JP2012112006A - Grain-oriented magnetic steel sheet and method for producing the same - Google Patents

Grain-oriented magnetic steel sheet and method for producing the same Download PDF

Info

Publication number
JP2012112006A
JP2012112006A JP2010263051A JP2010263051A JP2012112006A JP 2012112006 A JP2012112006 A JP 2012112006A JP 2010263051 A JP2010263051 A JP 2010263051A JP 2010263051 A JP2010263051 A JP 2010263051A JP 2012112006 A JP2012112006 A JP 2012112006A
Authority
JP
Japan
Prior art keywords
less
annealing
steel sheet
grain
iron loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010263051A
Other languages
Japanese (ja)
Other versions
JP5754115B2 (en
Inventor
Tomoharu Ishida
智治 石田
Noriko Makiishi
規子 槇石
Takako Yamashita
孝子 山下
Takeshi Imamura
今村  猛
Mineo Muraki
峰男 村木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010263051A priority Critical patent/JP5754115B2/en
Publication of JP2012112006A publication Critical patent/JP2012112006A/en
Application granted granted Critical
Publication of JP5754115B2 publication Critical patent/JP5754115B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a grain-oriented magnetic steel sheet excellent in magnetic properties and a method for producing the same.SOLUTION: The method for producing the grain-oriented magnetic steel sheet includes hot rolling a slab having a component composition comprising, by mass, 0.002 to 0.100% C, 2.0 to 8.0% Si, 0.005 to 1.00% Mn, 0.010% or less Al, 0.005% or less N, 0.005% or less S, 0.005% or less Se, and 0.001 to 0.015% Nb, and the balance consisting of Fe and unavoidable impurities. Then, the hot-rolled steel sheet is subjected to recrystallizing annealing by applying one or two or more cold rolling with intermediate annealing. Then, after finish annealing, the resulting steel sheet is cooled at an average cooling rate of 0.3°C/min or less from the finish annealing temperature to 600°C. The amount of dissolved Nb of the grain-oriented magnetic steel sheet produced in this way will be 0.0006% or less.

Description

本発明は、変圧器の鉄心材料として好適な方向性電磁鋼板およびその製造方法に関するものである。   The present invention relates to a grain-oriented electrical steel sheet suitable as a core material of a transformer and a method for manufacturing the same.

方向性電磁鋼板については、磁気特性向上のため、インヒビターと呼ばれる析出物を使用して仕上焼鈍中にGoss方位を有する粒を二次再結晶させることが一般的な技術として使用されている。例えば、特許文献1にはAlN、MnSを使用する方法が、特許文献2にはMnS、MnSeを使用する方法が開示され 、工業的に実用化されている。これらのインヒビターを用いる方法は、安定して二次再結晶粒を発達させるために1300℃以上の高温でのスラブ加熱を必要とする。
さらには、これらのインヒビターの働きを強化するために、特許文献3にはPb、Sb、Nb、Teを利用する方法が、特許文献4にはZr、Ti、B、Nb、Ta、V、Cr、Moを利用する方法が開示されている。
With regard to grain-oriented electrical steel sheets, in order to improve magnetic properties, it is a common technique to recrystallize grains having Goss orientation during finish annealing using precipitates called inhibitors. For example, Patent Document 1 discloses a method using AlN and MnS, and Patent Document 2 discloses a method using MnS and MnSe, which are industrially put into practical use. The method using these inhibitors requires slab heating at a high temperature of 1300 ° C. or higher in order to stably develop secondary recrystallized grains.
Furthermore, in order to reinforce the action of these inhibitors, Patent Document 3 discloses a method using Pb, Sb, Nb, and Te, and Patent Document 4 discloses Zr, Ti, B, Nb, Ta, V, Cr. A method of using Mo is disclosed.

中でも、Nbに関しては、特許文献5に記載されているように、熱間圧延時に生じる鋼板の耳われを効果的に減少させる作用も有しており、磁気特性向上のみならず、製品歩留まりも向上させるため、有用な技術である。   Among them, as described in Patent Document 5, Nb has an effect of effectively reducing the earring of the steel sheet that occurs during hot rolling, and not only improves magnetic properties but also improves product yield. This is a useful technique.

特公昭40-15644号公報Japanese Patent Publication No.40-15644 特公昭51-13469号公報Japanese Patent Publication No.51-13469 特公昭38-8214号公報Japanese Patent Publication No.38-8214 特開昭52-24116号公報JP-A-52-24116 特公平6-63031号公報Japanese Patent Publication No. 6-63031

特許文献5では、耳割れ防止のために、方向性電磁鋼板にNbを添加するにあたり、添加量を磁気特性の劣化しない範囲に規制している。しかしながら、磁束密度は比較的良好な値となっているが、鉄損については満足できるレベルではなく、Nbを添加する際の課題として残っている。   In patent document 5, in order to prevent an ear crack, when adding Nb to a grain-oriented electrical steel sheet, the addition amount is regulated within a range in which the magnetic properties do not deteriorate. However, although the magnetic flux density is a relatively good value, the iron loss is not a satisfactory level and remains a problem when adding Nb.

本発明は、かかる事情に鑑み、鉄損が劣化せず、磁気特性に優れた方向性電磁鋼板およびその製造方法を提供することを目的とする。   In view of such circumstances, it is an object of the present invention to provide a grain-oriented electrical steel sheet having excellent magnetic characteristics without deterioration of iron loss and a manufacturing method thereof.

発明者らは、上記問題点を解決するため、鉄損特性の劣化の理由を中心に、鋭意研究調査を重ねた。
その結果、仕上焼鈍後、析出物(主に炭化物)が形成され、鋼中に析出物が留まっているために、鉄損(ヒステリシス損)が増大することが明らかとなった。更に、この鉄損劣化は単なるNb析出物の総量では評価できないことも新規に見出した。
In order to solve the above-mentioned problems, the inventors have conducted intensive research and investigation focusing on the reason for the deterioration of the iron loss characteristics.
As a result, it became clear that precipitates (mainly carbides) were formed after finish annealing, and the precipitates remained in the steel, so that iron loss (hysteresis loss) increased. Furthermore, it was newly found that this iron loss deterioration cannot be evaluated by the total amount of Nb precipitates.

種々の条件で作製した製品板相当の方向性電磁鋼板について、加工や熱処理を加える前後でのヒステリシス損と析出物量の間の相関について調査を行った。その結果、加工や熱処理により同じ量だけ析出Nb量が増加しても、鉄損が劣化する場合と劣化しない場合があることを確認した。
また、鋭意調査の結果、析出物径として0.1μm程度以下の微細なNbC生成量が多いほど鉄損の劣化は顕著であり、反対に粗大なNbCの生成はあまり鉄損を劣化させないことが分かった。更に、製品板に対して熱処理のみを行う場合よりも、製品板に対して曲げ加工を行った後に熱処理を行う場合の方が微細なNb析出物が顕著に増加することを見出した。これは、加工により鋼板内に導入された歪がNb析出物の核となること、すなわち、析出物生成サイトの増加による結果と考えられる。
We investigated the correlation between the hysteresis loss and the amount of precipitates before and after applying processing and heat treatment to grain-oriented electrical steel sheets corresponding to product plates produced under various conditions. As a result, it was confirmed that even if the amount of precipitated Nb increased by the same amount by processing or heat treatment, the iron loss might or might not deteriorate.
In addition, as a result of intensive investigation, it was found that the more the fine NbC produced with a precipitate diameter of about 0.1 μm or less, the more the iron loss is deteriorated, and on the contrary, the formation of coarse NbC does not deteriorate the iron loss so much. It was. Furthermore, it has been found that fine Nb precipitates are remarkably increased when the heat treatment is performed after bending the product plate than when only the heat treatment is performed on the product plate. This is considered to be a result of the strain introduced into the steel sheet by processing becoming the nucleus of the Nb precipitate, that is, the increase in the precipitate generation site.

しかしながら、出荷後の製品板に対する用途について、メーカー側で限定を加えることは難しい。特に、加工の意図なく材料に変形が加えられた場合や、誤用による鉄損劣化を防止することは困難であると考えられる。そこで、出荷前すなわち製品板の段階で鉄損劣化の問題を解決するため、筆者らは鋭意検討を行った。その結果、製品板において鋼中のNbをなるべく析出させることが有効であることを見出した。更に、製品板段階の鋼中のNb存在状態は、仕上焼鈍工程における平均冷却速度に大きく依存することを知見した。すなわち、仕上焼鈍工程の冷却を緩冷化するほど鋼中のNbは析出し易くなり、これを利用して製品板段階のNbを析出状態で存在させることで鉄損劣化を防止することが可能となる。   However, it is difficult for manufacturers to limit the use of product plates after shipment. In particular, it is considered difficult to prevent the iron loss deterioration due to misuse or when the material is deformed without intention of processing. In order to solve the problem of iron loss deterioration before shipment, that is, at the stage of the product plate, the authors conducted intensive studies. As a result, it was found that it is effective to precipitate Nb in steel as much as possible on the product plate. Furthermore, it has been found that the state of Nb in the steel at the product plate stage greatly depends on the average cooling rate in the finish annealing process. In other words, the slower the cooling in the finish annealing process, the easier it is for Nb in the steel to precipitate, and this can be used to prevent iron loss deterioration by allowing Nb in the product plate stage to exist in the precipitated state. It becomes.

本発明は、以上の知見に基づいてなされたものであり、その要旨は以下のとおりである。
[1] mass%で、C:0.002〜0.100%、Si:2.0〜8.0%、Mn:0.005〜1.00%、Al:0.010%以下、N:0.005%以下、S:0.005%以下、Se:0.005%以下で含有し、さらにNb:0.001〜0.015%を含み、残部はFeおよび不可避的不純物からなる成分組成を有するスラブに対して熱間圧延し、次いで、1回もしくは中間焼鈍を挟む2回以上の冷間圧延を施し再結晶焼鈍し、仕上焼鈍後、仕上焼鈍温度から600℃まで0.3℃/分以下の平均冷却速度で冷却することを特徴とする方向性電磁鋼板の製造方法。
[2]前記[1]において、さらに、成分組成として、mass%で、Ni:0.01〜1.50%、Cr:0.01〜0.50%、Cu:0.01〜0.50%、P:0.005〜0.50%、Sb:0.005〜0.50%、Sn:0.005〜0.50%、Bi:0.005〜0.50%,Mo:0.005〜0.10%、B:0.0002〜0.0025%、V:0.001〜0.010%、Ta:0.001〜0.010%のうち、いずれか一種または二種以上を含有することを特徴とする方向性電磁鋼板の製造方法。
[3]mass%で、C:0.005%未満、Si:2.0〜8.0%、Mn:0.005〜1.00%、Nb:0.001〜0.015%を含有し、かつAl:0.010%以下、N:0.005%以下、S:0.005%以下、Se:0.005%以下で、残部Feおよび不可避的不純物からなり、さらに、固溶Nb量が0.0006%以下であることを特徴とする方向性電磁鋼板。
This invention is made | formed based on the above knowledge, The summary is as follows.
[1] In mass%, C: 0.002 to 0.100%, Si: 2.0 to 8.0%, Mn: 0.005 to 1.00%, Al: 0.010% or less, N: 0.005% or less, S: 0.005% or less, Se: 0.005% In addition, Nb: 0.001 to 0.015% is included, the remainder is hot-rolled to a slab having a component composition composed of Fe and inevitable impurities, and then one or more times sandwiching intermediate annealing A method for producing a grain-oriented electrical steel sheet, characterized by performing cold rolling, recrystallization annealing, finish annealing, and then cooling from the finish annealing temperature to 600 ° C. at an average cooling rate of 0.3 ° C./min or less.
[2] In the above [1], the component composition is mass%, Ni: 0.01 to 1.50%, Cr: 0.01 to 0.50%, Cu: 0.01 to 0.50%, P: 0.005 to 0.50%, Sb: 0.005 -0.50%, Sn: 0.005-0.50%, Bi: 0.005-0.50%, Mo: 0.005-0.10%, B: 0.0002-0.0025%, V: 0.001-0.010%, Ta: 0.001-0.010% The manufacturing method of the grain-oriented electrical steel sheet characterized by containing 1 type, or 2 or more types.
[3] In mass%, C: less than 0.005%, Si: 2.0 to 8.0%, Mn: 0.005 to 1.00%, Nb: 0.001 to 0.015%, Al: 0.010% or less, N: 0.005% or less, A grain-oriented electrical steel sheet comprising S: 0.005% or less, Se: 0.005% or less, the balance being Fe and inevitable impurities, and a solid solution Nb content of 0.0006% or less.

なお、本明細書において、鋼の成分を示す%は、すべてmass%である。   In addition, in this specification, all% which shows the component of steel is mass%.

本発明によれば、耳割れ低減の為に添加したNbについて、製品板段階での存在状態を制御することにより、鉄損劣化を防止することが可能となる。これによりNb添加効果を最大限に活用することができ、品質安定化などの有用性がもたらされる。   According to the present invention, it is possible to prevent iron loss deterioration by controlling the existence state of Nb added for reducing the cracking at the product plate stage. As a result, the effect of Nb addition can be utilized to the maximum, and usefulness such as quality stabilization is brought about.

仕上焼鈍工程の平均冷却速度と、製品板中の固溶Nb量との関係を示す図である。It is a figure which shows the relationship between the average cooling rate of a finish annealing process, and the amount of solid solution Nb in a product board. 製品板中の固溶Nb量と、巻きコア試験による鉄損の劣化量との関係を示す図である。It is a figure which shows the relationship between the amount of solid solution Nb in a product board, and the deterioration amount of the iron loss by a winding core test.

以下に、本発明の詳細を説明する。
本発明の成分組成の限定理由について説明する。
C:0.002〜0.100%
Cは0.100%を超えると、再結晶焼鈍(脱炭焼鈍)後に磁気時効の起こらない範囲である0.005%未満に低減することが困難になる。一方、0.002%に満たないとNb炭化物のインヒビター効果が発揮されず、磁気特性劣化を引き起こす。よって、Cは0.002%以上0.100%以下とする。
Details of the present invention will be described below.
The reason for limiting the component composition of the present invention will be described.
C: 0.002 to 0.100%
When C exceeds 0.100%, it becomes difficult to reduce it to less than 0.005%, which is a range in which magnetic aging does not occur after recrystallization annealing (decarburization annealing). On the other hand, if it is less than 0.002%, the inhibitor effect of Nb carbide is not exhibited, and magnetic characteristics are deteriorated. Therefore, C is 0.002% or more and 0.100% or less.

Si:2.0〜8.0%
Siは鋼の比抵抗を高め、鉄損を改善させるために必要な元素である。2.0%未満だと十分な効果が得られない。一方、8.0%を超えると鋼の加工性が劣化し、圧延が困難となる。よって、Siは2.0%以上8.0%以下とする。
Si: 2.0-8.0%
Si is an element necessary for increasing the specific resistance of steel and improving iron loss. If it is less than 2.0%, sufficient effect cannot be obtained. On the other hand, if it exceeds 8.0%, the workability of steel deteriorates and rolling becomes difficult. Therefore, Si is made 2.0% or more and 8.0% or less.

Mn:0.005〜1.00%
Mnは熱間加工性を良好にするために必要な元素である。0.005%未満だと十分な効果が得られない。一方、1.00%を超えると製品板の磁束密度が低下する。よって、0.005%以上1.00%以下とする。
Mn: 0.005-1.00%
Mn is an element necessary for improving the hot workability. If it is less than 0.005%, a sufficient effect cannot be obtained. On the other hand, if it exceeds 1.00%, the magnetic flux density of the product plate decreases. Therefore, it shall be 0.005% or more and 1.00% or less.

Nb:0.001〜0.015%
Nbは本発明の根幹を成す元素であり、本発明では、Nbの炭化物をインヒビターとして用いるところに特徴がある。そのため、Nbを0.001%以上0.015%以下の範囲で添加させることが必須である。Nbが多いとヒステリシス損は増加する傾向が認められるため、好ましくは、0.001%以上0.005%以下である。
Nb: 0.001 to 0.015%
Nb is an element that forms the basis of the present invention, and the present invention is characterized in that Nb carbide is used as an inhibitor. Therefore, it is essential to add Nb in the range of 0.001% to 0.015%. Since hysteresis loss tends to increase when Nb is large, it is preferably 0.001% or more and 0.005% or less.

Al: 0.010%以下、N:0.005%以下、S:0.005%以下、Se:0.005%以下
Alは0.010%以下、N:0.005%以下、S:0.005%以下、Se:0.005%以下に低減することが、鋼板を良好に二次再結晶させる上で必須である。Al、N、S、Seは極力低減することが磁気特性の観点からは望ましいが、低減するためにコスト高となる場合がある。これらを考慮した場合、Al:0.010%以下、N:0.005%以下、S:0.005%以下、Se:0.005%以下であれば鋼中に残存させても問題はない。よって、Al:0.010%以下、N:0.005%以下、S:0.005%以下、Se:0.005%以下とする。AlとSeは仕上焼鈍時に鋼中から純化することが困難な元素であることから、Alは0.008%以下、Seは0.002%以下とすることが好ましい。また、N、Sの軽元素は鋼スラブ作成前の成分調整時に完全に除去する事は困難であり、特殊な処理を行わない場合は、0.002%ほど鋼中に残存しているのが一般的である。
Al: 0.010% or less, N: 0.005% or less, S: 0.005% or less, Se: 0.005% or less
Reduction of Al to 0.010% or less, N: 0.005% or less, S: 0.005% or less, and Se: 0.005% or less is essential in order to satisfactorily recrystallize the steel sheet. Al, N, S, and Se are desirably reduced as much as possible from the viewpoint of magnetic properties, but the cost may increase due to the reduction. Considering these, if Al: 0.010% or less, N: 0.005% or less, S: 0.005% or less, Se: 0.005% or less, there is no problem even if it is left in the steel. Therefore, Al: 0.010% or less, N: 0.005% or less, S: 0.005% or less, Se: 0.005% or less. Since Al and Se are elements that are difficult to purify from the steel during finish annealing, Al is preferably 0.008% or less and Se is preferably 0.002% or less. In addition, it is difficult to completely remove N and S light elements at the time of adjusting the components before making the steel slab, and generally 0.002% remains in the steel unless special treatment is performed. It is.

残部はFeおよび不可避的不純物である。   The balance is Fe and inevitable impurities.

なお、本発明ではその他にも以下に述べる元素を目的に応じ適宜含有させることができる。
Ni:0.01〜1.50%、Cr:0.01〜0.50%、Cu:0.01〜0.50%、P:0.005〜0.50%、Sb:0.005〜0.50%、Sn:0.005〜0.50%、Bi:0.005〜0.50%,Mo:0.005〜0.10%、B:0.0002〜0.0025%、V:0.001〜0.010%、Ta:0.001〜0.010%のうち、いずれか一種または二種以上を含有する。
鉄損を低減させる目的で、Cr:0.01〜0.50%、Cu:0.01〜0.50%, P:0.005〜0.50%のうちいずれか一種または二種以上を添加できる。また磁束密度を向上させる目的で、Ni:0.01〜1.50%、Sb:0.005〜0.50%、Sn:0.005〜0.50%、Bi:0.005〜0.50%、Mo:0.005〜0.10%、B:0.0002〜0.0025%、V:0.001〜0.010%、Ta:0.001〜0.010%のうち、いずれか一種または二種以上を添加できる。それぞれの元素の添加量が下限量より少ない場合には磁気特性向上効果がなく、上限量を超えると二次再結晶粒の発達が抑制され磁気特性が劣化する。
In the present invention, other elements described below can be appropriately contained depending on the purpose.
Ni: 0.01-1.50%, Cr: 0.01-0.50%, Cu: 0.01-0.50%, P: 0.005-0.50%, Sb: 0.005-0.50%, Sn: 0.005-0.50%, Bi: 0.005-0.50%, Mo : 0.005 to 0.10%, B: 0.0002 to 0.0025%, V: 0.001 to 0.010%, Ta: 0.001 to 0.010%, either one or more.
For the purpose of reducing iron loss, one or more of Cr: 0.01 to 0.50%, Cu: 0.01 to 0.50%, and P: 0.005 to 0.50% can be added. In order to improve the magnetic flux density, Ni: 0.01-1.50%, Sb: 0.005-0.50%, Sn: 0.005-0.50%, Bi: 0.005-0.50%, Mo: 0.005-0.10%, B: 0.0002-0.0025% , V: 0.001 to 0.010%, Ta: 0.001 to 0.010%, any one kind or two or more kinds can be added. When the addition amount of each element is less than the lower limit amount, there is no effect of improving the magnetic properties, and when the upper limit amount is exceeded, the development of secondary recrystallized grains is suppressed and the magnetic properties are deteriorated.

次に本発明の方向性電磁鋼板の製造方法について、説明する。
上記成分組成を有するスラブに対して熱間圧延し、次いで、1回もしくは中間焼鈍を挟む2回以上の冷間圧延を施し再結晶焼鈍する。次いで、仕上焼鈍を行い、引き続き、仕上焼鈍温度から600℃まで0.3℃/分以下の平均冷却速度で冷却する。必要に応じて、熱間圧延後に熱延板焼鈍を施すこともできる。ここで、平均冷却速度とは、最終焼鈍の保持温度から600℃前後の低温までの単位時間あたりの冷却速度である。例えば最終焼鈍を1100℃で行い、600℃までの冷却を1時間で行った場合の平均冷却速度は、(1100℃-600℃)/60分=8.3℃/分である。途中で冷却速度を変化させた場合には、1100℃から600℃まで冷却させるトータルの所要時間で除したものを平均冷却速度とする。
Next, the manufacturing method of the grain-oriented electrical steel sheet of this invention is demonstrated.
The slab having the above component composition is hot-rolled, and then subjected to recrystallization annealing by performing cold rolling twice or more with intermediate or intermediate annealing. Next, finish annealing is performed, and subsequently, cooling from the finish annealing temperature to 600 ° C. is performed at an average cooling rate of 0.3 ° C./min or less. If necessary, hot-rolled sheet annealing can be performed after hot rolling. Here, the average cooling rate is a cooling rate per unit time from the holding temperature of the final annealing to a low temperature of around 600 ° C. For example, when the final annealing is performed at 1100 ° C. and the cooling to 600 ° C. is performed in 1 hour, the average cooling rate is (1100 ° C.-600 ° C.) / 60 minutes = 8.3 ° C./minute. When the cooling rate is changed in the middle, the average cooling rate is divided by the total time required for cooling from 1100 ° C to 600 ° C.

上記成分を有する溶鋼は通常の造塊法、連続鋳造法でスラブを製造してもよいし、100mm以下の厚さの薄鋳片を直接鋳造法で製造してもよい。スラブは通常の方法で加熱して熱間圧延するが、鋳造後加熱せずに直ちに熱延してもよい。薄鋳片の場合には熱間圧延してもよいし、熱間圧延を省略してそのまま以後の工程に進んでもよい。熱間圧延前のスラブ加熱温度は、Al、N、S、Seを低減した成分系であることから、高温焼鈍を必要としない。1250℃以下の低温とすることがコストの面で望ましい。   The molten steel having the above components may be produced by a normal ingot-making method or a continuous casting method, or a thin cast piece having a thickness of 100 mm or less may be produced by a direct casting method. The slab is heated and hot-rolled by a normal method, but may be hot-rolled immediately without being heated after casting. In the case of a thin slab, hot rolling may be performed, or the hot rolling may be omitted and the process may proceed as it is. Since the slab heating temperature before hot rolling is a component system in which Al, N, S, and Se are reduced, high temperature annealing is not required. A low temperature of 1250 ° C. or lower is desirable in terms of cost.

次いで、必要に応じて熱延板焼鈍を施す。良好な磁性を得るためには、熱延板焼鈍温度は800℃以上1150℃以下が好適である。熱延板焼鈍温度が800℃未満であると熱延でのバンド組織が残留し、整粒の一次再結晶組織を実現することが困難になり二次再結晶の発達が阻害される場合がある。熱延板焼鈍温度が1150℃を超えると、熱延板焼鈍後の粒径が粗大化し、整粒の一次再結晶組織を実現する上で不利となる場合がある。   Next, hot-rolled sheet annealing is performed as necessary. In order to obtain good magnetism, the hot-rolled sheet annealing temperature is preferably 800 ° C or higher and 1150 ° C or lower. If the annealing temperature of the hot-rolled sheet is lower than 800 ° C, the band structure in the hot-rolling remains, making it difficult to achieve the primary recrystallized structure of sized particles, which may hinder the development of secondary recrystallization. . When the hot-rolled sheet annealing temperature exceeds 1150 ° C., the grain size after the hot-rolled sheet annealing becomes coarse, which may be disadvantageous for realizing a primary recrystallized structure of sized particles.

熱延板焼鈍後、必要に応じて中間焼鈍を挟む1回以上の冷延を施した後、脱炭を兼ねた再結晶焼鈍を行う。このとき、冷間圧延を100℃〜300℃の温度に上昇させて行うこと、および冷間圧延途中で100〜300℃の範囲での時効処理を1回または複数回行うことが、再結晶集合組織を変化させて磁気特性を向上させるためには有効である。再結晶焼鈍では脱炭が必要となる事から、雰囲気を湿潤雰囲気とすることが望ましい。再結晶焼鈍後は、浸珪法によってSi量を増加させる技術を併用してもよい。   After hot-rolled sheet annealing, after performing one or more cold rolling sandwiching the intermediate annealing as necessary, recrystallization annealing that also serves as decarburization is performed. At this time, cold rolling is performed at a temperature of 100 ° C. to 300 ° C., and aging treatment in the range of 100 to 300 ° C. is performed once or a plurality of times during cold rolling. This is effective for improving the magnetic properties by changing the tissue. Since recrystallization annealing requires decarburization, the atmosphere is preferably a wet atmosphere. After recrystallization annealing, a technique for increasing the amount of Si by a silicon immersion method may be used in combination.

次いで、仕上焼鈍を行い、引き続き行われる冷却では、平均冷却速度を0.3℃/分以下とする。
鉄損を重視してフォルステライト被膜を形成させる場合にはMgOを主体とする焼鈍分離剤を適用した後に仕上焼鈍を施すことにより二次再結晶組織を発達させると共にフォルステライト被膜を形成させることが可能である。
打ち抜き加工性を重視してフォルステライト被膜を必要としない場合には、焼鈍分離剤を適用しないか、適用する場合でもフォルステライト被膜を形成するMgOは使用せずにシリカやアルミナ等を用いる。
これら焼鈍分離剤を塗布する際は水分を持ち込まない静電塗布を行うことが有効である。また、耐熱無機材料シート(シリカ、アルミナ、マイカ)を用いてもよい。
仕上焼鈍は二次再結晶発現のために800℃以上で行うことが望ましい。また、二次再結晶を完了させるために800℃以上の温度で20時間以上保持させることが望ましい。打ち抜き性を重視してフォルステライト被膜を形成させない場合には二次再結晶が完了すればよいので保持温度は850〜950℃が望ましく、保持までで仕上焼鈍を終了することも可能である。鉄損を重視するためやトランスの騒音を低下させるためにフォルステライト被膜を形成させる場合には、1200℃程度まで昇温させることが望ましい。
上記仕上焼鈍後、仕上焼鈍温度から600℃まで0.3℃/分以下の平均冷却速度で冷却する。
本発明において、Nbの添加は、製造工程の途中段階での耳割れ低減に必須であるが、製品板となった後は鉄損劣化の主因ともなり得るため、鋼中のNbの存在形態ならびに製造方法には注意を要する。一般に、製品板を出荷後に加工・熱処理することによって鋼中に析出物が生成すると鉄損が劣化することが知られている。多くの析出物形成元素は、仕上焼鈍工程において鋼板から除去されるために問題ならないが、調査の結果、Nbは純化が難しい元素であることが分かった。
Next, finish annealing is performed, and in the subsequent cooling, the average cooling rate is set to 0.3 ° C./min or less.
When forming a forsterite film with emphasis on iron loss, it is possible to develop a secondary recrystallized structure and form a forsterite film by applying a final annealing after applying an annealing separator mainly composed of MgO. Is possible.
If the forsterite film is not required with emphasis on the punching processability, no annealing separator is applied, or even if it is applied, MgO that forms the forsterite film is not used, but silica, alumina, or the like is used.
When applying these annealing separators, it is effective to perform electrostatic application without bringing in moisture. Further, a heat resistant inorganic material sheet (silica, alumina, mica) may be used.
The finish annealing is preferably performed at 800 ° C. or higher for secondary recrystallization. In order to complete the secondary recrystallization, it is desirable to hold at a temperature of 800 ° C. or higher for 20 hours or longer. When the forsterite film is not formed with emphasis on punchability, the secondary recrystallization should be completed. Therefore, the holding temperature is desirably 850 to 950 ° C., and the finish annealing can be completed until the holding. When a forsterite film is formed in order to emphasize iron loss or to reduce the noise of the transformer, it is desirable to raise the temperature to about 1200 ° C.
After the finish annealing, cooling is performed at an average cooling rate of 0.3 ° C./min or less from the finish annealing temperature to 600 ° C.
In the present invention, the addition of Nb is essential for reducing the ear cracks in the middle of the manufacturing process, but after becoming a product plate, it can also be a major cause of iron loss deterioration, so the presence form of Nb in steel and Care must be taken in the manufacturing method. Generally, it is known that iron loss deteriorates when precipitates are formed in steel by processing and heat-treating a product plate after shipment. Many precipitate forming elements are not a problem because they are removed from the steel sheet in the final annealing process, but as a result of investigation, it was found that Nb is an element that is difficult to purify.

そこで、筆者らは、鋼中にNbを残存させたままで、鉄損を劣化させないための条件を検討した。その結果、仕上焼鈍工程の冷却条件が特性変化(鉄損の劣化)に対して大きく影響することを見出した。具体的には、仕上焼鈍後の冷却を緩冷化することで製品板段階での鋼中の固溶Nbを少なくすることが重要であるとの結論に達した。仕上焼鈍工程の緩冷化による固溶Nb量の減少が、製品板に出荷後加工・熱処理を行った場合に生成する析出物量を低減させ、特性劣化を抑制しているものと考えられる。特性向上に特に有効な添加Nb量は0.001〜0.005%であり、この添加量範囲において、仕上焼鈍後の平均冷却速度と固溶Nb量、および鉄損劣化の相関を調査したところ、仕上焼鈍温度から600℃までの平均冷却速度が0.3℃/分以下の緩冷条件では鉄損の劣化が認められないことが明らかとなった。以上より、鈍化焼鈍後の600℃までの冷却は0.3℃/分以下の平均冷却速度で行うこととする。   Therefore, the authors examined conditions for preventing iron loss from deteriorating with Nb remaining in the steel. As a result, it has been found that the cooling conditions in the finish annealing process greatly influence the characteristic change (deterioration of iron loss). Specifically, it was concluded that it is important to reduce the solute Nb in the steel at the product plate stage by slowing down the cooling after finish annealing. It is considered that the decrease in the amount of dissolved Nb due to the slow cooling in the finish annealing process reduces the amount of precipitates produced when the product plate is processed and heat-treated after shipment, and suppresses the deterioration of characteristics. The amount of added Nb that is particularly effective for improving properties is 0.001 to 0.005%. In this range, the correlation between the average cooling rate after finish annealing, the amount of solute Nb, and iron loss deterioration was investigated. It was revealed that no deterioration of iron loss was observed under the slow cooling condition where the average cooling rate from 1 to 600 ° C was 0.3 ° C / min or less. From the above, cooling to 600 ° C. after the annealing is performed at an average cooling rate of 0.3 ° C./min or less.

仕上焼鈍後は、付着した焼鈍分離剤を除去するため、水洗やブラッシング、酸洗を行うことが有用である。その後、平坦化焼鈍を行い形状を矯正することが鉄損低減のために有効である。   After finish annealing, it is useful to perform water washing, brushing, and pickling in order to remove the attached annealing separator. After that, it is effective to reduce the iron loss by performing flattening annealing to correct the shape.

鋼板を積層して使用する場合には、鉄損を改善するために、平坦化焼鈍前もしくは後に、鋼板表面に絶縁コーティングを施すことが有効である。鉄損低減のために鋼板に張力を付与できるコーティングが望ましい。バインダーを介した張力コーティング塗布方法や物理蒸着法や化学蒸着法により無機物を鋼板表層に蒸着させコーティングとする方法を採用すると、コーティング密着性に優れ、かつ著しい鉄損低減効果があるため望ましい。   In the case where the steel plates are laminated and used, in order to improve iron loss, it is effective to apply an insulating coating to the steel plate surface before or after the flattening annealing. A coating capable of imparting tension to the steel sheet to reduce iron loss is desirable. Adopting a coating method by depositing an inorganic substance on the steel sheet surface layer by a tension coating application method through a binder, a physical vapor deposition method or a chemical vapor deposition method is desirable because of excellent coating adhesion and a remarkable iron loss reduction effect.

鉄損低減のために、磁区細分化処理を行うことが望ましい。処理方法としては一般的に実施されているような、最終製品板に溝をいれたりレーザーやプラズマにより線状に熱歪や衝撃歪を導入したりする方法や、最終仕上板厚に達した冷間圧延板などの中間製品にあらかじめ溝をいれたりする方法でよい。   In order to reduce iron loss, it is desirable to perform magnetic domain fragmentation. As a processing method, a method is generally used, such as grooving the final product plate or introducing thermal strain or impact strain linearly by laser or plasma, or cooling to the final finished plate thickness. A method may be used in which a groove is formed in advance in an intermediate product such as a rolled sheet.

以上により、本発明の方向性電磁鋼板(製品板)が得られる。本発明の方向性電磁鋼板は、C:0.005%未満、Si:2.0〜8.0%、Mn:0.005〜1.00%、Nb:0.001〜0.015%を含有し、かつAl:0.010%以下、N:0.005%以下、S:0.005%以下、Se:0.005%以下で、残部Feおよび不可避的不純物からなる。そして、上述したように、仕上焼鈍工程の緩冷化により固溶Nb量の減少を図っているため、製品板における固溶Nb量は0.0006%以下となる。   Thus, the grain-oriented electrical steel sheet (product board) of the present invention is obtained. The grain-oriented electrical steel sheet of the present invention contains C: less than 0.005%, Si: 2.0 to 8.0%, Mn: 0.005 to 1.00%, Nb: 0.001 to 0.015%, and Al: 0.010% or less, N: 0.005% Hereinafter, S: 0.005% or less, Se: 0.005% or less, and remaining Fe and unavoidable impurities. As described above, since the amount of solid solution Nb is reduced by slow cooling in the finish annealing step, the amount of solid solution Nb in the product plate is 0.0006% or less.

mass%で、C:0.035%、Si:3.1%、Mn:0.21%、S:0.002%、Al:0.005%、N:0.002%、Nb:0.002%、Se:0.001%以下(検出限界以下を示す)を含み、残部はFeおよび不可避的不純物からなる鋼スラブを連続鋳造にて製造し、1230℃でスラブ加熱した後、熱間圧延により2.6mmの厚さとした。その後、1050℃で90秒保持する熱延板焼鈍を施した後、冷間圧延により0.23mmの板厚とした。次いで、均熱条件が840℃で80秒、50%N2-50%H2湿潤雰囲気での再結晶焼鈍を施した。次いで、MgOを主体とする焼鈍分離剤を塗布した後、1200℃で10時間保持する仕上焼鈍、冷却を行った。ここで、仕上焼鈍後の鋼中固溶Nb量を変化させる目的から、仕上焼鈍後の冷却は、平均冷却速度を10℃/分から0.1℃/分の範囲で変化させた。その後、リン酸マグネシウムとほう酸を主体とした張力付与コーティング形成を兼ねた平坦化焼鈍を850℃で40秒の条件で施した。得られた製品板相当のサンプルをエプスタインサイズとし、JIS C2550に記載の方法で磁気測定を行った。 In mass%, C: 0.035%, Si: 3.1%, Mn: 0.21%, S: 0.002%, Al: 0.005%, N: 0.002%, Nb: 0.002%, Se: 0.001% or less (showing the detection limit or less) ), And the balance was manufactured by continuous casting of a steel slab composed of Fe and inevitable impurities, heated at 1230 ° C., and then hot rolled to a thickness of 2.6 mm. Thereafter, hot-rolled sheet annealing was performed at 1050 ° C. for 90 seconds, and then the sheet thickness was 0.23 mm by cold rolling. Subsequently, recrystallization annealing was performed in a soaking condition of 840 ° C. for 80 seconds and 50% N 2 -50% H 2 in a humid atmosphere. Next, after applying an annealing separator mainly composed of MgO, finish annealing and cooling were performed at 1200 ° C. for 10 hours. Here, for the purpose of changing the amount of solute Nb in steel after finish annealing, the cooling after finish annealing was performed by changing the average cooling rate in the range of 10 ° C./min to 0.1 ° C./min. Thereafter, flattening annealing was performed at 850 ° C. for 40 seconds under the condition of forming a tension-imparting coating mainly composed of magnesium phosphate and boric acid. The obtained sample corresponding to the product plate was set to Epstein size, and magnetic measurement was performed by the method described in JIS C2550.

次いで、客先における加工・熱処理を想定した模擬試験として、巻きコア試験を行なった。具体的には、磁気測定を行ったエプスタインサンプルに、直径φ=40mmの丸棒を中心として板の両端が同じ方向となる様に180°の角度で曲げる曲げ加工を表裏両面に対して実施した。その後、サンプルを平坦化に矯正してから、Ar雰囲気下、800℃、3hrの歪取り焼鈍を行なった。再度、上記と同様の方法にて磁気測定を行ない、製品板相当のサンプルとの磁気測定結果を比較することで曲げ加工による鉄損の劣化量(ΔW17/50)を評価した。   Next, a wound core test was performed as a simulation test assuming processing and heat treatment at the customer site. Specifically, the Epstein sample subjected to magnetic measurement was subjected to bending processing on both the front and back surfaces by bending the plate at an angle of 180 ° so that both ends of the plate were in the same direction around a round bar with a diameter of φ = 40 mm. . Thereafter, the sample was corrected to flattening, and then subjected to strain relief annealing at 800 ° C. for 3 hours in an Ar atmosphere. The magnetic measurement was performed again by the same method as described above, and the amount of iron loss deterioration (ΔW17 / 50) due to bending was evaluated by comparing the magnetic measurement results with a sample corresponding to the product plate.

図1に、仕上焼鈍後の平均冷却速度と、鋼中の固溶Nb量との関係を示す。なお、この時のNb以外の組成は、C:0.001〜0.002%、Si: 3.1%、Mn:0.21%、Al:0.001%以下(検出限界以下を示す)、N:0.0005%以下(検出限界以下を示す)、S:0.0005%以下(検出限界以下を示す)、Se:0.001%以下(検出限界以下を示す)であった。図1より、平均冷却速度を遅くするほど鋼中のNb析出物形成が促進され、製品板段階での固溶Nb量が減少していることが分かる。また、仕上焼鈍後の平均冷却速度と鉄損劣化量の関係について、表1に一例を示す。平均冷却速度が早い場合に鉄損の劣化量(ΔW17/50)の値が大きくなっていることが分かる。   FIG. 1 shows the relationship between the average cooling rate after finish annealing and the amount of solute Nb in steel. The composition other than Nb at this time is as follows: C: 0.001 to 0.002%, Si: 3.1%, Mn: 0.21%, Al: 0.001% or less (showing the detection limit or less), N: 0.0005% or less (below the detection limit) S: 0.0005% or less (showing the detection limit or less), Se: 0.001% or less (showing the detection limit or less). As can be seen from FIG. 1, the lower the average cooling rate, the more the Nb precipitate formation in the steel is promoted, and the solute Nb content at the product plate stage decreases. Table 1 shows an example of the relationship between the average cooling rate after finish annealing and the amount of iron loss deterioration. It can be seen that when the average cooling rate is fast, the value of the deterioration amount of iron loss (ΔW17 / 50) increases.

次いで、図2に、製品板における鋼中の固溶Nb量と、巻きコア試験による鉄損の劣化量(ΔW17/50)との関係を示す。図2から、製品板での固溶Nb量が少ないほど巻きコア試験による鉄損の劣化量が小さいことが分かる。これは、製品板段階で鋼中に残存する固溶Nb量が多いほど、巻きコア試験の段階で新たに生成する析出Nb量が多くなり、析出物が直接的あるいは加工により導入された歪との相互作用により鉄損を劣化させるものと推定される。0.05W/kg程度の鉄損劣化はNbを添加しない場合でも認められることから、図2より鋼中の固溶Nb量を0.0006%程度以下とすることで実質的にNb添加による鉄損の劣化はほとんどないものと判断される。更に、図1より、固溶Nb量を0.0006%程度以下とするための条件として、仕上焼鈍後の平均冷却速度を0.3℃/分程度以下とすれば良いことが分かる。   Next, FIG. 2 shows the relationship between the amount of solute Nb in steel in the product plate and the amount of iron loss deterioration (ΔW17 / 50) in the wound core test. From FIG. 2, it can be seen that the smaller the amount of dissolved Nb in the product plate, the smaller the amount of iron loss deterioration in the wound core test. This is because the greater the amount of dissolved Nb remaining in the steel at the product plate stage, the greater the amount of precipitated Nb that is newly generated at the winding core test stage. It is presumed that the iron loss is degraded by the interaction. Since iron loss deterioration of about 0.05 W / kg can be observed even when Nb is not added, the iron loss deterioration due to Nb addition is substantially reduced by reducing the solid solution Nb content in the steel to about 0.0006% or less from FIG. It is judged that there is almost no. Further, FIG. 1 shows that the average cooling rate after finish annealing should be about 0.3 ° C./min or less as a condition for reducing the solid solution Nb amount to about 0.0006% or less.

表2に記載の成分組成を含み、残部はFeおよび不可避的不純物からなる鋼スラブを連続鋳造にて製造し、1250℃でスラブ加熱した後、熱間圧延により2.8mmの厚さとした。次いで、1000℃で50秒保持する熱延板焼鈍を施した後、冷間圧延により0.30mmの板厚とした。次いで、均熱条件が840℃で80秒、50%N2-50%H2湿潤雰囲気での再結晶焼鈍を施した。次いで、MgOを主体とする焼鈍分離剤を塗布した後、1200℃で10時間保持する仕上焼鈍を行い、冷却した。なお、仕上焼鈍後の平均冷却速度を表2に示す。次いで、リン酸マグネシウムとほう酸を主体とした張力付与コーティング形成を兼ねた平坦化焼鈍を850℃で40秒の条件で施した。得られた製品板相当のサンプルをエプスタインサイズとし、JIS C2550に記載の方法で磁気測定を行った。また、サンプルから固溶Nb量を測定した。結果を表2に併記する。 A steel slab comprising the composition shown in Table 2 and the balance being Fe and inevitable impurities was manufactured by continuous casting, heated at 1250 ° C., and then hot rolled to a thickness of 2.8 mm. Subsequently, after hot-rolled sheet annealing was performed at 1000 ° C. for 50 seconds, the sheet thickness was 0.30 mm by cold rolling. Subsequently, recrystallization annealing was performed in a soaking condition of 840 ° C. for 80 seconds and 50% N 2 -50% H 2 in a humid atmosphere. Next, after applying an annealing separator mainly composed of MgO, finish annealing was performed by holding at 1200 ° C. for 10 hours, followed by cooling. The average cooling rate after finish annealing is shown in Table 2. Next, planarization annealing was performed at 850 ° C. for 40 seconds under the condition of forming a tension-imparting coating mainly composed of magnesium phosphate and boric acid. The obtained sample corresponding to the product plate was set to Epstein size, and magnetic measurement was performed by the method described in JIS C2550. Further, the amount of solid solution Nb was measured from the sample. The results are also shown in Table 2.

次いで、客先における加工・熱処理を想定した模擬試験として、巻きコア試験を行なった。具体的には、磁気測定を行ったエプスタインサンプルに、直径φ=40mmの丸棒で180°の角度に曲げる曲げ加工を表裏両面に対して実施した。その後、サンプルを平坦化に矯正してから、Ar雰囲気下、800℃×3hrの歪取り焼鈍を行った。再度、JIS C2550に記載の方法で磁気測定を行った。得られた鉄損と巻きコア試験前の鉄損との差(ΔW17/50)を曲げ加工による鉄損の劣化量として、表2に併記する。   Next, a wound core test was performed as a simulation test assuming processing and heat treatment at the customer site. Specifically, the Epstein sample subjected to the magnetic measurement was subjected to bending on both the front and back surfaces by bending it at a 180 ° angle with a round bar having a diameter φ = 40 mm. Thereafter, the sample was corrected to flattening and then subjected to strain relief annealing at 800 ° C. for 3 hours in an Ar atmosphere. The magnetic measurement was again performed by the method described in JIS C2550. The difference (ΔW17 / 50) between the obtained iron loss and the iron loss before the wound core test is shown in Table 2 as the amount of iron loss deterioration caused by bending.

表2から明らかなように、本発明例では、鉄損の劣化量(ΔW17/50)の値が小さく鉄損劣化が防止されているのが分かる。   As is apparent from Table 2, in the present invention example, it is understood that the amount of iron loss deterioration (ΔW17 / 50) is small and iron loss deterioration is prevented.

Claims (3)

mass%で、C:0.002〜0.100%、Si:2.0〜8.0%、Mn:0.005〜1.00%、Al:0.010%以下、N:0.005%以下、S:0.005%以下、Se:0.005%以下で含有し、さらにNb:0.001〜0.015%を含み、残部はFeおよび不可避的不純物からなる成分組成を有するスラブに対して熱間圧延し、次いで、1回もしくは中間焼鈍を挟む2回以上の冷間圧延を施し再結晶焼鈍し、仕上焼鈍後、仕上焼鈍温度から600℃まで0.3℃/分以下の平均冷却速度で冷却することを特徴とする方向性電磁鋼板の製造方法。   In mass%, C: 0.002 to 0.100%, Si: 2.0 to 8.0%, Mn: 0.005 to 1.00%, Al: 0.010% or less, N: 0.005% or less, S: 0.005% or less, Se: 0.005% or less Further, Nb: 0.001 to 0.015% is included, and the balance is hot-rolled to a slab having a composition composed of Fe and inevitable impurities, and then cold-rolled twice or more with one or intermediate annealing in between. A method for producing a grain-oriented electrical steel sheet characterized by subjecting to recrystallization annealing, and after finishing annealing, cooling from the finishing annealing temperature to 600 ° C. at an average cooling rate of 0.3 ° C./min or less. さらに、成分組成として、mass%で、Ni:0.01〜1.50%、Cr:0.01〜0.50%、Cu:0.01〜0.50%、P:0.005〜0.50%、Sb:0.005〜0.50%、Sn:0.005〜0.50%、Bi:0.005〜0.50%,Mo:0.005〜0.10%、B:0.0002〜0.0025%、V:0.001〜0.010%、Ta:0.001〜0.010%のうち、いずれか一種または二種以上を含有することを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。   Furthermore, as a component composition, in mass%, Ni: 0.01 to 1.50%, Cr: 0.01 to 0.50%, Cu: 0.01 to 0.50%, P: 0.005 to 0.50%, Sb: 0.005 to 0.50%, Sn: 0.005 to 0.50 %, Bi: 0.005-0.50%, Mo: 0.005-0.10%, B: 0.0002-0.0025%, V: 0.001-0.010%, Ta: 0.001-0.010% The method for producing a grain-oriented electrical steel sheet according to claim 1. mass%で、C:0.005%未満、Si:2.0〜8.0%、Mn:0.005〜1.00%、Nb:0.001〜0.015%を含有し、かつAl:0.010%以下、N:0.005%以下、S:0.005%以下、Se:0.005%以下で、残部Feおよび不可避的不純物からなり、さらに、固溶Nb量が0.0006%以下であることを特徴とする方向性電磁鋼板。   In mass%, C: less than 0.005%, Si: 2.0 to 8.0%, Mn: 0.005 to 1.00%, Nb: 0.001 to 0.015%, Al: 0.010% or less, N: 0.005% or less, S: 0.005 % Or less, Se: 0.005% or less, the balance Fe and inevitable impurities, and the solid solution Nb content is 0.0006% or less.
JP2010263051A 2010-11-26 2010-11-26 Oriented electrical steel sheet and manufacturing method thereof Active JP5754115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010263051A JP5754115B2 (en) 2010-11-26 2010-11-26 Oriented electrical steel sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010263051A JP5754115B2 (en) 2010-11-26 2010-11-26 Oriented electrical steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012112006A true JP2012112006A (en) 2012-06-14
JP5754115B2 JP5754115B2 (en) 2015-07-29

Family

ID=46496540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010263051A Active JP5754115B2 (en) 2010-11-26 2010-11-26 Oriented electrical steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5754115B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014196536A (en) * 2013-03-29 2014-10-16 Jfeスチール株式会社 Method of flattening and annealing grain-oriented electrical steel sheet and method of producing grain-oriented electrical steel sheet
WO2016199423A1 (en) * 2015-06-09 2016-12-15 Jfeスチール株式会社 Oriented electromagnetic steel sheet and method for producing same
WO2021125681A3 (en) * 2019-12-20 2021-08-05 주식회사 포스코 Grain-oriented electrical steel sheet and method for manufacturing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6376820A (en) * 1986-09-18 1988-04-07 Kawasaki Steel Corp Manufacture of grain-oriented silicon steel sheet having superior repeated bending characteristic
JP2010100885A (en) * 2008-10-22 2010-05-06 Jfe Steel Corp Method for manufacturing grain-oriented electrical steel sheet
JP2010229521A (en) * 2009-03-27 2010-10-14 Jfe Steel Corp Method for manufacturing grain-oriented electrical steel sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6376820A (en) * 1986-09-18 1988-04-07 Kawasaki Steel Corp Manufacture of grain-oriented silicon steel sheet having superior repeated bending characteristic
JP2010100885A (en) * 2008-10-22 2010-05-06 Jfe Steel Corp Method for manufacturing grain-oriented electrical steel sheet
JP2010229521A (en) * 2009-03-27 2010-10-14 Jfe Steel Corp Method for manufacturing grain-oriented electrical steel sheet

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014196536A (en) * 2013-03-29 2014-10-16 Jfeスチール株式会社 Method of flattening and annealing grain-oriented electrical steel sheet and method of producing grain-oriented electrical steel sheet
WO2016199423A1 (en) * 2015-06-09 2016-12-15 Jfeスチール株式会社 Oriented electromagnetic steel sheet and method for producing same
JP2017002356A (en) * 2015-06-09 2017-01-05 Jfeスチール株式会社 Oriented magnetic steel sheet and manufacturing method therefor
CN107614725A (en) * 2015-06-09 2018-01-19 杰富意钢铁株式会社 Orientation electromagnetic steel plate and its manufacture method
KR102057126B1 (en) * 2015-06-09 2019-12-18 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet and method for manufacturing the same
CN107614725B (en) * 2015-06-09 2020-03-10 杰富意钢铁株式会社 Grain-oriented electromagnetic steel sheet and method for producing same
US10844452B2 (en) 2015-06-09 2020-11-24 Jfe Steel Corporation Grain-oriented electrical steel sheet and method for manufacturing the same
WO2021125681A3 (en) * 2019-12-20 2021-08-05 주식회사 포스코 Grain-oriented electrical steel sheet and method for manufacturing same

Also Published As

Publication number Publication date
JP5754115B2 (en) 2015-07-29

Similar Documents

Publication Publication Date Title
JP5672273B2 (en) Method for producing grain-oriented electrical steel sheet
US9214275B2 (en) Method for manufacturing grain oriented electrical steel sheet
KR101921401B1 (en) Method for producing grain-oriented electrical steel sheet
RU2613818C1 (en) Method of making plate of textured electrical steel
JP6617827B2 (en) Method for producing grain-oriented electrical steel sheet
EP3214188B1 (en) Production method for oriented grain-electromagnetic steel sheet
JP2015200002A (en) Method for producing grain oriented magnetic steel sheet
JP5794409B2 (en) Electrical steel sheet and manufacturing method thereof
JP6888603B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP5375694B2 (en) Method for producing grain-oriented electrical steel sheet
US11286538B2 (en) Method for manufacturing grain-oriented electrical steel sheet
JP6418226B2 (en) Method for producing grain-oriented electrical steel sheet
JP5754115B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP6206633B2 (en) Method for producing grain-oriented electrical steel sheet
JP2014194073A (en) Method for manufacturing oriented electromagnetic steel sheet
JP5846390B2 (en) Method for producing grain-oriented electrical steel sheet
JP5854236B2 (en) Method for producing grain-oriented electrical steel sheet
JP5310510B2 (en) Method for producing grain-oriented electrical steel sheet
JP2016156070A (en) Method of manufacturing grain-oriented electrical steel sheet
JP7193041B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP7414145B2 (en) Method for producing grain-oriented electrical steel sheets and hot-rolled steel sheets for grain-oriented electrical steel sheets
JP6866869B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP6544344B2 (en) Method of manufacturing directional magnetic steel sheet
KR20230159875A (en) Manufacturing method of grain-oriented electrical steel sheet
JP2018090851A (en) Production method of directionality magnetic steel sheet

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150511

R150 Certificate of patent or registration of utility model

Ref document number: 5754115

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250