JP2014173103A - Method of producing grain-oriented magnetic steel sheet - Google Patents

Method of producing grain-oriented magnetic steel sheet Download PDF

Info

Publication number
JP2014173103A
JP2014173103A JP2013044605A JP2013044605A JP2014173103A JP 2014173103 A JP2014173103 A JP 2014173103A JP 2013044605 A JP2013044605 A JP 2013044605A JP 2013044605 A JP2013044605 A JP 2013044605A JP 2014173103 A JP2014173103 A JP 2014173103A
Authority
JP
Japan
Prior art keywords
mass
annealing
steel sheet
temperature
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013044605A
Other languages
Japanese (ja)
Other versions
JP5846390B2 (en
Inventor
Tomoyuki Okubo
智幸 大久保
Takeshi Imamura
今村  猛
Ryuichi Suehiro
龍一 末廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013044605A priority Critical patent/JP5846390B2/en
Publication of JP2014173103A publication Critical patent/JP2014173103A/en
Application granted granted Critical
Publication of JP5846390B2 publication Critical patent/JP5846390B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing a grain-oriented magnetic steel sheet excellent in magnetic properties and having little variation in magnetic properties in a coil longitudinal direction.SOLUTION: The method of producing a grain-oriented magnetic steel sheet is provided in which an a steel raw material containing, by mass%, C:0.002 to 0.10%, Si:2.0 to 8.0% and Mn:0.005 to 1.0% is hot rolled, cold rolled after subjected to hot rolled sheet annealing as needed, and the resulting cold rolled sheet is subjected to primary recrystallization annealing acting also as decarbonization annealing, then final annealing. In the method, each aging treatment conducted between path in the final cold rolling satisfies the following expression: (Dt/T)≤2.0×10, where D=0.394exp(-(8.02×10)/8.31T), T:aging temperature (K), t:aging time (second), and the cold rolled steel sheet is subjected to a soaking treatment for holding the cold rolled steel sheet at any temperature between 250 to 600°C for 1 to 10 seconds when the cold rolled steel sheet is rapidly heated at 50°C/s or more between 200 to 700°C in a heating process of the primary recrystallization annealing.

Description

本発明は、方向性電磁鋼板の製造方法に関し、具体的には、鉄損特性に優れかつコイル長手方向のばらつきが小さい方向性電磁鋼板の製造方法に関するものである。   The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet, and specifically relates to a method for producing a grain-oriented electrical steel sheet having excellent iron loss characteristics and small variations in the coil longitudinal direction.

電磁鋼板は、変圧器やモータの鉄心材料として広く用いられている軟磁性材料であり、中でも、方向性電磁鋼板は、結晶方位がGoss方位と呼ばれる{110}<001>方位に高度に集積し、磁気特性に優れているため、主として大型の変圧器の鉄心等に使用されている。変圧器における無負荷損(エネルギーロス)を低減するためには、鉄損が低いことが必要である。   Electrical steel sheets are soft magnetic materials that are widely used as core materials for transformers and motors. Among them, grain oriented electrical steel sheets are highly integrated in the {110} <001> orientation, which is called the Goss orientation. Because of its excellent magnetic properties, it is mainly used for iron cores of large transformers. In order to reduce the no-load loss (energy loss) in the transformer, it is necessary that the iron loss is low.

方向性電磁鋼板における鉄損低減方法としては、Si含有量の増加や、板厚の低減、結晶方位の配向性向上、鋼板表面への張力付与、鋼板表面の平滑化、二次再結晶組織の細粒化などが有効であることが知られている。   Iron loss reduction method for grain-oriented electrical steel sheets includes increasing Si content, reducing plate thickness, improving crystal orientation orientation, imparting tension to the steel sheet surface, smoothing the steel sheet surface, secondary recrystallization texture It is known that fine graining is effective.

これらの方法のうち、二次再結晶粒を細粒化する技術としては、脱炭焼鈍時に急速加熱したり、脱炭焼鈍直前に急速加熱する熱処理を施したりすることで、一次再結晶集合組織を改善する方法が提案されている。例えば、特許文献1には、最終板厚まで圧延した冷延板を脱炭焼鈍する際、PH2O/PH2が0.2以下の非酸化性雰囲気中で、100℃/s以上で700℃以上の温度に急速加熱することで、低鉄損の方向性電磁鋼板を得る技術が開示されている。また、特許文献2には、雰囲気中の酸素濃度を500ppm以下とし、かつ、加熱速度100℃/s以上で800〜950℃に急速加熱し、続いて急速加熱後の温度より低い775〜840℃の温度に保定し、さらに、815〜875℃の温度に保定することで、低鉄損の方向性電磁鋼板を得る技術が開示されている。また、特許文献3には、600℃以上の温度域を95℃/s以上の昇温速度で800℃以上に加熱し、かつ、この温度域の雰囲気を適正に制御することによって、被膜特性と磁気特性に優れる電磁鋼板を得る技術が開示されている。さらに、特許文献4には、熱延板中のAlNとしてのN量を25ppm以下に制限し、かつ脱炭焼鈍時に加熱速度80℃/s以上で700℃以上まで加熱することで、低鉄損の方向性電磁鋼板を得る技術が開示されている。 Among these methods, the technology for refining secondary recrystallized grains includes rapid heating at the time of decarburization annealing, or heat treatment to be rapidly heated immediately before decarburization annealing, thereby providing a primary recrystallization texture. A method for improving the above has been proposed. For example, in Patent Document 1, when decarburizing and annealing a cold-rolled sheet rolled to the final sheet thickness, in a non-oxidizing atmosphere where P H2O / PH2 is 0.2 or less, the temperature is 100 ° C./s or more and 700 ° C. A technique for obtaining a grain-oriented electrical steel sheet with low iron loss by rapid heating to the above temperature is disclosed. Patent Document 2 discloses that the oxygen concentration in the atmosphere is set to 500 ppm or less, and is rapidly heated to 800 to 950 ° C. at a heating rate of 100 ° C./s or higher, and subsequently 775 to 840 ° C. lower than the temperature after the rapid heating. A technique for obtaining a grain-oriented electrical steel sheet with low iron loss by holding at a temperature of 815 ° C. and further holding at a temperature of 815 to 875 ° C. is disclosed. Patent Document 3 discloses that the film characteristics and the film characteristics are obtained by heating a temperature range of 600 ° C. or higher to 800 ° C. or higher at a rate of temperature increase of 95 ° C./s or more and appropriately controlling the atmosphere in this temperature range. A technique for obtaining an electrical steel sheet having excellent magnetic properties is disclosed. Furthermore, in Patent Document 4, the amount of N as AlN in the hot-rolled sheet is limited to 25 ppm or less, and heating at a heating rate of 80 ° C./s to 700 ° C. or more during decarburization annealing reduces low iron loss. A technique for obtaining a grain-oriented electrical steel sheet is disclosed.

急速加熱することで一次再結晶集合組織を改善するこれらの技術は、急速加熱する温度範囲を室温から700℃以上とし、昇温速度を一義的に規定するものである。この技術思想は、再結晶温度近傍までを短時間で昇温することで、通常の加熱速度であれば優先的に形成されるγファイバー(<111>//ND方位)の発達を抑制し、二次再結晶の核となる{110}<001>組織の発生を促進することで、一次再結晶集合組織を改善しようとするものである。そして、この技術の適用により、二次再結晶後の結晶粒(Goss方位粒)が細粒化し、鉄損特性が改善される。   In these techniques for improving the primary recrystallization texture by rapid heating, the temperature range for rapid heating is from room temperature to 700 ° C. or higher, and the rate of temperature rise is uniquely defined. This technical idea suppresses the development of γ fibers (<111> // ND orientation) that are preferentially formed at a normal heating rate by raising the temperature to near the recrystallization temperature in a short time, The primary recrystallization texture is intended to be improved by promoting the generation of a {110} <001> structure that becomes the nucleus of secondary recrystallization. By applying this technique, the crystal grains (Goss-oriented grains) after the secondary recrystallization are refined, and the iron loss characteristics are improved.

また、一次再結晶集合組織を改善する別の技術として、冷間圧延時に時効処理を施す方法が提案されている。例えば、特許文献5には、冷間圧延の途中で50〜350℃の温度で1分以上の時間保持することで磁気特性を改善する技術が提案されている。また、特許文献6には、冷間圧延の途中で100℃以上の温度で1分以上の時間保持する熱処理を施し、さらに、脱炭焼鈍の直前に50℃/s以上の加熱速度で700℃以上の温度に急速加熱することで、磁気特性を改善する技術が提案されている。これらの冷間圧延時の時効処理は、C,Nなどの侵入型元素が冷間圧延により導入された転位に固着され、変形機構に変化を及ぼして、冷延集合組織と一次再結晶集合組織を変質させ、最終的に、磁気特性を改善すると考えられている。   Further, as another technique for improving the primary recrystallization texture, a method of applying an aging treatment during cold rolling has been proposed. For example, Patent Document 5 proposes a technique for improving magnetic properties by holding at a temperature of 50 to 350 ° C. for 1 minute or longer during cold rolling. In Patent Document 6, a heat treatment is performed in the course of cold rolling at a temperature of 100 ° C. or higher for 1 minute or longer, and 700 ° C. at a heating rate of 50 ° C./s or more immediately before decarburization annealing. There has been proposed a technique for improving magnetic properties by rapid heating to the above temperature. These aging treatments during cold rolling are such that interstitial elements such as C and N are fixed to dislocations introduced by cold rolling, change the deformation mechanism, and cold rolling texture and primary recrystallization texture. It is considered that the magnetic properties will be improved and eventually the magnetic properties will be improved.

特開平07−062436号公報Japanese Patent Laid-Open No. 07-062436 特開平10−298653号公報Japanese Patent Laid-Open No. 10-298653 特開2003−027194号公報JP 2003-027194 A 特開平10−130729号公報Japanese Patent Laid-Open No. 10-130729 特公昭54−013846号公報Japanese Patent Publication No. 54-013846 特開平07−062437号公報Japanese Patent Application Laid-Open No. 07-062437

しかしながら、発明者らの知見によれば、脱炭焼鈍の昇温速度を高くした場合、二次再結晶粒は細粒化するものの、二次再結晶後の方位集積度が低下しやすく、鉄損改善効果が安定して得られないという問題がある。   However, according to the knowledge of the inventors, when the heating rate of decarburization annealing is increased, the secondary recrystallized grains become finer, but the degree of orientation accumulation after the secondary recrystallization tends to decrease, and iron There is a problem that the loss improvement effect cannot be obtained stably.

また、冷間圧延時に時効処理を施す技術、特に、圧延による加工発熱を利用して時効処理を行う場合には、磁気特性の改善効果が十分でない上に、コイルの長手方向で時効条件が一定にならないため、磁気特性がコイル長手方向で変動しやすいという問題がある。例えば、リバース圧延の巻き取り時に時効処理を行う場合、コイル長手方向の両端部は、温度が低下しやすいため、磁気特性が低下する。また、タンデム圧延の場合は、各スタンド間でごく短時間の時効処理が行われていると見做すことができるが、各パス間の鋼板温度は圧延速度の影響を強く受けるため、鋼板温度は、圧延速度が高いコイル中央部では高く、圧延速度が低いコイル両端部では低くなるため、やはりコイル両端部では磁気特性が低下しやすい。
なお、上記問題は、冷間圧延の途中でコイルを一旦別のラインに運んで時効処理を施す方法を採用すれば解決できるが、コストが高くなるという問題がある。
In addition, when performing aging treatment during cold rolling, especially when aging treatment is performed using heat generated by rolling, the effect of improving magnetic properties is not sufficient, and the aging conditions are constant in the longitudinal direction of the coil. Therefore, there is a problem that the magnetic characteristics tend to fluctuate in the coil longitudinal direction. For example, when an aging treatment is performed at the time of winding in reverse rolling, the temperature tends to decrease at both ends in the coil longitudinal direction, so that the magnetic characteristics are deteriorated. In the case of tandem rolling, it can be considered that aging treatment is performed for a very short time between each stand, but the steel plate temperature between each pass is strongly influenced by the rolling speed, so the steel plate temperature Is high at the center of the coil where the rolling speed is high, and low at both ends of the coil where the rolling speed is low, so that the magnetic properties are likely to deteriorate at both ends of the coil.
The above problem can be solved by adopting a method in which the coil is once moved to another line and subjected to an aging treatment during the cold rolling, but there is a problem that the cost increases.

本発明は、従来技術が抱える上記問題点に鑑みてなされたものであり、その目的は、磁気特性に優れ、かつ、コイル長手方向での磁気特性の変動が小さい方向性電磁鋼板の製造方法を提案することにある。   The present invention has been made in view of the above-described problems of the prior art, and its purpose is to provide a method for producing a grain-oriented electrical steel sheet that is excellent in magnetic characteristics and has small fluctuations in magnetic characteristics in the longitudinal direction of the coil. It is to propose.

発明者らは、上記課題の解決に向けて鋭意検討を重ねた。その結果、冷間圧延時の時効処理を低温・短時間で処理し、かつ一次再結晶焼鈍の加熱過程において急速加熱する際、回復が起こる温度領域で所定時間保持する保定処理を施してやることで、コイル全長にわたって優れた磁気特性を得ることができることを見出し、本発明を開発するに至った。   The inventors have intensively studied to solve the above problems. As a result, the aging treatment at the time of cold rolling is processed at a low temperature and in a short time, and when it is rapidly heated in the heating process of the primary recrystallization annealing, the holding treatment is held for a predetermined time in the temperature range where the recovery occurs. The inventors have found that excellent magnetic properties can be obtained over the entire length of the coil, and have developed the present invention.

すなわち、本発明は、C:0.002〜0.10mass%、Si:2.0〜8.0mass%およびMn:0.005〜1.0mass%を含有する鋼素材を熱間圧延して熱延板とし、必要に応じて熱延板焼鈍を施した後、1回または中間焼鈍を挟む2回以上の冷間圧延して最終板厚の冷延板とし、脱炭焼鈍を兼ねた一次再結晶焼鈍を施した後、鋼板表面に焼鈍分離剤を塗布し、仕上焼鈍する方向性電磁鋼板の製造方法において、
最終冷間圧延においてパス間で行う各時効処理が下記(1)式;
(Dt/T)2/3≦2.0×10−7 ・・・(1)
ここで、D=0.394exp(−(8.02×10)/8.31T)
T:時効温度(K)
t:時効時間(秒)
を満たし、かつ、前記一次再結晶焼鈍の加熱過程の200〜700℃の区間を50℃/s以上で急速加熱する際、250〜600℃間のいずれかの温度で1〜10秒間保持する保定処理を施すことを特徴とする方向性電磁鋼板の製造方法である。
That is, the present invention hot-rolls a steel material containing C: 0.002 to 0.10 mass%, Si: 2.0 to 8.0 mass%, and Mn: 0.005 to 1.0 mass%. After rolling and hot-rolling sheet annealing as necessary, cold rolling is performed once or two times with intermediate annealing in between to make a cold-rolled sheet with the final thickness, which is also used for decarburization annealing. In the method for producing a grain-oriented electrical steel sheet, after applying crystal annealing, applying an annealing separator to the steel sheet surface and performing final annealing,
Each aging treatment performed between passes in the final cold rolling is expressed by the following formula (1):
(Dt / T) 2/3 ≦ 2.0 × 10 −7 (1)
Here, D = 0.394exp (− (8.02 × 10 4 ) /8.31T)
T: Aging temperature (K)
t: Aging time (seconds)
And when the 200-700 ° C. section of the heating process of the primary recrystallization annealing is rapidly heated at 50 ° C./s or more, it is held for 1-10 seconds at any temperature between 250-600 ° C. It is a manufacturing method of the grain-oriented electrical steel sheet characterized by performing a process.

本発明の方向性電磁鋼板の製造方法に用いる上記鋼素材は、上記成分組成に加えてさらに、インヒビター形成元素として、Al:0.010〜0.050mass%およびN:0.003〜0.020mass%、あるいは、Al:0.010〜0.050mass%、N:0.003〜0.020mass%、Se:0.003〜0.030mass%および/またはS:0.002〜0.03mass%を含有し、残部がFeおよび不可避的不純物からなることを特徴とする。   The steel material used in the method for producing a grain-oriented electrical steel sheet according to the present invention further includes, as an inhibitor forming element, Al: 0.010-0.050 mass% and N: 0.003-0.020 mass in addition to the above component composition. %, Or Al: 0.010-0.050 mass%, N: 0.003-0.020 mass%, Se: 0.003-0.030 mass% and / or S: 0.002-0.03 mass% And the balance is made of Fe and inevitable impurities.

また、本発明の方向性電磁鋼板の製造方法に用いる上記鋼素材は、上記成分組成に加えてさらに、インヒビター形成元素として、Se:0.003〜0.030mass%およびS:0.002〜0.03mass%のうちから選ばれる1種または2種を含有し、残部がFeおよび不可避的不純物からなることを特徴とする。   Further, the steel material used in the method for producing a grain-oriented electrical steel sheet according to the present invention includes Se: 0.003 to 0.030 mass% and S: 0.002 to 0 as an inhibitor forming element in addition to the above component composition. It contains one or two kinds selected from 0.03 mass%, and the balance consists of Fe and inevitable impurities.

また、本発明の方向性電磁鋼板の製造方法に用いる上記鋼素材は、上記成分組成に加えてさらに、Al:0.01mass%未満、N:0.0050mass%未満、Se:0.0030mass%未満およびS:0.0050mass%未満を含有し、残部がFeおよび不可避的不純物からなることを特徴とする。   In addition to the above component composition, the steel material used in the method for producing a grain-oriented electrical steel sheet according to the present invention further includes Al: less than 0.01 mass%, N: less than 0.0050 mass%, Se: less than 0.0030 mass%. And S: less than 0.0050 mass%, with the balance being Fe and inevitable impurities.

本発明の方向性電磁鋼板の製造方法に用いる上記鋼素材は、上記鋼素材は、前記成分組成に加えてさらに、Ni:0.010〜1.50mass%、Cr:0.01〜0.50mass%、Cu:0.01〜0.50mass%、P:0.005〜0.50mass%、Sb:0.005〜0.50mass%、Sn;0.005〜0.50mass%、Bi:0.005〜0.50mass%、Mo:0.005〜0.10mass%、B:0.0002〜0.0025mass%、Te:0.0005〜0.010mass%、Nb:0.0010〜0.010mass%、V:0.001〜0.010mass%およびTa:0.001〜0.010mass%のうちから選ばれる1種または2種以上を含有することを特徴とする。   In the steel material used in the method for producing a grain-oriented electrical steel sheet according to the present invention, the steel material further includes Ni: 0.010 to 1.50 mass%, Cr: 0.01 to 0.50 mass in addition to the component composition. %, Cu: 0.01 to 0.50 mass%, P: 0.005 to 0.50 mass%, Sb: 0.005 to 0.50 mass%, Sn; 0.005 to 0.50 mass%, Bi: 0.00. 005 to 0.50 mass%, Mo: 0.005 to 0.10 mass%, B: 0.0002 to 0.0025 mass%, Te: 0.0005 to 0.010 mass%, Nb: 0.0010 to 0.010 mass% V: 0.001 to 0.010 mass% and Ta: 0.001 to 0.010 mass%, or one or more selected from the group consisting of 0.001 to 0.010 mass%.

本発明によれば、コイル長手方向の全長にわたって低鉄損でかつばらつきが小さい方向性電磁鋼板を安定かつ安価に提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the grain-oriented electrical steel sheet with a low iron loss and small dispersion | variation over the full length of a coil longitudinal direction stably and cheaply.

一次再結晶焼鈍の加熱過程における昇温パターンを説明する図である。It is a figure explaining the temperature rising pattern in the heating process of primary recrystallization annealing. 一次再結晶焼鈍の加熱途中における保定時間が鉄損W17/50に及ぼす影響を示すグラフである。It is a graph which shows the influence which the holding time in the middle of heating of primary recrystallization annealing has on iron loss W17 / 50 . 冷間圧延における時効条件が、鉄損W17/50に及ぼす影響を示すグラフである。It is a graph which shows the influence which the aging conditions in cold rolling exert on iron loss W17 / 50 .

まず、本発明を開発する契機となった実験について説明する。
C:0.065mass%、Si:3.44mass%、Mn:0.08mass%、Al:0.022mass%、N:0.008mass%およびSe:0.020mass%を含有する鋼を溶製し、連続鋳造法で鋼スラブとした後、1410℃に再加熱し、熱間圧延して板厚2.1mmの熱延板とし、1050℃×60秒の熱延板焼鈍を施した後、一次冷間圧延して中間板厚の1.6mmとし、1150℃×60秒の中間焼鈍を施した後、リバース圧延機で冷間圧延して最終板厚0.23mmの冷延板とした。
First, an experiment that triggered the development of the present invention will be described.
C: 0.065 mass%, Si: 3.44 mass%, Mn: 0.08 mass%, Al: 0.022 mass%, N: 0.008 mass%, and Se: 0.020 mass% After making the steel slab by the continuous casting method, it is reheated to 1410 ° C., hot-rolled to obtain a hot-rolled sheet having a thickness of 2.1 mm, and subjected to hot-rolled sheet annealing at 1050 ° C. × 60 seconds, followed by primary cooling The sheet was rolled to an intermediate thickness of 1.6 mm, subjected to intermediate annealing at 1150 ° C. for 60 seconds, and then cold-rolled with a reverse rolling mill to obtain a cold-rolled sheet having a final thickness of 0.23 mm.

なお、上記リバース圧延は以下の2条件で行った。
条件I:各圧延パス後の巻き取り温度が常に100℃以下で、待機時間が20分以下になるように調整し、下記(1)式の左辺の値が4.0×10−8以下になるように制御する。
条件II:各圧延パス後の巻き取り温度が常に150℃以上で、待機時間が20分以上になるように調整し、下記(1)式の左辺の値が2.0×10−7以上となるように制御する。

(Dt/T)2/3≦2.0×10−7 ・・・(1)
ここで、D=0.394exp(−(8.02×10)/8.31T)
T:時効温度(K)
t:時効時間(秒)
なお、上記(1)式の左辺の値の計算においては、巻き取り温度と時効温度が等しいと仮定しているが、実際には、コイルの長手方向両端部は温度が低下しやすいため、特に条件IIのコイル両端部は時効の効果が弱くなっていると考えられる。
The reverse rolling was performed under the following two conditions.
Condition I: The following always 100 ° C. coiling temperature after each rolling pass was adjusted so that the waiting time is 20 minutes or less, the following (1) the value of the left side of the expression is 4.0 × 10 -8 or less Control to be.
Conditions II: and at the coiling temperature after each rolling pass is always 0.99 ° C. or higher, and adjusted so that the waiting time is 20 minutes or more, the following (1) the value of the left side of the expression is 2.0 × 10 -7 or more Control to be.
(Dt / T) 2/3 ≦ 2.0 × 10 −7 (1)
Here, D = 0.394exp (− (8.02 × 10 4 ) /8.31T)
T: Aging temperature (K)
t: Aging time (seconds)
In the calculation of the value on the left side of the above equation (1), it is assumed that the coiling temperature and the aging temperature are equal. It is considered that the effect of aging is weakened at both ends of the coil of Condition II.

次いで、50vol%H−50vol%Nの湿潤雰囲気下で840℃×80秒で脱炭する脱炭焼鈍を兼ねた一次再結晶焼鈍を施した。なお、上記一次再結晶焼鈍は、840℃までの加熱過程における200〜700℃間の昇温速度を100℃/sとし、さらに、その昇温途中の450℃の温度で0〜30秒間保持する保定処理を施した。ここで、上記100℃/sの昇温速度は、図1に示したように、200℃から700℃まで到達する時間から保定時間tを除いた、tおよびtにおける平均昇温速度((700−200)/(t+t))のことをいう(以降、同様)。また、700℃から840℃までの間の昇温速度は5℃/sとした。その後、MgOを主体とする焼鈍分離剤を鋼板表面に塗布し、乾燥した後、二次再結晶焼鈍と水素雰囲気下で1200℃×7時間の純化処理を含む仕上焼鈍を施し、製品板とした。 Next, primary recrystallization annealing was performed which also served as decarburization annealing in which decarburization was performed at 840 ° C. for 80 seconds in a wet atmosphere of 50 vol% H 2 -50 vol% N 2 . The primary recrystallization annealing is performed at a heating rate of 200 to 700 ° C. in the heating process up to 840 ° C. at 100 ° C./s, and further maintained at a temperature of 450 ° C. during the heating for 0 to 30 seconds. A retaining treatment was applied. Here, the temperature increase rate of 100 ° C./s is the average temperature increase rate at t 1 and t 3 excluding the holding time t 2 from the time from 200 ° C. to 700 ° C. as shown in FIG. ((700-200) / (t 1 + t 3 )) (hereinafter the same). The temperature increase rate between 700 ° C. and 840 ° C. was 5 ° C./s. Thereafter, an annealing separator mainly composed of MgO was applied to the steel sheet surface and dried, followed by secondary recrystallization annealing and finishing annealing including purification at 1200 ° C. for 7 hours in a hydrogen atmosphere to obtain a product plate. .

斯くして得た製品板から、試験片を採取し、JIS C2556に記載の方法で鉄損W17/50を測定した。ここで、上記試験片は、コイル長手方向の両端部と中央部から採取し、最も高い鉄損値をそのコイルの代表値として採用した。その結果を、保定時間と鉄損との関係として図2に示した。この図から、加熱途中の450℃における保定時間を1〜10秒の範囲とすることにより、鉄損を低減することができることがわかる。また、冷間圧延時の時効処理を低温・短時間で行う条件Iでは、コイル全長にわたって鉄損が低減していたが、冷間圧延時の時効処理を高温・長時間で行った条件IIでは、コイル両端部の鉄損が高く、コイル代表値の鉄損が高くなる傾向があった。 A test piece was collected from the product plate thus obtained, and the iron loss W 17/50 was measured by the method described in JIS C2556. Here, the said test piece was extract | collected from the both ends and center part of the coil longitudinal direction, and the highest iron loss value was employ | adopted as the representative value of the coil. The results are shown in FIG. 2 as the relationship between the holding time and the iron loss. From this figure, it can be seen that the iron loss can be reduced by setting the holding time at 450 ° C. during heating in the range of 1 to 10 seconds. In addition, under condition I where the aging treatment during cold rolling is performed at a low temperature and in a short time, iron loss was reduced over the entire length of the coil, but under condition II where the aging treatment during cold rolling was performed at a high temperature and for a long time, The iron loss at both ends of the coil was high, and the iron loss at the coil representative value tended to be high.

さらに、発明者らは、C:0.071mass%、Si:3.20mass%、Mn:0.06mass%、Al:0.024mass%、N:0.009mass%、Se:0.018mass%およびSb:0.01mass%を含有する鋼を溶製し、連続鋳造法で鋼スラブとした後、1430℃に再加熱し、熱間圧延して板厚2.3mmの熱延板とし、1080℃×60秒の熱延板焼鈍を施した後、一次冷間圧延して中間板厚の1.5mmとし、1100℃×60秒の中間焼鈍を施した後、冷間圧延して最終板厚0.23mmの冷延板とした。ここで、上記冷間圧延には、リバース圧延機もしくはタンデム圧延機を用い、圧延速度、クーラント量を調整して様々な時効条件(温度、時間)でパス間時効を施した。   Furthermore, the inventors have C: 0.071 mass%, Si: 3.20 mass%, Mn: 0.06 mass%, Al: 0.024 mass%, N: 0.009 mass%, Se: 0.018 mass%, and Sb. : Steel containing 0.01 mass% was melted and made into a steel slab by a continuous casting method, then reheated to 1430 ° C, hot-rolled to obtain a hot-rolled sheet having a thickness of 2.3 mm, 1080 ° C x After hot-rolled sheet annealing for 60 seconds, primary cold rolling was performed to obtain an intermediate sheet thickness of 1.5 mm, and after intermediate annealing at 1100 ° C. for 60 seconds, cold rolling was performed to obtain a final sheet thickness of 0. A 23 mm cold-rolled plate was used. Here, in the cold rolling, a reverse rolling mill or a tandem rolling mill was used, and the rolling aging and the coolant amount were adjusted to perform aging between passes under various aging conditions (temperature, time).

次いで、50vol%H−50vol%Nの湿潤雰囲気下で840℃×80秒で脱炭する脱炭焼鈍を兼ねた一次再結晶焼鈍を施した。なお、上記一次再結晶焼鈍は、840℃までの加熱過程における200〜700℃間の昇温速度を100℃/sとし、さらに、その昇温途中の350℃の温度で5秒間保持する保定処理を施した。また、700℃から840℃までの間の昇温速度は5℃/sとした。その後、MgOを主体とする焼鈍分離剤を鋼板表面に塗布し、乾燥した後、二次再結晶焼鈍と水素雰囲気下で1200℃×7時間の純化処理を含む仕上焼鈍を施し、製品板とした。 Next, primary recrystallization annealing was performed which also served as decarburization annealing in which decarburization was performed at 840 ° C. for 80 seconds in a wet atmosphere of 50 vol% H 2 -50 vol% N 2 . In the primary recrystallization annealing, the temperature increasing rate between 200 to 700 ° C. in the heating process up to 840 ° C. is set to 100 ° C./s, and the holding treatment is held for 5 seconds at a temperature of 350 ° C. during the temperature increasing. Was given. The temperature increase rate between 700 ° C. and 840 ° C. was 5 ° C./s. Thereafter, an annealing separator mainly composed of MgO was applied to the steel sheet surface and dried, followed by secondary recrystallization annealing and finishing annealing including purification at 1200 ° C. for 7 hours in a hydrogen atmosphere to obtain a product plate. .

斯くして得た製品板から、試験片を採取し、JIS C2556に記載の方法で鉄損W17/50を測定した。ここで、上記試験片は、コイル長手方向の両端部と中央部から採取し、最も高い鉄損値をそのコイルの代表値として採用した。その結果を、(1)式の左辺で表されるパラメータ((Dt/T)2/3)と鉄損W17/50との関係として図3に示した。この図から、パラメータ((Dt/T)2/3)を2.0×10−7以下とすることで、優れた鉄損特性が得られることがわかる。 A test piece was collected from the product plate thus obtained, and the iron loss W 17/50 was measured by the method described in JIS C2556. Here, the said test piece was extract | collected from the both ends and center part of the coil longitudinal direction, and the highest iron loss value was employ | adopted as the representative value of the coil. The result is shown in FIG. 3 as the relationship between the parameter ((Dt / T) 2/3 ) and the iron loss W 17/50 represented by the left side of the equation (1). From this figure, it is understood that an excellent iron loss characteristic can be obtained by setting the parameter ((Dt / T) 2/3 ) to 2.0 × 10 −7 or less.

急速加熱処理は、前述したように、γファイバー(<111>//ND方位)の発達を抑制し、二次再結晶の核となる{110}<001>組織の発生を促進する効果がある。一般に、<111>//ND方位には、冷間圧延時に多くの歪が導入されるため、他の方位と比較して蓄積される歪エネルギーが高い状態にある。そのため、通常の昇温速度で加熱する一次再結晶焼鈍では、蓄積された歪エネルギーが高い<111>//ND方位の圧延組織から優先的に再結晶を起こす。再結晶では、通常、<111>//ND方位の圧延組織からは<111>//ND方位粒が出現する。そのため、再結晶後の組織は<111>//ND方位が主方位となる。   As described above, the rapid heat treatment has an effect of suppressing the development of γ fiber (<111> // ND orientation) and promoting the generation of {110} <001> structure that becomes the nucleus of secondary recrystallization. . Generally, since a lot of strain is introduced into the <111> // ND orientation during cold rolling, the strain energy accumulated is higher than other orientations. For this reason, in primary recrystallization annealing in which heating is performed at a normal temperature increase rate, recrystallization occurs preferentially from a <111> // ND-oriented rolling structure in which accumulated strain energy is high. In recrystallization, <111> // ND oriented grains usually appear from a rolled structure with <111> // ND orientation. For this reason, the <111> // ND orientation is the main orientation of the recrystallized structure.

しかし、急速加熱を行うと、再結晶によって放出されるエネルギーよりも多くの熱エネルギーが付与されることから、比較的蓄積された歪エネルギーの低い方位でも再結晶が起こり得るようになり、相対的に再結晶後の{110}<001>が増加し、<111>//ND方位が減少し、磁気特性が向上する。これが、従来技術の急速加熱を行う理由である。しかしながら、<111>//ND方位は、二次再結晶方位の先鋭化に必要な方位であるため、急速加熱で<111>//ND方位が低下することによって、方位集積度が低下しやすくなると考えられる。   However, rapid heating gives more thermal energy than that released by recrystallization, so that recrystallization can occur even in orientations with relatively low strain energy. {110} <001> after recrystallization increases, <111> // ND orientation decreases, and magnetic properties improve. This is the reason for the rapid heating of the prior art. However, since the <111> // ND orientation is an orientation necessary for sharpening the secondary recrystallization orientation, the <111> // ND orientation is lowered by rapid heating, and the degree of orientation integration is likely to be lowered. It is considered to be.

そこで、発明者らは、上記実験で優れた磁気特性を示す条件Iの鋼板の一次再結晶集合組織を調査したところ、二次再結晶方位の先鋭化に特に必要な{111}<112>方位はそれほど減少せず、それ以外の<111>//ND方位が大きく減少していることがわかった。この詳細なメカニズムは明らかでないが、まず、圧延途中の時効処理を低温・短時間で行うことにより<111>//ND方位の集積度が高められる。続く一次再結晶焼鈍の加熱過程を高速で昇温し、その加熱途中で保定処理を施した場合には、上記加熱途中の保定処理で圧延組織の回復が進行するが、{111}<112>以外の<111>//ND方位が優先的に回復を起こして歪エネルギーが低下し、再結晶の駆動力を失う結果、一次再結晶集合組織では、{111}<112>は減少せずに、それ以外の<111>//ND方位が減少したと考えられる。   Therefore, the inventors investigated the primary recrystallization texture of the steel sheet of Condition I exhibiting excellent magnetic properties in the above experiment, and found that the {111} <112> orientation is particularly necessary for sharpening the secondary recrystallization orientation. It was found that the other <111> // ND orientations were greatly reduced. Although the detailed mechanism is not clear, first, the degree of integration of <111> // ND orientation can be increased by performing an aging treatment during rolling at a low temperature for a short time. When the heating process of the subsequent primary recrystallization annealing is raised at a high speed and the holding process is performed during the heating, the recovery of the rolling structure proceeds by the holding process during the heating, but {111} <112> <111> // ND orientation other than that causes recovery preferentially, strain energy decreases, and loss of recrystallization driving force. As a result, {111} <112> does not decrease in the primary recrystallization texture. The other <111> // ND orientations are considered to have decreased.

なお、上記{111}<112>以外の<111>//ND方位の減少による磁気特性の改善効果は、冷間圧延時の時効条件、一次再結晶焼鈍の加熱過程における昇温速度および保定処理条件の全ての条件が最適化されたときにのみに得ることができ、いずれかの条件が一つでも外れると、その効果が得られない。   In addition, the effect of improving the magnetic properties due to the decrease in <111> // ND orientation other than the above {111} <112> includes the aging conditions during cold rolling, the heating rate during the heating process of primary recrystallization annealing, and the retention treatment. It can be obtained only when all the conditions are optimized, and if any one of the conditions is off, the effect cannot be obtained.

また、上記の磁気特性の改善効果は、コイル長手方向の磁気特性のばらつきを低減する効果がある。これは、例えば、冷間圧延の加工発熱を利用した時効処理を用いる場合には、コイル両端部の磁気特性が低下しやすいが、本発明では、時効効果を得るために高温・長時間の処理を必要としないため、コイル長手方向の変動が起き難くなるからである。また、時効処理時間を短縮できるため、生産性を向上する効果も期待できる。   The effect of improving the magnetic characteristics described above has the effect of reducing variations in the magnetic characteristics in the coil longitudinal direction. This is because, for example, when using an aging treatment utilizing the heat generated by cold rolling, the magnetic properties of both ends of the coil are likely to deteriorate. This is because fluctuations in the coil longitudinal direction are less likely to occur. Moreover, since the aging treatment time can be shortened, an effect of improving productivity can be expected.

次に、本発明の方向性電磁鋼板の素材となる鋼素材(スラブ)の成分組成について説明する。
C:0.002〜0.10mass%
Cは、0.002mass%に満たないと、Cによる粒界強化効果が失われ、スラブに割れが生じるなどして、製造に支障を来たすようになる。一方、0.10mass%を超えると、脱炭焼鈍で、Cを磁気時効の起こらない0.005mass%以下に低減することが困難となる。よって、Cは0.002〜0.10mass%の範囲とする。好ましくは0.010〜0.080mass%の範囲である。
Next, the component composition of the steel material (slab) used as the material of the grain-oriented electrical steel sheet of the present invention will be described.
C: 0.002-0.10 mass%
If C is less than 0.002 mass%, the grain boundary strengthening effect due to C is lost, and cracks occur in the slab, which causes problems in production. On the other hand, when it exceeds 0.10 mass%, it becomes difficult to reduce C to 0.005 mass% or less at which no magnetic aging occurs by decarburization annealing. Therefore, C is in the range of 0.002 to 0.10 mass%. Preferably it is the range of 0.010-0.080 mass%.

Si:2.0〜8.0mass%
Siは、鋼の比抵抗を高め、鉄損を低減するのに必要な元素である。上記効果は、2.0mass%未満では十分ではなく、一方、8.0mass%を超えると、加工性が低下し、圧延して製造することが困難となる。よって、Siは2.0〜8.0mass%の範囲とする。好ましくは2.5〜4.5mass%の範囲である。
Si: 2.0 to 8.0 mass%
Si is an element necessary for increasing the specific resistance of steel and reducing iron loss. If the effect is less than 2.0 mass%, it is not sufficient. On the other hand, if it exceeds 8.0 mass%, the workability deteriorates and it is difficult to roll and manufacture. Therefore, Si is set to a range of 2.0 to 8.0 mass%. Preferably it is the range of 2.5-4.5 mass%.

Mn:0.005〜1.0mass%
Mnは、鋼の熱間加工性を改善するために必要な元素である。上記効果は、0.005mass%未満では十分ではなく、一方、1.0mass%を超えると、製品板の磁束密度が低下するようになる。よって、Mnは0.005〜1.0mass%の範囲とする。好ましくは0.02〜0.20mass%の範囲である。
Mn: 0.005 to 1.0 mass%
Mn is an element necessary for improving the hot workability of steel. If the effect is less than 0.005 mass%, it is not sufficient. On the other hand, if it exceeds 1.0 mass%, the magnetic flux density of the product plate is lowered. Therefore, Mn is set to a range of 0.005 to 1.0 mass%. Preferably it is the range of 0.02-0.20 mass%.

上記C,SiおよびMn以外の成分については、二次再結晶を生じさせるために、インヒビターを利用する場合と、しない場合とに分けられる。
まず、二次再結晶を生じさせるためにインヒビターを利用する場合で、例えば、AlN系インヒビターを利用するときには、AlおよびNを、それぞれAl:0.010〜0.050mass%、N:0.003〜0.020mass%の範囲で含有させるのが好ましい。また、MnS・MnSe系インヒビターを利用するときには、前述した量のMnと、S:0.002〜0.030mass%および/またはSe:0.003〜0.030mass%を含有させることが好ましい。それぞれ添加量が、上記下限値より少ないと、インヒビター効果が十分に得られず、一方、上限値を超えると、インヒビター成分がスラブ加熱時に未固溶で残存し、インヒビター効果が低減し、十分な磁気特性が得られなくなる。なお、AlN系とMnS・MnSe系のインヒビターを併用してもよいことは勿論である。
Components other than C, Si and Mn are classified into cases where an inhibitor is used and cases where no inhibitor is used in order to cause secondary recrystallization.
First, when an inhibitor is used to cause secondary recrystallization, for example, when an AlN-based inhibitor is used, Al and N are changed to Al: 0.010 to 0.050 mass%, N: 0.003, respectively. It is preferable to make it contain in the range of -0.020 mass%. Moreover, when utilizing a MnS * MnSe type | system | group inhibitor, it is preferable to contain Mn of the quantity mentioned above, and S: 0.002-0.030 mass% and / or Se: 0.003-0.030 mass%. When the addition amount is less than the above lower limit value, the inhibitor effect is not sufficiently obtained. On the other hand, when the upper limit value is exceeded, the inhibitor component remains undissolved during slab heating, and the inhibitor effect is reduced. Magnetic properties cannot be obtained. Of course, an AlN-based and MnS / MnSe-based inhibitor may be used in combination.

一方、二次再結晶を生じさせるためにインヒビターを利用しない場合には、上述したインヒビター形成成分であるAl,N,SおよびSeの含有量を極力低減し、Al:0.01mass%未満、N:0.0050mass%未満、S:0.0050mass%未満およびSe:0.0030mass%未満に低減した鋼素材を用いるのが好ましい。   On the other hand, when an inhibitor is not used to cause secondary recrystallization, the content of Al, N, S and Se, which are the above-described inhibitor forming components, is reduced as much as possible, Al: less than 0.01 mass%, N : It is preferable to use a steel material reduced to less than 0.0050 mass%, S: less than 0.0050 mass%, and Se: less than 0.0030 mass%.

本発明の方向性電磁鋼板に用いる鋼素材は、上記成分以外の残部は、Feおよび不可避的不純物である。
ただし、磁気特性の改善を目的として、Ni:0.010〜1.50mass%、Cr:0.01〜0.50mass%、Cu:0.01〜0.50mass%、P:0.005〜0.50mass%、Sb:0.005〜0.50mass%、Sn:0.005〜0.50mass%、Bi:0.005〜0.50mass%、Mo:0.005〜0.10mass%、B:0.0002〜0.0025mass%、Te:0.0005〜0.0100mass%、Nb:0.0010〜0.010mass%、V:0.001〜0.010mass%およびTa:0.001〜0.010mass%のうちから選ばれる1種または2種以上を適宜添加してもよい。
In the steel material used for the grain-oriented electrical steel sheet of the present invention, the balance other than the above components is Fe and inevitable impurities.
However, for the purpose of improving magnetic properties, Ni: 0.010 to 1.50 mass%, Cr: 0.01 to 0.50 mass%, Cu: 0.01 to 0.50 mass%, P: 0.005 to 0 .50 mass%, Sb: 0.005-0.50 mass%, Sn: 0.005-0.50 mass%, Bi: 0.005-0.50 mass%, Mo: 0.005-0.10 mass%, B: 0.0002-0.0025 mass%, Te: 0.0005-0.0100 mass%, Nb: 0.0010-0.010 mass%, V: 0.001-0.010 mass%, and Ta: 0.001-0. One or more selected from 010 mass% may be added as appropriate.

次に、本発明の方向性電磁鋼板の製造方法について説明する。
前述した成分組成を有する鋼を常法の精錬プロセスで溶製した後、常法の造塊−分塊圧延法または連続鋳造法で鋼素材(スラブ)を製造してもよいし、あるいは、直接鋳造法で100mm以下の厚さの薄鋳片を製造してもよい。上記スラブは、常法に従い、例えば、インヒビター成分を含有する場合には、1400℃程度の温度に再加熱し、一方、インヒビター成分を含まない場合には、1250℃以下の温度に再加熱した後、熱間圧延に供する。なお、インヒビター成分を含有しない場合には、鋳造後、スラブを再加熱することなく直ちに熱間圧延に供してもよい。また、薄鋳片の場合には、熱間圧延を省略してそのまま以後の工程に進めてもよい。
Next, the manufacturing method of the grain-oriented electrical steel sheet of this invention is demonstrated.
A steel material (slab) may be manufactured by a conventional ingot-bundling rolling method or a continuous casting method after melting the steel having the above-described component composition by a conventional refining process, or directly. A thin slab having a thickness of 100 mm or less may be manufactured by a casting method. The slab is reheated to a temperature of about 1400 ° C. according to a conventional method, for example, when an inhibitor component is contained, and after reheating to a temperature of 1250 ° C. or less when no inhibitor component is contained. Used for hot rolling. In addition, when not containing an inhibitor component, you may use for hot rolling immediately after casting, without reheating a slab. In the case of a thin slab, the hot rolling may be omitted and the process may proceed as it is.

次いで、熱間圧延して得た熱延板は、必要に応じて熱延板焼鈍を施す。この熱延板焼鈍の温度は、良好な磁気特性を得るためには、800〜1150℃の範囲とするのが好ましい。800℃未満では、熱間圧延で形成されたバンド組織が残留し、整粒の一次再結晶組織を得ることが難しくなり、二次再結晶粒の成長が阻害される。一方、1150℃を超えると、熱延板焼鈍後の粒径が粗大化し過ぎて、やはり、整粒の一次再結晶組織を得ることが難しくなるからである。   Next, the hot-rolled sheet obtained by hot rolling is subjected to hot-rolled sheet annealing as necessary. The temperature of this hot rolled sheet annealing is preferably in the range of 800 to 1150 ° C. in order to obtain good magnetic properties. If it is less than 800 degreeC, the band structure formed by hot rolling will remain, it will become difficult to obtain the primary recrystallized structure of a sized grain, and the growth of a secondary recrystallized grain will be inhibited. On the other hand, when the temperature exceeds 1150 ° C., the grain size after the hot-rolled sheet annealing is excessively coarsened, so that it becomes difficult to obtain a primary recrystallized structure of sized particles.

熱延後あるいは熱延板焼鈍後の鋼板は、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延により最終板厚の冷延板とする。上記中間焼鈍の焼鈍温度は、900〜1200℃の範囲とするのが好ましい。900℃未満では、中間焼鈍後の再結晶粒が細かくなり、さらに、一次再結晶組織におけるGoss核が減少して製品板の磁気特性が低下する傾向がある。一方、1200℃を超えると、熱延板焼鈍と同様、結晶粒が粗大化し過ぎて、整粒の一次再結晶組織を得ることが難しくなるからである。   The steel sheet after hot-rolling or after hot-rolled sheet annealing is made into a cold-rolled sheet having a final sheet thickness by one or more cold rolling or two or more cold rollings sandwiching intermediate annealing. The annealing temperature of the intermediate annealing is preferably in the range of 900 to 1200 ° C. When the temperature is lower than 900 ° C., the recrystallized grains after the intermediate annealing become finer, and the Goss nuclei in the primary recrystallized structure are reduced, and the magnetic properties of the product plate tend to be lowered. On the other hand, when the temperature exceeds 1200 ° C., the crystal grains become too coarse as in the hot-rolled sheet annealing, and it becomes difficult to obtain a primary recrystallized structure of the sized grains.

また、上記冷間圧延のうち、最終板厚とする最終冷間圧延は、各圧延パス間で下記(1)を満たす時効処理を施すことが必要である。

(Dt/T)2/3≦2.0×10−7 ・・・(1)
ここで、D=0.394exp(−(8.02×10)/8.31T)
T:時効温度(K)
t:時効時間(秒)
Of the cold rolling, the final cold rolling with the final plate thickness needs to be subjected to an aging treatment satisfying the following (1) between the rolling passes.
(Dt / T) 2/3 ≦ 2.0 × 10 −7 (1)
Here, D = 0.394exp (− (8.02 × 10 4 ) /8.31T)
T: Aging temperature (K)
t: Aging time (seconds)

上記(1)式中のDはCの拡散係数であり、D=0.394(mm/sec)、活性化エネルギーQ=80.2(kJ/mol)、ガス定数R=8.31(J/mol・K)から得られる。Cottrellら(A.H.Cottrell and B.A.Bilby:Proc.Phys.Soc.,62A(1949),49)によれば、上記(1)式の左辺は、温度T,時間tの時効処理で転位に到達する溶質原子量に比例するものであり、時効の進行度合いを表すパラメータである。したがって、上記(1)式の左辺の値が小さいことは、C等の侵入型元素が転位に十分に固着されていないことを意味しており、斯かる場合には、一次再結晶集合組織の<111>//ND方位が増加する。ただし、<111>//ND方位の増加は、磁気特性にとっては決して好ましいことではなく、後述する急速加熱とその途中の保定処理を組合せなければ、磁気特性の改善効果は得られない。 D in the formula (1) is a diffusion coefficient of C, D 0 = 0.394 (mm 2 / sec), activation energy Q = 80.2 (kJ / mol), gas constant R = 8.31 (J / mol · K). According to Cottelell et al. (A. H. Cotrel and B. A. Bilby: Proc. Phys. Soc., 62A (1949), 49), the left side of equation (1) is an aging treatment at temperature T and time t. This is a parameter that is proportional to the amount of solute atoms that reach dislocations in, and represents the progress of aging. Therefore, a small value on the left side of the above equation (1) means that an interstitial element such as C is not sufficiently fixed to the dislocation. In such a case, the primary recrystallization texture <111> // ND orientation increases. However, an increase in the <111> // ND orientation is not preferable for the magnetic characteristics, and the effect of improving the magnetic characteristics cannot be obtained unless the rapid heating described later and the holding treatment in the middle thereof are combined.

発明者らの実験結果によれば、一次再結晶集合組織の<111>//ND方位を増加する上記効果を得るためには、上記(1)式左辺の値が、2.0×10−7以下であることが必要である。2.0×10−7を超えると、一次再結晶集合組織中の<111>//ND方位が低下し、二次再結晶後の方位集積度が低下する。なお、<111>//ND方位をさらに増加させるためには、上記(1)式の左辺の値を5.0×10−8以下に制御するのが好ましい。 According to the experimental results of the inventors, in order to obtain the above effect of increasing the <111> // ND orientation of the primary recrystallization texture, the value on the left side of the above equation (1) is 2.0 × 10 It must be 7 or less. When it exceeds 2.0 × 10 −7 , the <111> // ND orientation in the primary recrystallization texture decreases, and the orientation integration degree after secondary recrystallization decreases. In order to further increase the <111> // ND orientation, it is preferable to control the value of the left side of the above equation (1) to 5.0 × 10 −8 or less.

なお、生産性を確保する観点からは、上記(1)式を満たす冷間圧延時の時効処理は、時効温度Tを50〜400℃、時効時間tを0.1〜3600秒の範囲とするのが好ましい。時効温度Tが50℃未満、時効時間tが0.1秒未満では、強冷却設備および超高速での圧延が必要となるため、製造コストの上昇を招く。一方、時効温度Tが400℃超え、時効時間tが3600秒超えでは、上記(1)式を満たさなくなるだけでなく、生産性が低下したり、製造コストが増加したりするため好ましくない。なお、リバース圧延機で冷間圧延する場合、上記時効温度Tは圧延後の巻き取り温度としてよい。また、コイルに巻き取り後のコイル温度は徐々に低下し、特にコイル両端部での低下が大きいが、本発明の時効条件は、高温・長時間の処理が不要であるため、磁気特性に及ぼす影響は小さい。   From the viewpoint of ensuring productivity, the aging treatment at the time of cold rolling satisfying the above formula (1) is such that the aging temperature T is 50 to 400 ° C. and the aging time t is 0.1 to 3600 seconds. Is preferred. When the aging temperature T is less than 50 ° C. and the aging time t is less than 0.1 second, strong cooling equipment and ultra-high speed rolling are required, which increases the manufacturing cost. On the other hand, when the aging temperature T exceeds 400 ° C. and the aging time t exceeds 3600 seconds, not only the above equation (1) is not satisfied, but also productivity is lowered and manufacturing costs are increased. In addition, when performing cold rolling with a reverse rolling mill, the aging temperature T may be a winding temperature after rolling. In addition, the coil temperature after winding on the coil gradually decreases, especially at both ends of the coil, but the aging conditions of the present invention do not require high temperature and long time treatment, and thus affect the magnetic properties. The impact is small.

上記(1)式の関係は、圧延機がリバース式でもタンデム式のいずれでも、圧延速度やクーラント量を調整することにより、容易に満たすことができるが、コイル長手方向で安定した磁気特性を得るためには、コイル全長にわたって上記(1)式を満たすよう制御するのが好ましい。   The relationship of the above formula (1) can be easily satisfied by adjusting the rolling speed and the amount of coolant regardless of whether the rolling mill is a reverse type or a tandem type, but obtains stable magnetic characteristics in the longitudinal direction of the coil. For this purpose, it is preferable to control so as to satisfy the above expression (1) over the entire length of the coil.

また、最終冷間圧延の圧下率は、<111>//ND方位を十分発達させるためには、80〜95%の範囲とすることが好ましい。ただし、製品の歩留りを重視し、多少の磁気特性の劣化を許容してでも二次再結晶の安定性を高めたいときには、最終冷間圧延の圧下率を50〜80%とするのが好ましい。   Further, the rolling reduction of the final cold rolling is preferably in the range of 80 to 95% in order to sufficiently develop the <111> // ND orientation. However, when the yield of the product is regarded as important and the stability of the secondary recrystallization is to be improved even if some deterioration of the magnetic properties is allowed, the reduction ratio of the final cold rolling is preferably 50 to 80%.

最終板厚とした冷延板は、その後、脱炭焼鈍を兼ねた一次再結晶焼鈍を施す。この一次再結晶焼鈍における焼鈍温度は、脱炭性を確保する観点からは、800〜900℃の範囲とするのが好ましく、また、雰囲気は湿潤雰囲気とするのが好ましい。ただし、脱炭が不要なC:0.005mass%以下の鋼素材を用いる場合は、この限りではない。なお、一次再結晶焼鈍と脱炭焼鈍を別々に行ってもよい。   The cold-rolled sheet having the final thickness is then subjected to primary recrystallization annealing that also serves as decarburization annealing. The annealing temperature in the primary recrystallization annealing is preferably in the range of 800 to 900 ° C. from the viewpoint of ensuring decarburization, and the atmosphere is preferably a wet atmosphere. However, this is not the case when a steel material with C: 0.005 mass% or less that does not require decarburization is used. In addition, you may perform a primary recrystallization annealing and a decarburization annealing separately.

ここで、本発明において重要なことは、上記一次再結晶焼鈍の加熱過程において、200〜700℃の区間を50℃/s以上で急速加熱するとともに、250〜600℃間のいずれかの温度で1〜10秒間の保定処理を施すことである。なお、上記200〜700℃の区間における昇温速度(50℃/s以上)は、前述したように、保定する時間を除いた時間における平均昇温速度である。上記昇温速度は、好ましくは100〜300℃/sの範囲である。   Here, what is important in the present invention is that in the heating process of the primary recrystallization annealing, the section of 200 to 700 ° C. is rapidly heated at 50 ° C./s or more, and at any temperature between 250 to 600 ° C. It is to perform a holding process for 1 to 10 seconds. In addition, the temperature increase rate (50 degreeC / s or more) in the said 200-700 degreeC area is an average temperature increase rate in the time except the time to hold | maintain, as mentioned above. The temperature elevation rate is preferably in the range of 100 to 300 ° C./s.

上記急速加熱を必要とする理由は、二次再結晶の核となる{110}<001>組織の発生を促進するためである。ただし、急速加熱するだけでは、<111>//ND方位が低下するため、二次再結晶方位の先鋭性が低下しやすく、磁気特性の改善効果が安定しない。   The reason why the rapid heating is required is to promote the generation of a {110} <001> structure that becomes the nucleus of secondary recrystallization. However, since the <111> // ND orientation is lowered only by rapid heating, the sharpness of the secondary recrystallization orientation is likely to be lowered, and the effect of improving the magnetic properties is not stable.

また、保定処理を必要とする理由は、保定処理中に圧延組織の回復が進行する際、{111}<112>以外の<111>//ND方位の歪エネルギーを優先的に低下させて再結晶の駆動力を失わせることにより、一次再結晶集合組織における{111}<112>以外の<111>//ND方位の強度を低下させるためである。保定処理する温度は、250〜600℃、時間は1〜10秒間の範囲に制限する。保定処理の温度が250℃未満、時間が1秒未満では回復が起きないため所期した効果が得られず、一方、温度が600℃超え、時間が10秒超えでは回復が進みすぎて、却って一次再結晶組織が劣化するためである。なお、保定処理は必ずしも一定温度とする必要はなく、±10℃/s以下の温度変化であれば、同様の効果を得ることができるので、保定処理と考えてよい。   In addition, the reason why the holding process is necessary is that when the recovery of the rolling structure proceeds during the holding process, the strain energy in the <111> // ND direction other than {111} <112> is preferentially reduced and restarted. This is because the strength of <111> // ND orientation other than {111} <112> in the primary recrystallization texture is reduced by losing the driving force of the crystal. The temperature for the retention treatment is limited to 250 to 600 ° C., and the time is limited to a range of 1 to 10 seconds. If the temperature of the retention treatment is less than 250 ° C. and the time is less than 1 second, the desired effect cannot be obtained because the recovery does not occur. On the other hand, if the temperature exceeds 600 ° C. and the time exceeds 10 seconds, the recovery proceeds too much. This is because the primary recrystallization structure deteriorates. Note that the retention treatment does not necessarily have to be a constant temperature, and a similar effect can be obtained as long as the temperature change is ± 10 ° C./s or less.

一次再結晶焼鈍を施した鋼板は、鉄損特性を重視する場合や、トランスの騒音を低下する場合には、MgOを主体とする焼鈍分離剤を鋼板表面に塗布、乾燥した後、仕上焼鈍を施し、Goss方位に高度に集積させた二次再結晶組織を発達させるとともに、フォルステライト被膜を形成させるのが好ましい。一方、打抜加工性を重視し、フォルステライト被膜を形成させない場合には、焼鈍分離剤を適用しないか、あるいは、シリカやアルミナ等を主体とした焼鈍分離剤を用いて仕上焼鈍を施すのが好ましい。なお、フォルステライト被膜を形成しない場合、焼鈍分離剤の塗布に水分を持ち込まない静電塗布を行うことも有効である。また、焼鈍分離剤に代えて、耐熱無機材料シート(シリカ、アルミナ、マイカ)を用いてもよい。   For steel sheets that have undergone primary recrystallization annealing, when stressing iron loss characteristics or reducing the noise of transformers, an annealing separator mainly composed of MgO is applied to the steel sheet surface, dried, and then subjected to finish annealing. It is preferable to develop a secondary recrystallized structure that is highly accumulated in the Goss orientation and to form a forsterite film. On the other hand, when emphasizing the punching processability and not forming the forsterite film, it is not necessary to apply an annealing separator or to perform a final annealing using an annealing separator mainly composed of silica, alumina or the like. preferable. In addition, when a forsterite film is not formed, it is also effective to perform electrostatic coating without bringing moisture into the coating of the annealing separator. Further, a heat resistant inorganic material sheet (silica, alumina, mica) may be used in place of the annealing separator.

仕上焼鈍における焼鈍温度は、フォルステライト被膜形成や純化処理を行う場合には、最高到達温度を1100〜1300℃の範囲とするのが望ましい。一方、フォルステライト被膜を形成させない場合には、二次再結晶だけを完了させればよいので、最高到達温度を800〜1100℃の範囲として仕上焼鈍を実施するのが好ましい。   As for the annealing temperature in the finish annealing, it is desirable that the highest temperature be in the range of 1100 to 1300 ° C. when forsterite film formation or purification treatment is performed. On the other hand, when the forsterite film is not formed, it is only necessary to complete the secondary recrystallization. Therefore, it is preferable to perform the finish annealing with the maximum temperature reached in the range of 800 to 1100 ° C.

仕上焼鈍後の鋼板は、その後、水洗やブラッシング、酸洗等で鋼板表面に付着した未反応の焼鈍分離剤を除去した後、平坦化焼鈍を施して形状矯正することが、鉄損の低減には有効である。これは、仕上焼鈍は、通常、コイル状態で行うため、コイルの巻き癖が付き、これが原因で、鉄損測定時に特性が劣化することがあるためである。   After the finish annealing, the steel sheet can be smoothed by brushing, brushing, pickling, etc. to remove unreacted annealing separator adhering to the steel sheet surface and then flattening annealing to reduce the iron loss. Is valid. This is because the finish annealing is usually performed in a coil state, so that the coil has wrinkles and this may cause deterioration in characteristics when measuring iron loss.

さらに、鋼板を積層して使用する場合には、上記平坦化焼鈍において、あるいは、その前後で、鋼板表面に絶縁被膜を被成することが有効である。特に、鉄損の低減を図るためには、絶縁被膜として、鋼板に張力を付与する張力付与被膜を適用するのが好ましい。張力付与被膜の形成には、バインダーを介して張力被膜を塗布する方法や、物理蒸着法や化学蒸着法により無機物を鋼板表層に蒸着させる方法を採用すると、被膜密着性に優れかつ著しく鉄損低減効果が大きい絶縁被膜を形成することができるので、より好ましい。   Further, in the case of using steel plates in a stacked manner, it is effective to deposit an insulating film on the surface of the steel plate in the flattening annealing or before and after that. In particular, in order to reduce iron loss, it is preferable to apply a tension-imparting film that imparts tension to the steel sheet as the insulating film. For the formation of tension-imparting coatings, it is excellent in coating adhesion and significantly reduces iron loss when a method of applying a tension coating via a binder or a method of depositing an inorganic substance on the surface of a steel sheet by physical vapor deposition or chemical vapor deposition is adopted. Since an insulating film having a large effect can be formed, it is more preferable.

また、鉄損をより低減するためには、磁区細分化処理を施すことが好ましい。処理方法としては、一般的に実施されている、最終製品板に溝を形成したり、電子ビーム照射や、レーザー照射、プラズマ照射等によって線状または点状に熱歪や衝撃歪を導入する方法、最終板厚に冷間圧延した鋼板や中間工程の鋼板表面にエッチング加工を施して溝を形成したりする方法等を用いることができる。   Moreover, in order to further reduce the iron loss, it is preferable to perform a magnetic domain fragmentation process. As a processing method, a method of forming a groove in a final product plate or introducing thermal strain or impact strain in a linear or dotted manner by electron beam irradiation, laser irradiation, plasma irradiation or the like is generally performed. For example, a method of forming a groove by etching a steel sheet cold-rolled to a final thickness or a steel sheet surface in an intermediate process can be used.

C:0.060mass%、Si:3.32mass%、Mn:0.09mass%、Al:0.023mass%、Se:0.022mass%およびN:0.009mass%を含有し、残部がFeおよび不可避的不純物からなる鋼スラブを連続鋳造法で製造し、1420℃の温度に再加熱した後、熱間圧延して、板厚2.3mmの熱延板とし、1000℃×30秒の熱延板焼鈍を施した後、1回目の冷間圧延で1.7mmの中間板厚とし、1100℃×30秒の中間焼鈍を施した後、最終冷間圧延により板厚0.23mmの冷延板に仕上げた。上記最終冷間圧延においては、各パス間の板温(時効温度T)と待機時間(時効時間t)を変化させ、(1)式の左辺の値を計算し、その値の最大値を表1に示した。なお、リバース圧延機で圧延する場合には、巻き取り温度を時効温度とした。   C: 0.060 mass%, Si: 3.32 mass%, Mn: 0.09 mass%, Al: 0.023 mass%, Se: 0.022 mass% and N: 0.009 mass%, the balance being Fe and inevitable A steel slab made of mechanical impurities is manufactured by a continuous casting method, reheated to a temperature of 1420 ° C., and then hot-rolled to form a hot-rolled sheet having a thickness of 2.3 mm, which is 1000 ° C. × 30 seconds. After annealing, the first cold rolling to an intermediate sheet thickness of 1.7 mm, after an intermediate annealing of 1100 ° C. × 30 seconds, the final cold rolling into a cold rolled sheet with a sheet thickness of 0.23 mm Finished. In the final cold rolling, the plate temperature (aging temperature T) and the waiting time (aging time t) between the passes are changed, the value on the left side of the equation (1) is calculated, and the maximum value of the values is shown. It was shown in 1. In addition, when rolling with a reverse rolling mill, winding temperature was made into aging temperature.

Figure 2014173103
Figure 2014173103

次いで、50vol%H−50vol%Nの湿潤雰囲気下で840℃×100秒で脱炭する脱炭焼鈍を兼ねた一次再結晶焼鈍を施した。なお、上記一次再結晶焼鈍は、840℃までの加熱過程における200〜700℃間の昇温速度を表1に記載のごとく変化させるとともに、一部の冷延板では、その加熱途中の400℃の温度で同じく表1に記載した温度、時間で保定処理を施した。なお、700℃から840℃までの間の昇温速度は6℃/sとした。その後、MgOを主体とする焼鈍分離剤を鋼板表面に塗布し、乾燥した後、二次再結晶焼鈍と水素雰囲気下で1200℃×10時間の純化処理を含む仕上焼鈍を施し、製品板とした。仕上焼鈍の雰囲気は、純化処理する1200℃保定時はH、昇温時および降温時はNとした。 Next, primary recrystallization annealing was performed which also served as decarburization annealing in which decarburization was performed at 840 ° C. for 100 seconds in a wet atmosphere of 50 vol% H 2 -50 vol% N 2 . In the primary recrystallization annealing, the heating rate between 200 and 700 ° C. in the heating process up to 840 ° C. is changed as shown in Table 1, and in some cold-rolled plates, 400 ° C. during the heating. The holding treatment was performed at the same temperature and time as described in Table 1. The temperature increase rate between 700 ° C. and 840 ° C. was 6 ° C./s. Thereafter, an annealing separator mainly composed of MgO was applied to the steel sheet surface and dried, followed by secondary recrystallization annealing and finish annealing including purification at 1200 ° C. for 10 hours in a hydrogen atmosphere to obtain a product plate. . The atmosphere of the finish annealing was H 2 when maintaining at 1200 ° C. for the purification treatment, and N 2 when raising and lowering the temperature.

斯くして得た製品板から、試験片を採取し、JIS C2556に記載の方法で鉄損W17/50を測定した。ここで、上記試験片は、コイル長手方向の両端部と中央部から採取し、最も高い鉄損値をそのコイルの代表値として採用した。その結果を、表1に併記した。この表から、本発明を適用することで、鉄損の低い方向性電磁鋼板が安定して得られることがわかる。 A test piece was collected from the product plate thus obtained, and the iron loss W 17/50 was measured by the method described in JIS C2556. Here, the said test piece was extract | collected from the both ends and center part of the coil longitudinal direction, and the highest iron loss value was employ | adopted as the representative value of the coil. The results are also shown in Table 1. From this table, it can be seen that, by applying the present invention, a grain-oriented electrical steel sheet having a low iron loss can be obtained stably.

表2に記載の各種成分組成を有するNo.1〜15の鋼を溶製し、連続鋳造法で鋼スラブとした後、1400℃の温度に再加熱し、熱間圧延して板厚2.1mmの熱延板とし、1050℃×10秒の熱延板焼鈍を施した後、冷間圧延して最終版厚が0.23mmの冷延板に仕上げた。なお、冷間圧延にはリバース圧延機を用い、巻き取り温度(時効温度T)が100℃以下、待機時間(時効時間t)が20分以下になるように調整し、(1)式左辺の値が4.0×10−8以下となるようにした。 No. having various component compositions shown in Table 2. 1 to 15 steel was melted and made into a steel slab by a continuous casting method, then reheated to a temperature of 1400 ° C., hot-rolled to obtain a hot-rolled sheet having a thickness of 2.1 mm, 1050 ° C. × 10 seconds After performing the hot-rolled sheet annealing, it was cold-rolled to finish a cold-rolled sheet having a final plate thickness of 0.23 mm. In addition, a reverse rolling mill is used for cold rolling, and the winding temperature (aging temperature T) is adjusted to 100 ° C. or less and the waiting time (aging time t) is set to 20 minutes or less. The value was set to 4.0 × 10 −8 or less.

Figure 2014173103
Figure 2014173103

次いで、50vol%H−50vol%Nの湿潤雰囲気下で840℃×60秒で脱炭する脱炭焼鈍を兼ねた一次再結晶焼鈍を施した。なお、上記一次再結晶焼鈍は、840℃までの加熱過程における200〜700℃間の昇温速度を75℃/sとし、さらに、その昇温途中の450℃の温度で2秒間保持する保定処理を施した。また、700℃から840℃までの間の平均昇温速度は6℃/sとした。その後、MgOを主体とする焼鈍分離剤を鋼板表面に塗布し、乾燥した後、二次再結晶焼鈍と水素雰囲気下で1220℃×4時間の純化処理を伴う仕上焼鈍を施し、製品板とした。なお、仕上焼鈍の雰囲気は、純化処理する1220℃保定時はH、昇温時および降温時はArとした。 Next, primary recrystallization annealing was performed which also served as decarburization annealing in which decarburization was performed at 840 ° C. for 60 seconds in a wet atmosphere of 50 vol% H 2 -50 vol% N 2 . The primary recrystallization annealing is a holding treatment in which the temperature rising rate between 200 to 700 ° C. in the heating process up to 840 ° C. is 75 ° C./s, and the temperature is maintained at 450 ° C. during the temperature rising for 2 seconds. Was given. Moreover, the average temperature increase rate from 700 degreeC to 840 degreeC was 6 degreeC / s. Thereafter, an annealing separator mainly composed of MgO was applied to the steel sheet surface, dried, and then subjected to secondary recrystallization annealing and finish annealing with a purification treatment at 1220 ° C. for 4 hours in a hydrogen atmosphere to obtain a product plate. . The atmosphere of the finish annealing was H 2 at the time of 1220 ° C. for the purification treatment, and Ar at the time of temperature increase and temperature decrease.

斯くして得た製品板から、試験片を採取し、JIS C2556に記載の方法で鉄損W17/50を測定した。ここで、上記試験片は、コイル両端部と中央部から採取し、最も高い鉄損値をそのコイルの代表値として採用した。その結果を表2に併記した。同表から、本発明を適用することで、鉄損の低い方向性電磁鋼板が安定して得られることがわかる。 A test piece was collected from the product plate thus obtained, and the iron loss W 17/50 was measured by the method described in JIS C2556. Here, the said test piece was extract | collected from the coil both ends and the center part, and the highest iron loss value was employ | adopted as the representative value of the coil. The results are also shown in Table 2. From the table, it can be seen that by applying the present invention, a grain-oriented electrical steel sheet with low iron loss can be obtained stably.

Claims (5)

C:0.002〜0.10mass%、Si:2.0〜8.0mass%およびMn:0.005〜1.0mass%を含有する鋼素材を熱間圧延して熱延板とし、必要に応じて熱延板焼鈍を施した後、1回または中間焼鈍を挟む2回以上の冷間圧延して最終板厚の冷延板とし、脱炭焼鈍を兼ねた一次再結晶焼鈍を施した後、鋼板表面に焼鈍分離剤を塗布し、仕上焼鈍する方向性電磁鋼板の製造方法において、
最終冷間圧延においてパス間で行う各時効処理が下記(1)式を満たし、かつ、
前記一次再結晶焼鈍の加熱過程の200〜700℃の区間を50℃/s以上で急速加熱する際、250〜600℃間のいずれかの温度で1〜10秒間保持する保定処理を施すことを特徴とする方向性電磁鋼板の製造方法。

(Dt/T)2/3≦2.0×10−7 ・・・(1)
ここで、D=0.394exp(−(8.02×10)/8.31T)
T:時効温度(K)
t:時効時間(秒)
A steel material containing C: 0.002-0.10 mass%, Si: 2.0-8.0 mass% and Mn: 0.005-1.0 mass% is hot-rolled to form a hot-rolled sheet. After performing hot-rolled sheet annealing according to the above, after cold rolling at least once with intermediate or intermediate annealing, to obtain a cold-rolled sheet with the final thickness, and after performing primary recrystallization annealing that also serves as decarburization annealing In the method for producing a grain-oriented electrical steel sheet, by applying an annealing separator to the steel sheet surface and performing final annealing,
Each aging treatment performed between passes in the final cold rolling satisfies the following formula (1), and
When the 200-700 ° C. section of the heating process of the primary recrystallization annealing is rapidly heated at 50 ° C./s or higher, a holding treatment is performed in which the temperature is maintained at any temperature between 250-600 ° C. for 1-10 seconds. A method for producing a grain-oriented electrical steel sheet.
(Dt / T) 2/3 ≦ 2.0 × 10 −7 (1)
Here, D = 0.394exp (− (8.02 × 10 4 ) /8.31T)
T: Aging temperature (K)
t: Aging time (seconds)
前記鋼素材は、前記成分組成に加えてさらに、インヒビター形成元素として、Al:0.010〜0.050mass%およびN:0.003〜0.020mass%、あるいは、Al:0.010〜0.050mass%、N:0.003〜0.020mass%、Se:0.003〜0.030mass%および/またはS:0.002〜0.03mass%を含有し、残部がFeおよび不可避的不純物からなることを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。 In addition to the above component composition, the steel material further includes Al: 0.010-0.050 mass% and N: 0.003-0.020 mass%, or Al: 0.010-0. 050 mass%, N: 0.003-0.020 mass%, Se: 0.003-0.030 mass% and / or S: 0.002-0.03 mass%, with the balance being Fe and inevitable impurities The method for producing a grain-oriented electrical steel sheet according to claim 1. 前記鋼素材は、前記成分組成に加えてさらに、インヒビター形成元素として、Se:0.003〜0.030mass%およびS:0.002〜0.03mass%のうちから選ばれる1種または2種を含有し、残部がFeおよび不可避的不純物からなることを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。 In addition to the component composition, the steel material further includes one or two selected from Se: 0.003-0.030 mass% and S: 0.002-0.03 mass% as an inhibitor-forming element. The method for producing a grain-oriented electrical steel sheet according to claim 1, wherein the grain-containing electrical steel sheet is contained and the balance is made of Fe and inevitable impurities. 前記鋼素材は、前記成分組成に加えてさらに、Al:0.01mass%未満、N:0.0050mass%未満、Se:0.0030mass%未満およびS:0.0050mass%未満を含有し、残部がFeおよび不可避的不純物からなることを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。 In addition to the component composition, the steel material further contains Al: less than 0.01 mass%, N: less than 0.0050 mass%, Se: less than 0.0030 mass%, and S: less than 0.0050 mass%, the balance being It consists of Fe and an unavoidable impurity, The manufacturing method of the grain-oriented electrical steel sheet of Claim 1 characterized by the above-mentioned. 前記鋼素材は、前記成分組成に加えてさらに、Ni:0.010〜1.50mass%、Cr:0.01〜0.50mass%、Cu:0.01〜0.50mass%、P:0.005〜0.50mass%、Sb:0.005〜0.50mass%、Sn;0.005〜0.50mass%、Bi:0.005〜0.50mass%、Mo:0.005〜0.10mass%、B:0.0002〜0.0025mass%、Te:0.0005〜0.010mass%、Nb:0.0010〜0.010mass%、V:0.001〜0.010mass%およびTa:0.001〜0.010mass%のうちから選ばれる1種または2種以上を含有することを特徴とする請求項2〜4のいずれか1項に記載の方向性電磁鋼板の製造方法。 In addition to the component composition, the steel material further includes Ni: 0.010 to 1.50 mass%, Cr: 0.01 to 0.50 mass%, Cu: 0.01 to 0.50 mass%, P: 0.00. 005 to 0.50 mass%, Sb: 0.005 to 0.50 mass%, Sn; 0.005 to 0.50 mass%, Bi: 0.005 to 0.50 mass%, Mo: 0.005 to 0.10 mass% , B: 0.0002 to 0.0025 mass%, Te: 0.0005 to 0.010 mass%, Nb: 0.0010 to 0.010 mass%, V: 0.001 to 0.010 mass%, and Ta: 0.001. The method for producing a grain-oriented electrical steel sheet according to any one of claims 2 to 4, comprising one or more selected from -0.010 mass%.
JP2013044605A 2013-03-06 2013-03-06 Method for producing grain-oriented electrical steel sheet Active JP5846390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013044605A JP5846390B2 (en) 2013-03-06 2013-03-06 Method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013044605A JP5846390B2 (en) 2013-03-06 2013-03-06 Method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2014173103A true JP2014173103A (en) 2014-09-22
JP5846390B2 JP5846390B2 (en) 2016-01-20

Family

ID=51694672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013044605A Active JP5846390B2 (en) 2013-03-06 2013-03-06 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP5846390B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112752623A (en) * 2018-09-28 2021-05-04 杰富意钢铁株式会社 Method for producing grain-oriented electromagnetic steel sheet and cold rolling facility
CN113710822A (en) * 2019-04-23 2021-11-26 杰富意钢铁株式会社 Method for producing grain-oriented electromagnetic steel sheet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63105926A (en) * 1986-10-23 1988-05-11 Kawasaki Steel Corp Manufacture of grain-oriented silicon steel sheet
JPH08143974A (en) * 1994-11-28 1996-06-04 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet
JP2000204450A (en) * 1999-01-14 2000-07-25 Nippon Steel Corp Grain oriented silicon steel sheet excellent in film characteristic and magnetic property and its production
JP2006095544A (en) * 2004-09-28 2006-04-13 Jfe Steel Kk Steel strip cold-rolling equipment and steel strip cold-rolling method
JP2011174138A (en) * 2010-02-24 2011-09-08 Jfe Steel Corp Method for manufacturing grain-oriented electromagnetic steel sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63105926A (en) * 1986-10-23 1988-05-11 Kawasaki Steel Corp Manufacture of grain-oriented silicon steel sheet
JPH08143974A (en) * 1994-11-28 1996-06-04 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet
JP2000204450A (en) * 1999-01-14 2000-07-25 Nippon Steel Corp Grain oriented silicon steel sheet excellent in film characteristic and magnetic property and its production
JP2006095544A (en) * 2004-09-28 2006-04-13 Jfe Steel Kk Steel strip cold-rolling equipment and steel strip cold-rolling method
JP2011174138A (en) * 2010-02-24 2011-09-08 Jfe Steel Corp Method for manufacturing grain-oriented electromagnetic steel sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112752623A (en) * 2018-09-28 2021-05-04 杰富意钢铁株式会社 Method for producing grain-oriented electromagnetic steel sheet and cold rolling facility
EP3854891A4 (en) * 2018-09-28 2021-07-28 JFE Steel Corporation Method for producing grain-oriented electromagnetic steel sheet, and cold rolling equipment
CN113710822A (en) * 2019-04-23 2021-11-26 杰富意钢铁株式会社 Method for producing grain-oriented electromagnetic steel sheet

Also Published As

Publication number Publication date
JP5846390B2 (en) 2016-01-20

Similar Documents

Publication Publication Date Title
US9738949B2 (en) Method for producing grain-oriented electrical steel sheet
JP5854233B2 (en) Method for producing grain-oriented electrical steel sheet
JP5737483B2 (en) Method for producing grain-oriented electrical steel sheet
KR101921401B1 (en) Method for producing grain-oriented electrical steel sheet
CN108699621B (en) Method for producing grain-oriented electromagnetic steel sheet
US20150243419A1 (en) Method for producing grain-oriented electrical steel sheet
JP6191826B2 (en) Method for producing grain-oriented electrical steel sheet with excellent magnetic properties
JP2015200002A (en) Method for producing grain oriented magnetic steel sheet
JP6260513B2 (en) Method for producing grain-oriented electrical steel sheet
JP6004183B2 (en) Method for producing grain-oriented electrical steel sheet
JP6418226B2 (en) Method for producing grain-oriented electrical steel sheet
JP6206633B2 (en) Method for producing grain-oriented electrical steel sheet
WO2020218329A1 (en) Method for producing grain-oriented electromagnetic steel sheet
JP5888525B2 (en) Method for producing grain-oriented electrical steel sheet
JP5846390B2 (en) Method for producing grain-oriented electrical steel sheet
JP6143010B2 (en) Method for producing grain-oriented electrical steel sheet with excellent iron loss characteristics
JP5854236B2 (en) Method for producing grain-oriented electrical steel sheet
JP2012112006A (en) Grain-oriented magnetic steel sheet and method for producing the same
WO2019131853A1 (en) Low-iron-loss grain-oriented electrical steel sheet and production method for same
JP7338511B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP5310510B2 (en) Method for producing grain-oriented electrical steel sheet
JP6544344B2 (en) Method of manufacturing directional magnetic steel sheet
KR20230159875A (en) Manufacturing method of grain-oriented electrical steel sheet
JP2015193921A (en) Method for manufacturing oriented electromagnetic steel sheet excellent in iron loss characteristics
KR20230159874A (en) Manufacturing method of grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151110

R150 Certificate of patent or registration of utility model

Ref document number: 5846390

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250