JP2018087366A - Production method of grain-oriented electromagnetic steel sheet - Google Patents

Production method of grain-oriented electromagnetic steel sheet Download PDF

Info

Publication number
JP2018087366A
JP2018087366A JP2016231738A JP2016231738A JP2018087366A JP 2018087366 A JP2018087366 A JP 2018087366A JP 2016231738 A JP2016231738 A JP 2016231738A JP 2016231738 A JP2016231738 A JP 2016231738A JP 2018087366 A JP2018087366 A JP 2018087366A
Authority
JP
Japan
Prior art keywords
less
annealing
hot
steel sheet
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016231738A
Other languages
Japanese (ja)
Other versions
JP6544344B2 (en
Inventor
今村 猛
Takeshi Imamura
今村  猛
有衣子 江橋
Yuiko EHASHI
有衣子 江橋
早川 康之
Yasuyuki Hayakawa
康之 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2016231738A priority Critical patent/JP6544344B2/en
Publication of JP2018087366A publication Critical patent/JP2018087366A/en
Application granted granted Critical
Publication of JP6544344B2 publication Critical patent/JP6544344B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably obtain excellent magnetic properties for a grain-oriented electromagnetic steel sheet produced from a slab without using an inhibitor-forming component.SOLUTION: In this method for producing a grain-oriented electromagnetic steel sheet, a steel slab is subjected to heating at 1300°C or lower and to hot rolling to obtain a hot-rolled steel sheet which is subsequently annealed to obtain a hot-rolled annealed sheet. The hot-rolled annealed sheet is subjected to one cold rolling or two or more cold rolling interposed by an intermediate annealing to obtain a cold-rolled steel sheet having a final sheet thickness. The cold-rolled steel sheet is subjected to a primary recrystallization annealing and subsequently to a secondary recrystallization annealing. A holding temperature in the hot-rolled sheet annealing is set to 1000°C or higher and 1150°C or lower. A cooling rate from the holding temperature to 900°C after holding in the hot-rolled sheet annealing is 1°C/s or more and 10°C/s or less.SELECTED DRAWING: Figure 1

Description

本発明は、変圧器の鉄心材料に好適な方向性電磁鋼板の製造方法に関する。   The present invention relates to a method for producing a grain-oriented electrical steel sheet suitable for a core material of a transformer.

方向性電磁鋼板は、変圧器や発電機の鉄心材料として用いられる軟磁性材料で、鉄の磁化容易軸である<001>方位が鋼板の圧延方向に高度に揃った結晶組織を有するものである。このような集合組織は、方向性電磁鋼板の製造工程中、二次再結晶焼鈍の際にいわゆるゴス(Goss)方位と称される{110}<001>方位の結晶粒を優先的に巨大成長させる、二次再結晶を通じて形成される。   Oriented electrical steel sheet is a soft magnetic material used as a core material for transformers and generators, and has a crystal structure in which the <001> orientation, which is the easy axis of iron, is highly aligned in the rolling direction of the steel sheet. . Such a texture preferentially grows grains of the {110} <001> orientation called the Goss orientation during secondary recrystallization annealing during the production process of grain-oriented electrical steel sheets. Formed through secondary recrystallization.

この方向性電磁鋼板については、インヒビターと呼ばれる析出物を使用して仕上焼鈍中にGoss方位を有する粒を二次再結晶させることが一般的な技術として使用されている。例えば、特許文献1記載のAlNを使用する方法、特許文献2記載のMnS、MnSeを使用する方法などが開示され、工業的に実用化されている。これらのインヒビターを用いる方法は、1300℃超と高温でのスラブ加熱を必要とするが、安定して二次再結晶粒を発達させるのに極めて有用な方法であった。   For this grain-oriented electrical steel sheet, it is a common technique to use secondary precipitates called inhibitors to recrystallize grains having Goss orientation during finish annealing. For example, a method using AlN described in Patent Document 1 and a method using MnS and MnSe described in Patent Document 2 are disclosed and industrially put into practical use. Although the method using these inhibitors requires slab heating at a high temperature exceeding 1300 ° C., it is a very useful method for stably developing secondary recrystallized grains.

これらのインヒビターを用いる方法は安定して二次再結晶粒を発達させるのに有用な方法であるが、インヒビターを鋼中に微細分散させるために、1300℃超の高温でスラブ加熱を行い、インヒビター形成成分を一度固溶させることが必要であった。また、二次再結晶後には磁気特性を劣化させる原因となることから、純化焼鈍を1100℃以上の高温とし、かつ雰囲気を制御することで地鉄中からインヒビターなどの析出物および介在物を除去する必要があった。   The method using these inhibitors is a useful method for stably developing secondary recrystallized grains, but in order to finely disperse the inhibitors in steel, slab heating is performed at a high temperature exceeding 1300 ° C. It was necessary to dissolve the forming component once. In addition, since it causes deterioration of magnetic properties after secondary recrystallization, precipitates and inclusions such as inhibitors are removed from the iron core by controlling the atmosphere at a high annealing temperature of 1100 ° C or higher. There was a need to do.

一方、インヒビター形成成分を含有させずに、ゴス方位結晶粒を二次再結晶により発達させる技術が特許文献3に提案されている。これは、インヒビター形成成分のような不純物を極力排除する事で、一次再結晶時の結晶粒界が持つ粒界エネルギーの粒界方位差角依存性を顕在化させ、インヒビターを用いずともGoss方位を有する粒を二次再結晶させる技術であり、その効果をテクスチャーインヒビション効果と呼んでいる。この方法では、インヒビターを純化する工程が不必要となるために、純化焼鈍を高温化する必要がないこと、さらにインヒビターの鋼中微細分散が必要ではないため、当該微細分散のために必須であった高温スラブ加熱も必要としないことなど、コスト面でもメンテナンス面でも大きなメリットを供する方法である。   On the other hand, Patent Document 3 proposes a technique for developing goth-oriented crystal grains by secondary recrystallization without containing an inhibitor-forming component. By eliminating impurities such as inhibitor forming components as much as possible, the grain boundary energy dependence of the grain boundary energy at the time of primary recrystallization becomes obvious, and Goss orientation is possible without using an inhibitor. This is a technique for secondarily recrystallizing grains having selenium, and this effect is called a texture inhibition effect. In this method, since the step of purifying the inhibitor is unnecessary, it is not necessary to increase the temperature of the purification annealing, and further, fine dispersion of the inhibitor in the steel is not necessary. It is a method that offers great advantages both in terms of cost and maintenance, such as not requiring high-temperature slab heating.

特公昭40-15644号公報Japanese Patent Publication No.40-15644 特公昭51-13469号公報Japanese Patent Publication No.51-13469 特開2000-129356号公報JP 2000-129356 JP

しかしながら、インヒビター形成成分を含有しない素材ではコイルの中での磁性ばらつきが大きい問題が顕在化した。この原因について鋭意調査した結果、インヒビター形成成分を含有しない素材では、一次再結晶焼鈍時に粒成長を抑制し、一定の粒径にそろえる機能を有するインヒビターが存在しない。そのため、工程条件や素材成分が若干変わっただけで一次再結晶後の鋼板の結晶粒径の変動が大きかったり、不均一な粒径分布になることが原因と推定された。このような変動は、コイル内でも生じる可能性があり、これが原因で磁気特性がばらつくものと考えられた。このように、これまで提案されてきたインヒビター形成成分を含有しない素材を用いた方向性電磁鋼板の製造方法では、良好な磁気特性を安定的に実現することは必ずしも容易ではなかった。   However, a material that does not contain an inhibitor-forming component has revealed a problem of large magnetic variation in the coil. As a result of earnest investigation on this cause, there is no inhibitor having a function of suppressing grain growth during primary recrystallization annealing and aligning to a certain grain size in a material that does not contain an inhibitor-forming component. For this reason, it was estimated that the change in the crystal grain size of the steel sheet after the primary recrystallization was large or the grain size distribution was not uniform even if the process conditions and material components were slightly changed. Such fluctuations may also occur in the coil, which is considered to cause variations in magnetic characteristics. As described above, it is not always easy to stably achieve good magnetic properties in the method for producing a grain-oriented electrical steel sheet using a material that does not contain an inhibitor-forming component that has been proposed so far.

本発明は上記の事情に鑑みてなされたものであり、インヒビター形成成分を使用せずにスラブから製造された方向性電磁鋼板について、優れた磁気特性を安定して得ることを目的とする。   This invention is made | formed in view of said situation, and it aims at obtaining the outstanding magnetic characteristic stably about the grain-oriented electrical steel sheet manufactured from the slab, without using an inhibitor formation component.

本発明者らは、鋭意検討を重ねた結果、インヒビターレス素材において、偏析元素をさらに含有させ、かつ熱延板焼鈍の冷却初期に緩やかに冷却させることで、磁気特性を向上させかつ磁気特性のばらつきを低減できることを新規に知見した。以下本発明を導くに至った実験について説明する。   As a result of intensive studies, the present inventors have further improved the magnetic properties and improved the magnetic properties of the inhibitorless material by further containing a segregating element and by slowly cooling it at the initial cooling stage of hot-rolled sheet annealing. It was newly found that variation can be reduced. The experiment that led to the present invention will be described below.

<実験>
質量%でC:0.024%、Si:3.42%、Mn:0.060%、Al:0.0018%、N:0.0013%、S:0.0011%、Se:0.0010%、Sb:0.055%を含み残部はFeおよび不可避的不純物からなる鋼スラブAとC:0.025%、Si:3.40%、Mn:0.060%、Al:0.0020%、N:0.0010%、S:0.0010%、Se:0.0010%を含みSbは含有せず、残部はFeおよび不可避的不純物からなる鋼スラブBとを連続鋳造にて製造し、1230℃で70分均熱するスラブ加熱した後、熱間圧延により2.7mmの厚さに仕上げた。その後、1075℃で30秒、乾燥窒素雰囲気の熱延板焼鈍を施した。その際、1075℃で温度保持後900℃までの冷却速度を種々変更した。900℃以下の温度域の冷却速度は35℃/sとした。
<Experiment>
In mass% C: 0.024%, Si: 3.42%, Mn: 0.060%, Al: 0.0018%, N: 0.0013%, S: 0.0011%, Se: 0.0010%, Sb: 0.055%, the balance being Fe and inevitable Steel slabs A and C made of impurities: 0.025%, Si: 3.40%, Mn: 0.060%, Al: 0.0020%, N: 0.0010%, S: 0.0010%, Se: 0.0010%, Sb not contained, the balance Produced a steel slab B composed of Fe and inevitable impurities by continuous casting, heated at 1230 ° C. for 70 minutes, and then finished to a thickness of 2.7 mm by hot rolling. Thereafter, hot-rolled sheet annealing in a dry nitrogen atmosphere was performed at 1075 ° C. for 30 seconds. At that time, the cooling rate up to 900 ° C after holding the temperature at 1075 ° C was variously changed. The cooling rate in the temperature range below 900 ° C was 35 ° C / s.

その後、冷間圧延で0.23mmの板厚に仕上げ、さらに、850℃で100秒、50%H2-50%N2、露点50℃の湿潤雰囲気下での脱炭をともなう一次再結晶焼鈍を施した。さらにMgOを主体とする焼鈍分離剤を塗布し、1200℃で5時間、水素雰囲気下で保定する二次再結晶焼鈍を行った。 After that, it was finished to a thickness of 0.23 mm by cold rolling, and further subjected to primary recrystallization annealing with decarburization in a humid atmosphere at 850 ° C for 100 seconds, 50% H 2 -50% N 2 and dew point 50 ° C. gave. Further, an annealing separator mainly composed of MgO was applied, and secondary recrystallization annealing was performed at 1200 ° C. for 5 hours under a hydrogen atmosphere.

得られたサンプルのB8(800A/mで励磁した時の磁束密度)をJIS C2550に記載の方法で測定した。本実験では、コイル内の磁性ばらつきを評価するため、コイルの長手方向両端部、中心部、さらに両端部と中心部の中間の位置の計5箇所で評価し、5箇所の中の最大値と最小値を評価した。この両者の乖離が大きいと、ばらつきが大きいといえる。得られた磁束密度と熱延板焼鈍の冷却工程における900℃までの冷却速度との関係を図1に示す。この図から、Sbを含有する鋼スラブAにおいて、冷却速度が1〜10℃/sの範囲で磁束密度が良好でかつばらつきが小さいことがわかる。 B 8 (magnetic flux density when excited at 800 A / m) of the obtained sample was measured by the method described in JIS C2550. In this experiment, in order to evaluate the magnetic variation in the coil, it was evaluated at a total of 5 positions, both in the longitudinal direction of the coil, at the center, and between the both ends and the center. The minimum value was evaluated. If the difference between the two is large, it can be said that the variation is large. FIG. 1 shows the relationship between the obtained magnetic flux density and the cooling rate up to 900 ° C. in the cooling process of hot-rolled sheet annealing. From this figure, it can be seen that in the steel slab A containing Sb, the magnetic flux density is good and the variation is small when the cooling rate is in the range of 1 to 10 ° C./s.

このように、インヒビターレス素材において、Sbを含有し、かつ熱延板焼鈍の冷却において900℃までは冷却速度が比較的遅い領域で磁気特性が良好となりかつばらつきも低減するメカニズムは必ずしも明らかにはなってはいないが、発明者らは次のように考えている。   Thus, in the inhibitorless material, the mechanism that contains Sb and the magnetic properties become good in the region where the cooling rate is relatively slow up to 900 ° C in the cooling of hot-rolled sheet annealing and the variation is not necessarily clear. Although not, the inventors think as follows.

Sbは鋼の結晶粒界に偏析しやすい元素として知られている。本実験の場合、1075℃で焼鈍している際は、高温のために偏析量は多くないと考えられる。続いて冷却過程では、900℃までを10℃/sを超えた冷却速度で冷却した場合には、Sbが偏析する時間が少なく、熱延板焼鈍後の粒界偏析量が少ないと考えられる。一方10℃/s以下であれば、多くのSbが粒界に偏析した状態になったと考えられる。Sbが粒界に偏析すると、次工程の冷間圧延でGoss核を含んだ変形帯が数多く発生し、最終製品でのGoss方位先鋭性がアップして磁気特性が良好となり、かつばらつきも低減したものと考えられる。   Sb is known as an element that easily segregates at the grain boundaries of steel. In the case of this experiment, when annealing at 1075 ° C., it is considered that the amount of segregation is not large due to the high temperature. Subsequently, in the cooling process, when cooling to 900 ° C. at a cooling rate exceeding 10 ° C./s, it is considered that the time for segregation of Sb is small and the grain boundary segregation amount after hot-rolled sheet annealing is small. On the other hand, if it is 10 ° C./s or less, it is considered that a large amount of Sb was segregated at the grain boundaries. When Sb segregates at the grain boundaries, many deformation bands containing Goss nuclei are generated in the next cold rolling, the Goss direction sharpness in the final product is improved, magnetic properties are improved, and variation is reduced. It is considered a thing.

このように考えると、900℃よりも低温まで冷却速度を遅くする方が偏析量が増加して、より磁性向上効果が発揮されるようにも思われる。しかしながら、インヒビターを含まない成分組成としても、Al、N、S、およびSeは、本実験レベルの量程度が不可避に含まれる可能性が高い。これらは、微量であるため高温では固溶しているが、900℃未満となるとAlN、MnS、およびMnSeなどの析出物として鋼中に出現してくる。この析出物が後の一次再結晶焼鈍時の再結晶組織に影響を与え、磁気特性を劣化させる可能性があると推測される。逆に考えると、Al、N、S、およびSe元素が多いと900℃以上でも析出物が形成される可能性があるため、これらインヒビター形成成分をできるだけ低減する必要がある。   Considering this, it seems that the amount of segregation increases when the cooling rate is lowered to a temperature lower than 900 ° C., and the effect of improving the magnetism is exhibited. However, even as a component composition that does not contain an inhibitor, Al, N, S, and Se are likely to inevitably contain amounts of this experimental level. Since these are trace amounts, they are dissolved at high temperatures, but when they are below 900 ° C., they appear in the steel as precipitates such as AlN, MnS, and MnSe. It is speculated that this precipitate may affect the recrystallization structure at the time of the subsequent primary recrystallization annealing and may deteriorate the magnetic properties. Conversely, if there are many Al, N, S, and Se elements, precipitates may be formed even at 900 ° C. or higher, so it is necessary to reduce these inhibitor forming components as much as possible.

また、本実験ではSbを含有させたが、同様の偏析能を有するSn、Mo、およびPを含有させても同じ効果が得られた。
以上のように本発明者らは、インヒビターレス素材において、上記偏析能を有する元素(偏析元素)をさらに含有させ、かつ熱延板焼鈍の冷却初期に緩やかに冷却させることで、磁気特性を向上させかつばらつきを低減することに成功した。
Further, although Sb was contained in this experiment, the same effect was obtained even when Sn, Mo, and P having the same segregation ability were contained.
As described above, the present inventors have improved the magnetic properties of the inhibitorless material by further containing the element having the segregation ability (segregation element) and cooling it slowly in the initial stage of hot-rolled sheet annealing. And succeeded in reducing variation.

本発明は、上記の新規な知見に立脚するものであり、その要旨構成は、以下のとおりである。
1.質量%で、
C:0.002%以上0.100%以下、
Si:2.00%以上8.00%以下および
Mn:0.005%以上1.000%以下を含有し、
Sn:0.010%以上0.400%以下、Sb:0.010%以上0.400%以下、Mo:0.010%以上0.200%以下およびP:0.010%以上0.200%以下のうちから選ばれる1種または2種以上をさらに含有し、
Al:0.0100%未満、N:0.0050%未満、S:0.0050%未満およびSe:0.0050%未満に抑制し、残部はFeおよび不可避的不純物である成分組成を有する、スラブを1300℃以下で加熱してから熱間圧延を施して熱延鋼板とし、
該熱延鋼板に熱延板焼鈍を施して熱延焼鈍板とし、
該熱延焼鈍板に、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚を有する冷延鋼板とし、
該冷延鋼板に一次再結晶焼鈍を施し、
該一次再結晶焼鈍後の冷延鋼板に二次再結晶焼鈍を施す方向性電磁鋼板の製造方法であって、
前記熱延板焼鈍での保持温度を1000℃以上1150℃以下とし、保持後の冷却における、該保持温度から900℃までの冷却速度を1℃/s以上10℃/s以下とする方向性電磁鋼板の製造方法。
The present invention is based on the above-described novel findings, and the gist of the present invention is as follows.
1. % By mass
C: 0.002% to 0.100%,
Si: 2.00% to 8.00% and
Mn: 0.005% or more and 1.000% or less,
Sn: 0.010% or more and 0.400% or less; Sb: 0.010% or more and 0.400% or less; Mo: 0.010% or more and 0.200% or less; and P: 0.010% or more and 0.200% or less. ,
Al: less than 0.0100%, N: less than 0.0050%, S: less than 0.0050% and Se: less than 0.0050%, the remainder has a component composition of Fe and inevitable impurities, the slab is heated at 1300 ° C or less Hot-rolled steel sheet by hot rolling from
The hot-rolled steel sheet is subjected to hot-rolled sheet annealing to form a hot-rolled annealed sheet,
The hot-rolled annealed sheet is subjected to two or more cold-rolling sandwiching one cold-rolling or intermediate annealing to obtain a cold-rolled steel sheet having a final sheet thickness,
Subjecting the cold-rolled steel sheet to primary recrystallization annealing,
A method for producing a grain-oriented electrical steel sheet that performs secondary recrystallization annealing on the cold-rolled steel sheet after the primary recrystallization annealing,
Directional electromagneticity in which the holding temperature in the hot-rolled sheet annealing is 1000 ° C. or higher and 1150 ° C. or lower, and the cooling rate from the holding temperature to 900 ° C. is 1 ° C./s or higher and 10 ° C./s or lower in cooling after holding. A method of manufacturing a steel sheet.

2.前記保持温度から900℃までの冷却速度を1℃/s以上5℃/s以下とする、上記1に記載の方向性電磁鋼板の製造方法。 2. 2. The method for producing a grain-oriented electrical steel sheet according to 1, wherein a cooling rate from the holding temperature to 900 ° C. is 1 ° C./s or more and 5 ° C./s or less.

3.前記冷却における、900℃から350℃までの冷却速度を20℃/s以上とする、上記1または2に記載の方向性電磁鋼板の製造方法。 3. 3. The method for producing a grain-oriented electrical steel sheet according to 1 or 2 above, wherein a cooling rate from 900 ° C. to 350 ° C. in the cooling is 20 ° C./s or more.

4.前記成分組成は、さらに、
質量%で、
Cr:0.01%以上0.50%以下、
Cu:0.01%以上0.50%以下、
Ni:0.01%以上0.50%以下、
Bi:0.005%以上0.500%以下、
B:0.0002%以上0.0025%以下および
Nb:0.0010%以上0.0100%以下
のうちから選ばれる1種または2種以上を含有する、上記1から3のいずれかに記載の方向性電磁鋼板の製造方法。
4). The component composition further includes:
% By mass
Cr: 0.01% to 0.50%,
Cu: 0.01% or more and 0.50% or less,
Ni: 0.01% or more and 0.50% or less,
Bi: 0.005% to 0.500%,
B: 0.0002% to 0.0025% and
Nb: The manufacturing method of the grain-oriented electrical steel sheet according to any one of 1 to 3 above, containing one or more selected from 0.0010% to 0.0100%.

本発明によれば、インヒビター形成成分を使用せずにスラブから製造された方向性電磁鋼板について、優れた磁気特性を安定して得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the outstanding magnetic characteristic can be stably acquired about the grain-oriented electrical steel sheet manufactured from the slab without using an inhibitor formation component.

熱延板焼鈍の冷却工程における900℃までの冷却速度と磁束密度B8との関係を示すグラフである。It is a graph showing the relationship between the cooling rate and the magnetic flux density B 8 of up to 900 ° C. in the cooling step of the hot-rolled sheet annealing.

[成分組成]
以下、本発明の一実施形態による方向性電磁鋼板およびその製造方法について説明する。まず、鋼の成分組成の限定理由について述べる。なお、本明細書において、各成分元素の含有量を表す「%」は、特に断らない限り「質量%」を意味する。
[Ingredient composition]
Hereinafter, a grain-oriented electrical steel sheet and a manufacturing method thereof according to an embodiment of the present invention will be described. First, the reasons for limiting the component composition of steel will be described. In the present specification, “%” representing the content of each component element means “% by mass” unless otherwise specified.

C:0.002%以上0.100%以下
Cは0.100%を超えると、脱炭焼鈍後に磁気時効の起こらない0.005%以下に低減することが困難になるので0.100%以下に限定される。一方、0.002%に満たないと、Cによる粒界強化効果が失われ、スラブにクラックが生じるなど、操業性に支障がでる欠陥を引き起こす。従って、Cは0.002%以上0.100%以下とする。好ましくは、0.010%以上0.050%以下である。
C: 0.002% to 0.100%
If C exceeds 0.100%, it becomes difficult to reduce it to 0.005% or less where no magnetic aging occurs after decarburization annealing, so it is limited to 0.100% or less. On the other hand, if it is less than 0.002%, the grain boundary strengthening effect due to C is lost, and cracks occur in the slab, causing defects that hinder operability. Therefore, C is 0.002% or more and 0.100% or less. Preferably, it is 0.010% or more and 0.050% or less.

Si:2.00%以上8.00%以下
Siは鋼の比抵抗を高め、鉄損を改善させるために必要な元素であるが、2.00%未満であると効果がなく、8.00%を超えると鋼の加工性が劣化し、圧延が困難となることから2.00%以上8.00%以下とする。好ましくは、2.50%以上4.50%以下である。
Si: 2.00% to 8.00%
Si is an element necessary for increasing the specific resistance of steel and improving iron loss. However, if it is less than 2.00%, there is no effect, and if it exceeds 8.00%, the workability of the steel deteriorates and rolling is difficult. Therefore, it should be 2.00% or more and 8.00% or less. Preferably, it is 2.50% or more and 4.50% or less.

Mn:0.005%以上1.000%以下
Mnは熱間加工性を良好にするために必要な元素であるが、0.005%未満であると効果がなく、1.000%を超えると製品板の磁束密度が低下するので、0.005%以上1.000%以下とする。好ましくは、0.040%以上0.200%以下である。
Mn: 0.005% to 1.000%
Mn is an element necessary for improving hot workability, but if it is less than 0.005%, there is no effect, and if it exceeds 1.000%, the magnetic flux density of the product plate decreases, so 0.005% or more and 1.000% or less And Preferably, it is 0.040% or more and 0.200% or less.

Sn:0.010%以上0.400%以下、Sb:0.010%以上0.400%以下、Mo:0.010%以上0.200%以下およびP:0.010%以上0.200%以下のうちから選ばれる1種または2種以上
磁気特性を大幅に向上させるために、偏析元素であるSn:0.010%以上0.400%以下、Sb:0.010%以上0.400%以下、Mo:0.010%以上0.200%以下、P:0.010%以上0.200%以下の少なくとも一種類を含有することが必須である。それぞれ、下限値よりも量が少ないと磁性向上効果がなく、上限値よりも量が多いと鋼が脆化して製造途中に破断等が発生するリスクが高まる。好ましくは、Sn:0.020%以上0.100%以下、Sb:0.020%以上0.100%以下、Mo:0.020%以上0.070%以下、P:0.012%以上0.100%以下である。
Sn: 0.010% or more and 0.400% or less, Sb: 0.010% or more and 0.400% or less, Mo: 0.010% or more and 0.200% or less, and P: 0.010% or more and 0.200% or less In order to improve the quality, at least one of segregating elements Sn: 0.010% to 0.400%, Sb: 0.010% to 0.400%, Mo: 0.010% to 0.200%, P: 0.010% to 0.200% It is essential to contain. In each case, if the amount is less than the lower limit value, there is no effect of improving the magnetism, and if the amount is more than the upper limit value, the steel becomes brittle and the risk of breakage or the like occurring during the production increases. Preferably, Sn: 0.020% to 0.100%, Sb: 0.020% to 0.100%, Mo: 0.020% to 0.070%, P: 0.012% to 0.100%.

インヒビター形成成分であるAl、N、SおよびSeの含有量は極力低減し、Al:0.0100%未満、N:0.0050%未満、S:0.0050%未満およびSe:0.0050%未満に制限される。好ましくは、Al:0.0070%未満、N:0.0040%未満、S:0.0030%未満、Se:0.0030%未満である。   The content of Al, N, S and Se as inhibitor forming components is reduced as much as possible and is limited to Al: less than 0.0100%, N: less than 0.0050%, S: less than 0.0050% and Se: less than 0.0050%. Preferably, Al is less than 0.0070%, N is less than 0.0040%, S is less than 0.0030%, and Se is less than 0.0030%.

本発明における基本成分は、上記したとおりであり、残部はFeおよび不可避的不純物である。かかる不可避的不純物としては、原料、製造設備等から不可避的に混入する不純物が挙げられる。また、本発明では、その他にも以下に述べる元素を適宜含有させることができる。   The basic components in the present invention are as described above, and the balance is Fe and inevitable impurities. Examples of such unavoidable impurities include impurities inevitably mixed from raw materials, production facilities, and the like. Further, in the present invention, other elements described below can be appropriately contained.

本発明では、磁気特性の改善を目的として、質量%で、Cr:0.01%以上0.50%以下、Cu:0.01%以上0.50%以下、Ni:0.01%以上0.50%以下、Bi:0.005%以上0.500%以下、B:0.0002%以上0.0025%以下およびNb:0.0010%以上0.0100%以下のうちから選ばれる1種または2種以上を適宜含有させることができる。各成分組成の添加量が下限量より少ない場合には、磁気特性の向上効果がなく、上限量を超える場合には、二次再結晶粒の発達が抑制されて磁気特性が劣化する。   In the present invention, for the purpose of improving magnetic properties, Cr: 0.01% or more and 0.50% or less, Cu: 0.01% or more and 0.50% or less, Ni: 0.01% or more and 0.50% or less, Bi: 0.005% or more and 0.500% Hereinafter, one or more selected from B: 0.0002% to 0.0025% and Nb: 0.0010% to 0.0100% can be appropriately contained. When the added amount of each component composition is less than the lower limit amount, there is no effect of improving the magnetic properties, and when the upper limit amount is exceeded, the development of secondary recrystallized grains is suppressed and the magnetic properties are deteriorated.

次に、本発明の方向性電磁鋼板の製造方法について説明する。
所定の成分調整がなされた溶鋼を通常の造塊法もしくは連続鋳造法でスラブを製造する。100mm以下の厚さの薄鋳片を直接鋳造法で製造してもよいが、その場合には、以下の加熱および熱間圧延工程は行わない。任意添加成分は、途中工程で加えることは困難であることから、溶鋼段階で添加する。
Next, the manufacturing method of the grain-oriented electrical steel sheet of this invention is demonstrated.
A slab is produced from the molten steel, which has been adjusted for a predetermined component, by a normal ingot-making method or a continuous casting method. A thin slab having a thickness of 100 mm or less may be produced by a direct casting method, but in this case, the following heating and hot rolling steps are not performed. Since optional addition components are difficult to add in the middle of the process, they are added at the molten steel stage.

[加熱]
スラブは通常の方法で加熱して熱間圧延するが、本成分系ではインヒビターを固溶させるための高温焼鈍を必要としないため、1300℃以下の低温で加熱する。これにより、コストを低減することができる。好ましくは1250℃以下である。均熱時間は、スラブを内部まで加熱させるため5分以上が望ましく、コストの観点から120分以下とするのが望ましい。
[heating]
The slab is heated and hot-rolled by a normal method, but this component system does not require high-temperature annealing to dissolve the inhibitor, so it is heated at a low temperature of 1300 ° C or lower. Thereby, cost can be reduced. Preferably it is 1250 degrees C or less. The soaking time is preferably 5 minutes or more in order to heat the slab to the inside, and is preferably 120 minutes or less from the viewpoint of cost.

[熱間圧延]
上記加熱後に、熱間圧延を行う。熱間圧延温度は、仕上圧延開始温度を900℃以上、終了温度を750℃以上とすることが、特性向上のため望ましい。ただし、終了温度は、熱延スケール特性が変化するため、1000℃以下とすることが望ましい。
[Hot rolling]
After the heating, hot rolling is performed. The hot rolling temperature is desirably a finish rolling start temperature of 900 ° C. or higher and an end temperature of 750 ° C. or higher for improving characteristics. However, the end temperature is preferably 1000 ° C. or lower because the hot rolling scale characteristics change.

[熱延板焼鈍]
上記熱間圧延後に、熱延板焼鈍を行う。不可避に含まれ得る、Al、S、Se、およびNを固溶させるために、熱延板焼鈍での保持温度は1000℃以上が必須である。ただし、熱延板焼鈍の保持温度が1150℃を超えると、熱延板焼鈍後の粒径が粗大化しすぎるため、所望の一次再結晶組織が得られない。よって、熱延板焼鈍の保持温度は1150℃以下とする。好ましくは1025℃以上1100℃以下である。保持時間は、同様の理由により、5秒以上300秒以下が好ましい。
[Hot rolled sheet annealing]
Hot-rolled sheet annealing is performed after the hot rolling. In order to dissolve Al, S, Se, and N, which may be inevitably included, the holding temperature in hot-rolled sheet annealing must be 1000 ° C. or higher. However, if the holding temperature of hot-rolled sheet annealing exceeds 1150 ° C., the desired primary recrystallized structure cannot be obtained because the grain size after hot-rolled sheet annealing becomes too coarse. Accordingly, the holding temperature for hot-rolled sheet annealing is set to 1150 ° C. or lower. Preferably they are 1025 degreeC or more and 1100 degrees C or less. The holding time is preferably 5 seconds or more and 300 seconds or less for the same reason.

また、上述の理由により、熱延板焼鈍後の冷却は、保持温度から900℃までの冷却速度を1℃/s以上10℃/s以下とすることが必須である。好ましくは、1℃/s以上5℃/s以下である。さらに900℃から350℃までの冷却については20℃/s以上の急冷とするほど好ましい。これらの冷却速度は区間平均とする。上記冷却の方法は限定されるものではないが、900℃までは水蒸気ミスト冷却を行い、急冷は水を鋼板に噴射して行うことが望ましい。   For the reasons described above, it is essential that the cooling after the hot-rolled sheet annealing is performed at a cooling rate from the holding temperature to 900 ° C. from 1 ° C./s to 10 ° C./s. Preferably, it is 1 ° C./s or more and 5 ° C./s or less. Further, for cooling from 900 ° C. to 350 ° C., it is more preferable that rapid cooling is performed at 20 ° C./s or more. These cooling rates are averaged over the section. The cooling method is not limited, but it is desirable to perform steam mist cooling up to 900 ° C., and quenching by spraying water onto the steel sheet.

[冷間圧延]
熱延板焼鈍後に、中間焼鈍を必要に応じて挟む1回以上の冷間圧延を施して最終板厚を有する冷延鋼板とする。中間焼鈍温度は950℃以上1200℃以下が好適である。950℃未満であると不可避に含まれ得る、Al、S、Se、およびNの固溶が進まない。また、1200℃を超えると、焼鈍後の粒径が粗大になりすぎるため所望の一次再結晶組織が得られない。また、中間焼鈍時間は、10秒以上、300秒以下程度とすることが同様の理由により好ましい。最終冷間圧延では、冷間圧延の温度を100〜300℃に上昇させて行うこと、および冷間圧延途中で100〜300℃の範囲での時効処理を1回または複数回行うことが、再結晶集合組織を変化させて磁気特性を向上させるため有効である。
[Cold rolling]
After the hot-rolled sheet annealing, the cold-rolled steel sheet having a final sheet thickness is obtained by performing at least one cold rolling with intermediate annealing as necessary. The intermediate annealing temperature is preferably from 950 ° C to 1200 ° C. When the temperature is lower than 950 ° C., solid solution of Al, S, Se, and N, which can be included unavoidably, does not proceed. On the other hand, if the temperature exceeds 1200 ° C., the desired primary recrystallized structure cannot be obtained because the grain size after annealing becomes too coarse. The intermediate annealing time is preferably about 10 seconds or more and 300 seconds or less for the same reason. In the final cold rolling, the temperature of the cold rolling is increased to 100 to 300 ° C, and the aging treatment in the range of 100 to 300 ° C is performed once or a plurality of times during the cold rolling. This is effective for improving the magnetic properties by changing the crystal texture.

[一次再結晶焼鈍]
上記冷間圧延後に一次再結晶焼鈍を施す。当該一次再結晶焼鈍は、脱炭焼鈍を兼ねることとしてもよい。一次再結晶焼鈍は、800℃以上900℃以下が脱炭性の観点から有効である。さらに脱炭の観点からは、雰囲気は湿潤雰囲気とすることが望ましい。また、焼鈍時間は、20秒〜300秒程度とすることが好ましい。ただし、脱炭が不要なC:0.005%以下しか含有していない場合はこの限りではない。
[Primary recrystallization annealing]
Primary recrystallization annealing is performed after the cold rolling. The primary recrystallization annealing may also serve as decarburization annealing. From the viewpoint of decarburization, the primary recrystallization annealing is effective from 800 ° C. to 900 ° C. Further, from the viewpoint of decarburization, it is desirable that the atmosphere is a humid atmosphere. The annealing time is preferably about 20 seconds to 300 seconds. However, this does not apply when the content of C: 0.005% or less is not required.

[焼鈍分離剤の塗布]
上記一次再結晶焼鈍後の鋼板に、必要に応じて焼鈍分離剤を塗布する。ここで、鉄損を重視してフォルステライト被膜を形成させる場合には、MgOを主体とする焼鈍分離剤を適用することで、その後、純化焼鈍を兼ねて二次再結晶焼鈍を施すことにより二次再結晶組織を発達させると共にフォルステライト被膜を形成することができる。打ち抜き加工性を重視してフォルステライト被膜を必要としない場合には、焼鈍分離剤を適用しないか、適用する場合でもフォルステライト被膜を形成するMgOは使用せずに、シリカやアルミナ等を用いる。これらの焼鈍分離剤を塗布する際は、水分を持ち込まない静電塗布等を行うことが有効である。耐熱無機材料シート(シリカ、アルミナ、マイカ)を用いてもよい。
[Application of annealing separator]
An annealing separator is applied to the steel sheet after the primary recrystallization annealing as necessary. Here, when forming a forsterite film with an emphasis on iron loss, an annealing separation agent mainly composed of MgO is applied, and then secondary recrystallization annealing is performed by also performing purification annealing. The next recrystallized structure can be developed and a forsterite film can be formed. When the forsterite film is not required with emphasis on the punching processability, the annealing separator is not applied, or even when it is applied, MgO that forms the forsterite film is not used, but silica, alumina or the like is used. When these annealing separators are applied, it is effective to perform electrostatic application or the like that does not bring in moisture. A heat resistant inorganic material sheet (silica, alumina, mica) may be used.

[二次再結晶焼鈍]
上記一次再結晶焼鈍後または焼鈍分離剤塗布後に二次再結晶焼鈍を行う。二次再結晶焼鈍は、純化焼鈍を兼ねることとしてもよい。純化焼鈍を兼ねた二次再結晶焼鈍は、二次再結晶発現のために800℃以上で行うことが望ましい。また、二次再結晶を完了させるために800℃以上の温度で20時間以上保持させることが望ましい。打ち抜き性を重視してフォルステライト被膜を形成させない場合には、二次再結晶が完了すればよいので保持温度は850〜950℃が望ましく、この温度域での保持までで焼鈍を終了することも可能である。鉄損を重視する場合や、トランスの騒音を低下させるためにフォルステライト被膜を形成させる場合は、1200℃程度まで昇温させることが望ましい。
[Secondary recrystallization annealing]
Secondary recrystallization annealing is performed after the primary recrystallization annealing or after application of the annealing separator. Secondary recrystallization annealing may also serve as purification annealing. The secondary recrystallization annealing that also serves as the purification annealing is desirably performed at 800 ° C. or higher for the purpose of secondary recrystallization. In order to complete the secondary recrystallization, it is desirable to hold at a temperature of 800 ° C. or higher for 20 hours or longer. If the forsterite film is not formed with emphasis on punchability, the secondary recrystallization should be completed, so the holding temperature is preferably 850 to 950 ° C, and annealing may be completed by holding in this temperature range. Is possible. When emphasizing iron loss or forming a forsterite film to reduce transformer noise, it is desirable to raise the temperature to about 1200 ° C.

[平坦化焼鈍]
上記二次再結晶焼鈍後に、必要に応じて平坦化焼鈍を行う。焼鈍分離剤を適用した場合には、水洗やブラッシング、酸洗を行い、付着した焼鈍分離剤を除去する。その後、平坦化焼鈍を行い形状を矯正することが鉄損低減のために有効である。平坦化焼鈍温度は、750〜1000℃程度が形状矯正の観点から好適である。
[Flatening annealing]
After the secondary recrystallization annealing, planarization annealing is performed as necessary. When an annealing separator is applied, washing, brushing, and pickling are performed to remove the attached annealing separator. After that, it is effective to reduce the iron loss by performing flattening annealing to correct the shape. The flattening annealing temperature is preferably about 750 to 1000 ° C. from the viewpoint of shape correction.

[絶縁コーティング]
鋼板を積層して使用する場合には、鉄損を改善するために、平坦化焼鈍前もしくは後に、鋼板表面に絶縁コーティングを施すことが有効である。コーティングとしては、鉄損低減のために鋼板に張力を付与できるものが望ましい。バインダーを介した張力コーティング塗布方法や、物理蒸着法や化学蒸着法により無機物を鋼板表層に蒸着させてコーティングとする方法を採用することが好ましい。これらの方法は、コーティング密着性に優れ、かつ著しい鉄損低減効果が得られるためである。
[Insulating coating]
In the case where the steel plates are laminated and used, in order to improve iron loss, it is effective to apply an insulating coating to the steel plate surface before or after the flattening annealing. As the coating, a coating capable of imparting tension to the steel sheet to reduce iron loss is desirable. It is preferable to employ a tension coating application method using a binder, or a method in which an inorganic substance is vapor-deposited on a steel sheet surface layer by physical vapor deposition or chemical vapor deposition. This is because these methods are excellent in coating adhesion and provide a significant iron loss reduction effect.

[磁区細分化処理]
上記平坦化焼鈍後に、鉄損低減のために、磁区細分化処理を行うことが有効である。処理方法としては、例えば、一般的に実施されているような、最終製品板に溝をいれる方法、レーザーや電子ビームにより線状に熱歪や衝撃歪を導入する方法、最終仕上板厚に達した冷間圧延板などの中間製品にあらかじめ溝をいれる方法が挙げられる。
その他の製造条件は、方向性電磁鋼板の一般的な製造方法に従えばよい。
[Magnetic domain subdivision processing]
After the flattening annealing, it is effective to perform a magnetic domain fragmentation process to reduce iron loss. The processing methods include, for example, a method of making a groove in the final product plate as commonly practiced, a method of introducing thermal strain and impact strain linearly by a laser or an electron beam, and a final finished plate thickness. For example, a method of previously grooved intermediate products such as cold rolled sheets.
Other manufacturing conditions may follow the general manufacturing method of a grain-oriented electrical steel sheet.

(実施例1)
質量%でC:0.009%、Si:3.11%、Mn:0.040%、Al:0.0020%、N:0.0009%、S:0.0015%、Se:0.0020%、P:0.150%を含み、残部はFeおよび不可避的不純物からなる鋼スラブを連続鋳造にて製造し、1230℃で80分均熱するスラブ加熱を施した後、熱間圧延により2.0mmの厚さに仕上げた。その後、1000℃で20秒、乾燥窒素雰囲気の熱延板焼鈍を施した。その際、1000℃で温度保持後900℃までの冷却速度および900℃から350℃までの冷却速度を種々変更した。その後、冷間圧延で0.18mmの板厚に仕上げ、さらに、800℃で70秒、52%H2-48%N2、露点60℃の湿潤雰囲気下での脱炭をともなう一次再結晶焼鈍を施した。
Example 1
Contains C: 0.009%, Si: 3.11%, Mn: 0.040%, Al: 0.0020%, N: 0.0009%, S: 0.0015%, Se: 0.0020%, P: 0.150% by mass%, the balance being Fe and inevitable A steel slab composed of mechanical impurities was produced by continuous casting, subjected to slab heating at 1230 ° C. for 80 minutes, and then finished to a thickness of 2.0 mm by hot rolling. Thereafter, hot-rolled sheet annealing in a dry nitrogen atmosphere was performed at 1000 ° C. for 20 seconds. At that time, the cooling rate from 900 ° C. to 900 ° C. after maintaining the temperature at 1000 ° C. and the cooling rate from 900 ° C. to 350 ° C. were variously changed. After that, it is cold rolled to a thickness of 0.18mm, and further subjected to primary recrystallization annealing with decarburization in a humid atmosphere at 800 ° C for 70 seconds, 52% H 2 -48% N 2 and dew point 60 ° C. gave.

その後、MgOを主体とする焼鈍分離剤を塗布し、1225℃で10時間、水素雰囲気下で保定する二次再結晶焼鈍を行った。得られたサンプルのB8(800A/mで励磁した時の磁束密度)をJIS C2550に記載の方法で測定した。本実験では、コイル内の磁性ばらつきを評価するため、コイルの長手方向両端部、中心部、さらに両端部と中心部の中間の位置の計5箇所で評価し、5箇所の中の最大値と最小値を評価した。この両者の乖離が大きいと、ばらつきが大きいといえる。得られた磁束密度B8との熱延板焼鈍工程の冷却速度との関係を表1に示す。表1から明らかなように、本発明範囲内の冷却速度条件において、良好でばらつきの小さい磁気特性が得られることがわかる。 Thereafter, an annealing separator mainly composed of MgO was applied, and secondary recrystallization annealing was performed at 1225 ° C. for 10 hours under a hydrogen atmosphere. B 8 (magnetic flux density when excited at 800 A / m) of the obtained sample was measured by the method described in JIS C2550. In this experiment, in order to evaluate the magnetic variation in the coil, it was evaluated at a total of 5 positions, both in the longitudinal direction of the coil, at the center, and between the both ends and the center. The minimum value was evaluated. If the difference between the two is large, it can be said that the variation is large. Table 1 shows the relationship between the obtained magnetic flux density B 8 and the cooling rate in the hot-rolled sheet annealing step. As is apparent from Table 1, it can be seen that good and small magnetic characteristics can be obtained under the cooling rate conditions within the scope of the present invention.

Figure 2018087366
Figure 2018087366

(実施例2)
表2記載の成分を含み、残部はFeおよび不可避的不純物からなる鋼スラブを連続鋳造にて製造し、1150℃で35分均熱するスラブ加熱を施した後、熱間圧延により2.3mmの厚さに仕上げた。その後、1125℃で20秒、乾燥窒素雰囲気の熱延板焼鈍を施した。その際、1125℃で温度保持後900℃までの冷却速度を5℃/s、900℃から350℃までの冷却速度を40℃/sとした。その後、冷間圧延で0.23mmの板厚に仕上げ、さらに、840℃で150秒、55%H2-45%N2、露点60℃の湿潤雰囲気下での脱炭をともなう一次再結晶焼鈍を施した。
(Example 2)
A steel slab composed of Fe and unavoidable impurities is produced by continuous casting, including the components listed in Table 2, and after slab heating is performed at 1150 ° C for 35 minutes, the thickness is 2.3 mm by hot rolling. Finished. Thereafter, hot-rolled sheet annealing in a dry nitrogen atmosphere was performed at 1125 ° C. for 20 seconds. At that time, the cooling rate from 900 ° C. after maintaining the temperature at 1125 ° C. was 5 ° C./s, and the cooling rate from 900 ° C. to 350 ° C. was 40 ° C./s. After that, it was finished to a thickness of 0.23 mm by cold rolling, and further subjected to primary recrystallization annealing with decarburization in a humid atmosphere of 840 ° C for 150 seconds, 55% H 2 -45% N 2 , dew point 60 ° C. gave.

その後、MgOを主体とする焼鈍分離剤を塗布し、1200℃で10時間、水素雰囲気下で保定する二次再結晶焼鈍を行った。得られたサンプルのB8(800A/mで励磁した時の磁束密度)をJIS C2550に記載の方法で測定した。本実験では、コイル内の磁性ばらつきを評価するため、コイルの長手方向両端部、中心部、さらに両端部と中心部の中間の位置の計5箇所で評価し、5箇所の中の最大値と最小値を評価した。この両者の乖離が大きいと、ばらつきが大きいといえる。得られた磁束密度B8と熱延板焼鈍工程の冷却速度との関係を表2に併記する。表2から明らかなように、本発明範囲内の冷却速度条件において、良好でばらつきの小さい磁気特性が得られることがわかる。 Thereafter, an annealing separator mainly composed of MgO was applied, and secondary recrystallization annealing was performed at 1200 ° C. for 10 hours in a hydrogen atmosphere. B 8 (magnetic flux density when excited at 800 A / m) of the obtained sample was measured by the method described in JIS C2550. In this experiment, in order to evaluate the magnetic variation in the coil, it was evaluated at a total of 5 positions, both in the longitudinal direction of the coil, at the center, and between the both ends and the center. The minimum value was evaluated. If the difference between the two is large, it can be said that the variation is large. Table 2 also shows the relationship between the obtained magnetic flux density B 8 and the cooling rate in the hot-rolled sheet annealing process. As is apparent from Table 2, it can be seen that good and small magnetic characteristics can be obtained under the cooling rate conditions within the scope of the present invention.

Figure 2018087366
Figure 2018087366

Claims (4)

質量%で、
C:0.002%以上0.100%以下、
Si:2.00%以上8.00%以下および
Mn:0.005%以上1.000%以下を含有し、
Sn:0.010%以上0.400%以下、Sb:0.010%以上0.400%以下、Mo:0.010%以上0.200%以下およびP:0.010%以上0.200%以下のうちから選ばれる1種または2種以上をさらに含有し、
Al:0.0100%未満、N:0.0050%未満、S:0.0050%未満およびSe:0.0050%未満に抑制し、残部はFeおよび不可避的不純物である成分組成を有する、スラブを1300℃以下で加熱してから熱間圧延を施して熱延鋼板とし、
該熱延鋼板に熱延板焼鈍を施して熱延焼鈍板とし、
該熱延焼鈍板に、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚を有する冷延鋼板とし、
該冷延鋼板に一次再結晶焼鈍を施し、
該一次再結晶焼鈍後の冷延鋼板に二次再結晶焼鈍を施す方向性電磁鋼板の製造方法であって、
前記熱延板焼鈍での保持温度を1000℃以上1150℃以下とし、保持後の冷却における、該保持温度から900℃までの冷却速度を1℃/s以上10℃/s以下とする方向性電磁鋼板の製造方法。
% By mass
C: 0.002% to 0.100%,
Si: 2.00% to 8.00% and
Mn: 0.005% or more and 1.000% or less,
Sn: 0.010% or more and 0.400% or less; Sb: 0.010% or more and 0.400% or less; Mo: 0.010% or more and 0.200% or less; and P: 0.010% or more and 0.200% or less. ,
Al: less than 0.0100%, N: less than 0.0050%, S: less than 0.0050% and Se: less than 0.0050%, the remainder has a component composition of Fe and inevitable impurities, the slab is heated at 1300 ° C or less Hot-rolled steel sheet by hot rolling from
The hot-rolled steel sheet is subjected to hot-rolled sheet annealing to form a hot-rolled annealed sheet,
The hot-rolled annealed sheet is subjected to two or more cold-rolling sandwiching one cold-rolling or intermediate annealing to obtain a cold-rolled steel sheet having a final sheet thickness,
Subjecting the cold-rolled steel sheet to primary recrystallization annealing,
A method for producing a grain-oriented electrical steel sheet that performs secondary recrystallization annealing on the cold-rolled steel sheet after the primary recrystallization annealing,
Directional electromagneticity in which the holding temperature in the hot-rolled sheet annealing is 1000 ° C. or higher and 1150 ° C. or lower, and the cooling rate from the holding temperature to 900 ° C. is 1 ° C./s or higher and 10 ° C./s or lower in cooling after holding. A method of manufacturing a steel sheet.
前記保持温度から900℃までの冷却速度を1℃/s以上5℃/s以下とする、請求項1に記載の方向性電磁鋼板の製造方法。   The manufacturing method of the grain-oriented electrical steel sheet according to claim 1, wherein a cooling rate from the holding temperature to 900 ° C is 1 ° C / s or more and 5 ° C / s or less. 前記冷却における、900℃から350℃までの冷却速度を20℃/s以上とする、請求項1または2に記載の方向性電磁鋼板の製造方法。   The method for producing a grain-oriented electrical steel sheet according to claim 1 or 2, wherein a cooling rate from 900 ° C to 350 ° C in the cooling is 20 ° C / s or more. 前記成分組成は、さらに、
質量%で、
Cr:0.01%以上0.50%以下、
Cu:0.01%以上0.50%以下、
Ni:0.01%以上0.50%以下、
Bi:0.005%以上0.500%以下、
B:0.0002%以上0.0025%以下および
Nb:0.0010%以上0.0100%以下
のうちから選ばれる1種または2種以上を含有する、請求項1から3のいずれかに記載の方向性電磁鋼板の製造方法。
The component composition further includes:
% By mass
Cr: 0.01% to 0.50%,
Cu: 0.01% or more and 0.50% or less,
Ni: 0.01% or more and 0.50% or less,
Bi: 0.005% to 0.500%,
B: 0.0002% to 0.0025% and
The method for producing a grain-oriented electrical steel sheet according to any one of claims 1 to 3, comprising one or more selected from Nb: 0.0010% or more and 0.0100% or less.
JP2016231738A 2016-11-29 2016-11-29 Method of manufacturing directional magnetic steel sheet Active JP6544344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016231738A JP6544344B2 (en) 2016-11-29 2016-11-29 Method of manufacturing directional magnetic steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016231738A JP6544344B2 (en) 2016-11-29 2016-11-29 Method of manufacturing directional magnetic steel sheet

Publications (2)

Publication Number Publication Date
JP2018087366A true JP2018087366A (en) 2018-06-07
JP6544344B2 JP6544344B2 (en) 2019-07-17

Family

ID=62493371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016231738A Active JP6544344B2 (en) 2016-11-29 2016-11-29 Method of manufacturing directional magnetic steel sheet

Country Status (1)

Country Link
JP (1) JP6544344B2 (en)

Also Published As

Publication number Publication date
JP6544344B2 (en) 2019-07-17

Similar Documents

Publication Publication Date Title
KR102071321B1 (en) Grain-oriented electrical steel sheet and method for producing the same
JP5737483B2 (en) Method for producing grain-oriented electrical steel sheet
US20150187473A1 (en) Method for producing grain-oriented electrical steel sheet
WO2017154929A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JP6572864B2 (en) Hot-rolled steel sheet for manufacturing electrical steel sheet and method for manufacturing the same
US11332801B2 (en) Method of producing grain-oriented electrical steel sheet
WO2016067636A1 (en) Production method for oriented electromagnetic steel sheet
JP2015200002A (en) Method for producing grain oriented magnetic steel sheet
JPWO2018084198A1 (en) Method for producing grain-oriented electrical steel sheet
JP6888603B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2014167147A (en) Method for producing grain-oriented electromagnetic steel sheets
JP2012126980A (en) Electromagnetic steel sheet and method for manufacturing the same
JP6813143B1 (en) Manufacturing method of grain-oriented electrical steel sheet
WO2018151296A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JP6856179B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP6418226B2 (en) Method for producing grain-oriented electrical steel sheet
JP6947147B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP6465049B2 (en) Method for producing grain-oriented electrical steel sheet
JPWO2018084203A1 (en) Method for producing grain-oriented electrical steel sheet
JP2014194073A (en) Method for manufacturing oriented electromagnetic steel sheet
JP2012112006A (en) Grain-oriented magnetic steel sheet and method for producing the same
JP6544344B2 (en) Method of manufacturing directional magnetic steel sheet
JP2014173103A (en) Method of producing grain-oriented magnetic steel sheet
JP6866869B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP6866901B2 (en) Manufacturing method of grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190603

R150 Certificate of patent or registration of utility model

Ref document number: 6544344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250