JP5741308B2 - Manufacturing method of grain-oriented electrical steel sheet and material steel sheet thereof - Google Patents

Manufacturing method of grain-oriented electrical steel sheet and material steel sheet thereof Download PDF

Info

Publication number
JP5741308B2
JP5741308B2 JP2011174950A JP2011174950A JP5741308B2 JP 5741308 B2 JP5741308 B2 JP 5741308B2 JP 2011174950 A JP2011174950 A JP 2011174950A JP 2011174950 A JP2011174950 A JP 2011174950A JP 5741308 B2 JP5741308 B2 JP 5741308B2
Authority
JP
Japan
Prior art keywords
mass
steel sheet
annealing
grain
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011174950A
Other languages
Japanese (ja)
Other versions
JP2012140698A (en
Inventor
雅紀 竹中
雅紀 竹中
稔 高島
高島  稔
高宮 俊人
俊人 高宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011174950A priority Critical patent/JP5741308B2/en
Publication of JP2012140698A publication Critical patent/JP2012140698A/en
Application granted granted Critical
Publication of JP5741308B2 publication Critical patent/JP5741308B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02P10/212

Description

本発明は、結晶粒が、ミラー指数で、板面に{110}、圧延方向に<001>に高度に集積した、いわゆる方向性電磁鋼板の製造方法とその製造に用いる素材鋼板に関するものである。   The present invention relates to a method for producing a so-called grain-oriented electrical steel sheet, in which crystal grains are highly integrated in a Miller index, {110} on a plate surface, and <001> in a rolling direction, and a raw steel plate used for the production thereof. .

方向性電磁鋼板は、軟磁性材料であり、主に変圧器等の電気機器の鉄芯として用いられている。この方向性電磁鋼板は、二次再結晶焼鈍を施して、結晶粒を{110}<001>方位(以降、「Goss方位」と称す。)に高度に集積させたものであり、優れた磁気特性を示すことが知られている(例えば、特許文献1参照。)。なお、電磁鋼板の磁気特性を評価する指標としては、磁場の強さ800A/mにおける磁束密度Bと、励磁周波数50Hzの交流磁場で1.7Tまで磁化させたときの鋼板1kgあたりの鉄損W17/50が多く用いられている。 The grain-oriented electrical steel sheet is a soft magnetic material and is mainly used as an iron core of electrical equipment such as a transformer. This grain-oriented electrical steel sheet is obtained by performing secondary recrystallization annealing and highly accumulating crystal grains in {110} <001> orientation (hereinafter referred to as “Goss orientation”). It is known to show characteristics (for example, see Patent Document 1). In addition, as an index for evaluating the magnetic properties of the electromagnetic steel sheet, the iron loss per kg of the steel sheet when magnetized to 1.7 T with a magnetic flux density B 8 at a magnetic field strength of 800 A / m and an alternating magnetic field with an excitation frequency of 50 Hz. W 17/50 is often used.

ところで、方向性電磁鋼板の磁気特性は、二次再結晶焼鈍させる前、すなわち、一次再結晶焼鈍後の鋼板の集合組織を制御することで改善されることが知られている。例えば、特許文献2には、一次再結晶焼鈍後の鋼板の表層近傍の集合組織が、Bungeのオイラー角表示で、φ=0°、Φ=15°、φ=0°の方位から10°以内、または、φ=5°、Φ=20°、φ=70°の方位から10°以内に極大方位を有し、かつ、鋼板の中心層の集合組織が、同じくBungeのオイラー角表示で、φ=90°、Φ=60°、φ=45°の方位から5°以内に極大方位を有する場合に、二次再結晶焼鈍後に優れた磁気特性を有する方向性電磁鋼板が得られることが記載されている。 By the way, it is known that the magnetic properties of grain-oriented electrical steel sheets are improved by controlling the texture of the steel sheets before secondary recrystallization annealing, that is, after primary recrystallization annealing. For example, in Patent Document 2, the texture in the vicinity of the surface layer of the steel sheet after the primary recrystallization annealing is 10 from the direction of φ 1 = 0 °, φ = 15 °, φ 2 = 0 ° in Bunge's Euler angle display. Or a maximum orientation within 10 ° from the orientation of φ 1 = 5 °, Φ = 20 °, φ 2 = 70 °, and the texture of the central layer of the steel plate is also a Bunge Euler angle. A grain-oriented electrical steel sheet having excellent magnetic properties after secondary recrystallization annealing when it has a maximum orientation within 5 ° from the orientation of φ 1 = 90 °, φ = 60 °, φ 2 = 45 °. It is described that it is obtained.

一次再結晶焼鈍後の鋼板の集合組織を制御する方法の一つとして、最終冷間圧延の圧下率を制御することが知られている。例えば、特許文献3には、優れた磁気特性を有する方向性電磁鋼板を安定して製造するためには、最終冷間圧延の圧下率を70〜91%の範囲に制御することが好ましいことが記載されている。   As one of the methods for controlling the texture of the steel sheet after the primary recrystallization annealing, it is known to control the reduction ratio of the final cold rolling. For example, in Patent Document 3, in order to stably manufacture a grain-oriented electrical steel sheet having excellent magnetic properties, it is preferable to control the rolling reduction ratio of the final cold rolling within a range of 70 to 91%. Have been described.

上記範囲に圧下率を制御する理由は、以下のように考えられる。一般に、一次再結晶後の鋼板の集合組織は、Goss方位粒が強く集積し、かつ、マトリックスは、Goss方位粒が成長しやすい{111}<112>方位粒が強く集積したものであることが理想である。マトリックスにおける{111}<112>方位粒の集積度は、最終冷間圧延の圧下率を上げてやることで高まり、二次再結晶後の磁気特性が向上することが知られている。一方、Goss方位粒は、最終冷間圧延の圧下率が約65%を超えたあたりから減少していくため、90%を超えるような高圧下率では、良好なマトリックスがつくり込まれているにも拘らず、Goss方位粒の絶対量が不足するため、良好な二次再結晶粒を起こさせることが難しくなるからである。   The reason for controlling the rolling reduction within the above range is considered as follows. In general, the texture of the steel sheet after primary recrystallization is such that Goss orientation grains are strongly accumulated, and the matrix is that {111} <112> orientation grains are easy to grow. Ideal. It is known that the accumulation degree of {111} <112> oriented grains in the matrix is increased by increasing the rolling reduction of the final cold rolling, and the magnetic properties after secondary recrystallization are improved. On the other hand, since the Goss orientation grains decrease from the point when the rolling reduction of the final cold rolling exceeds about 65%, a good matrix is formed at a high pressure reduction exceeding 90%. Nevertheless, since the absolute amount of Goss orientation grains is insufficient, it is difficult to cause good secondary recrystallized grains.

そこで、一次再結晶後の鋼板のGoss方位粒を増加させる技術が検討されている。
例えば、特許文献4には、一次再結晶焼鈍を兼ねる脱炭焼鈍における675℃以上の温度への加熱を、140℃/sec以上の急速加熱とする技術が開示されている。冷間圧延において導入された転位の蓄積エネルギーは、結晶方位依存性があり、{111}>{110}>{100}となることが知られている。一次再結晶は、転位の歪エネルギーを駆動力とするため、蓄積エネルギーの大きな{111}方位粒が優先的に一次再結晶し、Goss方位粒である{110}方位粒は、相対的に再結晶し難いとされている。そこで、この特許文献4の技術は、一次再結晶における昇温速度を高めて、再結晶粒の方位依存性を低減させることで、Goss方位粒の再結晶を促進させているものと考えられる。
しかしながら、この技術は、マトリックスの集合組織が逆に劣化してしまい、結果として、二次再結晶後に、履歴損の劣化を引き起こすという問題がある。
Then, the technique which increases the Goss orientation grain of the steel plate after primary recrystallization is examined.
For example, Patent Document 4 discloses a technique in which heating to a temperature of 675 ° C. or higher in decarburization annealing also serving as primary recrystallization annealing is performed as rapid heating of 140 ° C./sec or higher. It is known that the accumulated energy of dislocations introduced in cold rolling has crystal orientation dependence and {111}>{110}> {100}. Since primary recrystallization uses the strain energy of dislocation as the driving force, {111} -oriented grains with large stored energy preferentially recrystallize, and {110} -oriented grains that are Goss oriented grains are relatively recrystallized. It is said that it is difficult to crystallize. Therefore, it is considered that the technique of Patent Document 4 promotes the recrystallization of Goss orientation grains by increasing the temperature rising rate in the primary recrystallization and reducing the orientation dependency of the recrystallization grains.
However, this technique has a problem that the texture of the matrix deteriorates on the contrary, and as a result, the history loss is deteriorated after the secondary recrystallization.

一次再結晶後の鋼板のGoss方位粒を増加させる他の方法としては、2回以上の冷間圧延を行う製造方法において、中間焼鈍板の結晶粒を粗大化させる方法がある。この方法は、一次再結晶焼鈍では、中間焼鈍板の粒界から、一次再結晶後の鋼板のマトリックスとなる{111}方位粒が発生するため、中間焼鈍板の粒径を粗大化することで、一次再結晶後の{111}方位粒を減少させて、相対的にGoss方位粒を増加させる、および、中間焼鈍板の粒径を粗大化することで、最終冷間圧延において粒内に発生する剪断帯の数を増加させて、一次再結晶でのGoss方位粒の核生成サイトを増加させることを狙ったものである。   As another method for increasing the Goss orientation grains of the steel sheet after the primary recrystallization, there is a method of coarsening the crystal grains of the intermediate annealing plate in a manufacturing method in which cold rolling is performed twice or more. In this method, in the primary recrystallization annealing, {111} -oriented grains that become the matrix of the steel sheet after the primary recrystallization are generated from the grain boundaries of the intermediate annealed plate, so the grain size of the intermediate annealed plate is increased. Reduced {111} oriented grains after primary recrystallization, relatively increased Goss oriented grains, and coarsened the grain size of the intermediate annealed plate, resulting in grain in the final cold rolling The aim is to increase the number of shear bands to be increased and increase the nucleation sites of Goss orientation grains in primary recrystallization.

特公昭40−015644号公報Japanese Patent Publication No. 40-015644 特開2001−060505号公報JP 2001-060505 A 特許第4123653号公報Japanese Patent No. 4123653 特公平06−051887号公報Japanese Patent Publication No. 06-051887

上記中間焼鈍板の結晶径を粗大化させる方法としては、熱間圧延におけるγ相分率を低減する、中間焼鈍温度を高温化する方法が知られている。しかしながら、γ相分率を低減する方法は、熱延板組織が残存しやすくなって二次再結晶が困難となる。また、中間焼鈍温度を高温化する方法は、インヒビターの粗大化が進行し、やはり二次再結晶が困難となるという問題がある。したがって、中間焼鈍板の結晶粒を粗大化させるこれらの方法は、磁気特性の向上技術としては不適当であると考えられる。   As a method of increasing the crystal diameter of the intermediate annealing plate, a method of increasing the intermediate annealing temperature to reduce the γ phase fraction in hot rolling is known. However, in the method of reducing the γ phase fraction, the hot rolled sheet structure tends to remain and secondary recrystallization becomes difficult. In addition, the method of increasing the intermediate annealing temperature has a problem that the coarsening of the inhibitor proceeds and secondary recrystallization becomes difficult. Therefore, it is considered that these methods for coarsening the crystal grains of the intermediate annealing plate are inappropriate as a technique for improving magnetic characteristics.

そこで、本発明の目的は、上記従来技術とは異なる方法で、一次再結晶焼鈍後の鋼板のGoss方位粒を増大させる、二次再結晶後の磁気特性に優れる方向性電磁鋼板の製造方法を提案すると共に、その製造に用いる素材鋼板をその提供することにある。   Accordingly, an object of the present invention is to provide a method for producing a grain-oriented electrical steel sheet that is excellent in magnetic properties after secondary recrystallization, in which the Goss orientation grains of the steel sheet after primary recrystallization annealing are increased by a method different from the above-described prior art. In addition to proposing, it is to provide a raw steel plate used for its production.

発明者らは、一次再結晶焼鈍後の鋼板のGoss方位粒を増大させる新たな技術の開発に向けて鋭意研究を重ねた。その結果、二回冷延法で方向性電磁鋼板を製造する方法において、一次冷間圧延前の素材鋼板の室温(25℃)における降伏応力YSを低減させることで、一次冷間圧延における不均一な変形が抑制され、中間焼鈍板の粒径を粗大化させることができ、ひいては、一次再結晶後の鋼板におけるGoss方位粒の絶対量が増加し、二次再結晶焼鈍後に優れた磁気特性を有する方向性電磁鋼板を得ることができることを見出し、本発明を開発した。   Inventors repeated earnest research toward development of the new technique which increases the Goss orientation grain of the steel plate after primary recrystallization annealing. As a result, in the method of producing a grain-oriented electrical steel sheet by the double cold rolling method, the yield stress YS at room temperature (25 ° C.) of the raw steel sheet before the primary cold rolling is reduced, so that the non-uniformity in the primary cold rolling Deformation can be suppressed, and the grain size of the intermediate annealed sheet can be increased. As a result, the absolute amount of Goss orientation grains in the steel sheet after primary recrystallization increases, and excellent magnetic properties are obtained after secondary recrystallization annealing. It discovered that the grain-oriented electrical steel sheet which can be obtained can be obtained, and developed this invention.

すなわち、本発明は、C:0.02〜0.15mass%、Si:2.5〜4.0mass%、Mn:0.005〜0.3mass%、sol.Al:0.01〜0.05mass%、N:0.002〜0.012mass%およびS,Seの1種または2種を合計で0.05mass%以下含有し、残部がFeおよび不可避的不純物からなる鋼素材を熱間圧延した後、中間焼鈍を挟む2回以上の冷間圧延し、一次再結晶焼鈍し、仕上焼鈍する方向性電磁鋼板の製造方法において、一次冷間圧延前の素材鋼板の降伏応力YS(MPa)を、鋼素材のSi含有量(mass%)との関係において下記(1)式;
124.32×Si−12.45≦YS≦124.32×Si+127.55
・・・(1)
を満たすよう調整した後、一次冷間圧延することを特徴とする方向性電磁鋼板の製造方法である。
That is, the present invention relates to C: 0.02-0.15 mass%, Si: 2.5-4.0 mass%, Mn: 0.005-0.3 mass%, sol. Al: 0.01 to 0.05 mass%, N: 0.002 to 0.012 mass%, and one or two of S and Se are contained in a total of 0.05 mass% or less, with the balance being Fe and inevitable impurities In the manufacturing method of the grain-oriented electrical steel sheet in which the steel material is hot-rolled and then cold-rolled at least twice with intermediate annealing, primary recrystallization annealing, and finish annealing, Yield stress YS (MPa) is expressed by the following formula (1) in relation to the Si content (mass%) of the steel material;
124.32 × Si-12.45 ≦ YS ≦ 124.32 × Si + 127.55
... (1)
After adjusting to satisfy | fill, it is the manufacturing method of the grain-oriented electrical steel sheet characterized by performing primary cold rolling.

本発明の方向性電磁鋼板の製造方法における鋼素材は、上記成分組成に加えてさらに、Ni:0.005〜1.5mass%、Sn:0.005〜0.50mass%、Sb:0.005〜0.50mass%、Cu:0.005〜1.5mass%、P:0.005〜0.50mass%およびCr:0.01〜1.5mass%の内から選ばれる1種または2種以上を含有することを特徴とする。   In addition to the above component composition, the steel material in the method for producing a grain-oriented electrical steel sheet according to the present invention further includes Ni: 0.005-1.5 mass%, Sn: 0.005-0.50 mass%, Sb: 0.005. ~ 0.50 mass%, Cu: 0.005 to 1.5 mass%, P: 0.005 to 0.50 mass%, and Cr: 0.01 to 1.5 mass% It is characterized by containing.

また、本発明は、熱間圧延後、中間焼鈍を挟む2回以上の冷間圧延し、一次再結晶焼鈍し、仕上焼鈍する方向性電磁鋼板の製造に用いる一次冷間圧延前の素材鋼板であって、当該鋼板は、C:0.02〜0.15mass%、Si:2.5〜4.0mass%、Mn:0.005〜0.3mass%、sol.Al:0.01〜0.05mass%、N:0.002〜0.012mass%およびS,Seの1種または2種を合計で0.05mass%以下含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、降伏応力YS(MPa)とSi含有量(mass%)とが下記(1)式;
124.32×Si−12.45≦YS≦124.32×Si+127.55
・・・(1)
を満たすことを特徴とする方向性電磁鋼板用素材鋼板である。
Moreover, this invention is the raw steel plate before the primary cold rolling used for manufacture of the grain-oriented electrical steel sheet which is cold-rolled twice or more sandwiching the intermediate annealing, subjected to primary recrystallization annealing, and finish annealing after hot rolling. In the steel sheet, C: 0.02-0.15 mass%, Si: 2.5-4.0 mass%, Mn: 0.005-0.3 mass%, sol. Al: 0.01 to 0.05 mass%, N: 0.002 to 0.012 mass%, and one or two of S and Se are contained in a total of 0.05 mass% or less, with the balance being Fe and inevitable impurities The yield stress YS (MPa) and the Si content (mass%) are represented by the following formula (1):
124.32 × Si-12.45 ≦ YS ≦ 124.32 × Si + 127.55
... (1)
It is a raw material steel plate for grain-oriented electrical steel sheets characterized by satisfying the above.

本発明における上記鋼板は、上記成分組成に加えてさらに、Ni:0.005〜1.5mass%、Sn:0.005〜0.50mass%、Sb:0.005〜0.50mass%、Cu:0.005〜1.5mass%、P:0.005〜0.50mass%およびCr:0.01〜1.5mass%の内から選ばれる1種または2種以上を含有することを特徴とする。   In the steel sheet according to the present invention, in addition to the above component composition, Ni: 0.005 to 1.5 mass%, Sn: 0.005 to 0.50 mass%, Sb: 0.005 to 0.50 mass%, Cu: It contains one or more selected from 0.005 to 1.5 mass%, P: 0.005 to 0.50 mass%, and Cr: 0.01 to 1.5 mass%.

本発明によれば、一次冷間圧延前の素材鋼板の降伏応力を低減することで、一次再結晶後の鋼板の集合組織を改善し、ひいては、二次再結晶焼鈍後の鉄損値が低く、高磁束密度の方向性電磁鋼板を製造することが可能となる。特に、製造が難しいとされる板厚0.23mmでも、二次再結晶焼鈍後の鉄損W17/50が0.85W/kg以下である方向性電磁鋼板を安定して製造することが可能となる。 According to the present invention, by reducing the yield stress of the raw steel sheet before the primary cold rolling, the texture of the steel sheet after the primary recrystallization is improved, and consequently the iron loss value after the secondary recrystallization annealing is low. It becomes possible to manufacture a grain-oriented electrical steel sheet having a high magnetic flux density. In particular, it is possible to stably manufacture a grain-oriented electrical steel sheet having an iron loss W 17/50 after secondary recrystallization annealing of 0.85 W / kg or less even at a sheet thickness of 0.23 mm, which is difficult to manufacture. It becomes.

二次再結晶後の鉄損W17/50に及ぼす鋼素材のSi含有量と一次冷間圧延前の素材鋼板の25℃における降伏応力YSの影響を示すグラフである。It is a graph which shows the influence of the yield stress YS in 25 degreeC of Si content of a steel raw material and the raw steel plate before a primary cold rolling which influences the iron loss W17 / 50 after secondary recrystallization.

本発明の方向性電磁鋼板の鋼素材は、C:0.02〜0.15mass%、Si:2.5〜4.0mass%、Mn:0.005〜0.3mass%、sol.Al:0.01〜0.05mass%、N:0.002〜0.012mass%およびS,Seの1種または2種を合計で0.05mass%以下含有する成分組成からなるものであることが必要である。以下、その限定理由について説明する。   The steel material of the grain-oriented electrical steel sheet of the present invention includes C: 0.02-0.15 mass%, Si: 2.5-4.0 mass%, Mn: 0.005-0.3 mass%, sol. Al: 0.01 to 0.05 mass%, N: 0.002 to 0.012 mass%, and one or two of S and Se may be contained in a total composition of 0.05 mass% or less. is necessary. Hereinafter, the reason for limitation will be described.

C:0.02〜0.15mass%
Cは、熱延および熱延板焼鈍の均熱時におけるγ−α変態を利用して、熱延板組織の改善を図るのに必要な元素である。しかし、0.02mass%未満では、熱延板組織の改善効果が小さく、Goss方位粒を多く含む一次再結晶集合組織を得ることが難しくなる。一方、0.15mass%を超えると、脱炭焼鈍での負荷が増大して脱炭が不完全となり、製品板において磁気時効を起こす原因となる。よって、Cは0.02〜0.15mass%の範囲とする。好ましくは、0.04〜0.08mass%の範囲である。
C: 0.02-0.15 mass%
C is an element necessary for improving the hot-rolled sheet structure by utilizing the γ-α transformation during soaking of hot-rolled and hot-rolled sheet annealing. However, if it is less than 0.02 mass%, the effect of improving the hot-rolled sheet structure is small, and it becomes difficult to obtain a primary recrystallized texture containing many Goss orientation grains. On the other hand, when it exceeds 0.15 mass%, the load in decarburization annealing increases, decarburization becomes incomplete, and causes a magnetic aging in a product plate. Therefore, C is set to a range of 0.02 to 0.15 mass%. Preferably, it is the range of 0.04-0.08 mass%.

Si:2.5〜4.0mass%
Siは、鋼の電気抵抗を増大させ、鉄損の一部を構成する渦電流損を低減するのに有効な元素であり、本発明では、2.5mass%以上添加する。また、Siが2.5mass%未満では、α−γ変態の存在によって、最終仕上焼鈍における二次再結晶が阻害されて、磁気特性が低下するという問題もある。一方、Si添加による鉄損低減効果は11mass%まで得られるが、4.0mass%を超えて添加すると、加工性が著しく低下し、製造することが難しくなる。よって、Siは2.5〜4.0mass%の範囲とする。好ましくは、3.0〜3.5mass%の範囲である。
Si: 2.5-4.0 mass%
Si is an element effective for increasing the electrical resistance of steel and reducing eddy current loss that constitutes a part of iron loss. In the present invention, Si is added in an amount of 2.5 mass% or more. Further, if Si is less than 2.5 mass%, the presence of the α-γ transformation hinders secondary recrystallization in the final finish annealing, resulting in a problem that the magnetic properties are deteriorated. On the other hand, the iron loss reduction effect due to the addition of Si can be obtained up to 11 mass%, but if it exceeds 4.0 mass%, the workability is remarkably lowered and it is difficult to manufacture. Therefore, Si is set to a range of 2.5 to 4.0 mass%. Preferably, it is in the range of 3.0 to 3.5 mass%.

Mn:0.005〜0.3mass%
Mnは、二次再結晶焼鈍での昇温過程において、正常粒成長を抑制するインヒビターの働きをするMnSおよびMnSeを形成する、本発明においては重要な元素である。しかし、Mn含有量が0.005mass%未満では、必要なインヒビターの絶対量が不足するため、十分な抑制力が得られない。一方、0.3mass%を超える添加は、インヒビターを完全固溶させるための熱延前のスラブ加熱温度を高温にする必要があったり、インヒビターが粗大析出して抑制力が不十分となったりする。よって、Mnは0.005〜0.3mass%の範囲とする。好ましくは0.02〜0.10mass%の範囲である。
Mn: 0.005 to 0.3 mass%
Mn is an important element in the present invention that forms MnS and MnSe that act as an inhibitor that suppresses the growth of normal grains in the temperature rising process during secondary recrystallization annealing. However, if the Mn content is less than 0.005 mass%, a sufficient inhibitory force cannot be obtained because the absolute amount of the necessary inhibitor is insufficient. On the other hand, when the addition exceeds 0.3 mass%, it is necessary to increase the slab heating temperature before hot rolling to completely dissolve the inhibitor, or the inhibitor is coarsely precipitated and the inhibitory power becomes insufficient. . Therefore, Mn is in the range of 0.005 to 0.3 mass%. Preferably it is the range of 0.02-0.10 mass%.

sol.Al:0.01〜0.05mass%
Alは、二次再結晶焼鈍での昇温過程において、正常粒成長を抑制するインヒビターの働きをするAlNを構成する、本発明においては重要な元素である。しかし、Alの含有量がsol.Al(酸可溶性Al)で0.01mass%未満では、インヒビターの絶対量が不足し、抑制力が不十分となる。一方、0.05mass%を超えると、AlNが粗大析出し、やはり抑制力が不十分となる。よって、sol.Alは0.01〜0.05mass%の範囲とする。好ましくは0.015〜0.030mass%の範囲である。
sol. Al: 0.01-0.05 mass%
Al is an important element in the present invention that constitutes AlN that acts as an inhibitor that suppresses the growth of normal grains in the temperature rising process during secondary recrystallization annealing. However, the content of Al is sol. If it is less than 0.01 mass% with Al (acid-soluble Al), the absolute amount of the inhibitor is insufficient and the inhibitory power becomes insufficient. On the other hand, when it exceeds 0.05 mass%, AlN coarsely precipitates, and the suppression force is still insufficient. Therefore, sol. Al is in the range of 0.01 to 0.05 mass%. Preferably it is the range of 0.015-0.030 mass%.

N:0.002〜0.012mass%
Nは、Alと結合してインヒビターを形成する元素である。しかし、含有量が0.002mass%未満では、インヒビターの絶対量が不足するため、抑制力が不十分となる。一方、0.012mass%を超えると、冷間圧延時にブリスターと呼ばれる空孔欠陥を生じるようになる。よって、Nは0.002〜0.012mass%の範囲とする。好ましくは、0.005〜0.010mass%の範囲である。
N: 0.002-0.012 mass%
N is an element that combines with Al to form an inhibitor. However, if the content is less than 0.002 mass%, the inhibitory power is insufficient because the absolute amount of the inhibitor is insufficient. On the other hand, if it exceeds 0.012 mass%, void defects called blisters are produced during cold rolling. Therefore, N is set to a range of 0.002 to 0.012 mass%. Preferably, it is the range of 0.005-0.010 mass%.

S,Se:1種または2種を合計で0.05mass%以下
SおよびSeは、Mnと結合してインヒビターを形成する元素であり、合計で0.01mass%以上含有していることが好ましい。しかし、合計含有量が0.05mass%を超えると、仕上焼鈍(純化焼鈍)における脱S、脱Seが不完全となり、鉄損特性の低下を引き起こす。よって、本発明では、SおよびSeは、合計で0.05mass%以下添加する。好ましくは、0.01〜0.03mass%の範囲である。
S, Se: 1 type or 2 types in total 0.05 mass% or less S and Se are elements that combine with Mn to form an inhibitor, and are preferably contained in a total of 0.01 mass% or more. However, if the total content exceeds 0.05 mass%, the removal of S and the removal of Se in finish annealing (purification annealing) become incomplete, causing a reduction in iron loss characteristics. Therefore, in the present invention, S and Se are added in a total amount of 0.05 mass% or less. Preferably, it is the range of 0.01-0.03 mass%.

本発明の方向性電磁鋼板は、上記の必須成分に加えてさらに、Ni,Sn,Sb,Cu,PおよびCrから選ばれる1種または2種以上を添加することができる。
Ni:0.005〜1.5mass%
Niは、オーステナイト生成元素であるため、γ−α変態を利用して熱延板組織を改善し、磁気特性を向上するのに有効な元素である。しかし、含有量が0.005mass%未満では、上記磁気特性の改善効果が小さく、一方、1.5mass%を超えると、加工性が低下して製造性が悪化したり、二次再結晶が不安定となって磁気特性が低下したりする。よって、Niを添加する場合は、0.005〜1.5mass%の範囲とするのが好ましい。
In addition to the above essential components, the grain-oriented electrical steel sheet of the present invention may further contain one or more selected from Ni, Sn, Sb, Cu, P and Cr.
Ni: 0.005-1.5 mass%
Since Ni is an austenite-generating element, it is an effective element for improving the hot rolled sheet structure by utilizing the γ-α transformation and improving the magnetic properties. However, if the content is less than 0.005 mass%, the effect of improving the magnetic properties is small. On the other hand, if the content exceeds 1.5 mass%, the workability is deteriorated and the productivity is deteriorated, or secondary recrystallization is not achieved. It becomes stable and the magnetic properties are lowered. Therefore, when adding Ni, it is preferable to set it as the range of 0.005-1.5 mass%.

Sn:0.005〜0.50mass%、Sb:0.005〜0.50mass%、Cu:0.005〜1.5mass%、P:0.005〜0.50mass%およびCr:0.01〜1.5mass%
Sn,Sb,Cu,PおよびCrは、磁気特性の向上に有用な元素である。しかし、いずれの元素も、含有量が上記下限値未満であると、磁気特性改善効果が小さく、一方、含有量が上記上限値を超えると、二次再結晶が不安定になって磁気特性が低下するようになる。よって、Sn,Sb,Cu,PおよびCrは、それぞれ、Sn:0.005〜0.50mass%、Sb:0.005〜0.50mass%、Cu:0.005〜1.5mass%、P:0.005〜0.50mass%およびCr:0.01〜1.5mass%の範囲で添加するのが好ましい。
Sn: 0.005-0.50 mass%, Sb: 0.005-0.50 mass%, Cu: 0.005-1.5 mass%, P: 0.005-0.50 mass%, and Cr: 0.01- 1.5 mass%
Sn, Sb, Cu, P and Cr are useful elements for improving the magnetic properties. However, if the content of any element is less than the above lower limit value, the effect of improving the magnetic properties is small. On the other hand, if the content exceeds the upper limit value, secondary recrystallization becomes unstable and the magnetic properties are reduced. It begins to decline. Therefore, Sn, Sb, Cu, P and Cr are Sn: 0.005-0.50 mass%, Sb: 0.005-0.50 mass%, Cu: 0.005-1.5 mass%, and P: It is preferable to add in the range of 0.005 to 0.50 mass% and Cr: 0.01 to 1.5 mass%.

本発明の方向性電磁鋼板は、上記の必須成分および任意添加成分以外の残部は、Feおよび不可避的不純物である。ただし、本発明の効果を害しない範囲であれば、その他の元素の添加を拒むものではない。   In the grain-oriented electrical steel sheet of the present invention, the balance other than the above essential components and optional additive components is Fe and inevitable impurities. However, addition of other elements is not rejected as long as the effects of the present invention are not impaired.

次に、本発明の方向性電磁鋼板の製造方法について説明する。
本発明の方向性電磁鋼板の製造方法は、まず、上記成分組成を有する鋼素材(スラブ)を製造し、その後、その鋼素材を常法の条件で、再加熱し、熱間圧延して熱延板とする。
熱間圧延後の熱延板には、未再結晶組織を再結晶させて熱延板組織を改善するため、熱延板焼鈍を施してもよく、その場合の均熱温度は800〜1200℃、均熱時間は2〜300secの範囲とするのが好ましい。均熱温度が800℃未満あるいは均熱時間が2sec未満では、未再結晶組織が残存するため、熱延板組織の改善が十分ではない。一方、均熱温度が1200℃超えあるいは均熱時間が300secを超えると、AlNやMnSe,MnSの溶解が進行し、仕上焼鈍におけるインヒビターの抑制力が不足し、二次再結晶を起こし難くなるため、磁気特性の低下を引き起こすからである。
Next, the manufacturing method of the grain-oriented electrical steel sheet of this invention is demonstrated.
The method for producing a grain-oriented electrical steel sheet according to the present invention first produces a steel material (slab) having the above composition, then reheats the steel material under normal conditions, hot-rolls and heats it. Let it be a sheet.
The hot-rolled sheet after hot rolling may be subjected to hot-rolled sheet annealing in order to recrystallize the unrecrystallized structure and improve the hot-rolled sheet structure, and the soaking temperature in that case is 800 to 1200 ° C. The soaking time is preferably in the range of 2 to 300 sec. If the soaking temperature is less than 800 ° C. or the soaking time is less than 2 seconds, an unrecrystallized structure remains, and thus the hot rolled sheet structure is not sufficiently improved. On the other hand, when the soaking temperature exceeds 1200 ° C. or the soaking time exceeds 300 sec, dissolution of AlN, MnSe, and MnS proceeds, and the inhibitor repressing power in the finish annealing is insufficient, so that secondary recrystallization hardly occurs. This is because the magnetic characteristics are deteriorated.

熱間圧延したあるいは熱延板焼鈍を施した熱延板は、その後、中間焼鈍を挟む2回以上の冷間圧延によって最終板厚の冷延板とする。
ここで、本発明の特徴は、一次冷間圧延前の素材鋼板の室温(25℃)における降伏応力YSを低減し、一次冷間圧延における不均一変形を抑制して、中間焼鈍板の粒径を粗大化させることによって、一次再結晶後の鋼板におけるGoss方位粒の強度を高め、もって、二次再結晶後の鋼板に優れた磁気特性を付与するところにある。ただし、上記降伏応力には、Si含有量に応じた適正範囲があり、高過ぎてもまた低過ぎても良好な鉄損特性は得られない。以下、その理由について説明する。
The hot-rolled sheet that has been hot-rolled or subjected to hot-rolled sheet annealing is then made into a cold-rolled sheet having a final thickness by cold rolling two or more times with intermediate annealing interposed therebetween.
Here, the feature of the present invention is that the yield stress YS of the raw steel plate before the primary cold rolling is reduced at room temperature (25 ° C.), the non-uniform deformation in the primary cold rolling is suppressed, and the grain size of the intermediate annealing plate is reduced. By coarsening, the strength of Goss orientation grains in the steel sheet after the primary recrystallization is increased, thereby imparting excellent magnetic properties to the steel sheet after the secondary recrystallization. However, the yield stress has an appropriate range according to the Si content, and good iron loss characteristics cannot be obtained if it is too high or too low. The reason will be described below.

表1に示すSi含有量の異なる成分組成を有するA〜Dの鋼素材(スラブ)を、1350℃に加熱後、熱間圧延して板厚2.4mmの熱延板とした。次いで、この熱延板に1000℃×40secの熱延板焼鈍を施した後、700℃の温度に保持した乾燥窒素雰囲気中で時間を変えて焼鈍し、一次冷間圧延前の素材鋼板の降伏応力YSを種々に変化させた。その後、一次冷間圧延して中間板厚1.5mmの冷延板とし、1050℃×80secの中間焼鈍を施した後、二回目の冷間圧延して最終板厚0.23mmの冷延板とした。その後、800℃×120secの脱炭を兼ねた一次再結晶焼鈍を施した後、鋼板表面にMgOを主成分とする焼鈍分離剤を塗布し、1150℃×50hrの純化焼鈍と二次再結晶焼鈍を兼ねた仕上焼鈍を施して方向性電磁鋼板とした。   A to D steel materials (slabs) having component compositions with different Si contents shown in Table 1 were heated to 1350 ° C. and hot-rolled to obtain a hot-rolled sheet having a thickness of 2.4 mm. Next, the hot-rolled sheet was subjected to hot-rolled sheet annealing at 1000 ° C. × 40 sec, and then annealed in a dry nitrogen atmosphere maintained at a temperature of 700 ° C. for various periods of time, yielding of the steel sheet before primary cold rolling The stress YS was changed variously. After that, a primary cold rolling is performed to obtain a cold rolled sheet having an intermediate sheet thickness of 1.5 mm, an intermediate annealing at 1050 ° C. × 80 sec is performed, and then a second cold rolling is performed to obtain a cold rolled sheet having a final sheet thickness of 0.23 mm. It was. Then, after performing primary recrystallization annealing also serving as decarburization at 800 ° C. × 120 sec, an annealing separator mainly composed of MgO is applied to the steel sheet surface, and purification annealing and secondary recrystallization annealing at 1150 ° C. × 50 hr are performed. A grain-oriented electrical steel sheet was prepared by performing finish annealing that also served as a steel.

Figure 0005741308
Figure 0005741308

上記のようにして得た方向性電磁鋼板の鉄損値W17/50と、一次冷間圧延前の素材鋼板の室温(25℃)における降伏応力YSとを表1に併記した。また、図1には、同表の結果を、鉄損値W17/50と、鋼素材中のSi含有量および一次冷間圧延前の素材鋼板の降伏応力YSとの関係を整理した結果を示した。図1から、鋼素材のSi含有量(mass%)と、一次冷間圧延前の素材鋼板の室温における降伏応力YS(MPa)とが、下記(1)式;
124.32×Si−12.45≦YS≦124.32×Si+127.55
・・・(1)
の関係を満たす範囲において、二次再結晶焼鈍後の鉄損値W17/50が0.85W/kg以下の優れた鉄損特性が得られることがわかる。
Table 1 shows the iron loss value W 17/50 of the grain- oriented electrical steel sheet obtained as described above and the yield stress YS at room temperature (25 ° C.) of the raw steel sheet before the primary cold rolling. Moreover, in FIG. 1, the result of the same table | surface is the result of arranging the relationship between the iron loss value W 17/50 , the Si content in the steel material, and the yield stress YS of the material steel plate before the primary cold rolling. Indicated. From FIG. 1, the Si content (mass%) of the steel material and the yield stress YS (MPa) at room temperature of the material steel plate before the primary cold rolling are expressed by the following equation (1):
124.32 × Si-12.45 ≦ YS ≦ 124.32 × Si + 127.55
... (1)
It can be seen that in the range satisfying this relationship, excellent iron loss characteristics with an iron loss value W 17/50 after secondary recrystallization annealing of 0.85 W / kg or less can be obtained.

ここで、一次冷間圧延前の素材鋼板の室温における降伏応力YSを、Si含有量に応じて上記(1)式を満たすときに鉄損特性が向上する理由は、まだ十分に明らかとはなっていないが、以下のように考えている。
降伏応力YSが高いと、鉄損特性が劣化(鉄損が上昇)する傾向があったが、(1)式を満たすようYSを低減することで、一次冷間圧延における不均一変形が抑制されて、中間焼鈍板の粒径が粗大化して整粒となり、ひいては、一次再結晶後の鋼板におけるGoss方位粒の絶対量が増加し、二次再結晶後の鉄損特性を向上することができる。
しかし、YSがさらに低下し、(1)式を下回るようになると、歪が蓄積され難い組織となるため、一次冷間圧延における熱延板組織の破壊が十分ではなく、一次再結晶板の集合組織において、二次再結晶に不用な方位である{110}<001>方位粒等が残存するようになるため、鉄損特性が劣化する。
Here, the reason why the iron loss characteristic is improved when the yield stress YS of the raw steel sheet before primary cold rolling satisfies the above formula (1) according to the Si content is still sufficiently clear. I don't think so.
When the yield stress YS is high, the iron loss characteristics tend to deteriorate (iron loss increases), but by reducing YS so as to satisfy Equation (1), nonuniform deformation in primary cold rolling is suppressed. Thus, the grain size of the intermediate annealed plate becomes coarse and becomes sized, and as a result, the absolute amount of Goss orientation grains in the steel sheet after primary recrystallization increases, and the iron loss characteristics after secondary recrystallization can be improved. .
However, when YS is further reduced and falls below the formula (1), a structure in which strain is difficult to accumulate is obtained, so that the hot-rolled sheet structure is not sufficiently destroyed in the primary cold rolling, and the aggregate of the primary recrystallized sheets In the structure, {110} <001> orientation grains, which are orientations unnecessary for secondary recrystallization, remain, so that iron loss characteristics deteriorate.

上記のように、本発明においては、一次冷間圧延前の素材鋼板の室温における降伏応力を低減することは必須の事項である。一次冷間圧延前の素材鋼板の室温における降伏応力を低減するには、種々の方法があるが、例えば、一次冷間圧延前の素材鋼板(熱延板または熱延板焼鈍板)に、A変態点直下の温度で長時間の焼鈍を施して、パーライトの球状化および消滅を促進させる方法が最も簡便な方法である。具体的な焼鈍条件としては、500〜750℃の温度で、0.2〜480hr保持する箱焼鈍するのが好ましい。ただし、長時間の焼鈍は、生産性を阻害するため、120hr以下とするのがより好ましい。 As described above, in the present invention, it is an essential matter to reduce the yield stress at room temperature of the raw steel plate before the primary cold rolling. There are various methods for reducing the yield stress at room temperature of the raw steel sheet before the primary cold rolling. For example, a material steel sheet (hot rolled sheet or hot rolled sheet annealed sheet) before the primary cold rolling is subjected to A The simplest method is a method in which annealing is performed for a long time at a temperature immediately below one transformation point to promote spheroidization and disappearance of pearlite. As specific annealing conditions, it is preferable to perform box annealing at a temperature of 500 to 750 ° C. and holding for 0.2 to 480 hours. However, since annealing for a long time hinders productivity, it is more preferably set to 120 hr or less.

上記のようにして降伏応力を所定の範囲に制御した熱延板は、一次冷間圧延を施して中間板厚の冷延板とするが、一次冷間圧延条件については、特に制限はなく、通常公知の方法で行えばよい。   As described above, the hot-rolled sheet in which the yield stress is controlled within a predetermined range is subjected to primary cold rolling to obtain a cold-rolled sheet having an intermediate sheet thickness, but the primary cold-rolling conditions are not particularly limited, What is necessary is just to perform by a well-known method normally.

一次冷間圧延した鋼板は、その後、最終冷間圧延前に中間焼鈍を施すが、その焼鈍は、均熱温度800〜1200℃、均熱時間2〜300secの範囲で行い、焼鈍後の冷却は、800〜400℃の区間を冷却速度10〜200℃/sで急冷するのが好ましい。
均熱温度が800℃未満または均熱時間が2sec未満では、未再結晶組織が残存するため、一次再結晶後の鋼板を粗大な整粒組織とすることができず、一次再結晶後の鋼板のGoss方位粒の集積度を高めることができないため、二次再結晶後の磁気特性の低下を招く。一方、均熱温度が1200℃あるいは均熱時間が300secを超えると、AlNやMnSe,MnSの溶解が進行してインヒビターの抑制力が不足し、二次再結晶を起こし難くなり、やはり、磁気特性の低下を引き起こすからである。
また、中間焼鈍後の冷却における800〜400℃の区間での冷却速度が10℃/sec未満では、カーバイドの粗大化が進行し、その後の最終冷間圧延や一次再結晶焼鈍での集合組織改善効果が弱まり、磁気特性の低下を起こす。一方、800〜400℃の区間での冷却速度を200℃/sec超えとすると、硬質のマルテンサイト相が増加し、一次再結晶焼鈍後の鋼板組織を上記の所望の組織とすることができなくなるため、やはり、磁気特性が低下するからである。
The primary cold-rolled steel sheet is then subjected to intermediate annealing before the final cold rolling, but the annealing is performed in the range of a soaking temperature of 800 to 1200 ° C. and a soaking time of 2 to 300 seconds, and cooling after annealing is performed. , 800-400 ° C. is preferably quenched at a cooling rate of 10-200 ° C./s.
If the soaking temperature is less than 800 ° C. or the soaking time is less than 2 seconds, an unrecrystallized structure remains, so the steel sheet after the primary recrystallization cannot be made into a coarse sized structure, and the steel sheet after the primary recrystallization. Since the degree of accumulation of the Goss orientation grains cannot be increased, the magnetic properties after secondary recrystallization are reduced. On the other hand, when the soaking temperature is 1200 ° C. or the soaking time exceeds 300 seconds, the dissolution of AlN, MnSe, and MnS proceeds, the inhibitor's inhibitory power becomes insufficient, and secondary recrystallization hardly occurs. It is because it causes the fall of.
Moreover, when the cooling rate in the section of 800 to 400 ° C. in the cooling after the intermediate annealing is less than 10 ° C./sec, the coarsening of the carbide proceeds, and the texture improvement in the subsequent final cold rolling or primary recrystallization annealing The effect is weakened and the magnetic properties are degraded. On the other hand, when the cooling rate in the section of 800 to 400 ° C. exceeds 200 ° C./sec, the hard martensite phase increases, and the steel sheet structure after the primary recrystallization annealing cannot be made the desired structure. As a result, the magnetic characteristics are still deteriorated.

続く最終冷間圧延の圧下率は、60〜95%の範囲で行うのが好ましい。最終冷間圧延における圧下率が60%未満では、一次再結晶板における{554}<225>方位粒、{12 4 1}<014>方位粒等、二次再結晶におけるGoss方位粒の成長に有利な方位粒の形成が十分ではなく、一方、95%を超えると、二次再結晶の核となるGoss方位粒の絶対量が不足するためである。   The rolling reduction of the subsequent final cold rolling is preferably performed in the range of 60 to 95%. When the rolling reduction in the final cold rolling is less than 60%, the growth of Goss orientation grains in secondary recrystallization such as {554} <225> orientation grains and {12 4 1} <014> orientation grains in the primary recrystallization plate This is because the formation of advantageous orientation grains is not sufficient, while when it exceeds 95%, the absolute amount of Goss orientation grains serving as the nucleus of secondary recrystallization is insufficient.

最終板厚とされた冷延板は、その後、均熱温度700〜1000℃の温度で、湿水素雰囲気中での脱炭を兼ねた一次再結晶焼鈍を施すのが好ましい。
一次再結晶焼鈍における均熱温度が700℃未満では、未再結晶組織が残存し、所望の均一な一次再結晶粒径とすることができない。一方、均熱温度が1000℃を超えると、二次再結晶が起こってGoss方位粒が生成するおそれがあるからである。
The cold-rolled sheet having the final thickness is preferably subjected to primary recrystallization annealing that also serves as decarburization in a wet hydrogen atmosphere at a soaking temperature of 700 to 1000 ° C.
When the soaking temperature in the primary recrystallization annealing is less than 700 ° C., an unrecrystallized structure remains, and a desired uniform primary recrystallization grain size cannot be obtained. On the other hand, when the soaking temperature exceeds 1000 ° C., secondary recrystallization occurs and there is a possibility that Goss orientation grains may be generated.

その後、常法に準じて、鋼板表面にMgOを主成分とする焼鈍分離剤を塗布した後、二次再結晶焼鈍(仕上焼鈍)を施すことが好ましい。また、この二次再結晶焼鈍は、水素雰囲気中で行うことで、純化焼鈍を兼ねて行うこともできる。   Then, it is preferable to apply secondary recrystallization annealing (finish annealing) after applying an annealing separator mainly composed of MgO to the steel sheet surface according to a conventional method. Moreover, this secondary recrystallization annealing can also be performed also as purification annealing by performing in a hydrogen atmosphere.

仕上焼鈍で二次再結晶させた鋼板は、その後、絶縁コーティングを塗布・焼付ける絶縁被膜塗布工程および平坦化焼鈍工程を経て、方向性電磁鋼板(製品板)とするのが好ましい。   The steel sheet that has been secondarily recrystallized by finish annealing is preferably a grain-oriented electrical steel sheet (product board) through an insulating coating application process for applying and baking an insulating coating and a flattening annealing process.

なお、本発明の方向性電磁鋼板の製造方法においては、一次再結晶焼鈍後から仕上焼鈍で二次再結晶が開始までの間に、鋼中にNを含有させる窒化処理を施すことも可能である。その方法としては、一次再結晶焼鈍後、NH雰囲気中で熱処理を施したり、窒化物を焼鈍分離剤中に含有させたり、仕上焼鈍前段の雰囲気を窒化ガスとしたりする公知の技術が適用できる。 In the method for producing a grain-oriented electrical steel sheet of the present invention, it is possible to perform a nitriding treatment in which N is contained in the steel during the period from the first recrystallization annealing to the finish annealing and the second recrystallization. is there. As the method, a known technique in which heat treatment is performed in an NH 3 atmosphere after primary recrystallization annealing, nitride is contained in an annealing separator, or the atmosphere before the final annealing is used as a nitriding gas can be applied. .

さらに、最終冷間圧延後から一次再結晶焼鈍の間に鋼板表面に複数の人工溝を形成したり、平坦化焼鈍後の鋼板表面にプラズマジェットやレーザー照射を線状に施したり、突起ロールによる線状の凹みを付与したりする磁区細分化処理を施して、鉄損の低減を図ってもよい。   Furthermore, a plurality of artificial grooves are formed on the steel plate surface during the primary recrystallization annealing after the final cold rolling, the plasma jet or laser irradiation is linearly applied to the steel plate surface after the flattening annealing, It is also possible to reduce the iron loss by applying a magnetic domain subdividing process that gives a linear dent.

C:0.05mass%、Si:3.0mass%、Mn:0.10mass%、sol.Al:0.02mass%、N:0.01mass%、S:0.0030mass%およびSe:0.030mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有するスラブを、1400℃に加熱後、熱間圧延して板厚2.2mmの熱延板とした後、1000℃×40secの熱延板焼鈍を施し、その後、乾燥窒素雰囲気中において700℃で保持時間を変えて焼鈍を施して、一次冷間圧延前の素材鋼板の25℃における降伏応力YSを種々に変化させた。次いで、一次冷間圧延して中間板厚1.7mmの冷延板とし、1050℃×80secの中間焼鈍を施した後、二次冷間圧延(最終冷間圧延)して最終板厚が0.23mmの冷延板とした。その後、この冷延板に800℃×150secの脱炭を兼ねた一次再結晶焼鈍を施し、鋼板表面にMgOを主成分とする焼鈍分離剤を塗布・乾燥した後、1150℃×50hrの純化を兼ねた二次再結晶焼鈍(仕上焼鈍)を施して方向性電磁鋼板とした。   C: 0.05 mass%, Si: 3.0 mass%, Mn: 0.10 mass%, sol. A slab containing Al: 0.02 mass%, N: 0.01 mass%, S: 0.0030 mass% and Se: 0.030 mass%, with the balance being composed of Fe and unavoidable impurities at 1400 ° C. After heating, hot-rolled to a hot-rolled sheet having a thickness of 2.2 mm, and then subjected to hot-rolled sheet annealing at 1000 ° C. × 40 sec, and then annealed by changing the holding time at 700 ° C. in a dry nitrogen atmosphere. The yield stress YS at 25 ° C. of the raw steel plate before the primary cold rolling was variously changed. Next, primary cold rolling is performed to obtain a cold rolled sheet having an intermediate sheet thickness of 1.7 mm, intermediate annealing at 1050 ° C. × 80 sec is performed, and then secondary cold rolling (final cold rolling) is performed to obtain a final sheet thickness of 0. A 23 mm cold rolled sheet was used. After that, this cold-rolled sheet was subjected to primary recrystallization annealing that also served as decarburization at 800 ° C. for 150 seconds, and after applying and drying an annealing separator mainly composed of MgO on the steel plate surface, purification at 1150 ° C. for 50 hours was performed. A secondary recrystallization annealing (finish annealing) was also performed to obtain a grain-oriented electrical steel sheet.

上記のようにして得た各種方向性電磁鋼板から試験片を採取し、磁気特性(鉄損W17/50、磁束密度B)を測定した。表2に、一次冷間圧延前の素材鋼板の室温(25℃)における降伏応力YSおよび二次再結晶後の鋼板の磁気特性を、先述した(1)式の上下限値と併記して示した。 Test pieces were collected from the various grain- oriented electrical steel sheets obtained as described above, and magnetic properties (iron loss W 17/50 , magnetic flux density B 8 ) were measured. Table 2 shows the yield stress YS at room temperature (25 ° C.) of the steel sheet before primary cold rolling and the magnetic properties of the steel sheet after secondary recrystallization, along with the upper and lower limits of the above-mentioned formula (1). It was.

Figure 0005741308
Figure 0005741308

表2から、一次冷間圧延前の素材鋼板の室温における降伏応力YSが、(1)式を満たす鋼板では、鉄損W17/50が0.85W/kg以下の低鉄損となっている。
これに対して、YSが(1)式の上限を外れるNo.1〜3の鋼板では、上記低鉄損が得られていない。これは、一次冷間圧延前の降伏応力YSが高い素材鋼板では、一次冷間圧延における加工歪で転位のタングルが促進されて再結晶の核生成サイトが増大し、中間焼鈍板の粒径が細粒化したためと推定される。その結果、一次再結晶焼鈍のGoss方位粒の絶対量が減少したことで、二次再結晶焼鈍の初期段階で先鋭なGoss方位核が生き残る確率が減少し、二次再結晶後のGoss方位集積度が低下し、磁気特性の劣化に繋がったものと推定される。
一方、YSが(1)式の下限を外れるNo.10の鋼板は、一次冷間圧延における熱延板組織の破壊が十分ではなく、一次再結晶集合組織において、二次再結晶に不用な方位である{110}<001>等が残存したためであると考えられる。
From Table 2, in the steel sheet where the yield stress YS of the raw steel sheet before the primary cold rolling satisfies the formula (1), the iron loss W 17/50 is a low iron loss of 0.85 W / kg or less. .
On the other hand, Y.S. deviates from the upper limit of the expression (1). In the steel plates 1 to 3, the low iron loss is not obtained. This is because, in a steel sheet with a high yield stress YS before primary cold rolling, dislocation tangles are promoted by processing strain in primary cold rolling, the nucleation sites of recrystallization increase, and the grain size of the intermediate annealing plate increases. It is estimated that it was made finer. As a result, the decrease in the absolute amount of Goss orientation grains in primary recrystallization annealing reduces the probability that sharp Goss orientation nuclei survive in the initial stage of secondary recrystallization annealing, and the integration of Goss orientation after secondary recrystallization. It is presumed that the degree of the magnetic field decreased and the magnetic characteristics were deteriorated.
On the other hand, No. where YS deviates from the lower limit of the expression (1). This is because the steel sheet No. 10 was not sufficiently destroyed in the hot-rolled sheet structure in the primary cold rolling, and {110} <001>, which is an orientation unnecessary for the secondary recrystallization, remained in the primary recrystallization texture. it is conceivable that.

Si:3.5mass%、N:0.01mass%、S:0.0040mass%およびSe:0.03mass%を含有し、その他の成分は表3に示した組成を有するスラブを、1350℃の温度に加後、熱間圧延して板厚2.2mmの熱延板とし、1000℃×40secの熱延板焼鈍を施した後、乾燥窒素雰囲気中において700℃×120hrの焼鈍することで一次冷間圧延前の素材鋼板の降伏応力YSを低減させた。その後、一次冷間圧延して1.7mmの中間板厚とした鋼板に、1050℃×80secの中間焼鈍を施した後、二次冷間圧延(最終冷間圧延)して板厚0.23mmの冷延板とした。次いで、この冷延板に、800℃×150secの脱炭を兼ねた一次再結晶焼鈍を施し、鋼板表面にMgOを主成分とする焼鈍分離剤を塗布した後、1150℃×50hrの純化を兼ねた二次再結晶焼鈍(仕上焼鈍)を施し、方向性電磁鋼板とした。   A slab containing Si: 3.5 mass%, N: 0.01 mass%, S: 0.0040 mass% and Se: 0.03 mass%, and other components having a composition shown in Table 3 was heated to 1350 ° C. Then, it is hot-rolled to obtain a hot-rolled sheet having a thickness of 2.2 mm, subjected to hot-rolled sheet annealing at 1000 ° C. × 40 sec, and then annealed at 700 ° C. × 120 hr in a dry nitrogen atmosphere to perform primary cooling. Yield stress YS of the raw steel plate before hot rolling was reduced. After that, the steel sheet was subjected to primary cold rolling to an intermediate thickness of 1.7 mm, subjected to intermediate annealing at 1050 ° C. × 80 sec, and then subjected to secondary cold rolling (final cold rolling) to a thickness of 0.23 mm. The cold-rolled sheet was used. Next, this cold-rolled sheet is subjected to primary recrystallization annealing also serving as decarburization at 800 ° C. for 150 seconds, and after applying an annealing separator mainly composed of MgO to the steel sheet surface, it also serves as purification at 1150 ° C. for 50 hours. Secondary recrystallization annealing (finish annealing) was performed to obtain a grain-oriented electrical steel sheet.

Figure 0005741308
Figure 0005741308

上記のようにして得た各種方向性電磁鋼板から試験片を採取し、磁気特性(鉄損W17/50、磁束密度B)を測定した。表3に、一次冷間圧延前の素材鋼板の室温(25℃)における降伏応力YSおよび二次再結晶後の鋼板の磁気特性を、先述した(1)式の上下限値と併記して示した。
表3のNo.1〜5は、C含有量を変化させた例であり、No.2〜4の範囲、つまり、C:0.02〜0.15mass%の範囲で、磁気特性が良好であることがわかる。No.1の鋼板の磁気特性が劣る原因は、C含有量が少ないため熱間圧延時にγ−α変態が起こらず、一次再結晶後の鋼板集合組織の改善効果が弱かったためと考えられる。また、No.5の鋼板の磁気特性が劣る原因は、C含有量が高いために、一次再結晶後の鋼板の集合組織が改善されなかったことと、一次再結晶焼鈍での脱炭が不完全であったためと考えられる。
また、No.6〜27は、C含有量を0.05〜0.08mass%とし、Mn,Al,Sn,Sb,P,Ni,CuおよびCrの含有量を変更したものであるが、いずれも本発明に範囲内にあるため、良好な磁気特性が得られている。
Test pieces were collected from the various grain- oriented electrical steel sheets obtained as described above, and magnetic properties (iron loss W 17/50 , magnetic flux density B 8 ) were measured. Table 3 shows the yield stress YS at room temperature (25 ° C.) of the steel sheet before primary cold rolling and the magnetic properties of the steel sheet after secondary recrystallization, along with the upper and lower limits of the above-described equation (1). It was.
No. in Table 3 Nos. 1 to 5 are examples in which the C content was changed. It can be seen that the magnetic properties are good in the range of 2 to 4, that is, in the range of C: 0.02 to 0.15 mass%. No. The reason why the steel sheet No. 1 is inferior in magnetic properties is considered to be that since the C content is small, the γ-α transformation does not occur during hot rolling, and the effect of improving the steel sheet texture after primary recrystallization is weak. No. The reason why the steel sheet No. 5 is inferior in magnetic properties is that the C content is high, the texture of the steel sheet after the primary recrystallization was not improved, and the decarburization in the primary recrystallization annealing was incomplete. it is conceivable that.
No. 6 to 27 are those in which the C content is 0.05 to 0.08 mass%, and the contents of Mn, Al, Sn, Sb, P, Ni, Cu and Cr are changed. Since it is within the range, good magnetic properties are obtained.

Claims (4)

C:0.02〜0.15mass%、Si:2.5〜4.0mass%、Mn:0.005〜0.3mass%、sol.Al:0.01〜0.05mass%、N:0.002〜0.012mass%およびS,Seの1種または2種を合計で0.05mass%以下含有し、残部がFeおよび不可避的不純物からなる鋼素材を熱間圧延した後、中間焼鈍を挟む2回以上の冷間圧延し、一次再結晶焼鈍し、仕上焼鈍する方向性電磁鋼板の製造方法において、
一次冷間圧延前の素材鋼板の降伏応力YS(MPa)を、鋼素材のSi含有量(mass%)との関係において下記(1)式を満たすよう調整した後、一次冷間圧延することを特徴とする方向性電磁鋼板の製造方法。

124.32×Si−12.45≦YS≦124.32×Si+127.55
・・・(1)
C: 0.02-0.15 mass%, Si: 2.5-4.0 mass%, Mn: 0.005-0.3 mass%, sol. Al: 0.01 to 0.05 mass%, N: 0.002 to 0.012 mass%, and one or two of S and Se are contained in a total of 0.05 mass% or less, with the balance being Fe and inevitable impurities In the manufacturing method of the grain-oriented electrical steel sheet, after hot rolling the steel material to be cold-rolled twice or more sandwiching the intermediate annealing, primary recrystallization annealing, and finish annealing,
After adjusting the yield stress YS (MPa) of the material steel plate before the primary cold rolling to satisfy the following formula (1) in relation to the Si content (mass%) of the steel material, the primary cold rolling is performed. A method for producing a grain-oriented electrical steel sheet.
124.32 × Si-12.45 ≦ YS ≦ 124.32 × Si + 127.55
... (1)
上記鋼素材は、上記成分組成に加えてさらに、Ni:0.005〜1.5mass%、Sn:0.005〜0.50mass%、Sb:0.005〜0.50mass%、Cu:0.005〜1.5mass%、P:0.005〜0.50mass%およびCr:0.01〜1.5mass%の内から選ばれる1種または2種以上を含有することを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。 In addition to the above component composition, the steel material further includes Ni: 0.005-1.5 mass%, Sn: 0.005-0.50 mass%, Sb: 0.005-0.50 mass%, Cu: 0.00. 2 or more types selected from 005 to 1.5 mass%, P: 0.005 to 0.50 mass%, and Cr: 0.01 to 1.5 mass%. The manufacturing method of the grain-oriented electrical steel sheet described in 1. 熱間圧延後、中間焼鈍を挟む2回以上の冷間圧延し、一次再結晶焼鈍し、仕上焼鈍する方向性電磁鋼板の製造に用いる一次冷間圧延前の素材鋼板であって、当該鋼板は、C:0.02〜0.15mass%、Si:2.5〜4.0mass%、Mn:0.005〜0.3mass%、sol.Al:0.01〜0.05mass%、N:0.002〜0.012mass%およびS,Seの1種または2種を合計で0.05mass%以下含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、降伏応力YS(MPa)とSi含有量(mass%)とが下記(1)式を満たすことを特徴とする方向性電磁鋼板用素材鋼板。

124.32×Si−12.45≦YS≦124.32×Si+127.55
・・・(1)
After the hot rolling, it is a raw steel plate before the primary cold rolling used for manufacturing the grain-oriented electrical steel sheet that is cold-rolled two or more times with intermediate annealing, primary recrystallization annealing, and finish annealing, , C: 0.02-0.15 mass%, Si: 2.5-4.0 mass%, Mn: 0.005-0.3 mass%, sol. Al: 0.01 to 0.05 mass%, N: 0.002 to 0.012 mass%, and one or two of S and Se are contained in a total of 0.05 mass% or less, with the balance being Fe and inevitable impurities A material steel sheet for grain-oriented electrical steel sheets, wherein the yield stress YS (MPa) and the Si content (mass%) satisfy the following formula (1):
124.32 × Si-12.45 ≦ YS ≦ 124.32 × Si + 127.55
... (1)
上記鋼板は、上記成分組成に加えてさらに、Ni:0.005〜1.5mass%、Sn:0.005〜0.50mass%、Sb:0.005〜0.50mass%、Cu:0.005〜1.5mass%、P:0.005〜0.50mass%およびCr:0.01〜1.5mass%の内から選ばれる1種または2種以上を含有することを特徴とする請求項3に記載の方向性電磁鋼板用素材鋼板。 In addition to the above component composition, the steel sheet further includes Ni: 0.005-1.5 mass%, Sn: 0.005-0.50 mass%, Sb: 0.005-0.50 mass%, Cu: 0.005. 1 to 2 or more types chosen from -1.5 mass%, P: 0.005-0.50mass%, and Cr: 0.01-1.5mass%, It is characterized by the above-mentioned. The material steel sheet for grain-oriented electrical steel sheets described.
JP2011174950A 2010-12-15 2011-08-10 Manufacturing method of grain-oriented electrical steel sheet and material steel sheet thereof Active JP5741308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011174950A JP5741308B2 (en) 2010-12-15 2011-08-10 Manufacturing method of grain-oriented electrical steel sheet and material steel sheet thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010278943 2010-12-15
JP2010278943 2010-12-15
JP2011174950A JP5741308B2 (en) 2010-12-15 2011-08-10 Manufacturing method of grain-oriented electrical steel sheet and material steel sheet thereof

Publications (2)

Publication Number Publication Date
JP2012140698A JP2012140698A (en) 2012-07-26
JP5741308B2 true JP5741308B2 (en) 2015-07-01

Family

ID=46677252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011174950A Active JP5741308B2 (en) 2010-12-15 2011-08-10 Manufacturing method of grain-oriented electrical steel sheet and material steel sheet thereof

Country Status (1)

Country Link
JP (1) JP5741308B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014020369A1 (en) * 2012-07-31 2014-02-06 Arcelormittal Investigación Y Desarrollo Sl Method of production of grain-oriented silicon steel sheet grain oriented electrical steel sheet and use thereof
JP6344263B2 (en) * 2015-02-25 2018-06-20 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001040449A (en) * 1999-07-29 2001-02-13 Nippon Steel Corp Manufacture of grain-oriented electrical steel sheet superior in magnetic flux density and iron loss, and steel plate before final cold rolling for manufacturing the steel plate

Also Published As

Publication number Publication date
JP2012140698A (en) 2012-07-26

Similar Documents

Publication Publication Date Title
JP5842400B2 (en) Method for producing grain-oriented electrical steel sheet
JP5668460B2 (en) Method for producing non-oriented electrical steel sheet
JP5988027B2 (en) Method for producing ultrathin grain-oriented electrical steel sheet
KR101756606B1 (en) Method of producing grain oriented electrical steel sheet
JP5668893B2 (en) Method for producing grain-oriented electrical steel sheet
KR101683693B1 (en) Method for producing grain-oriented electrical steel sheet
US20150243419A1 (en) Method for producing grain-oriented electrical steel sheet
JP6160649B2 (en) Method for producing grain-oriented electrical steel sheet
JP5644154B2 (en) Method for producing grain-oriented electrical steel sheet
JP5648331B2 (en) Method for producing grain-oriented electrical steel sheet
JP2012188733A (en) Manufacturing method for grain-oriented electrical steel sheet
JP6432671B2 (en) Method for producing grain-oriented electrical steel sheet
JP6947147B2 (en) Manufacturing method of grain-oriented electrical steel sheet
KR20240035911A (en) Method for producing grain-oriented electrical steel sheet
JP5741308B2 (en) Manufacturing method of grain-oriented electrical steel sheet and material steel sheet thereof
JP5712652B2 (en) Method for producing grain-oriented electrical steel sheet
JP2014173103A (en) Method of producing grain-oriented magnetic steel sheet
WO2023157938A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JP6702259B2 (en) Method for producing grain-oriented electrical steel sheet
KR20230159874A (en) Manufacturing method of grain-oriented electrical steel sheet
WO2022210504A1 (en) Method for manufacturing grain-oriented electromagnetic steel sheet
JP2018087366A (en) Production method of grain-oriented electromagnetic steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150413

R150 Certificate of patent or registration of utility model

Ref document number: 5741308

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250