼鈍の均熱時間は2s以上300s以下とすることが好ましい。
After hot rolling, if necessary, the hot rolled sheet structure is improved by annealing the rolled sheet. The hot-rolled sheet annealing at this time is preferably performed under conditions of a soaking temperature: 800 ° C. or more and 1200 ° C. or less, and a soaking time: 2 s or more and 300 s or less.
If the soaking temperature of hot-rolled sheet annealing is less than 800 ° C., the improvement of the hot-rolled sheet structure is not complete, and an unrecrystallized portion remains, so that a desired structure may not be obtained. On the other hand, when the soaking temperature exceeds 1200 ° C, the dissolution of AlN, MnSe and MnS proceeds, the inhibitor repressing power is insufficient in the secondary recrystallization process, and the secondary recrystallization does not occur, resulting in deterioration of magnetic properties. Will cause. Therefore, it is preferable that the soaking temperature of the hot-rolled sheet annealing is 800 ° C. or more and 1200 ° C. or less.
Further, if the soaking time is less than 2 s, the high temperature holding time is short, and thus there is a possibility that an unrecrystallized portion remains and a desired structure cannot be obtained. On the other hand, when the soaking time exceeds 300 s, the dissolution of AlN, MnSe, and MnS proceeds, the effect of trace inhibitors weakens, and the heterogeneity of the structure before nitriding progresses, resulting in the magnetic properties of the secondary recrystallization annealed plate. Characteristics deteriorate. Accordingly, the soaking time for hot-rolled sheet annealing is preferably 2 s or more and 300 s or less.
後述の中間焼鈍を行わない場合、熱延板焼鈍後の冷却処理は、本発明の特徴の一つであり、前述した実験のとおり、熱延板焼鈍後の800〜200℃間の冷却速度を、素材C量およびSi量より算出される上限平均冷却速度RH以下に制御することで、最終冷間圧延前の鋼板の時効指数AIを70MPa以下まで低減することができ、これにより良好な磁気特性を得ることができる。
なお、冷却時における平均冷却速度を制御すべき温度域を800〜200℃間としたのは、この温度域が炭化物(Fe3C,ε-カーバイド等)や窒化物(AlN,Si3N4等)の析出温度域だからであり、この温度域における平均冷却速度を調整することによって、CやNの固溶を効果的に低減できるからである。
When the intermediate annealing described later is not performed, the cooling treatment after the hot-rolled sheet annealing is one of the features of the present invention, and as described above, the cooling rate between 800 to 200 ° C. after the hot-rolled sheet annealing is set. In addition, by controlling the upper limit average cooling rate RH or less calculated from the material C amount and the Si amount, the aging index AI of the steel plate before the final cold rolling can be reduced to 70 MPa or less. Characteristics can be obtained.
The temperature range where the average cooling rate during cooling should be controlled between 800-200 ° C. is because this temperature range is carbide (Fe 3 C, ε-carbide, etc.) or nitride (AlN, Si 3 N 4). This is because the solid solution of C and N can be effectively reduced by adjusting the average cooling rate in this temperature range.
本発明では、最終冷間圧延前の固溶C量を低減することが重要であるので、熱延板焼鈍を施さず、かつ1回の冷間圧延によって最終板厚まで圧延する(すなわち中間焼鈍を行わない)場合には、熱延板の固溶C量の低減が重要となる。すなわち、この場合、熱間圧延後の800〜200℃間の平均冷却速度R(℃/s)を素材C量およびSi量により算出される上限平均冷却速度RH以下に制御すればよい。 In the present invention, since it is important to reduce the amount of solute C before the final cold rolling, hot rolling is not performed, and rolling is performed to the final thickness by one cold rolling (that is, intermediate annealing). In the case of not performing (3), it is important to reduce the amount of solute C in the hot rolled sheet. That is, in this case, the average cooling rate R (° C./s) between 800 to 200 ° C. after hot rolling may be controlled to be equal to or lower than the upper limit average cooling rate RH calculated by the material C amount and the Si amount.
本発明では、熱延板焼鈍を行わず、鋼板を、中間焼鈍を挟む2回以上の冷間圧延によって最終板厚まで圧延してもよい。この場合、中間焼鈍は、熱延板焼鈍と同じ思想で、均熱温度:800℃以上1200℃以下、均熱時間:2s以上300s以下とすることが好ましい。また、この場合も、中間焼鈍後の800〜200℃間の冷却速度を、素材C量およびSi量より算出される上限平均冷却速度RH以下とすることで、最終冷間圧延前の鋼板の時効指数AIを70MPa以下まで低減することができ、これにより良好な磁気特性を得ることができる。 In the present invention, the hot-rolled sheet annealing is not performed, and the steel sheet may be rolled to the final sheet thickness by two or more cold rollings that sandwich the intermediate annealing. In this case, the intermediate annealing is preferably performed at a soaking temperature of 800 ° C. or more and 1200 ° C. or less and a soaking time of 2 s or more and 300 s or less based on the same idea as hot-rolled sheet annealing. Also in this case, the cooling rate between 800 and 200 ° C. after the intermediate annealing is set to the upper limit average cooling rate RH calculated from the material C amount and the Si amount, so that the steel sheet before the final cold rolling The aging index AI can be reduced to 70 MPa or less, whereby good magnetic properties can be obtained.
このように本発明では、中間焼鈍を行う場合には中間焼鈍後の800〜200℃間の冷却速度を、中間焼鈍を行わず熱延板焼鈍を行う場合には熱延板焼鈍後の800〜200℃間の冷却速度を、中間焼鈍も熱延板焼鈍も行わない場合には熱間圧延後の800〜200℃間の平均冷却速度を、素材C量およびSi量より算出される上限平均冷却速度RH以下とする。すなわち、最終冷間圧延の直前の加熱工程の800〜200℃間の平均冷却速度を制御することが肝要である。 As described above, in the present invention, when performing the intermediate annealing, the cooling rate between 800 to 200 ° C. after the intermediate annealing is set, and when performing the hot-rolled sheet annealing without performing the intermediate annealing, the cooling rate between 800 to 200 after the hot-rolled sheet annealing is performed. Cooling rate between 200 ° C, if neither intermediate annealing nor hot-rolled sheet annealing is performed, the average cooling rate between 800-200 ° C after hot rolling is the upper limit average cooling calculated from material C amount and Si amount The speed is RH or less. That is, it is important to control the average cooling rate between 800 and 200 ° C. in the heating process immediately before the final cold rolling.
冷間圧延については、最終冷間圧延における圧下率を80%以上95%以下とすることで、より良好な一次再結晶焼鈍板集合組織を得ることができる。 For cold rolling, a better primary recrystallized annealed plate texture can be obtained by setting the reduction ratio in the final cold rolling to 80% or more and 95% or less.
上記の冷間圧延後、好ましくは均熱温度:700℃以上1000℃以下で一次再結晶焼鈍を施す。また、この一次再結晶焼鈍は、例えば湿水素雰囲気中で行えば、鋼板の脱炭も兼ねさせることができる。
ここに、一次再結晶焼鈍における均熱温度が700℃未満では、未再結晶部が残存し、所望の組織を得ることができないおそれがある。一方、均熱温度が1000℃超では、ゴス方位粒の二次再結晶が起こってしまう可能性がある。従って、一次再結晶焼鈍における均熱温度は700℃以上1000℃以下とすることが好ましい。
After the cold rolling, primary recrystallization annealing is preferably performed at a soaking temperature of 700 ° C. or higher and 1000 ° C. or lower. Moreover, if this primary recrystallization annealing is performed, for example in a wet hydrogen atmosphere, it can also serve as the decarburization of a steel plate.
Here, if the soaking temperature in the primary recrystallization annealing is less than 700 ° C., there is a possibility that unrecrystallized portions remain and a desired structure cannot be obtained. On the other hand, when the soaking temperature exceeds 1000 ° C., secondary recrystallization of goth-oriented grains may occur. Therefore, the soaking temperature in the primary recrystallization annealing is preferably 700 ° C. or higher and 1000 ° C. or lower.
そして、一次再結晶焼鈍の昇温速度については、前述した実験のとおり、500〜700℃間を10℃/s以上200℃/s以下とすることで、より良好な磁気特性を得ることができる。好ましくは、500〜700℃間を10℃/s以上100℃/s以下の低昇温速度側である。
ここに、昇温速度調整を行うべき温度域を500〜700℃間としたのは、この温度域が再結晶粒が核発生する温度域だからである。
And about the temperature increase rate of primary recrystallization annealing, as above-mentioned experiment, a more favorable magnetic characteristic can be acquired by making between 500-700 degreeC into 10 degrees C / s or more and 200 degrees C / s or less. . Preferably, the temperature is between 500 and 700 ° C. on the low temperature increase rate side of 10 ° C./s to 100 ° C./s.
The reason why the temperature range for adjusting the heating rate is 500 to 700 ° C. is that this temperature range is a temperature range in which recrystallized grains are nucleated.
さらに、本発明では、一次再結晶焼鈍から二次再結晶焼鈍までのいずれかの段階で追加インヒビター処理として窒化処理を適用することができる。この窒化処理は、一次再結晶焼鈍後、アンモニア雰囲気中で熱処理を行うガス窒化や、塩浴中で熱処理を行う塩浴窒化、さらにはプラズマ窒化や、窒化物を焼鈍分離剤中に含有させたり、二次再結晶焼鈍雰囲気を窒化雰囲気とするなどの公知の技術が適用できる。 Furthermore, in the present invention, a nitriding treatment can be applied as an additional inhibitor treatment at any stage from the primary recrystallization annealing to the secondary recrystallization annealing. This nitriding treatment includes gas nitriding in which heat treatment is performed in an ammonia atmosphere after primary recrystallization annealing, salt bath nitriding in which heat treatment is performed in a salt bath, plasma nitriding, and nitride containing an annealing separator. Well-known techniques such as making the secondary recrystallization annealing atmosphere a nitriding atmosphere can be applied.
その後、必要であれば鋼板表面にMgOを主成分とする焼鈍分離剤を塗布したのち、二次再結晶焼鈍を行う。本発明においては、追加インヒビター処理として、焼鈍分離剤中に硫化物や硫酸塩、セレン化物およびセレン酸塩のうちから選んだ一種または二種以上を添加することができる。当該添加物は二次再結晶焼鈍中に分解したのち、鋼中に浸硫、浸セレンし、インヒビション効果をもたらす。二次再結晶焼鈍の焼鈍条件についても、特に制限はなく、従来公知の焼鈍条件で行えば良い。なお、この時の焼鈍雰囲気を水素雰囲気とすると、純化焼鈍も兼ねることができる。その後、絶縁被膜塗布工程および平坦化焼鈍工程を経て、所望の方向性電磁鋼板を得る。この時の絶縁被膜塗布工程および平坦化焼鈍工程の製造条件についても、特段の規定はなく、常法に従えば良い。 Thereafter, if necessary, after applying an annealing separator mainly composed of MgO to the steel sheet surface, secondary recrystallization annealing is performed. In the present invention, as an additional inhibitor treatment, one or more selected from sulfides, sulfates, selenides, and selenates can be added to the annealing separator. The additive decomposes during the secondary recrystallization annealing and then sulphides and selenium in the steel, resulting in an inhibition effect. There is no restriction | limiting in particular also about the annealing conditions of secondary recrystallization annealing, What is necessary is just to perform on conventionally well-known annealing conditions. If the annealing atmosphere at this time is a hydrogen atmosphere, it can also serve as a purification annealing. Then, a desired grain-oriented electrical steel sheet is obtained through an insulating coating application process and a planarization annealing process. There are no special rules for the manufacturing conditions of the insulating coating application step and the planarization annealing step at this time, and it is sufficient to follow a conventional method.
上記の条件を満たして製造された方向性電磁鋼板は、二次再結晶後に極めて高い磁束密度を有し、併せて低い鉄損特性を有する。ここに、高い磁束密度を有するということは二次再結晶過程においてジャストゴス近傍の方位のみが優先成長したことを示している。ジャストゴス近傍になるほど、二次再結晶粒の成長速度は増大することが知られていることから、高磁束密度化するということは潜在的に二次再結晶粒径が粗大化することを示しており、ヒステリシス損低減の観点からは有利であるが、渦電流損低減の観点からは不利となる。 The grain-oriented electrical steel sheet produced by satisfying the above conditions has a very high magnetic flux density after secondary recrystallization, and also has low iron loss characteristics. Here, having a high magnetic flux density indicates that only the orientation in the vicinity of Justgoth preferentially grew in the secondary recrystallization process. Since it is known that the growth rate of secondary recrystallized grains increases near the Justgos, increasing the magnetic flux density indicates that the secondary recrystallized grain size is potentially coarsened. This is advantageous from the viewpoint of reducing hysteresis loss, but disadvantageous from the viewpoint of reducing eddy current loss.
従って、このような本技術における鉄損低減という最終目標に対しての相反する事象を解決するために、磁区細分化処理を施すことが好ましい。本技術に適切な磁区細分化処理を施すことで、二次再結晶粒径粗大化により不利となっていた渦電流損が低減し、ヒステリシス損の低減と併せて、極めて低い鉄損特性を得ることができる。
磁区細分化処理としては、公知の全ての耐熱型または非耐熱型の磁区細分化処理が適用できるが、二次再結晶焼鈍後の鋼板表面に電子ビームまたはレーザーを照射する方法を用いれば、鋼板板厚内部まで磁区細分化効果を浸透させることができるので、エッチング法などの他の磁区細分化処理よりも極めて低い鉄損特性を得ることができる。
Therefore, in order to solve such a conflicting phenomenon with respect to the final goal of iron loss reduction in the present technology, it is preferable to perform magnetic domain subdivision processing. Appropriate magnetic domain refinement treatment for this technology reduces eddy current loss that was disadvantageous due to coarsening of the secondary recrystallization grain size, and at the same time reduces hysteresis loss to obtain extremely low iron loss characteristics be able to.
As the magnetic domain refinement treatment, all known heat-resistant or non-heat-resistant magnetic domain refinement treatments can be applied, but if a method of irradiating the surface of the steel sheet after secondary recrystallization annealing with an electron beam or a laser is used, the steel sheet Since the magnetic domain refinement effect can be penetrated to the inside of the plate thickness, iron loss characteristics that are extremely lower than those of other magnetic domain refinement processes such as an etching method can be obtained.
(実施例1)
表1に示す成分組成からなる鋼スラブを、1150℃に加熱したのち、2.3mm厚まで熱間圧延した。ついで、1020℃で60sの熱延板焼鈍後、800〜200℃間を平均冷却速度:30℃/sで冷却したのち、0.23mm厚まで冷間圧延してから、820℃で10sの一次再結晶焼鈍を施した。この一次再結晶焼鈍時における500〜700℃間の昇温速度は20℃/sとした。
ついで、鋼板表面にMgOを主成分とする焼鈍分離剤を塗布してから、1180℃で50時間の純化焼鈍を兼ねた二次再結晶焼鈍を行い、引き続きリン酸塩系の絶縁張力コーティングの塗布、焼付けと鋼帯の平坦化を目的とする平坦化焼鈍を施して製品とした。
かくして得られた製品板の磁気特性について調べた結果を、表1に併記する。また、表1には、最終冷間圧延前鋼板、すなわち熱延板焼鈍板の時効指数AIおよび一次再結晶焼鈍後の板厚中心層の集合組織について調べた結果も併せて示す。
Example 1
A steel slab having the composition shown in Table 1 was heated to 1150 ° C. and then hot-rolled to a thickness of 2.3 mm. Next, after annealing at 1020 ° C for 60s, after cooling at 800-200 ° C at an average cooling rate of 30 ° C / s, cold rolling to 0.23mm thickness, and then re-priming for 10s at 820 ° C Crystal annealing was performed. The temperature rising rate between 500-700 ° C. during the primary recrystallization annealing was 20 ° C./s.
Next, after applying an annealing separator containing MgO as the main component to the steel sheet surface, secondary recrystallization annealing is performed at 1180 ° C for 50 hours, followed by application of phosphate-based insulation tension coating. The product was subjected to flattening annealing for the purpose of baking and flattening of the steel strip.
The results of examining the magnetic properties of the product plate thus obtained are also shown in Table 1. Table 1 also shows the results of examining the aging index AI of the steel sheet before the final cold rolling, that is, the hot-rolled sheet annealed sheet, and the texture of the sheet thickness center layer after the primary recrystallization annealing.
表1に示したように、最終冷間圧延前の鋼板、すなわち熱延板焼鈍板の時効指数AIを70MPa以下とし、一次再結晶焼鈍板の板厚中心層の集合組織について、ランダム強度比で{554}<225>強度≧12で、かつ{554}<225>強度/{111}<110>強度≧7とすることで、二次再結晶焼鈍板の磁束密度B8≧1.92Tを達成することができた。 As shown in Table 1, the aging index AI of the steel sheet before the final cold rolling, that is, the hot-rolled sheet annealed sheet, is set to 70 MPa or less, and the texture of the thickness center layer of the primary recrystallized annealed sheet is expressed as a random strength ratio. By setting {554} <225> strength ≧ 12 and {554} <225> strength / {111} <110> strength ≧ 7, the magnetic flux density B 8 ≧ 1.92T of the secondary recrystallization annealed plate is achieved. We were able to.
(実施例2)
表1中、No.2および、No.4の鋼スラブを、1150℃に加熱したのち、表2に示す種々の厚みまで熱間圧延した。ついで、1020℃で60sの熱延板焼鈍後、800〜200℃間を平均冷却速度:10℃/sで冷却したのち、0.20mm厚まで冷間圧延してから、820℃で120sの一次再結晶焼鈍を施した。この一次再結晶焼鈍時における500〜700℃間の昇温速度は40℃/sとした。
ついで、鋼板表面にMgOおよびMgO:100質量部に対して10質量部のMgSO4を添加した焼鈍分離剤を塗布してから、1180℃で50時間の純化焼鈍を兼ねた二次再結晶焼鈍を行い、引き続きリン酸塩系の絶縁張力コーティングの塗布、焼付けと鋼帯の平坦化を目的とする平坦化焼鈍を施して製品とした。
かくして得られた製品板の磁気特性について調べた結果を、表2に併記する。また、表2には、熱延板焼鈍板の時効指数AIおよび一次再結晶焼鈍後の板厚中心層の集合組織について調べた結果も併せて示す。
(Example 2)
In Table 1, No. 2 and No. 4 steel slabs were heated to 1150 ° C. and then hot-rolled to various thicknesses shown in Table 2. Next, after annealing the hot rolled sheet at 1020 ° C for 60s, after cooling at 800 ° C to 200 ° C at an average cooling rate of 10 ° C / s, cold rolling to 0.20mm thickness, and then re-priming at 820 ° C for 120s Crystal annealing was performed. The heating rate between 500 and 700 ° C. during the primary recrystallization annealing was 40 ° C./s.
Next, after applying an annealing separator containing 10 parts by mass of MgSO 4 to 100 parts by mass of MgO and MgO on the surface of the steel sheet, secondary recrystallization annealing is performed at 1180 ° C. for 50 hours. Subsequently, the product was subjected to flattening annealing for the purpose of applying a phosphate insulating tension coating, baking and flattening the steel strip.
The results of examining the magnetic properties of the product plate thus obtained are also shown in Table 2. Table 2 also shows the results of examining the aging index AI of the hot-rolled sheet annealed sheet and the texture of the sheet thickness center layer after the primary recrystallization annealing.
表2に示したように、最終冷間圧延前の鋼板すなわち熱延板焼鈍板のAI値を70MPa以下とし、一次再結晶焼鈍板の板厚中心層の集合組織について、ランダム強度比で{554}<225>強度≧12、かつ{554}<225>強度/{111}<110>強度≧7とすることで、二次再結晶焼鈍板の磁束密度B8≧1.95Tを達成することができた。さらに、最終冷延圧下率の増加に伴い、一次再結晶焼鈍板の板厚中心層の{554}<225>強度のみならず、{554}<225>強度/{111}<110>強度の比が顕著に増加し、二次再結晶焼鈍板の磁束密度B8も比較材に対して顕著に増加した。 As shown in Table 2, the AI value of the steel sheet before the final cold rolling, that is, the hot-rolled sheet annealed sheet, is set to 70 MPa or less, and the texture of the center thickness layer of the primary recrystallized annealed sheet is expressed as a random strength ratio {554 } <225> strength ≧ 12 and {554} <225> strength / {111} <110> strength ≧ 7 can achieve the magnetic flux density B 8 ≧ 1.95T of the secondary recrystallization annealed plate. did it. Furthermore, as the final cold rolling reduction increases, not only the {554} <225> strength of the thickness center layer of the primary recrystallization annealed plate but also the {554} <225> strength / {111} <110> strength. The ratio increased significantly, and the magnetic flux density B 8 of the secondary recrystallization annealed plate also increased significantly with respect to the comparative material.
(実施例3)
表3に示す種々の成分組成からなる鋼スラブを、1100℃に加熱したのち、3.0mm厚まで熱間圧延した。ついで、1回目の冷間圧延により2.3mmの中間厚まで圧延したのち、900℃で60sの中間焼鈍後、800〜200℃間を平均冷却速度:40℃/sで冷却し、ついで2回目の冷間圧延により0.23mmの最終厚みとしたのち、820℃で20sの一次再結晶焼鈍を施した。この一次再結晶焼鈍時における500〜700℃間の昇温速度は15℃/sとした。
その後、シアン酸塩浴中で600℃で3分の窒化処理を施した。窒化処理後の鋼板の窒素量を、表4に示す。ついで、鋼板表面にMgOを主成分とする焼鈍分離剤を塗布してから、1200℃で50時間の純化焼鈍を兼ねた二次再結晶焼鈍を行い、引き続きリン酸塩系の絶縁張力コーティングの塗布、焼付けと鋼帯の平坦化を目的とする平坦化焼鈍を施して製品とした。
かくして得られた製品板の磁気特性について調べた結果を、表4に示す。また、表4には、熱延板焼鈍板の時効指数AIおよび一次再結晶焼鈍後の板厚中心層の集合組織について調べた結果も併せて示す。
(Example 3)
Steel slabs having various component compositions shown in Table 3 were heated to 1100 ° C. and then hot-rolled to a thickness of 3.0 mm. Next, after rolling to the intermediate thickness of 2.3mm by the first cold rolling, after intermediate annealing at 900 ° C for 60s, cool between 800-200 ° C at an average cooling rate: 40 ° C / s, then the second time After a final thickness of 0.23 mm by cold rolling, primary recrystallization annealing was performed at 820 ° C. for 20 s. The heating rate between 500 and 700 ° C. during the primary recrystallization annealing was set to 15 ° C./s.
Thereafter, nitriding treatment was performed in a cyanate bath at 600 ° C. for 3 minutes. Table 4 shows the nitrogen amount of the steel sheet after the nitriding treatment. Next, after applying an annealing separator containing MgO as the main component to the steel sheet surface, secondary recrystallization annealing is performed at 1200 ° C for 50 hours, followed by application of phosphate-based insulation tension coating. The product was subjected to flattening annealing for the purpose of baking and flattening of the steel strip.
Table 4 shows the results of examining the magnetic properties of the product plate thus obtained. Table 4 also shows the results of examining the aging index AI of the hot-rolled sheet annealed sheet and the texture of the sheet thickness center layer after primary recrystallization annealing.
表4に示したように、最終冷間圧延前鋼板、つまり熱延板焼鈍板のAI値を70MPa以下とし、一次再結晶焼鈍板の板厚中心層の集合組織について、ランダム強度比で{554}<225>強度≧12、かつ{554}<225>強度/{111}<110>強度≧7とすることで、二次再結晶焼鈍板の磁束密度B8≧1.95Tを達成した。 As shown in Table 4, the AI value of the steel sheet before the final cold rolling, that is, the hot-rolled sheet annealed sheet is set to 70 MPa or less, and the texture of the center thickness layer of the primary recrystallized annealed sheet is expressed as a random strength ratio {554 } <225> strength ≧ 12 and {554} <225> strength / {111} <110> strength ≧ 7, the magnetic flux density B 8 ≧ 1.95T of the secondary recrystallization annealed plate was achieved.
(実施例4)
表3,4に示したNo.3および13のサンプルについて、表5に示す磁区細分化処理の効果を確認する実験を行った。エッチングは、冷延鋼板の片面について、幅:80μm、深さ:15μm、圧延方向間隔:5mmの溝を圧延直角方向に形成した。ついで、840℃で20sの一次再結晶焼鈍を施した。この一次再結晶焼鈍時の500〜700℃間の昇温速度は160℃/sとした。ついで、アンモニアを含有するガス雰囲気中で750℃で30sおよび950℃で30sのガス窒化処理を施した。窒化処理後の鋼板の窒素量を表5に示す。その後、鋼板表面にMgOを主成分とする焼鈍分離剤を塗布してから、1200℃で50時間の純化焼鈍を兼ねた二次再結晶焼鈍を行い、続いてリン酸塩系の絶縁張力コーティングの塗布、焼付けと鋼帯の平坦化を目的とする平坦化焼鈍を施して製品とした。
電子ビームは、平坦化焼鈍後の鋼板の片面について、加速電圧:80kV、照射間隔:5mm、ビーム電流:3mAの条件で圧延直角方向に連続照射した。
連続レーザーは、平坦化焼鈍後の鋼板の片面について、ビーム径:0.3mm、出力:200W、走査速度:100m/s、照射間隔:5mmの条件で圧延直角方向に連続照射した。
かくして得られた製品板の磁気特性について調べた結果を、表5に併記する。
Example 4
For the samples No. 3 and No. 13 shown in Tables 3 and 4, an experiment was conducted to confirm the effect of the magnetic domain fragmentation treatment shown in Table 5. In the etching, grooves with a width of 80 μm, a depth of 15 μm, and a rolling direction interval of 5 mm were formed in the direction perpendicular to the rolling on one side of the cold-rolled steel sheet. Next, primary recrystallization annealing was performed at 840 ° C. for 20 s. The rate of temperature increase between 500 and 700 ° C. during the primary recrystallization annealing was set to 160 ° C./s. Subsequently, gas nitriding treatment was performed in a gas atmosphere containing ammonia at 750 ° C. for 30 s and at 950 ° C. for 30 s. Table 5 shows the amount of nitrogen in the steel sheet after the nitriding treatment. After that, after applying an annealing separator mainly composed of MgO to the steel plate surface, secondary recrystallization annealing is performed at 1200 ° C for 50 hours, followed by phosphate insulation tension coating. The product was subjected to flattening annealing for the purpose of coating, baking and flattening the steel strip.
The electron beam was continuously irradiated in the direction perpendicular to the rolling under the conditions of acceleration voltage: 80 kV, irradiation interval: 5 mm, and beam current: 3 mA on one side of the steel sheet after the flattening annealing.
The continuous laser was continuously irradiated in the direction perpendicular to the rolling direction on one side of the steel sheet after flattening annealing under the conditions of beam diameter: 0.3 mm, output: 200 W, scanning speed: 100 m / s, and irradiation interval: 5 mm.
The results of examining the magnetic properties of the product plate thus obtained are also shown in Table 5.
表5に示したように、磁区細分化処理を施すことで、さらに良好な鉄損特性が得られることが分かる。 As shown in Table 5, it can be seen that better iron loss characteristics can be obtained by performing the magnetic domain refinement process.
Claims (10)
下記(1)式から算出される固溶C量パラメーターXを用い、最終冷間圧延の直前の加熱工程後の800〜200℃間の平均冷却速度R(℃/s)を、下記(2)式から算出される上限平均冷却速度RH以下とすることで、最終冷間圧延前の鋼板の時効指数AIを70MPa以下とすることを特徴とする方向性電磁鋼板の製造方法。
記
X=[%Si]/28.09+100[%C]/12.01 ・・・ (1)
RH =10/X ・・・ (2)
但し、(1)式中、[%M]はM元素の含有量を示す(質量%) In mass%, C: 0.0005 to 0.005%, Si: 2.0 to 4.5%, Mn: 0.005 to 0.3%, S and / or Se (total): 0.05% or less, sol. Al: less than 0.010%, N: (14.00 /26.98)×[% sol.Al] or more and 0.008% or less, the remainder of which is a steel slab composed of Fe and inevitable impurities , heated to 1200 ° C or less , hot-rolled, and if necessary After hot-rolled sheet annealing, the final sheet thickness is obtained by cold rolling at least once, or two or more times with intermediate annealing, then primary recrystallization annealing is performed, followed by secondary recrystallization annealing. In producing the electrical steel sheet,
Using the solid solution C amount parameter X calculated from the following equation (1), the average cooling rate R (° C./s) between 800 and 200 ° C. after the heating step immediately before the final cold rolling is expressed as (2) A method for producing a grain-oriented electrical steel sheet, wherein the aging index AI of the steel sheet before final cold rolling is set to 70 MPa or less by making the upper limit average cooling rate RH or less calculated from the equation.
X = [% Si] /28.09+100 [% C] /12.01 (1)
R H = 10 / X (2)
However, in the formula (1), [% M] indicates the content of M element (mass%)
The method for producing a grain-oriented electrical steel sheet according to claim 8, wherein the magnetic domain refinement treatment is performed by laser irradiation of the steel sheet after the secondary recrystallization annealing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015086082A JP6160649B2 (en) | 2014-05-19 | 2015-04-20 | Method for producing grain-oriented electrical steel sheet |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014103739 | 2014-05-19 | ||
JP2014103739 | 2014-05-19 | ||
JP2015086082A JP6160649B2 (en) | 2014-05-19 | 2015-04-20 | Method for producing grain-oriented electrical steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016000856A JP2016000856A (en) | 2016-01-07 |
JP6160649B2 true JP6160649B2 (en) | 2017-07-12 |
Family
ID=55076588
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015086082A Active JP6160649B2 (en) | 2014-05-19 | 2015-04-20 | Method for producing grain-oriented electrical steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6160649B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA3014035C (en) * | 2016-02-22 | 2021-02-09 | Jfe Steel Corporation | Method of producing grain-oriented electrical steel sheet |
JP6777025B2 (en) * | 2016-07-01 | 2020-10-28 | Jfeスチール株式会社 | Manufacturing method of grain-oriented electrical steel sheet |
CN111383861B (en) * | 2018-12-28 | 2022-06-17 | 东莞科力线材技术有限公司 | Magnetic conductive material for electromagnetic relay and preparation method thereof |
KR102405173B1 (en) * | 2019-12-20 | 2022-06-02 | 주식회사 포스코 | Grain oriented electrical steel sheet and method of manufacturing the same |
EP4394056A1 (en) | 2021-10-27 | 2024-07-03 | JFE Steel Corporation | Hot-rolled steel strip annealing method |
WO2023190645A1 (en) | 2022-03-31 | 2023-10-05 | Jfeスチール株式会社 | Method for annealing hot-rolled steel strip |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06172939A (en) * | 1992-12-03 | 1994-06-21 | Nippon Steel Corp | High magnetic flux density/low core loss grain-oriented silicon steel sheet and its production |
JP4075083B2 (en) * | 1996-11-05 | 2008-04-16 | Jfeスチール株式会社 | Method for producing grain-oriented electrical steel sheet |
JPH11350032A (en) * | 1998-06-12 | 1999-12-21 | Sumitomo Metal Ind Ltd | Production of silicon steel sheet |
JP4501655B2 (en) * | 2004-11-29 | 2010-07-14 | Jfeスチール株式会社 | Method for producing grain-oriented electrical steel sheet |
JP5417936B2 (en) * | 2009-03-31 | 2014-02-19 | Jfeスチール株式会社 | Method for producing grain-oriented electrical steel sheet |
-
2015
- 2015-04-20 JP JP2015086082A patent/JP6160649B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016000856A (en) | 2016-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5780378B1 (en) | Method for producing grain-oriented electrical steel sheet | |
JP5842400B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP6319605B2 (en) | Manufacturing method of low iron loss grain oriented electrical steel sheet | |
JP5668893B2 (en) | Method for producing grain-oriented electrical steel sheet | |
WO2012086534A1 (en) | Process for production of non-oriented electromagnetic steel sheet | |
JP6481772B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP6160649B2 (en) | Method for producing grain-oriented electrical steel sheet | |
CN110114478B (en) | Method for manufacturing oriented electrical steel sheet | |
KR101683693B1 (en) | Method for producing grain-oriented electrical steel sheet | |
JP6838601B2 (en) | Low iron loss directional electromagnetic steel sheet and its manufacturing method | |
JP2004169179A (en) | Method for manufacturing grain oriented silicon steel sheet of excellent bend characteristic | |
JP2020508391A (en) | Grain-oriented electrical steel sheet and its manufacturing method | |
KR101707451B1 (en) | Grain oriented electrical steel sheet and method for manufacturing the same | |
JP2003253341A (en) | Process for manufacturing grain-oriented magnetic steel sheet showing excellent magnetic property | |
JP2012001741A (en) | Method for manufacturing grain-oriented electrical steel sheet | |
JP2018009244A (en) | Method for producing grain oriented silicon steel sheet | |
JP6191564B2 (en) | Method for producing grain-oriented electrical steel sheet and nitriding equipment | |
JP5712652B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP3928275B2 (en) | Electrical steel sheet | |
JP2003201517A (en) | Method of producing grain oriented silicon steel sheet having stably excellent magnetic property | |
JP5741308B2 (en) | Manufacturing method of grain-oriented electrical steel sheet and material steel sheet thereof | |
WO2019132357A1 (en) | Grain-oriented electrical steel sheet and manufacturing method therefor | |
JP6228956B2 (en) | Low iron loss high magnetic flux density grained electrical steel sheet and manufacturing method thereof | |
JP6988845B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP2017110263A (en) | Hot rolled sheet for unidirectional electromagnetic steel sheet and manufacturing method thereof and manufacturing method of unidirectional electromagnetic steel sheet thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151221 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161213 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170130 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170516 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170529 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6160649 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |