JP2010100885A - Method for manufacturing grain-oriented electrical steel sheet - Google Patents

Method for manufacturing grain-oriented electrical steel sheet Download PDF

Info

Publication number
JP2010100885A
JP2010100885A JP2008272261A JP2008272261A JP2010100885A JP 2010100885 A JP2010100885 A JP 2010100885A JP 2008272261 A JP2008272261 A JP 2008272261A JP 2008272261 A JP2008272261 A JP 2008272261A JP 2010100885 A JP2010100885 A JP 2010100885A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
ppm
grain
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008272261A
Other languages
Japanese (ja)
Other versions
JP5338254B2 (en
Inventor
Takeshi Imamura
今村  猛
Mineo Muraki
峰男 村木
Yukihiro Aragaki
之啓 新垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008272261A priority Critical patent/JP5338254B2/en
Priority to KR1020147015188A priority patent/KR20140077223A/en
Priority to PCT/JP2009/068444 priority patent/WO2010047414A1/en
Priority to KR1020117009021A priority patent/KR20110074547A/en
Priority to CN200980141876.5A priority patent/CN102197149B/en
Publication of JP2010100885A publication Critical patent/JP2010100885A/en
Application granted granted Critical
Publication of JP5338254B2 publication Critical patent/JP5338254B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a grain-oriented electrical steel sheet having high grade stable magnetic characteristic by using a component system having no inhibitor. <P>SOLUTION: When the grain-oriented electrical steel sheet is manufactured by using a slab composed of the component system which does not contain the inhibitor consisting of, by mass%, ≤0.10% C, 2.0-8.0% Si, 0.005-1.0% Mn, ≤100 ppm Al and respectively, ≤50 ppm N, S and Se and the balance Fe with inevitable impurities; the mass-ratio of Al content and N content in the slab, is made to ≥1.4 and further, in this slab, one kind or more kinds selected among B, Ta, Nb and V of 10-150 ppm are contained in total. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、変圧器の鉄心材料等の用途に供して好適な方向性電磁鋼板の製造方法に関するものである。   The present invention relates to a method for producing a grain-oriented electrical steel sheet that is suitable for applications such as iron core materials for transformers.

方向性電磁鋼板については、インヒビターと呼ばれる析出物を使用して、最終仕上焼鈍中にゴス(Goss)方位を有する粒を優先的に二次再結晶させることが一般的な技術として知られている。例えば、特許文献1は、AlN、MnSをインヒビターとして使用する方法が、特許文献2はMnS、MnSeをインヒビターとして使用する方法が示され、それぞれ工業的に実用化されている。
さらに、これらのインヒビターの働きを強化することを目的として、特許文献3には、Pb、Sb、Nb、Teを利用する方法が、特許文献4には、Zr、Ti、B、Nb、Ta、V、Cr、Moを利用する方法が開示されている。
For grain-oriented electrical steel sheets, it is known as a general technique to preferentially recrystallize grains having Goss orientation during final finish annealing using precipitates called inhibitors. . For example, Patent Document 1 shows a method using AlN and MnS as inhibitors, and Patent Document 2 shows a method using MnS and MnSe as inhibitors, which are industrially put into practical use.
Further, for the purpose of enhancing the action of these inhibitors, Patent Document 3 discloses a method using Pb, Sb, Nb, Te, and Patent Document 4 discloses Zr, Ti, B, Nb, Ta, A method using V, Cr, and Mo is disclosed.

インヒビターを用いる方法は、安定して二次再結晶粒を発達させるのに有効な方法ではあるが、インヒビターを鋼中に微細分散させるために、1300℃以上の高温でのスラブ加熱が必要である。さらに、インヒビターは、二次再結晶後に磁気特性を劣化させる原因となるため、インヒビターを除去する純化焼鈍工程が必要であり、その工程は、1100℃以上の高温で、しかもその焼鈍雰囲気を制御する必要がある。   Although the method using an inhibitor is an effective method for stably developing secondary recrystallized grains, slab heating at a high temperature of 1300 ° C. or higher is necessary to finely disperse the inhibitor in steel. . Furthermore, since the inhibitor causes the magnetic properties to deteriorate after the secondary recrystallization, a purification annealing process is necessary to remove the inhibitor, and the process controls the annealing atmosphere at a high temperature of 1100 ° C. or higher. There is a need.

一方、インヒビター成分を含まない成分系を用いて方向性電磁鋼板を製造する方法が、特許文献5に提案されている。この方法は、インヒビター成分を極力排除し、一次再結晶時の結晶粒界が持つ粒界エネルギーの粒界方位差角依存性を顕在化させることにより、インヒビターを用いることなく、ゴス方位を有する粒を二次再結晶させる技術であり、その効果をテクスチャーインヒビション効果と呼んでいる。上記特許文献5の方法では、インヒビターを純化する工程が不要のため、最終仕上げ焼鈍を高温化する必要がない。さらに、インヒビターを鋼中に微細分散させる必要がないため、高温スラブ加熱も必要としないことなど、製造のコスト面でも設備のメンテナンス面でも大きなメリットを有する方法である。   On the other hand, Patent Document 5 proposes a method for producing a grain-oriented electrical steel sheet using a component system that does not contain an inhibitor component. This method eliminates the inhibitor component as much as possible, and reveals the grain boundary orientation angle dependence of the grain boundary energy of the grain boundary at the time of primary recrystallization, thereby preventing grains having Goth orientation without using an inhibitor. Is a technology for secondary recrystallization, and the effect is called the texture inhibition effect. In the method of Patent Document 5, the step of purifying the inhibitor is not necessary, and therefore it is not necessary to increase the temperature of the final finish annealing. Furthermore, since it is not necessary to finely disperse the inhibitor in the steel, it is a method having great merit in terms of manufacturing cost and equipment maintenance, such as not requiring high-temperature slab heating.

特公昭40-15644号公報Japanese Patent Publication No.40-15644 特公昭51-13469号公報Japanese Patent Publication No.51-13469 特公昭38-8214号公報Japanese Patent Publication No.38-8214 特公昭52-24116号公報Japanese Patent Publication No.52-24116 特開2000-129356号公報JP 2000-129356 JP

しかしながら、特許文献5に示されるような、インヒビターを含まない成分系においては、粒成長を抑制する析出物が少ないため、焼鈍時の粒成長で粒径が大きくなりやすく、焼鈍温度依存性が強い。このため、若干の工程条件変動、具体的には焼鈍温度のばらつきで、熱延板焼鈍後や再結晶焼鈍後の粒径も変動し、製品コイルの全長全幅での磁気特性が変動し、コイル全体として良好な磁気特性が得られない、という問題が顕在化するようになった。
本発明は、以上の問題を有利に解決するもので、製品磁気特性の高位安定を図ることができる方向性電磁鋼板の製造方法を提案するものである。
However, in a component system that does not contain an inhibitor as shown in Patent Document 5, since there are few precipitates that suppress grain growth, the grain growth tends to increase due to grain growth during annealing, and the dependence on annealing temperature is strong. . For this reason, the grain size after hot-rolled sheet annealing or after recrystallization annealing also fluctuates due to slight process condition fluctuations, specifically, annealing temperature fluctuations, and the magnetic characteristics of the product coil over its entire length vary. The problem that good magnetic properties cannot be obtained as a whole has become apparent.
The present invention advantageously solves the above problems, and proposes a method of manufacturing a grain-oriented electrical steel sheet that can achieve high stability of product magnetic properties.

さて、発明者らは、上述の問題を解決すべく、粒径制御に影響があると思われる元素を中心に鋭意検討を重ねた結果、AlとNの比を所定の範囲に規制した上で、特定の元素を微量添加することにより、良好かつ安定的な磁気特性を得ることが可能であることを見出した。以下、本発明を成功に至らしめた実験について説明する。
なお、以下、%表示については、特に断らない限り質量%を意味するものとする。
Now, as a result of intensive studies focusing on elements that seem to have an influence on particle size control in order to solve the above problems, the inventors have regulated the ratio of Al and N within a predetermined range. The inventors have found that good and stable magnetic characteristics can be obtained by adding a small amount of a specific element. Hereinafter, experiments that have made the present invention successful will be described.
In the following description, “%” means “% by mass” unless otherwise specified.

(実験1)
C:0.012〜0.073%、Si:3.15〜3.33%、Mn:0.06〜0.09%、Cr:0.02〜0.06%、Sb:0.018〜0.045%、Al:35〜100ppm、N:14〜70ppm、S:11〜25ppmおよびNb:20〜50ppmを有し、残部Feおよび不可避的不純物の組成になる鋼スラブを、連続鋳造にて製造し、1250℃でスラブ加熱後、熱間圧延により2.3mm厚さの熱延板とした。次に、1050℃で15秒の熱延板焼鈍を施した後、冷間圧延により0.23mmの板厚に仕上げた。さらに、均熱条件が850℃で60秒の再結晶焼鈍を施した後、MgOを主体とする焼鈍分離剤を塗布してから、1200℃に10時間保定する仕上げ焼鈍を行った。最後に、リン酸マグネシウムとホウ酸を主体とする張力付与コーティングの形成を兼ねた平坦化焼鈍を900℃で15秒間施し、方向性電磁鋼板を作製した。
(Experiment 1)
C: 0.012 to 0.073%, Si: 3.15 to 3.33%, Mn: 0.06 to 0.09%, Cr: 0.02 to 0.06%, Sb: 0.018 to 0.045%, Al: 35 to 100 ppm, N: 14 to 70 ppm, S: 11 Steel slab with ~ 25ppm and Nb: 20 ~ 50ppm, composition of balance Fe and unavoidable impurities is manufactured by continuous casting, heated at 1250 ° C and heated to 2.3mm thickness by hot rolling It was a sheet. Next, hot-rolled sheet annealing was performed at 1050 ° C. for 15 seconds, and then finished to a sheet thickness of 0.23 mm by cold rolling. Further, after recrystallization annealing at 850 ° C. for 60 seconds, an annealing separator mainly composed of MgO was applied, and then finish annealing was held at 1200 ° C. for 10 hours. Finally, planarization annealing was performed at 900 ° C. for 15 seconds, which also served as the formation of a tension-imparting coating mainly composed of magnesium phosphate and boric acid, to produce a grain-oriented electrical steel sheet.

得られたサンプルの磁束密度BをJIS C2550の方法に準拠して測定した。得られた磁束密度は、一見ばらついているように見えたが、鋼スラブ成分のAlとNの比で整理すると極めて良い相関が得られた。
その結果を図1に示す。
同図に示したとおり、Al/Nが小さいと磁束密度が低下する傾向にあり、特にAl/N<1.4においては、ばらつきも大きくなることが分かる。また、1.4≦Al/N<2の範囲では、磁束密度は安定しているものの、若干低下する傾向が認められる。
The magnetic flux density B 8 of the resulting samples was measured according to the method of JIS C2550. Although the obtained magnetic flux density seemed to vary at first glance, a very good correlation was obtained when arranged by the ratio of Al and N of steel slab components.
The results are shown in FIG.
As shown in the figure, it can be seen that when Al / N is small, the magnetic flux density tends to decrease, and especially when Al / N <1.4, the variation becomes large. Further, in the range of 1.4 ≦ Al / N <2, the magnetic flux density is stable, but a tendency to slightly decrease is recognized.

そこで、Al/Nが磁束密度と相関を有する理由について検討した。その結果、上述の実験1において、Al/N=2付近での磁束密度の変化より、上記サンプル鋼板中に存在しているAlとNがAlNを形成(Al/Nは質量比で27/14≒1.93)しており、この窒素化合物の挙動が関与しているものと推定した。この推定を追求するため、さらに窒化物形成元素を種々加えた実験を行った。   Therefore, the reason why Al / N has a correlation with the magnetic flux density was examined. As a result, in the above-described experiment 1, Al and N present in the sample steel sheet form AlN due to the change in magnetic flux density near Al / N = 2 (Al / N is 27/14 in mass ratio). It was estimated that this behavior of nitrogen compounds is involved. In order to pursue this estimation, experiments were conducted in which various nitride forming elements were further added.

(実験2)
C:0.045〜0.062%、Si:3.20〜3.31%、Mn:0.04〜0.16%、Cr:0.03〜0.11%、Sb:0.015〜0.037%、Mo:0.03〜0.05%、Al:55〜97ppm、N:20〜49ppm、Al/N:1.98〜3.10およびS:17〜27ppmを含み、さらにZr、Ti、B、Ta、NbおよびVを各々約50ppm含有させ、残部Feおよび不可避的不純物になる鋼スラブとこれら微量元素(Zr、Ti、B、Ta、NbおよびV)を含有させない鋼スラブとを、それぞれ連続鋳造にて製造し、1250℃でスラブ加熱後、熱間圧延により2.2mm厚さの熱延板とした。ついで、1100℃で60秒の熱延板焼鈍を施した後、冷間圧延により0.23mmの板厚に仕上げた。さらに、均熱条件が840℃で80秒の再結晶焼鈍を施した後、MgOを主体とする焼鈍分離剤を塗布してから、1200℃に10時間保定する仕上げ焼鈍を行った。最後に、リン酸マグネシウムとホウ酸を主体とする張力付与コーティングの形成を兼ねた平坦化焼鈍を900℃で15秒間施し、方向性電磁鋼板を作製した。
(Experiment 2)
C: 0.045 to 0.062%, Si: 3.20 to 3.31%, Mn: 0.04 to 0.16%, Cr: 0.03 to 0.11%, Sb: 0.015 to 0.037%, Mo: 0.03 to 0.05%, Al: 55 to 97 ppm, N: A steel slab containing 20 to 49 ppm, Al / N: 1.98 to 3.10 and S: 17 to 27 ppm, further containing about 50 ppm each of Zr, Ti, B, Ta, Nb and V, and the balance being Fe and inevitable impurities Steel slabs that do not contain these trace elements (Zr, Ti, B, Ta, Nb, and V) were each manufactured by continuous casting, heated at 1250 ° C, and hot rolled to a thickness of 2.2 mm by hot rolling. A board was used. Subsequently, after hot-rolled sheet annealing was performed at 1100 ° C. for 60 seconds, it was finished to a sheet thickness of 0.23 mm by cold rolling. Furthermore, after applying recrystallization annealing at 840 ° C. for 80 seconds, an annealing separator mainly composed of MgO was applied, and then finish annealing was carried out at 1200 ° C. for 10 hours. Finally, planarization annealing was performed at 900 ° C. for 15 seconds, which also served as the formation of a tension-imparting coating mainly composed of magnesium phosphate and boric acid, to produce a grain-oriented electrical steel sheet.

得られたサンプルの磁束密度BをJIS C2550の方法に準拠して測定した。
その結果を図2に示す。
同図に示したとおり、添加したZr、Ti、B、Ta、NbおよびVの種類により、得られる磁束密度は大きく異なることが分かる。すなわち、ZrおよびTiを添加したサンプルは、磁束密度が低く、二次再結晶が発現していなかった。これに対し、B、Ta、NbおよびVを添加した場合は、添加しない場合と比較して、磁束密度が高くなっていることが明らかとなった。
このように、B、Ta、NbおよびVを添加することによって磁気特性が向上する理由は、必ずしも明らかになっていないが、発明者らは、以下のように考えている。
The magnetic flux density B 8 of the resulting samples was measured according to the method of JIS C2550.
The result is shown in FIG.
As shown in the figure, it can be seen that the magnetic flux density obtained varies greatly depending on the types of added Zr, Ti, B, Ta, Nb and V. That is, the sample to which Zr and Ti were added had a low magnetic flux density and did not develop secondary recrystallization. On the other hand, when B, Ta, Nb, and V were added, it became clear that the magnetic flux density was higher than when not added.
The reason why the magnetic properties are improved by adding B, Ta, Nb and V is not necessarily clear as described above, but the inventors consider as follows.

添加物や不純物における窒化物の熱力学的安定性は、詳細に調べられており、窒素に結合している元素によって、その安定性が異なることが分かっている。前述の実験において、添加した元素の窒化物の安定性は、安定な方からZr、Ti、Al、Ta、B、NbおよびVである。
磁束密度が低かったZrおよびTiは、その窒化物がAlの窒化物より安定であるのに対して、磁束密度が高かったB、Ta、NbおよびVは、窒化物がAlの窒化物より不安定である。これは、ZrおよびTiを含んだ鋼板は、AlNより安定したZrNやTiNが形成されており、その形成したZrNやTiNが磁気特性を低下させているという可能性を示唆している。
The thermodynamic stability of nitrides in additives and impurities has been investigated in detail, and it has been found that the stability varies depending on the element bonded to nitrogen. In the experiment described above, the stability of the nitride of the added element is Zr, Ti, Al, Ta, B, Nb, and V from the stable side.
Zr and Ti, which have a lower magnetic flux density, are more stable in nitride than Al nitride, whereas B, Ta, Nb, and V, which have higher magnetic flux density, are less nitrided than Al nitride. It is stable. This suggests the possibility that ZrN and TiN, which are more stable than AlN, are formed in the steel sheet containing Zr and Ti, and that the formed ZrN and TiN have reduced magnetic properties.

さらに、実験1において、Al/Nが低い場合、Nbの存在下においても磁束密度が低かった。これは、Al/Nが低いため、化学量論的にAlに対しNが過剰となり、Nbが過剰なNと結合して窒化物を形成したことが原因と考えられる。
以上の考察より、微量元素の窒化物の増加は、鋼板中の結晶粒の粒界エネルギー差を駆動力としたテクスチャーインヒビション効果を、薄れさせてしまうものと推定される。
Furthermore, in Experiment 1, when Al / N was low, the magnetic flux density was low even in the presence of Nb. This is presumably because Al / N is low, and therefore N is stoichiometrically excessive with respect to Al, and Nb is combined with excess N to form a nitride.
From the above considerations, it is presumed that an increase in trace element nitrides diminishes the texture inhibition effect using the grain boundary energy difference of the crystal grains in the steel sheet as a driving force.

一方、Ta、B、NbおよびVを添加した場合は、AlNが優先的に形成されるため、Ta、B、NbおよびVの窒化物は形成されない。また、B、Ta、NbおよびVが鋼板中に存在すると、再結晶焼鈍後の結晶粒径は細かく、かつ均一になることも判明した。
このように、微量元素(但しAlを除く)の窒化物の形成がないこと、および微量元素の存在により実現される結晶粒径の均一性が、粒径のサイズの影響を受けることなくテクスチャーインヒビション効果を発揮し、その結果、磁束密度の向上につながったと推定している。つまり、この微量元素の効果により、従来のインヒビター含まない成分系の問題点である、同一サンプル内の磁気特性のばらつきが改善されるものと考えられる。
On the other hand, when Ta, B, Nb and V are added, since AlN is formed preferentially, nitrides of Ta, B, Nb and V are not formed. It has also been found that when B, Ta, Nb and V are present in the steel sheet, the crystal grain size after recrystallization annealing is fine and uniform.
Thus, there is no formation of nitrides of trace elements (except for Al), and the uniformity of the crystal grain size realized by the presence of trace elements is not affected by the size of the grain size. It is presumed that the hibition effect was exhibited, and as a result, the magnetic flux density was improved. In other words, the effect of this trace element is considered to improve the variation in magnetic properties within the same sample, which is a problem of the conventional component system not containing an inhibitor.

以上のような、実験、考察を経て、発明者らは、インヒビターを含まない成分系に方向性電磁鋼板中に存在するAlとNの比を規制し、加えて、Ta、B、NbおよびVを微量添加することにより、良好な磁気特性が得られるとの結論に至った。   Through the experiments and considerations as described above, the inventors regulate the ratio of Al and N present in the grain-oriented electrical steel sheet to a component system that does not contain an inhibitor, and in addition, Ta, B, Nb, and V It was concluded that good magnetic properties can be obtained by adding a small amount of.

すなわち、本発明の要旨構成は次のとおりである。
(1)C:0.10%以下、Si:2.0〜8.0%およびMn:0.005〜1.0%を含有し、Alを 100ppm以下、かつN、SおよびSeを各々50ppm以下とし、残部Feおよび不可避的不純物からなるスラブを熱間圧延し、必要に応じて熱延板焼鈍を施した後、1回または中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚にまで仕上げ、ついで再結晶焼鈍を施した後、仕上げ焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法において、
上記スラブ中に含有されるAl量とN量の比を質量比で1.4以上にすると共に、上記スラブ中にさらに、B、Ta、NbおよびVのうちから選んだ1種または2種以上を合計で10〜150ppm含有させることを特徴とする方向性電磁鋼板の製造方法。
That is, the gist configuration of the present invention is as follows.
(1) C: 0.10% or less, Si: 2.0 to 8.0% and Mn: 0.005 to 1.0%, Al is 100 ppm or less, N, S and Se are 50 ppm or less, respectively, and the balance Fe and unavoidable impurities After slab is hot-rolled and hot-rolled sheet annealing is performed as necessary, it is cold-rolled once or twice with intermediate annealing, and finished to the final thickness, followed by recrystallization annealing. After applying, in the manufacturing method of grain oriented electrical steel sheet consisting of a series of steps to finish annealing,
The ratio of the amount of Al and N contained in the slab is 1.4 or more in terms of mass ratio, and one or more selected from B, Ta, Nb and V are further added to the slab. A method for producing a grain-oriented electrical steel sheet, characterized by containing 10 to 150 ppm.

(2)前記スラブ中に、さらに、Ni:0.010〜1.50%、Cr:0.01〜0.50%、Cu:0.01〜0.50%、P:0.005〜0.50%、Sn:0.005〜0.50%、Sb:0.005〜0.50%、Bi:0.005〜0. 50%およびMo:0.005〜0. 10%のうちから選んだ少なくとも1種を含有することを特徴とする上記(1)に記載の方向性電磁鋼板の製造方法。   (2) In the slab, Ni: 0.010 to 1.50%, Cr: 0.01 to 0.50%, Cu: 0.01 to 0.50%, P: 0.005 to 0.50%, Sn: 0.005 to 0.50%, Sb: 0.005 to 0.50 %, Bi: 0.005 to 0.50% and Mo: 0.005 to 0.10%. The method for producing a grain-oriented electrical steel sheet according to (1) above, comprising at least one selected from the group consisting of 0.005 to 0.10%.

本発明によれば、インヒビターを実質的に含まない成分系において、高位安定な磁気特性を有する方向性電磁鋼板を得ることができる。   According to the present invention, it is possible to obtain a grain-oriented electrical steel sheet having highly stable magnetic properties in a component system that does not substantially contain an inhibitor.

次に、本発明の構成要件における限定理由について述べる。   Next, the reason for limitation in the constituent requirements of the present invention will be described.

C:0.10%以下
C量が0.10%を超えると、脱炭処理を行っても磁気時効の起こらない50ppm以下に低減することが困難になる。従って、Cは少ないほうが望ましいが、0.10%までは許容できる。
C: 0.10% or less When the amount of C exceeds 0.10%, it is difficult to reduce to 50 ppm or less where magnetic aging does not occur even when decarburization is performed. Therefore, it is desirable that C is small, but up to 0.10% is acceptable.

Si:2.0〜8.0%
Siは、鋼の比抵抗を高め、鉄損を改善するために必要な元素であるが、2.0%未満ではその効果に乏しく、一方、8.0%を超えると加工性が劣化し、圧延が困難となるため、Si量は2.0〜8.0%とする。
Si: 2.0-8.0%
Si is an element necessary to increase the specific resistance of steel and improve iron loss, but if it is less than 2.0%, its effect is poor, while if it exceeds 8.0%, workability deteriorates and rolling is difficult. Therefore, the Si amount is set to 2.0 to 8.0%.

Mn:0.005〜1.0%
Mnは、熱間加工性を良好にするために必要な元素であるが、0.005%未満ではその効果に乏しく、一方1.0%を超えると製品板の磁束密度が低下するため、Mn量は0.005〜1.0%とする。
Mn: 0.005 to 1.0%
Mn is an element necessary for improving the hot workability, but if it is less than 0.005%, its effect is poor, while if it exceeds 1.0%, the magnetic flux density of the product plate decreases, so the amount of Mn is 0.005 to 1.0%.

本発明において、Al量は、100ppm以下、かつN、SおよびSeの量については、それぞれ50ppm以下にすることが鋼板を良好に二次再結晶させる上で必須である。かかる成分は、極力低減することが磁気特性の観点からは望ましいが、これらの成分の低減は、コスト高となるため、上記範囲内で残存させても問題はない。
なお、上述した元素のうちAlは80ppm以下、Seは20ppm以下とすることがさらに望ましい。また、N、Sの軽元素は、鋼スラブ作製前の成分調整時に完全に除去することは困難であり、特殊な処理を行わない場合は、各々20ppmほど鋼板中に残存している。
In the present invention, the amount of Al is 100 ppm or less, and the amount of N, S and Se is 50 ppm or less, respectively, in order to satisfactorily recrystallize the steel sheet. It is desirable to reduce these components as much as possible from the viewpoint of magnetic properties. However, since the reduction of these components increases the cost, there is no problem even if they are left within the above range.
Of the elements described above, it is more desirable that Al is 80 ppm or less and Se is 20 ppm or less. In addition, it is difficult to completely remove N and S light elements at the time of adjusting the components before producing the steel slab, and when no special treatment is performed, 20 ppm each remains in the steel plate.

これら元素の中でも、AlとNの比を1.4以上とすることが、前述した理由により必須であり、特に、AlとNの比が2以上の場合には、磁気特性がさらに向上するのでより好ましい。また、上述のとおり、Nは完全に除去することが困難であるため、Al/N≧1.4を満たすために、Alを100ppm以下の範囲で添加することも妨げない。   Among these elements, it is essential for the above-mentioned reason that the ratio of Al and N is 1.4 or more. In particular, when the ratio of Al and N is 2 or more, the magnetic characteristics are further improved, which is more preferable. . Further, as described above, since it is difficult to completely remove N, addition of Al in the range of 100 ppm or less is not prevented in order to satisfy Al / N ≧ 1.4.

さらに、本発明における磁気特性向上の効果を十分に得るためには、Ti、Nb、BおよびVを10ppm以上添加することが必要である。
各々添加量が10ppm未満では添加効果が少ない。また、好ましくは、各々20ppm以上であり、より好ましくは50ppm以上である。
ただし、これらの微量添加元素は、最終製品においても地鉄中に残存し、鉄損を劣化させる原因となることから、その総量は150ppm以下に制限される。なお、鉄損の劣化抑制の観点からは、総量で100ppm以下とすることが望ましい。
以上、必須元素および抑制元素について説明したが、本発明には、その他にも磁気特性の改善元素として、次に述べる元素を適宜含有させることができる。
Furthermore, in order to sufficiently obtain the effect of improving the magnetic characteristics in the present invention, it is necessary to add 10 ppm or more of Ti, Nb, B and V.
If the addition amount is less than 10 ppm, the addition effect is small. Moreover, each is preferably 20 ppm or more, more preferably 50 ppm or more.
However, since these trace additive elements remain in the base iron even in the final product and cause deterioration of iron loss, the total amount is limited to 150 ppm or less. From the viewpoint of suppressing deterioration of iron loss, the total amount is desirably 100 ppm or less.
As described above, the essential elements and the suppressing elements have been described. However, in the present invention, the following elements can be appropriately contained as elements for improving the magnetic properties.

Ni:0.01〜1.50%
熱延板組織を改善して磁気特性を向上させるためにNiを添加することができる。添加量が0.01%未満であると添加効果が少なく、一方1.50%を超えると二次再結晶が不安定になり磁気特性が低下する。
Ni: 0.01 to 1.50%
Ni can be added to improve the hot rolled sheet structure and improve the magnetic properties. If the addition amount is less than 0.01%, the effect of addition is small. On the other hand, if it exceeds 1.50%, secondary recrystallization becomes unstable and the magnetic properties deteriorate.

Cr:0.01〜0.50%、Cu:0.01〜0.50%、P:0.005〜0.50%
これらの元素は、いずれも鉄損の改善に有用な元素であるが、それぞれ下限に満たないと、その添加効果に乏しく、一方上限を超えると二次再結晶粒の発達が抑制され、むしろ磁気特性の劣化を招く。
Sn:0.005〜0.50%、Sb:0.005〜0.50%、Bi:0.005〜0. 50 %、Mo:0.005〜0. 10%
これらの元素も磁気特性の向上に有用な元素であるが、それぞれ下限に満たないと、その添加効果に乏しく、一方上限を超えると二次再結晶粒の発達が抑制され、むしろ磁気特性の劣化を招く。
Cr: 0.01 to 0.50%, Cu: 0.01 to 0.50%, P: 0.005 to 0.50%
All of these elements are useful elements for improving iron loss, but if they are less than the lower limit, the effect of addition is poor, while if the upper limit is exceeded, the development of secondary recrystallized grains is suppressed, and rather magnetic Degradation of characteristics is caused.
Sn: 0.005 to 0.50%, Sb: 0.005 to 0.50%, Bi: 0.005 to 0.50%, Mo: 0.005 to 0.10%
These elements are also useful elements for improving the magnetic properties, but if they are less than the lower limit, the effect of addition is poor. On the other hand, if the upper limit is exceeded, the development of secondary recrystallized grains is suppressed, rather the magnetic properties deteriorate. Invite.

次に、本発明の製造工程について説明する。
上記成分の好適組成に調整した溶鋼を、通常の造塊法や連続鋳造法でスラブとする。また、直接鋳造法で100mm以下の厚さの薄鋳片としてもよい。スラブの場合は、通常の方法で加熱して熱間圧延するが、鋳造後加熱せずに直ちに熱間圧延してもよい。薄鋳片の場合は、熱間圧延しても良いし、熱間圧延を省略してそのまま以後の工程に供してもよい。
熱間圧延前のスラブ加熱温度は、Al、N、SおよびSeを低減化したインヒビター成分を実質的に含まないスラブであるため、従来必須であったインヒビターを固溶させるための高温焼鈍を必要とせず、1250℃以下の低温とすることができ、コストの面で望ましい。
Next, the manufacturing process of the present invention will be described.
The molten steel adjusted to a suitable composition of the above components is made into a slab by a normal ingot-making method or a continuous casting method. Moreover, it is good also as a thin cast piece of thickness of 100 mm or less by a direct casting method. In the case of a slab, it is heated and hot-rolled by a normal method, but it may be hot-rolled immediately without being heated after casting. In the case of a thin slab, hot rolling may be performed, or hot rolling may be omitted and used as it is for the subsequent steps.
The slab heating temperature before hot rolling is a slab that does not substantially contain inhibitor components with reduced Al, N, S, and Se, and therefore high temperature annealing is required to dissolve the inhibitor, which has been required in the past. However, the temperature can be lowered to 1250 ° C. or lower, which is desirable in terms of cost.

ついで、必要に応じて熱延板焼鈍を施す。良好な磁気特性を得るための熱延板焼鈍温度は800〜1150℃が好適である。熱延板焼鈍温度が800℃未満であると熱延でのバンド組織が残留し、整粒した一次再結晶組織を実現することが困難となり二次再結晶の発達が阻害される。一方、熱延板焼鈍温度が1150℃を超えると、熱延板焼鈍後の粒径が粗大化しすぎるため、整粒した一次再結晶組織を実現する上で極めて不利となる。   Then, hot-rolled sheet annealing is performed as necessary. The hot-rolled sheet annealing temperature for obtaining good magnetic properties is preferably 800 to 1150 ° C. When the hot-rolled sheet annealing temperature is less than 800 ° C., a band structure in hot rolling remains, making it difficult to achieve a sized primary recrystallized structure and inhibiting the development of secondary recrystallization. On the other hand, when the hot-rolled sheet annealing temperature exceeds 1150 ° C., the grain size after the hot-rolled sheet annealing is excessively coarsened, which is extremely disadvantageous for realizing a sized primary recrystallized structure.

熱延板焼鈍後、1回または中間焼鈍を挟む2回以上の冷間圧延を施した後、再結晶焼鈍を行うが、その冷間圧延の温度を100℃〜300℃に上昇させて行うこと、およびその冷間圧延の途中で100〜300℃の時効処理を1回または複数回行うことは、磁気特性を向上させる上で有利である。   After hot-rolled sheet annealing, after one or two or more cold rollings with intermediate annealing, recrystallization annealing is performed, and the temperature of the cold rolling is increased to 100 ° C to 300 ° C. In addition, it is advantageous to improve the magnetic properties by performing the aging treatment at 100 to 300 ° C. once or a plurality of times during the cold rolling.

再結晶焼鈍は、脱炭を必要とする場合、雰囲気を湿潤雰囲気とするが、脱炭を必要としない場合は、乾燥雰囲気で行っても良い。再結晶焼鈍後は、侵珪法によってSi量を増加させる技術を併用しても良い。   The recrystallization annealing is performed in a wet atmosphere when decarburization is required, but may be performed in a dry atmosphere when decarburization is not required. After recrystallization annealing, a technique for increasing the amount of Si by a siliconization method may be used in combination.

その後、鉄損を重視してフォルステライト被膜を形成させる場合には、MgOを主体とする焼鈍分離剤を塗布した後に、仕上げ焼鈍を施すことにより、二次再結晶組織を発達させるとともに、フォルステライト被膜を形成させることが可能である。
打ち抜き加工性を重視してフォルステライト被膜を形成させない場合には、焼鈍分離剤を使用しないか、使用するにしても、フォルステライト被膜を形成を阻害するシリカやアルミナ等を主成分として使用する。上記の焼鈍分離剤を塗布する際には、水分を持ち込まない静電塗布を行うことなどが有効であり、耐熱無機材料シート(シリカ、アルミナ、マイカ)を用いても良い。
Thereafter, when forming a forsterite film with an emphasis on iron loss, a secondary recrystallized structure is developed by applying an annealing separator mainly composed of MgO, followed by a final annealing, and forsterite. A coating can be formed.
In the case where the forsterite film is not formed with emphasis on the punching processability, an annealing separator is not used or even if it is used, silica, alumina, or the like that inhibits the formation of the forsterite film is used as a main component. When applying the above-mentioned annealing separator, it is effective to perform electrostatic coating without bringing in moisture, and a heat-resistant inorganic material sheet (silica, alumina, mica) may be used.

仕上げ焼鈍は、二次再結晶の発現のために800℃以上で行うことが望ましい。また、二次再結晶を完了させるためには、800℃以上の温度に20時間以上保持させることが望ましい。
打ち抜き性を重視してフォルステライト被膜を形成させない場合には、二次再結晶が完了すればよいので、保持温度は850〜950℃が望ましく、保持の段階で仕上げ焼鈍を終了することも可能である。
鉄損を重視する場合やトランスの騒音を低下させるためにフォルステライト被膜を形成させる場合には、1200℃程度まで昇温させることが望ましい。
The finish annealing is desirably performed at 800 ° C. or higher in order to develop secondary recrystallization. In order to complete the secondary recrystallization, it is desirable to hold at a temperature of 800 ° C. or higher for 20 hours or longer.
If the forsterite film is not formed with emphasis on punchability, secondary recrystallization should be completed, so the holding temperature is preferably 850-950 ° C, and finish annealing can be completed at the holding stage. is there.
When placing importance on iron loss or forming a forsterite film to reduce transformer noise, it is desirable to raise the temperature to about 1200 ° C.

仕上げ焼鈍後には、付着した未反応の焼鈍分離剤を除去するため、水洗やブラッシング、酸洗等を行う。その後、平坦化焼鈍を行い形状を矯正することが、鉄損低減のために有効である。   After the finish annealing, water washing, brushing, pickling, etc. are performed in order to remove the unreacted annealing separator adhering. Thereafter, it is effective to correct the shape by performing flattening annealing in order to reduce iron loss.

鋼板を積層して使用する場合には、平坦化焼鈍前または後に、鉄損を改善する目的で、鋼板表面に絶縁コーティングを施すことが有効である。この絶縁コーティングは、鉄損低減のために、鋼板に張力を付与できるコーティングとすることが望ましく、バインダーを介した張力コーティング塗布方法や物理蒸着法、化学蒸着法によって、無機物を鋼板表面に蒸着させたコーティング方法を採用すると、優れたコーティング膜の密着性および鉄損低減効果が得られる。   In the case where the steel plates are laminated and used, it is effective to apply an insulating coating to the steel plate surface for the purpose of improving iron loss before or after the flattening annealing. This insulation coating is desirably a coating that can impart tension to the steel sheet in order to reduce iron loss. Inorganic coatings are deposited on the steel sheet surface by a tension coating application method using a binder, physical vapor deposition, or chemical vapor deposition. If the coating method is adopted, excellent coating film adhesion and iron loss reduction effect can be obtained.

<実施例1>
C:0.018〜0.023%、Si:3.20〜3.40%、Mn:0.10〜0.15%、Cr:0.03〜0.05%、Al:30〜140ppmおよびN:29〜50ppmを含み、表1記載のAl/N比を有し、さらに表1記載のNb量を含有し、残部がFeおよび不可避的不純物からなる鋼スラブを、連続鋳造にて製造した。ついで1200℃でスラブ加熱し、熱間圧延により板厚2.2mm厚さの熱延板とした。次に、1060℃で40秒の熱延板焼鈍を施し、1回の冷間圧延により板厚0.23mmの厚さに仕上げた。さらに、均熱条件が850℃で100秒の再結晶焼鈍を施したのち、MgOを主体とする焼鈍分離剤を塗布してから、900℃に50時間保定して二次再結晶させたのち、1200℃に10時間保定してフォルステライト被膜を形成させた。最後に、1200℃で60秒の平坦化焼鈍を施し、その後、化学蒸着法によりTiNを鋼板表面に蒸着させてコーティングとした。
<Example 1>
C: 0.018-0.023%, Si: 3.20-3.40%, Mn: 0.10-0.15%, Cr: 0.03-0.05%, Al: 30-140ppm and N: 29-50ppm, Al / N ratio as described in Table 1 Further, a steel slab containing Nb amounts shown in Table 1 and the balance being Fe and inevitable impurities was produced by continuous casting. Subsequently, the slab was heated at 1200 ° C., and a hot rolled sheet having a thickness of 2.2 mm was formed by hot rolling. Next, hot-rolled sheet annealing was performed at 1060 ° C. for 40 seconds and finished to a thickness of 0.23 mm by one cold rolling. Furthermore, after applying recrystallization annealing at 850 ° C. for 100 seconds, after applying an annealing separator mainly composed of MgO, it was held at 900 ° C. for 50 hours for secondary recrystallization, The forsterite film was formed by holding at 1200 ° C. for 10 hours. Finally, flattening annealing was performed at 1200 ° C. for 60 seconds, and then TiN was vapor-deposited on the steel sheet surface by chemical vapor deposition to form a coating.

ここで、本実施例での磁気特性測定サンプルの採取および磁気特性の測定を、以下の手順で実施した。
まず、平坦化焼鈍ラインの焼鈍炉出側に設置したインライン鉄損計によって、コイルの全長にわたって鉄損を測定し、コイル長手方向の鉄損プロファイルを取得しておく。次に、TiNコーティング後、上記鉄損プロファイルでの鉄損が高かった部位から、板幅方向に3箇所、およびコイル長手方向の両端部2箇所(幅方向中央)、の計5箇所からサンプルを採取し、磁気特性をJIS C2550の方法に準拠して測定した。
上記5箇所の内、最も磁気特性が悪かったサンプルにおける磁束密度BおよびW17/50を、そのコイルの代表値とし、その値の良否により、コイル全長で優れた磁気特性が得られているか否かの評価をした。
以上の測定評価結果を、表1に併記する。
Here, the collection of the magnetic property measurement sample and the measurement of the magnetic property in this example were performed according to the following procedure.
First, the iron loss is measured over the entire length of the coil by an in-line iron loss meter installed on the exit side of the annealing furnace of the flattening annealing line, and the iron loss profile in the coil longitudinal direction is acquired. Next, after TiN coating, samples were taken from a total of 5 locations, from the location where the iron loss in the iron loss profile was high, to 3 locations in the plate width direction and 2 locations in the coil longitudinal direction (center in the width direction). The magnetic properties were collected and measured according to the method of JIS C2550.
Of the above five locations, the magnetic flux density B 8 and W 17/50 in the sample having the worst magnetic characteristics are used as the representative values of the coil. We evaluated whether or not.
The above measurement evaluation results are also shown in Table 1.

Figure 2010100885
Figure 2010100885

同表に示したとおり、本発明によれば、インヒビターを含まない成分系において、コイル全長にわたり良好な磁気特性の方向性電磁鋼板を得ることができた。   As shown in the table, according to the present invention, it was possible to obtain a grain-oriented electrical steel sheet having good magnetic properties over the entire coil length in a component system that does not contain an inhibitor.

<実施例2>
表2に示す成分を含み、残部がFeおよび不可避的不純物からなる鋼スラブを連続鋳造にて製造した。ついで、1250℃でスラブ加熱し、熱間圧延により板厚2.3mm厚さの熱延板とした。次に、1000℃で35秒の熱延板焼鈍を施し、1回目の冷間圧延により板厚0.82mmの鋼板とした。ついで、1000℃で40秒の中間焼鈍を施したのち、2回目の冷間圧延により板厚0.23mmの最終厚さに仕上げた。引き続き、850℃で60秒の再結晶焼鈍を行い、MgOを主体とする焼鈍分離剤を塗布し、1250℃で10時間の仕上げ焼鈍を行った。この際10時間の保定のうち後半5時間をAr雰囲気とし、それ以外は水素雰囲気とした。最後にリン酸マグネシウムとほう酸を主体とした張力付与コーティングの形成を兼ねた平坦化焼鈍を900℃で15秒行った。
<Example 2>
A steel slab containing the components shown in Table 2 with the balance being Fe and inevitable impurities was produced by continuous casting. Subsequently, the slab was heated at 1250 ° C., and a hot-rolled sheet having a thickness of 2.3 mm was formed by hot rolling. Next, hot-rolled sheet annealing was performed at 1000 ° C. for 35 seconds, and a steel sheet having a thickness of 0.82 mm was obtained by the first cold rolling. Then, after intermediate annealing at 1000 ° C. for 40 seconds, a final thickness of 0.23 mm was obtained by the second cold rolling. Subsequently, recrystallization annealing was performed at 850 ° C. for 60 seconds, an annealing separator mainly composed of MgO was applied, and final annealing was performed at 1250 ° C. for 10 hours. At this time, Ar atmosphere was set for the latter half 5 hours out of 10 hours holding, and hydrogen atmosphere was set for the rest. Finally, flattening annealing was performed at 900 ° C. for 15 seconds, which also served to form a tension-imparting coating mainly composed of magnesium phosphate and boric acid.

得られたサンプルの磁気特性を、実施例1と同様な手順に従い、焼鈍後の鋼板について測定および評価をした。
その結果を表2に併記する。
The magnetic properties of the obtained samples were measured and evaluated for the steel plates after annealing according to the same procedure as in Example 1.
The results are also shown in Table 2.

Figure 2010100885
Figure 2010100885

同表に示したとおり、本発明によれば、インヒビターを含まない成分系において、コイル全長にわたり良好な磁気特性の方向性電磁鋼板を得ることができた。   As shown in the table, according to the present invention, it was possible to obtain a grain-oriented electrical steel sheet having good magnetic properties over the entire coil length in a component system that does not contain an inhibitor.

本発明によれば、インヒビターを含まない成分系において、コイル全長・全幅にわたって磁気特性に優れた方向性電磁鋼板を得ることができ、この方向性電磁鋼板は、強い磁束密度が必要なコイルの鉄心などの用途に供して極めて有効である。   According to the present invention, in a component system that does not contain an inhibitor, it is possible to obtain a grain-oriented electrical steel sheet having excellent magnetic properties over the entire length and width of the coil. It is extremely effective when used for such applications.

鋼中のAlとNの比Al/Nと磁束密度Bとの関係を示した図である。It is a diagram showing the relationship between the ratio Al / N and the magnetic flux density B 8 of Al and N in the steel. 鋼中に添加した微量元素の種類と磁束密度Bとの関係を比較して示した図である。It is a diagram comparatively showing relations between the type and the magnetic flux density B 8 of the added trace elements in the steel.

Claims (2)

質量%で、C:0.10%以下、Si:2.0〜8.0%およびMn:0.005〜1.0%を含有し、Alを100ppm以下、かつN、SおよびSeを各々50ppm以下とし、残部Feおよび不可避的不純物からなるスラブを、熱間圧延し、必要に応じて熱延板焼鈍を施した後、1回または中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚に仕上げ、ついで再結晶焼鈍を施した後、仕上げ焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法において、
上記スラブ中に含有されるAl量とN量の比を質量比で1.4以上にすると共に、上記スラブ中にさらに、B、Ta、NbおよびVのうちから選んだ1種または2種以上を合計で10〜150ppm含有させることを特徴とする方向性電磁鋼板の製造方法。
In mass%, C: 0.10% or less, Si: 2.0-8.0%, and Mn: 0.005-1.0%, Al is 100 ppm or less, N, S, and Se are 50 ppm or less respectively, the remainder Fe and inevitable impurities The slab made of is hot-rolled and, if necessary, hot-rolled sheet annealing is performed, then cold rolling is performed once or two or more times with intermediate annealing between them to finish to the final thickness, and then recrystallization annealing In the method for producing a grain-oriented electrical steel sheet comprising a series of steps of performing finish annealing,
The ratio of the amount of Al and N contained in the slab is set to 1.4 or more in terms of mass ratio, and one or more selected from B, Ta, Nb and V are further added to the slab. A method for producing a grain-oriented electrical steel sheet, characterized by containing 10 to 150 ppm.
前記スラブ中に、質量%でさらに、Ni:0.01〜1.50%、Cr:0.01〜0.50%、Cu:0.01〜0.50%、P:0.005〜0.50%、Sn:0.005〜0.50%、Sb:0.005〜0.50%、Bi:0.005〜0. 50%およびMo:0.005〜0. 10%のうちから選んだ少なくとも1種を含有することを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。   In the slab, Ni: 0.01 to 1.50%, Cr: 0.01 to 0.50%, Cu: 0.01 to 0.50%, P: 0.005 to 0.50%, Sn: 0.005 to 0.50%, Sb: 0.005 to 0.50 2. The method for producing a grain-oriented electrical steel sheet according to claim 1, comprising at least one selected from%, Bi: 0.005 to 0.50%, and Mo: 0.005 to 0.10%.
JP2008272261A 2008-10-22 2008-10-22 Method for producing grain-oriented electrical steel sheet Active JP5338254B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008272261A JP5338254B2 (en) 2008-10-22 2008-10-22 Method for producing grain-oriented electrical steel sheet
KR1020147015188A KR20140077223A (en) 2008-10-22 2009-10-21 Method for manufacturing grain-oriented electrical steel sheet
PCT/JP2009/068444 WO2010047414A1 (en) 2008-10-22 2009-10-21 Method for manufacturing grain-oriented electrical steel sheet
KR1020117009021A KR20110074547A (en) 2008-10-22 2009-10-21 Method for manufacturing grain-oriented electrical steel sheet
CN200980141876.5A CN102197149B (en) 2008-10-22 2009-10-21 Method for manufacturing grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008272261A JP5338254B2 (en) 2008-10-22 2008-10-22 Method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2010100885A true JP2010100885A (en) 2010-05-06
JP5338254B2 JP5338254B2 (en) 2013-11-13

Family

ID=42291774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008272261A Active JP5338254B2 (en) 2008-10-22 2008-10-22 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP5338254B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012112006A (en) * 2010-11-26 2012-06-14 Jfe Steel Corp Grain-oriented magnetic steel sheet and method for producing the same
KR20160142881A (en) 2014-05-12 2016-12-13 제이에프이 스틸 가부시키가이샤 Method for producing oriented electromagnetic steel sheet
JP2017101311A (en) * 2015-12-04 2017-06-08 Jfeスチール株式会社 Manufacturing method of oriented electromagnetic steel sheet
WO2017155057A1 (en) * 2016-03-09 2017-09-14 Jfeスチール株式会社 Method for manufacturing grain-oriented electrical steel sheet
JP2017160489A (en) * 2016-03-09 2017-09-14 Jfeスチール株式会社 Manufacturing method of oriented electromagnetic steel sheet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129356A (en) * 1998-10-28 2000-05-09 Kawasaki Steel Corp Production of grain oriented silicon steel sheet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129356A (en) * 1998-10-28 2000-05-09 Kawasaki Steel Corp Production of grain oriented silicon steel sheet

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012112006A (en) * 2010-11-26 2012-06-14 Jfe Steel Corp Grain-oriented magnetic steel sheet and method for producing the same
KR20160142881A (en) 2014-05-12 2016-12-13 제이에프이 스틸 가부시키가이샤 Method for producing oriented electromagnetic steel sheet
US10294543B2 (en) 2014-05-12 2019-05-21 Jfe Steel Corporation Method for producing grain-oriented electrical steel sheet
JP2017101311A (en) * 2015-12-04 2017-06-08 Jfeスチール株式会社 Manufacturing method of oriented electromagnetic steel sheet
WO2017155057A1 (en) * 2016-03-09 2017-09-14 Jfeスチール株式会社 Method for manufacturing grain-oriented electrical steel sheet
JP2017160489A (en) * 2016-03-09 2017-09-14 Jfeスチール株式会社 Manufacturing method of oriented electromagnetic steel sheet
WO2017154929A1 (en) * 2016-03-09 2017-09-14 Jfeスチール株式会社 Method for manufacturing grain-oriented electrical steel sheet
JPWO2017155057A1 (en) * 2016-03-09 2018-09-06 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
CN108699621A (en) * 2016-03-09 2018-10-23 杰富意钢铁株式会社 The manufacturing method of orientation electromagnetic steel plate
US11066722B2 (en) 2016-03-09 2021-07-20 Jfe Steel Corporation Method of producing grain-oriented electrical steel sheet
US11332801B2 (en) 2016-03-09 2022-05-17 Jfe Steel Corporation Method of producing grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP5338254B2 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
KR101684397B1 (en) Method for producing grain-oriented electrical steel sheet
JP5754097B2 (en) Oriented electrical steel sheet and manufacturing method thereof
KR101921401B1 (en) Method for producing grain-oriented electrical steel sheet
CA2900111C (en) Method for producing grain-oriented electrical steel sheet
US20190055619A1 (en) Method of producing grain-oriented electrical steel sheet
WO2010047414A1 (en) Method for manufacturing grain-oriented electrical steel sheet
US11332801B2 (en) Method of producing grain-oriented electrical steel sheet
JP4962516B2 (en) Method for producing grain-oriented electrical steel sheet
JP6260513B2 (en) Method for producing grain-oriented electrical steel sheet
KR20160138253A (en) Method for producing oriented electromagnetic steel sheet
JP6443355B2 (en) Method for producing grain-oriented electrical steel sheet
JP5338254B2 (en) Method for producing grain-oriented electrical steel sheet
JP5728887B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP6888603B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP5375694B2 (en) Method for producing grain-oriented electrical steel sheet
JP6418226B2 (en) Method for producing grain-oriented electrical steel sheet
JP6369626B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP5754115B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5527094B2 (en) Method for producing grain-oriented electrical steel sheet
JP5310510B2 (en) Method for producing grain-oriented electrical steel sheet
JP7255761B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2014173098A (en) Method of producing grain-oriented magnetic steel sheet
JP2002194444A (en) Method for producing grain oriented electrical steel sheet having excellent magnetic characteristic and film characteristic
WO2018123558A1 (en) Non-oriented electromagnetic steel sheet having excellent recyclability
KR20230170066A (en) METHOD OF MANUFACTURING GRAIN-ORIENTED ELECTRICAL STEEL SHEET

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130722

R150 Certificate of patent or registration of utility model

Ref document number: 5338254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250