WO2010047414A1 - Method for manufacturing grain-oriented electrical steel sheet - Google Patents

Method for manufacturing grain-oriented electrical steel sheet Download PDF

Info

Publication number
WO2010047414A1
WO2010047414A1 PCT/JP2009/068444 JP2009068444W WO2010047414A1 WO 2010047414 A1 WO2010047414 A1 WO 2010047414A1 JP 2009068444 W JP2009068444 W JP 2009068444W WO 2010047414 A1 WO2010047414 A1 WO 2010047414A1
Authority
WO
WIPO (PCT)
Prior art keywords
annealing
slab
steel sheet
grain
ppm
Prior art date
Application number
PCT/JP2009/068444
Other languages
French (fr)
Japanese (ja)
Inventor
今村猛
村木峰男
早川康之
大村健
新垣之啓
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008272261A external-priority patent/JP5338254B2/en
Priority claimed from JP2009080090A external-priority patent/JP4962516B2/en
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020147015188A priority Critical patent/KR20140077223A/en
Priority to CN200980141876.5A priority patent/CN102197149B/en
Publication of WO2010047414A1 publication Critical patent/WO2010047414A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets

Definitions

  • the present invention relates to a method for producing a grain oriented electrical steel sheet suitable for use in transformer core materials and the like.
  • Patent Document 1 discloses a method of containing specified amounts of Al and S, that is, a method of using AlN and MnS as inhibitors.
  • Patent Document 2 discloses a method of containing a specified amount of at least one of S and Se, that is, a method of using MnS or MnSe as an inhibitor.
  • Patent Document 3 discloses a method using Pb, Sb, Nb, Te
  • Patent Document 4 discloses Zr, Ti, B, Nb, Ta. , V, Cr, and Mo are disclosed.
  • the method using these inhibitors is an effective method for developing secondary recrystallized grains stably, it is necessary to finely disperse the inhibitors in steel. It was necessary to re-dissolve the inhibitor component (inhibitor-forming element) once by slab heating at a high temperature of 1300 ° C. or higher. Further, since the inhibitor component causes deterioration of magnetic properties after secondary recrystallization, a purification annealing step for removing the inhibitor is required, and the step is performed at 1100 ° C. or higher. It was necessary to control the atmosphere at a high temperature.
  • Patent Document 5 proposes a technique for developing Goss oriented crystal grains by secondary recrystallization in a material that does not contain an inhibitor component. This method reveals the grain boundary misorientation dependence of the grain boundary energy of the grain boundary during primary recrystallization by eliminating impurities such as inhibitor components as much as possible. This is a technique for performing secondary recrystallization of grains having Goth orientation without using an inhibitor. This effect is called a texture inhibition effect. Since the method of Patent Document 5 does not require a step of purifying the inhibitor, the final finish annealing does not need to be performed at a high temperature, and since the inhibitor does not need to be finely dispersed in the steel, high-temperature slab heating is also possible. Since this method is not necessary, it is a method having great merit in terms of manufacturing cost and equipment maintenance.
  • Japanese Patent Publication No. 40-15644 Japanese Patent Publication No. 51-13469 Japanese Patent Publication No. 38-8214 JP-A-52-24116 JP 2000-129356 A
  • the component system that does not contain an inhibitor has few precipitates that suppress grain growth, so that the grain size tends to increase due to grain growth during annealing, that is, the annealing temperature dependency is strong.
  • the grain size after hot band annealing and after recrystallization annealing also fluctuates due to slight variations in process conditions, specifically variations in each annealing temperature.
  • the magnetic characteristics at the full length and the full width fluctuate, and the problem that good magnetic characteristics cannot be obtained as a whole coil has become apparent.
  • the present invention advantageously solves the above-described problems, and an object of the present invention is to propose an advantageous method for producing a grain-oriented electrical steel sheet that can achieve high-level stabilization of product magnetic properties.
  • Magnetic flux density B 8 (magnetizing force 800 A / m) of the obtained sample was measured according to the method of JIS C2550. Although the obtained magnetic flux density seemed to fluctuate at first glance, a very good correlation was obtained when arranged by the ratio of Al and N of steel slab components.
  • an annealing separator mainly composed of MgO is applied, and then 1200 Finish annealing was performed at 10 ° C. for 10 hours. Thereafter, planarization annealing was performed at 900 ° C. for 15 seconds under the condition of forming a tension-imparting coating mainly composed of magnesium phosphate and boric acid.
  • the magnetic flux density B 8 of the resulting samples was measured according to the method of JIS C2550. The result is shown in FIG. As shown in the figure, it can be seen that the magnetic flux density B 8 (vertical axis: unit T) obtained varies greatly depending on the types of added Zr, Ti, B, Nb and V. That is, the sample to which Zr (left end) and Ti (second from the left) were added had a low magnetic flux density and did not develop secondary recrystallization. On the other hand, when Nb (third from the same), B (third from the right), and V (second from the right) are added, the magnetic flux density is higher than when not added (right end). It became clear.
  • each steel slab was slab heated at 1250 ° C., it was hot-rolled to a hot-rolled sheet having a thickness of 2.8 mm, then annealed at 1100 ° C. for 60 seconds and then cold-rolled to a final thickness of 0.30 mm. Finished. Then, after recrystallization annealing in a soaking condition of 50% N 2 -50% H 2 at 840 ° C. for 80 seconds, after applying an annealing separator mainly composed of MgO, 1200 Finish annealing was performed at 10 ° C. for 10 hours. Thereafter, planarization annealing was performed at 900 ° C. for 15 seconds under the condition of forming a tension-imparting coating mainly composed of magnesium phosphate and boric acid.
  • the iron loss of the entire length of the coil is measured in advance with an in-line iron loss meter, a total of five samples are taken from the inside of the coil by the same method as in Experiment 1b, and the magnetic properties of the obtained sample are JIS C 2550 As a representative value of the coil, the value having the worst magnetic characteristics among the five locations was measured.
  • FIG. 4 shows that the magnetic flux density B 8 (vertical axis: unit T) varies greatly depending on the trace element added by about 50 ppm.
  • secondary recrystallization did not appear in the Zr additive (left end) and the Ti additive (second from the left) having a low magnetic flux density.
  • Nb third from the left
  • B third from the right
  • V second from the same
  • the reason why the magnetic characteristics change due to the addition of a trace element or the reason why the magnetic characteristics improve by adding at least one of B, Nb, and V is not necessarily clearly elucidated.
  • the elements having poor magnetic characteristics are Zr and Ti whose nitride is more stable than Al, and the elements having good magnetic characteristics are B and B whose nitride is unstable than Al. Nb and V. From this, when Zr and Ti are present, it is presumed that N in the steel is combined with these elements and the formation of ZrN and TiN deteriorates the magnetic properties. On the other hand, even if B, Nb, or V exists, N in the steel is considered to form a stable nitride with Al, and a nitride with B, Nb, or V is not formed.
  • the inventors conducted further experiments to investigate the effect of uniformizing the particle size.
  • a specific element is added in a small amount as described above, and the ratio of the impurities Al and N is specified, and further, the intended purpose is further controlled by controlling the rate of temperature increase during recrystallization annealing. The knowledge that it was achieved advantageously was obtained.
  • the final thickness was 0.23 mm by the second cold rolling.
  • recrystallization annealing was performed in a soaking condition of 50% N 2 -50% H 2 at 850 ° C. for 60 seconds. At this time, the average rate of temperature increase between 600 and 800 ° C. was variously changed.
  • the recrystallized particle size of the obtained sample was measured, and the average particle size and its standard deviation were determined from the particle size distribution.
  • the recrystallized grain size is measured by cutting a section perpendicular to the rolling direction of the sample, etching with a nital liquid (nitral) and observing it with an optical microscope, and using an image processing device to check the grains in the field of view by an elliptical approximation method (fitting an approximate to an ellipse, and the average of the major axis and minor axis dimensions was taken as the grain size of the grains.
  • the above samples were collected from both ends and the center in the width direction of the produced recrystallized plate, and the observation location was set to the full thickness. Samples were collected so that the number of observed grains was at least 2000 in total in both ends and the center.
  • the standard deviation (vertical axis) when the average grain size is normalized to 1.0 is the temperature increase rate of recrystallization annealing (horizontal axis (average temperature increase rate between 600 to 800 ° C.): unit ° C. / S).
  • horizontal axis average temperature increase rate between 600 to 800 ° C.
  • S unit ° C. / S
  • the inventors define the ratio of Al and N, and control the rate of temperature rise during recrystallization annealing in a system in which at least one of B, Nb and V is added in a trace amount. This led to the conclusion that a grain-oriented electrical steel sheet having even better magnetic properties (including uniformity of magnetic properties) can be obtained.
  • the present invention is based on the above findings.
  • the gist configuration of the present invention is as follows. (1) By mass%, C: 0.10% or less, Si: 2.0 to 8.0% and Mn: 0.005 to 1.0%, Al 100 ppm or less, N, S and A grain-oriented electrical steel sheet comprising a series of steps in which Se is set to 50 ppm or less, and the balance is finished by rolling a slab composed of Fe and inevitable impurities to finish the final plate thickness, and then performing recrystallization annealing and then finishing annealing. In the manufacturing method, The ratio of the amount of Al and the amount of N contained in the slab is set to 1.4 or more in terms of mass ratio, and one or more selected from B, Nb and V are further added to the slab. A method for producing a grain-oriented electrical steel sheet, characterized by containing 10 to 150 ppm in total.
  • C 0.10% or less
  • Si 2.0 to 8.0%
  • Mn 0.005 to 1.0%
  • N, S And Se are each reduced to 50 ppm or less
  • the balance is composed of a series of steps in which a final slab is rolled by rolling a slab composed of Fe and inevitable impurities, and then subjected to recrystallization annealing and then finish annealing.
  • the slab further contains one or more selected from B, Nb and V in a total range of 10 to 150 ppm, and the ratio of Al to N contained as impurities is expressed as Al by mass ratio. /N ⁇ 1.4, and the average heating rate between 600 and 800 ° C. in recrystallization annealing is set to 15 ° C./s or more.
  • the present invention in a component system that does not substantially contain an inhibitor, it is possible to reduce variations in magnetic characteristics in the longitudinal direction and width direction of the coil, and as a result, excellent magnetic characteristics (that is, high-level stability) as a whole product coil. Can be obtained.
  • FIG. 1 is a graph showing the relationship between the Al / N ratio Al / N (horizontal axis: mass ratio) in steel and the magnetic flux density B 8 (vertical axis: unit T).
  • FIG. 2 is a graph showing the relationship between the ratio Al / N (horizontal axis: mass ratio) between impurities Al and N in steel and the magnetic flux density B 8 (vertical axis: unit T).
  • FIG. 3 is a diagram showing a comparison of the relationship between the type of trace elements added to steel (horizontal axis) and the magnetic flux density B 8 (vertical axis: unit T).
  • FIG. 1 is a graph showing the relationship between the Al / N ratio Al / N (horizontal axis: mass ratio) in steel and the magnetic flux density B 8 (vertical axis: unit T).
  • FIG. 2 is a graph showing the relationship between the ratio Al / N (horizontal axis: mass ratio) between impurities Al and N in steel and the magnetic flux density B 8 (vertical
  • FIG. 4 is a diagram showing the relationship between the type of trace elements added to the steel (horizontal axis) and the magnetic flux density B 8 (vertical axis: unit T).
  • FIG. 5 is a diagram showing the standard deviation (vertical axis) when the average grain size is normalized to 1.0 in relation to the rate of temperature increase of recrystallization annealing (horizontal axis: ° C./s).
  • the present invention will be specifically described below. First, the reason why the component composition of the slab is limited to the above range in the present invention will be described. In principle, the reason for limitation will be described for each element, but this does not mean that each element affects each other independently, and it is effective on the assumption that other elements are within the scope of the present specification. . In other words, the range limitation of each element achieves the target effect or a more preferable effect by the range limitation of other elements or the combination effect with manufacturing conditions. As described above,% and ppm in the composition are based on mass unless otherwise specified.
  • C 0.10% or less
  • the amount of C exceeds 0.10%, it is difficult to reduce to 50 ppm or less where magnetic aging does not occur even when decarburization treatment is performed. Therefore, the C content is limited to 0.10% or less.
  • a particularly preferable range is 0.04% or less.
  • a smaller amount of C is desirable, but industrially, it is generally contained at 30 ppm or more.
  • Si 2.0 to 8.0% Si is an element necessary for increasing the specific resistance of steel and improving iron loss, but its effect is poor at less than 2.0%. On the other hand, if it exceeds 8.0%, workability deteriorates and rolling becomes difficult. Therefore, the Si content is limited to the range of 2.0 to 8.0%. A particularly preferred lower limit is 2.8%. A particularly preferred upper limit is 3.5%.
  • Mn 0.005 to 1.0%
  • Mn is an element necessary for improving the hot workability, but its effect is poor when it is less than 0.005%.
  • Mn if it exceeds 1.0%, the magnetic flux density of the product plate decreases. For this reason, the amount of Mn was limited to the range of 0.005 to 1.0%.
  • a particularly preferred lower limit is 0.02%.
  • a particularly preferred upper limit is 0.20%.
  • Al 100 ppm or less
  • N, S, Se 50 ppm or less
  • the amount of Al is 100 ppm or less
  • the amount of N, S, and Se is 50 ppm or less.
  • Al and Se are elements that are difficult to remove (purify) from the steel by finish annealing or the like, and therefore, it is more preferable that Al is 80 ppm and Se is 20 ppm or less. In general, it is generally contained 20 ppm or more and 6 ppm or more, respectively.
  • N and S which are light elements, are difficult to remove completely at the time of adjusting the components before making the steel slab, and if no special treatment is performed, about 20 ppm each remains in the steel plate. It is common.
  • the mass ratio of Al to N (Al / N) is required to be 1.4 or more for the reasons described above, and in particular, when Al / N is set to 2.0 or more, the magnetic properties are improved. More desirable. Further, as described above, since it is difficult to completely remove N, addition of a trace amount of Al in the range of 100 ppm or less to satisfy Al / N ⁇ 1.4 is not prevented.
  • the upper limit of Al / N is not necessary from the viewpoint of the effect, but generally does not exceed 5 from the lower limit of 20 ppm of the industrial N amount.
  • One or more selected from B, Nb and V 10 to 150 ppm in total Furthermore, in order to sufficiently obtain the effect of improving the magnetic characteristics in the present invention, it is necessary to add 10 ppm or more of one or more of B, Nb and V. The reason is as described above. If the total addition amount is less than 10 ppm, the addition effect is small. Preferably, when each addition amount is 10 ppm or more, the effect of the present invention can be obtained more reliably. More preferably, each is 20 ppm or more. However, since these trace additive elements remain in the base iron even in the final product and cause deterioration of iron loss, the total amount is limited to 150 ppm or less.
  • the total amount is preferably 100 ppm or less, and more preferably 50 ppm or less.
  • the most preferable element is Nb, which is superior to others in the effect of making the crystal grain size uniform after recrystallization annealing.
  • the essential element and the suppressing element have been described.
  • at least one selected from Ni, Cr, Cu, P, Sn, Sb, Bi, and Mo as other magnetic property improving elements is described below. It can contain suitably in the range.
  • Ni 0.01-1.50%
  • Ni is an element useful for improving the magnetic properties by improving the hot-rolled sheet structure, but if the addition amount is less than 0.01%, the addition effect is poor. On the other hand, if it exceeds 1.50%, the secondary recrystallization becomes unstable and the magnetic properties deteriorate. Preferably it is 0.010% or more.
  • Sn 0.005 to 0.50%
  • Sb 0.005 to 0.50%
  • Bi 0.005 to 0.50%
  • Mo 0.005 to 0.10%
  • the upper limit of Mo is preferably 0.100% or less.
  • the molten steel adjusted to the above preferred component composition is made into a slab by a normal ingot-making method or a continuous casting method. Further, a thin cast piece having a thickness of 100 mm or less may be manufactured by a direct casting method. In the case of a slab, it is heated and rolled by a normal method, but may be immediately subjected to hot rolling without heating after casting. In the case of a thin slab, hot rolling may be performed, or the hot rolling may be omitted and the process may proceed as it is.
  • the slab heating temperature before hot rolling is a component system that does not contain an inhibitor component with reduced Al, N, S, and Se
  • high temperature annealing is required to dissolve the inhibitor, which has been essential in the past. do not do. Therefore, a low temperature of 1250 ° C. or lower is desirable in terms of cost.
  • the hot-rolled sheet annealing temperature for obtaining good magnetic properties is preferably about 800 to 1150 ° C. If the hot-rolled sheet annealing temperature is less than 800 ° C., a band texture in hot rolling remains, making it difficult to achieve a sized primary recrystallized structure and inhibiting the development of secondary recrystallization. (When a band structure that requires hot-rolled sheet annealing is present in advance). On the other hand, if the hot-rolled sheet annealing temperature exceeds 1150 ° C., the grain size after the hot-rolled sheet annealing is excessively coarsened, which is extremely disadvantageous in realizing a sized primary recrystallized structure.
  • hot-rolled sheet annealing After hot-rolled sheet annealing, it is subjected to recrystallization annealing after cold rolling at least once with intermediate or intermediate annealing.
  • the temperature is raised to 100 to 300 ° C., and the aging treatment at 100 to 300 ° C. is performed once or a plurality of times in the course of cold rolling in order to improve the magnetic properties. It is advantageous.
  • Recrystallization annealing is performed in a wet atmosphere when decarburization is required, but may be performed in a dry atmosphere when decarburization is not required.
  • the soaking temperature in this recrystallization annealing is not particularly limited as long as it is equal to or higher than the recrystallization temperature, but there is a concern that annealing at an excessively high temperature results in a coarse crystal grain size and unstable secondary recrystallization. Therefore, the upper limit of the annealing temperature is preferably about 1050 ° C.
  • a technique for increasing the amount of Si by a siliconization method may be used in combination.
  • the average temperature increase rate from 600 ° C. to 800 ° C. is 15 ° C./s or more. This is because when the average value of the heating rate is 15 ° C./s or more, as shown in FIG. 5, the standard deviation when the average particle size is normalized to 1.0 is extremely small. This is because the variation in the particle size becomes very small, which is further advantageous in obtaining excellent magnetic characteristics stably.
  • the upper limit value of the average temperature increase rate is not particularly limited and is preferably as large as possible. However, from the viewpoint of temperature control, it is preferable to adjust the temperature increase rate within a range of 300 ° C./s or less.
  • the average rate of temperature rise may be determined by measuring the surface temperature of the plate with a radiation thermometer and dividing the temperature rise (200 ° C.) by the time from 600 ° C. to 800 ° C.
  • a secondary recrystallized structure is developed by applying a final annealing after applying an annealing separator mainly composed of MgO. It is possible to form a forsterite film.
  • the main component is silica or alumina that inhibits the formation of the forsterite film even if it is used or not used. Use things. When these annealing separators are applied, it is effective to perform electrostatic coating that does not carry moisture, and a heat-resistant inorganic material sheet (silica, alumina, mica) may be used.
  • the finish annealing is desirably performed at 800 ° C. or higher for secondary recrystallization.
  • the holding temperature is preferably about 850 to 950 ° C., and the finish annealing is finished at the holding stage. It is also possible.
  • finish annealing also has the meaning of purification annealing.
  • This insulating coating is desirably a coating that can apply tension to the steel sheet in order to reduce iron loss.
  • a coating method that deposits inorganic material on the steel sheet surface by a tension coating application method through a binder, physical vapor deposition method, or chemical vapor deposition method a coating film with excellent adhesion can be obtained, and iron loss reduction effect Will also improve.
  • Example 1 C 0.018 to 0.023%, Si: 3.20 to 3.40%, Mn: 0.10 to 0.15%, Cr: 0.03 to 0.05%, Al: 30 to 140 ppm and A steel slab containing N: 29 to 50 ppm, having an Al / N ratio shown in Table 1, further containing the Nb amount shown in Table 1, and the balance being Fe and inevitable impurities was produced by continuous casting. . Subsequently, the slab was heated at 1200 ° C., and a hot rolled sheet having a thickness of 2.2 mm was formed by hot rolling. Next, hot-rolled sheet annealing was performed at 1060 ° C. for 40 seconds, and finished to a thickness of 0.23 mm by one cold rolling.
  • the collection of the magnetic property measurement sample and the measurement of the magnetic property in this example were performed according to the following procedure.
  • the magnetic properties were collected and measured according to the method of JIS C2550. Of the above five locations, the magnetic flux density B8 and W17 / 50 in the sample having the worst magnetic characteristics is used as a representative value of the coil. Was evaluated.
  • the above measurement evaluation results are also shown in Table 1.
  • the Al / N ratio is the value shown in Table 2, and further contains the amount of Nb shown in Table 2, with the balance being a steel slab composed of Fe and inevitable impurities.
  • the iron loss of the entire length of the coil was measured in advance with an in-line iron loss meter, and a total of 5 samples were collected: 3 places where the iron loss was bad in the full length measurement and 2 ends of the coil: 2 places.
  • the magnetic properties (magnetic flux density B 8 , iron loss W 17/50 ) of the obtained sample were measured by the method described in JIS C 2550, and the value with the worst magnetic properties among the five locations was taken as the representative value of the coil. did. In this method, when the variation in the magnetic characteristics is large, the representative value is deteriorated. Therefore, it can be considered that the variation in the coil can be quantified.
  • Table 2 The obtained results are also shown in Table 2.
  • Example 3 A steel slab containing the components shown in Table 3 with the balance being Fe and inevitable impurities was produced by continuous casting. Subsequently, the slab was heated at 1250 ° C., and a hot-rolled sheet having a thickness of 2.3 mm was formed by hot rolling. Next, hot-rolled sheet annealing was performed at 1000 ° C. for 35 seconds, and a steel sheet having a thickness of 0.82 mm was formed by the first cold rolling. Subsequently, after performing an intermediate annealing at 1000 ° C. for 40 seconds, a final thickness of 0.23 mm was obtained by the second cold rolling. Subsequently, recrystallization annealing was performed at 850 ° C.
  • an annealing separator mainly composed of MgO was applied, and final annealing was performed at 1250 ° C. for 10 hours.
  • the Ar atmosphere was set for the latter half 5 hours out of the 10-hour holding, and the hydrogen atmosphere was set for the rest.
  • planarization annealing was performed at 900 ° C. for 15 seconds, which also served to form a tension-imparting coating mainly composed of magnesium phosphate and boric acid.
  • the iron loss of the entire length of the coil was measured in advance with an in-line iron loss meter, and a total of 5 samples were collected: 3 places where the iron loss was bad in the full length measurement and 2 ends of the coil: 2 places.
  • the magnetic properties (magnetic flux density B 8 , iron loss W 17/50 ) of the obtained sample were measured by the method described in JIS C 2550, and the value with the worst magnetic properties among the five locations was taken as the representative value of the coil. did. In this method, when the variation in the magnetic characteristics is large, the representative value is deteriorated. Therefore, it can be considered that the variation in the coil can be quantified.
  • Table 4 The obtained results are also shown in Table 4.
  • recrystallization annealing was performed at 835 ° C. for 90 seconds in a wet atmosphere of 60% N 2 -40% H 2 .
  • the average temperature increase rate between 600 and 800 ° C. was variously changed as shown in Table 5.
  • purification annealing was performed at 1200 ° C. for 25 hours.
  • flattening annealing was performed at 900 ° C. for 15 seconds under the condition of forming a tension-imparting coating mainly composed of magnesium phosphate and boric acid.
  • the iron loss of the entire length of the coil was measured in advance with an in-line iron loss meter, and a total of 5 samples were collected: 3 places where the iron loss was bad in the full length measurement and 2 ends of the coil: 2 places.
  • the magnetic properties (magnetic flux density B 8 , iron loss W 17/50 ) of the obtained sample were measured by the method described in JIS C 2550, and the value with the worst magnetic properties among the five locations was taken as the representative value of the coil. did. In this method, when the variation in the magnetic characteristics is large, the representative value is deteriorated. Therefore, it can be considered that the variation in the coil can be quantified.
  • Table 5 The obtained results are also shown in Table 5.
  • the average temperature increase rate between 600 to 800 ° C. in the recrystallization annealing step to 15 ° C./s or more, even better magnetic properties can be obtained.
  • the average temperature rising rate is less than 15 ° C./s, the magnetic properties deteriorate due to variations.
  • the magnetic properties can be improved by making Al / N 1.4 or more and containing a predetermined amount of trace elements. Can do.
  • the present invention in a component system that does not contain an inhibitor, variation in magnetic characteristics in the longitudinal direction and width direction of the coil can be reduced, and as a result, good magnetic characteristics can be obtained as a whole product coil. That is, it is possible to obtain a grain-oriented electrical steel sheet having excellent magnetic characteristics over the entire length and width of the coil, and this grain-oriented electrical steel sheet is extremely effective for applications such as a coil core that requires a strong magnetic flux density.

Abstract

Provided is a method for manufacturing a grain-oriented electrical steel sheet with highly stable magnetic characteristics using a component system containing no inhibitor. In the manufacture of the grain-oriented electrical steel sheet using a slab made of the component system containing no inhibitor, the slab contains a total of 10-150 ppm of at least one kind of microelement selected from B, Nb, and V, the mass ratio of Al and N included as impurities is Al/N = 1.4; and preferably, the average temperature increase rate between 600°C and 800°C during recrystallization annealing is 15°C/s or higher.

Description

方向性電磁鋼板の製造方法Method for producing grain-oriented electrical steel sheet
 本発明は、変圧器の鉄心材料等の用途に供して好適な方向性電磁鋼板(grain oriented electrical steel sheet)の製造方法に関するものである。 The present invention relates to a method for producing a grain oriented electrical steel sheet suitable for use in transformer core materials and the like.
 方向性電磁鋼板については、インヒビター(inhibitor)と呼ばれる析出物(precipitates)を使用して、仕上焼鈍(final annealing)中にゴス(Goss)方位を有する粒(grain)を優先的に二次再結晶(secondary recrystallization)させることが一般的な技術として知られている。例えば、特許文献1には、AlおよびSを指定量含有させる方法、すなわちAlN,MnSをインヒビターとして使用する方法が開示されている。 また、特許文献2には、SおよびSeの少なくとも一方を指定量含有させる方法、すなわちMnS,MnSeをインヒビターとして使用する方法が開示されている。 これらの方法は、それぞれ工業的に実用化されている。 For grain-oriented electrical steel sheets, pre-precipitates called inhibitors are used to preferentially recrystallize grains having Goss orientation during final annealing. (Secondary recrystallization) is known as a general technique. For example, Patent Document 1 discloses a method of containing specified amounts of Al and S, that is, a method of using AlN and MnS as inhibitors. Patent Document 2 discloses a method of containing a specified amount of at least one of S and Se, that is, a method of using MnS or MnSe as an inhibitor. These methods are industrially put into practical use.
 さらに、これらのインヒビターの作用を強化することを目的として、特許文献3には、Pb,Sb,Nb,Teを利用する方法が、また特許文献4には、Zr,Ti,B,Nb,Ta,V,Cr,Moを利用する方法が開示されている。 Further, for the purpose of enhancing the action of these inhibitors, Patent Document 3 discloses a method using Pb, Sb, Nb, Te, and Patent Document 4 discloses Zr, Ti, B, Nb, Ta. , V, Cr, and Mo are disclosed.
 これらのインヒビターを用いる方法は、安定して二次再結晶粒(secondary recrystallized grain)を発達(develop)させるのに有効な方法ではあるが、インヒビターを鋼中に微細分散(finely dispersed)させるために、1300℃以上の高温でのスラブ加熱(slab reheating)を行いインヒビター成分(inhibitor−forming element)を一旦再固溶させることが必要であった。また、 インヒビター成分は、二次再結晶後には磁気特性(magnetic property)を劣化させる原因となることから、インヒビターを除去する純化焼鈍(purification annealing)工程が必要となり、その工程は、1100℃以上の高温で、しかもその雰囲気を制御する必要があった。 Although the method using these inhibitors is an effective method for developing secondary recrystallized grains stably, it is necessary to finely disperse the inhibitors in steel. It was necessary to re-dissolve the inhibitor component (inhibitor-forming element) once by slab heating at a high temperature of 1300 ° C. or higher. Further, since the inhibitor component causes deterioration of magnetic properties after secondary recrystallization, a purification annealing step for removing the inhibitor is required, and the step is performed at 1100 ° C. or higher. It was necessary to control the atmosphere at a high temperature.
 一方、インヒビター成分を含有しない素材において、ゴス方位結晶粒(Goss oriented grain)を二次再結晶により発達させる技術が、特許文献5に提案されている。この方法は、インヒビター成分のような不純物をむしろ極力排除することで、一次再結晶時の結晶粒界(grain boundary)が持つ粒界エネルギーの粒界方位差角(misorientation)依存性を顕在化させる(elicit)ことにより、インヒビターを用いることなしにゴス方位を有する粒を二次再結晶させる技術である。 この効果はテクスチャーインヒビション効果(texture inhibition effect)と呼ばれている。 上記特許文献5の方法は、インヒビターを純化する工程が不要であるため、最終仕上げ焼鈍を高温にする必要がないこと、および、インヒビターを鋼中に微細分散させる必要がないため、高温スラブ加熱も必要としないことから、製造コストや設備メンテナンスの面でも大きなメリットを有する方法である。 On the other hand, Patent Document 5 proposes a technique for developing Goss oriented crystal grains by secondary recrystallization in a material that does not contain an inhibitor component. This method reveals the grain boundary misorientation dependence of the grain boundary energy of the grain boundary during primary recrystallization by eliminating impurities such as inhibitor components as much as possible. This is a technique for performing secondary recrystallization of grains having Goth orientation without using an inhibitor. This effect is called a texture inhibition effect. Since the method of Patent Document 5 does not require a step of purifying the inhibitor, the final finish annealing does not need to be performed at a high temperature, and since the inhibitor does not need to be finely dispersed in the steel, high-temperature slab heating is also possible. Since this method is not necessary, it is a method having great merit in terms of manufacturing cost and equipment maintenance.
特公昭40−15644号公報Japanese Patent Publication No. 40-15644 特公昭51−13469号公報Japanese Patent Publication No. 51-13469 特公昭38−8214号公報Japanese Patent Publication No. 38-8214 特開昭52−24116号公報JP-A-52-24116 特開2000−129356号公報JP 2000-129356 A
 しかしながら、インヒビターを含まない成分系は、粒成長を抑制する析出物が少ないため、焼鈍時の粒成長で粒径が大きくなりやすい、すなわち焼鈍温度依存性が強かった。 このため、若干の工程条件の変動、具体的には各焼鈍温度のばらつき(variation)で、熱延板焼鈍(hot band annealing)後や再結晶焼鈍後の粒径も変動し、従って製品コイルの全長全幅での磁気特性が変動し、コイル全体として良好な磁気特性が得られない、という問題が顕在化するようになった。 However, the component system that does not contain an inhibitor has few precipitates that suppress grain growth, so that the grain size tends to increase due to grain growth during annealing, that is, the annealing temperature dependency is strong. For this reason, the grain size after hot band annealing and after recrystallization annealing also fluctuates due to slight variations in process conditions, specifically variations in each annealing temperature. The magnetic characteristics at the full length and the full width fluctuate, and the problem that good magnetic characteristics cannot be obtained as a whole coil has become apparent.
 本発明は、上記の問題を有利に解決するもので、製品磁気特性の高位安定化を図ることができる方向性電磁鋼板の有利な製造方法を提案することを目的とする。 The present invention advantageously solves the above-described problems, and an object of the present invention is to propose an advantageous method for producing a grain-oriented electrical steel sheet that can achieve high-level stabilization of product magnetic properties.
 さて、発明者らは、上述の問題を解決すべく、粒径制御に影響があると思われる元素を中心に鋭意検討を重ねた結果、AlとNの比を所定の範囲に規制した上で、特定の元素を微量添加することにより、良好かつ安定的な磁気特性を得ることが可能であることを見出した。 以下、本発明を成功に至らしめた実験について説明する。
 なお、以下、%表示については、特に断らない限り質量%を意味するものとする。 ppm表示も同様に質量での値である。
Now, as a result of intensive studies focusing on elements that seem to have an influence on particle size control in order to solve the above problems, the inventors have regulated the ratio of Al and N within a predetermined range. The inventors have found that good and stable magnetic characteristics can be obtained by adding a small amount of a specific element. Hereinafter, experiments that have made the present invention successful will be described.
In the following description, “%” means “% by mass” unless otherwise specified. The ppm display is also a value by mass.
 (実験1a)
 C:0.012~0.073%、Si:3.15~3.33%、Mn:0.06~0.09%、Cr:0.02~0.06%、Sb:0.018~0.045%、Al:35~100ppm、N:14~70ppm、S:11~25ppmおよびNb:20~50ppmを有し、残部Feおよび不可避的不純物の組成になる鋼スラブを、連続鋳造(continuous casting process)にて製造し、1250℃でスラブ加熱後、熱間圧延により2.3mm厚さの熱延板(hot rolled steel sheet)とした。 次に、1050℃で15秒の熱延板焼鈍を施した後、冷間圧延により0.23mmの板厚に仕上げた。さらに、均熱条件が850℃で60秒の再結晶焼鈍を施した後、MgOを主体とする焼鈍分離剤を塗布してから、1200℃に10時間保定する仕上焼鈍を行った。 最後に、リン酸マグネシウムとホウ酸を主体とする張力付与コーティング(tension coating)の形成を兼ねた、平坦化焼鈍(flattening annealing)を900℃で15秒間施し、方向性電磁鋼板を作製した。
(Experiment 1a)
C: 0.012 to 0.073%, Si: 3.15 to 3.33%, Mn: 0.06 to 0.09%, Cr: 0.02 to 0.06%, Sb: 0.018 to A steel slab having 0.045%, Al: 35 to 100 ppm, N: 14 to 70 ppm, S: 11 to 25 ppm and Nb: 20 to 50 ppm and having a composition of the balance Fe and unavoidable impurities is continuously cast. A slab was heated at 1250 ° C. and then hot rolled to form a hot rolled sheet sheet having a thickness of 2.3 mm. Next, hot-rolled sheet annealing was performed at 1050 ° C. for 15 seconds, and then finished to a sheet thickness of 0.23 mm by cold rolling. Furthermore, after applying recrystallization annealing at 850 ° C. for 60 seconds, after applying an annealing separator mainly composed of MgO, finish annealing was performed by holding at 1200 ° C. for 10 hours. Finally, flattening annealing was performed at 900 ° C. for 15 seconds, which also served as the formation of tension coating mainly composed of magnesium phosphate and boric acid, to produce a grain-oriented electrical steel sheet.
 得られたサンプルの磁束密度(magnetic flux density)B(磁化力800A/m)をJIS C2550の方法に準拠して測定した。 得られた磁束密度は、一見ばらついているように見えたが、鋼スラブ成分のAlとNの比で整理すると極めて良い相関が得られた。 Magnetic flux density B 8 (magnetizing force 800 A / m) of the obtained sample was measured according to the method of JIS C2550. Although the obtained magnetic flux density seemed to fluctuate at first glance, a very good correlation was obtained when arranged by the ratio of Al and N of steel slab components.
 その結果を図1に示す。
 同図に示したとおり、Al/N(横軸:質量比)が小さいと磁束密度B(縦軸:単位T)が低下する傾向にあり、特にAl/N<1.4においては、ばらつきも大きくなることが分かる。
The result is shown in FIG.
As shown in the figure, when Al / N (horizontal axis: mass ratio) is small, the magnetic flux density B 8 (vertical axis: unit T) tends to decrease. Can be seen to be larger.
 (実験1b)
 C:0.035~0.043%、Si:3.23~3.30%、Mn:0.06~0.09%、Sb:0.027~0.045%、Cr:0.02~0.06%、P:0.012~0.015%、Al:28~100ppm、N:17~50ppm、S:15~26ppmおよびNb:25~47ppmを含有し、残部はFeおよび不可避的不純物からなる鋼スラブを、連続鋳造にて製造し、1250℃でスラブ加熱した後、熱間圧延により2.3mm厚の熱延板とし、ついで1050℃で15秒の熱延板焼鈍後、冷間圧延により0.23mmの最終板厚に仕上げた。その後、50%N−50%Hの湿潤雰囲気中にて均熱条件:850℃,60秒で再結晶焼鈍を施したのち、MgOを主体とする焼鈍分離剤を塗布してから、1200℃に10時間保定する仕上焼鈍を行った。 その後、リン酸マグネシウムとほう酸を主体とする張力付与コーティング形成を兼ねた平坦化焼鈍を900℃で15秒の条件で施した。
(Experiment 1b)
C: 0.035 to 0.043%, Si: 3.23 to 3.30%, Mn: 0.06 to 0.09%, Sb: 0.027 to 0.045%, Cr: 0.02 to Contains 0.06%, P: 0.012 to 0.015%, Al: 28 to 100 ppm, N: 17 to 50 ppm, S: 15 to 26 ppm and Nb: 25 to 47 ppm, the balance being Fe and inevitable impurities A steel slab made of the above is manufactured by continuous casting, heated at 1250 ° C., then hot rolled to a 2.3 mm thick hot rolled sheet, and then annealed at 1050 ° C. for 15 seconds and then cold rolled. A final thickness of 0.23 mm was obtained by rolling. Then, after recrystallization annealing in a soaking condition of 50% N 2 -50% H 2 at 850 ° C. for 60 seconds, an annealing separator mainly composed of MgO is applied, and then 1200 Finish annealing was performed at 10 ° C. for 10 hours. Thereafter, planarization annealing was performed at 900 ° C. for 15 seconds under the condition of forming a tension-imparting coating mainly composed of magnesium phosphate and boric acid.
 平坦化焼鈍後に、インライン鉄損計でコイル全長の鉄損(iron loss)を予め測定し、全長測定で鉄損が悪かった箇所:3箇所とコイル両端部:2箇所の計5箇所のサンプルを採取した。 得られたサンプルの磁気特性(磁束密度B)をJIS C 2550に記載の方法で測定し、5箇所のうち最も磁気特性が悪かった値をそのコイルの代表値とした。 この方法では、磁気特性のばらつきが大きい場合は代表値が悪くなることから、コイル内のばらつきも数値化できているとみなすことができる。 After flattening annealing, measure the iron loss of the entire length of the coil with an in-line iron loss meter in advance, and sample 5 locations in total: 3 locations where the iron loss was bad in the overall length measurement and 2 ends of the coil: 2 locations. Collected. The magnetic properties (magnetic flux density B 8 ) of the obtained sample were measured by the method described in JIS C 2550, and the value having the worst magnetic properties among the five locations was taken as the representative value of the coil. In this method, when the variation in the magnetic characteristics is large, the representative value is deteriorated. Therefore, it can be considered that the variation in the coil can be quantified.
 得られた磁気特性は一見ばらついているように見えたが、鋼スラブ成分中のAlとNの比Al/Nで整理するとよい相関が得られた。その結果を図2に示す。
 図2より、Al/N(横軸:質量比)が小さくなると磁気特性(縦軸:磁束密度B(T))が劣化し、特に1.4を下回るとばらつきが大きくなることが分かる。
 なお、図1、図2とも、Al/N≧2.0の場合は磁束密度がさらに幾分か高くなる傾向にある。
Although the obtained magnetic characteristics seemed to vary at first glance, a good correlation was obtained by arranging the ratio of Al to N in the steel slab component Al / N. The result is shown in FIG.
As can be seen from FIG. 2, the magnetic properties (vertical axis: magnetic flux density B 8 (T)) deteriorate as Al / N (horizontal axis: mass ratio) decreases, and the variation increases especially when the ratio is below 1.4.
In both FIG. 1 and FIG. 2, when Al / N ≧ 2.0, the magnetic flux density tends to be somewhat higher.
 そこで、Al/Nが磁束密度と相関を有する理由を追究するため、さらに実験を行った。すなわち、上述の実験1a、1bにおいてAl/Nが2.0付近でも磁束密度に変化が認められたことから、不純物として存在しているAlとNがAlNを形成(Al/Nは質量比で27/14≒1.93)しており、この化合物の挙動が関与していているのではないかと推測した。 そしてこの推測をさらに追及するため、窒化物形成元素を種々加えた実験を行った。 Therefore, further experiments were conducted to investigate the reason why Al / N has a correlation with the magnetic flux density. That is, in the above experiments 1a and 1b, a change in the magnetic flux density was observed even when Al / N was around 2.0, so that Al and N present as impurities formed AlN (Al / N is a mass ratio) 27 / 14≈1.93), and it was speculated that the behavior of this compound might be involved. In order to further pursue this assumption, an experiment was conducted in which various nitride forming elements were added.
 (実験2a)
 C:0.045~0.062%、Si:3.20~3.31%、Mn:0.04~0.16%、Cr:0.03~0.11%、Sb:0.015~0.037%、Mo:0.03~0.05%、Al:55~97ppm、N:20~49ppm(ただしAl/N:1.98~3.10)およびS:17~27ppmを含み、さらにZr、Ti、B、NbおよびVより1種を選んで各々約50ppm含有させた鋼スラブと、これら微量元素(Zr、Ti、B、NbおよびV)をいずれも含有させない鋼スラブとを、それぞれ連続鋳造にて製造した。 各鋼スラブの組成の残部はFeおよび不可避的不純物とした。 これらの鋼スラブを1250℃でスラブ加熱後、熱間圧延により2.2mm厚さの熱延板とした。 ついで、1100℃で60秒の熱延板焼鈍を施した後、冷間圧延により0.23mmの板厚に仕上げた。 さらに、均熱条件が840℃で80秒の再結晶焼鈍を施した後、MgOを主体とする焼鈍分離剤を塗布してから、1200℃に10時間保定する仕上焼鈍を行った。 最後に、リン酸マグネシウムとホウ酸を主体とする張力付与コーティングの形成を兼ねた平坦化焼鈍を900℃で15秒間施し、方向性電磁鋼板を作製した。
(Experiment 2a)
C: 0.045 to 0.062%, Si: 3.20 to 3.31%, Mn: 0.04 to 0.16%, Cr: 0.03 to 0.11%, Sb: 0.015 to 0.037%, Mo: 0.03-0.05%, Al: 55-97 ppm, N: 20-49 ppm (however, Al / N: 1.98-3.10) and S: 17-27 ppm, Further, a steel slab selected from one of Zr, Ti, B, Nb and V and containing about 50 ppm each, and a steel slab containing none of these trace elements (Zr, Ti, B, Nb and V), Each was manufactured by continuous casting. The balance of the composition of each steel slab was Fe and inevitable impurities. These steel slabs were slab heated at 1250 ° C. and then hot rolled into hot rolled sheets having a thickness of 2.2 mm. Subsequently, hot-rolled sheet annealing was performed at 1100 ° C. for 60 seconds, and then finished to a sheet thickness of 0.23 mm by cold rolling. Further, after recrystallization annealing at 840 ° C. for 80 seconds, an annealing separator mainly composed of MgO was applied, and then finish annealing was performed at 1200 ° C. for 10 hours. Finally, planarization annealing was performed at 900 ° C. for 15 seconds to form a tension-imparting coating mainly composed of magnesium phosphate and boric acid, to produce a grain-oriented electrical steel sheet.
 得られたサンプルの磁束密度BをJIS C2550の方法に準拠して測定した。 その結果を図3に示す。
 同図に示したとおり、添加したZr、Ti、B、NbおよびVの種類により、得られる磁束密度B(縦軸:単位T)は大きく異なることが分かる。 すなわち、Zr(左端)およびTi(左から2番目)を添加したサンプルは、磁束密度が低く、二次再結晶が発現していなかった。これに対し、Nb(同3番目)、B(右から3番目)、およびV(同2番目)を添加した場合は、添加しない場合(右端)と比較して、磁束密度が高くなっていることが明らかとなった。
The magnetic flux density B 8 of the resulting samples was measured according to the method of JIS C2550. The result is shown in FIG.
As shown in the figure, it can be seen that the magnetic flux density B 8 (vertical axis: unit T) obtained varies greatly depending on the types of added Zr, Ti, B, Nb and V. That is, the sample to which Zr (left end) and Ti (second from the left) were added had a low magnetic flux density and did not develop secondary recrystallization. On the other hand, when Nb (third from the same), B (third from the right), and V (second from the right) are added, the magnetic flux density is higher than when not added (right end). It became clear.
 (実験2b)
 C:0.045~0.062%、Si:3.20~3.31%、Mn:0.04~0.16%、Sb:0.015~0.037%、Cr:0.03~0.11%、Mo:0.03~0.05%、Al:55~97ppm、N:20~49ppm(ただしAl/N:1.98~3.10)およびS:17~27ppmを含有し、さらにZr,Ti,Nb,B,Vのうちから1種を選んで各々約50ppm添加した鋼スラブと、これら微量元素(Zr,Ti,Nb,BおよびV)をいずれも含まない鋼スラブとを、それぞれ連続鋳造にて製造した。 いずれの鋼スラブも残部はFeおよび不可避的不純物とした。 各鋼スラブを1250℃でスラブ加熱した後、熱間圧延により2.8mm厚の熱延板とし、ついで1100℃で60秒の熱延板焼鈍後、冷間圧延により0.30mmの最終板厚に仕上げた。 その後、50%N−50%Hの湿潤雰囲気中にて均熱条件:840℃、80秒で再結晶焼鈍を施した後、MgOを主体とする焼鈍分離剤を塗布してから、1200℃に10時間保定する仕上焼鈍を行った。 その後、リン酸マグネシウムとほう酸を主体とする張力付与コーティング形成を兼ねた平坦化焼鈍を900℃で15秒の条件で施した。
(Experiment 2b)
C: 0.045 to 0.062%, Si: 3.20 to 3.31%, Mn: 0.04 to 0.16%, Sb: 0.015 to 0.037%, Cr: 0.03 to 0.11%, Mo: 0.03-0.05%, Al: 55-97ppm, N: 20-49ppm (however, Al / N: 1.98-3.10) and S: 17-27ppm Further, a steel slab in which one of Zr, Ti, Nb, B, and V is selected and about 50 ppm is added, and a steel slab that does not contain any of these trace elements (Zr, Ti, Nb, B, and V), Each was manufactured by continuous casting. The balance of all steel slabs was Fe and inevitable impurities. After each steel slab was slab heated at 1250 ° C., it was hot-rolled to a hot-rolled sheet having a thickness of 2.8 mm, then annealed at 1100 ° C. for 60 seconds and then cold-rolled to a final thickness of 0.30 mm. Finished. Then, after recrystallization annealing in a soaking condition of 50% N 2 -50% H 2 at 840 ° C. for 80 seconds, after applying an annealing separator mainly composed of MgO, 1200 Finish annealing was performed at 10 ° C. for 10 hours. Thereafter, planarization annealing was performed at 900 ° C. for 15 seconds under the condition of forming a tension-imparting coating mainly composed of magnesium phosphate and boric acid.
 平坦化焼鈍後に、インライン鉄損計でコイル全長の鉄損をあらかじめ測定し、実験1bと同様の手法でコイル内から計5箇所のサンプルを採取し、得られたサンプルの磁気特性をJIS C 2550に記載の方法で測定し、5箇所のうち最も磁気特性が悪かった値をそのコイルの代表値とした。 After flattening annealing, the iron loss of the entire length of the coil is measured in advance with an in-line iron loss meter, a total of five samples are taken from the inside of the coil by the same method as in Experiment 1b, and the magnetic properties of the obtained sample are JIS C 2550 As a representative value of the coil, the value having the worst magnetic characteristics among the five locations was measured.
 得られた結果を図4に示す。
 図4より、約50ppm添加した微量元素により磁束密度B(縦軸:単位T)が大きく異なることが分かる。 ここで、磁束密度が低いZr添加材(左端)およびTi添加材(左から2番目)は、二次再結晶が発現していなかった。 また、Nb(左から3番目)、B(右から3番目)、V(同2番目)を添加した場合は、なにも添加しなかった場合(右端)と比較して磁束密度が高くなることが明らかとなった。
The obtained results are shown in FIG.
FIG. 4 shows that the magnetic flux density B 8 (vertical axis: unit T) varies greatly depending on the trace element added by about 50 ppm. Here, secondary recrystallization did not appear in the Zr additive (left end) and the Ti additive (second from the left) having a low magnetic flux density. Further, when Nb (third from the left), B (third from the right), and V (second from the same) are added, the magnetic flux density is higher than when nothing is added (right end). It became clear.
 上記したように、微量元素の添加により磁気特性が変化する理由、あるいはB、NbおよびVの少なくともいずれかを添加することによって磁気特性が向上する理由については、必ずしも明確に解明されたわけではないが、発明者らは次のように考えている。
 添加物(とくに微量添加物)や不純物における窒化物の熱力学的な安定性は、詳細に調べられており、窒素に結合している元素によって、その安定性が異なることが分かっている。 本実験2aおよび2bで添加した元素では、その窒化物の安定性は、安定な方からZr,Ti,Al,B,NbおよびVである。
 図3および図4の結果によれば、磁気特性が悪かった元素は窒化物がAlより安定なZr,Tiであり、磁気特性が良好であった元素は窒化物がAlより不安定なB,NbおよびVであった。 このことより、ZrやTiが存在すると、鋼中のNはこれらの元素と結合し、ZrNやTiNを形成することが磁気特性を劣化させているものと推測される。 他方、たとえB,NbやVが存在していても、鋼中のNはAlと安定な窒化物を形成し、B,NbやVとの窒化物は形成されないと考えられる。
As described above, the reason why the magnetic characteristics change due to the addition of a trace element or the reason why the magnetic characteristics improve by adding at least one of B, Nb, and V is not necessarily clearly elucidated. The inventors consider as follows.
The thermodynamic stability of nitrides in additives (especially trace additives) and impurities has been investigated in detail, and it has been found that the stability varies depending on the elements bound to nitrogen. In the elements added in the experiments 2a and 2b, the stability of the nitride is Zr, Ti, Al, B, Nb and V from the stable side.
According to the results of FIG. 3 and FIG. 4, the elements having poor magnetic characteristics are Zr and Ti whose nitride is more stable than Al, and the elements having good magnetic characteristics are B and B whose nitride is unstable than Al. Nb and V. From this, when Zr and Ti are present, it is presumed that N in the steel is combined with these elements and the formation of ZrN and TiN deteriorates the magnetic properties. On the other hand, even if B, Nb, or V exists, N in the steel is considered to form a stable nitride with Al, and a nitride with B, Nb, or V is not formed.
 さらに、実験1aおよび1bで、Al/Nが低い場合にはNbの存在下においても磁気特性が低かった。 この理由は、化学量論的にAlと比較してNが過剰となり、Nbが余剰のNと結合して窒化物を形成したことが原因と考えられる。
 極論すれば、Zr,Ti,B,NbあるいはVの窒化物の存在が磁気特性を劣化させていると考えられる。 おそらく、これらの微量元素の窒化物のような微小析出物が増加することによって、鋼板の結晶粒の粒界エネルギー差を駆動力としたテクスチャーインヒビション効果が薄れてしまうことが原因と推測される。
Further, in Experiments 1a and 1b, when Al / N was low, the magnetic properties were low even in the presence of Nb. The reason for this is thought to be that N is excessively stoichiometrically compared to Al and Nb is combined with excess N to form a nitride.
In extreme terms, it is considered that the presence of nitrides of Zr, Ti, B, Nb or V deteriorates the magnetic properties. Presumably, the increase in the number of microprecipitates such as nitrides of these trace elements reduces the texture inhibition effect with the grain boundary energy difference between the crystal grains of the steel sheet as the driving force. The
 一方、上述のように、B,NbあるいはVを、窒化物を形成しない条件下で微量添加した場合は、添加しなかった場合と比較して磁気特性が良好となった。 この理由も定かではないが、B,NbおよびVの少なくともいずれかを添加した場合は再結晶焼鈍後の結晶粒径が細かく、かつ均一になることが発明者らのさらなる調査により判明した。 このことが粒径のサイズ効果(粒径の平均値の約2倍以上の粒が異常粒成長を起こしやすい、という現象)の影響を排除し、テクスチャーインヒビション効果を最大限発揮できたため、磁気特性の向上につながったと推測している。 粒径均一化効果は、インヒビターを含まない成分系の課題であった、同一サンプル内の磁気特性のばらつき改善にも寄与している。 On the other hand, as described above, when a small amount of B, Nb, or V was added under the condition where no nitride was formed, the magnetic characteristics were improved as compared with the case where it was not added. The reason for this is not clear, but it has been found by further investigations by the inventors that the crystal grain size after recrystallization annealing becomes fine and uniform when at least one of B, Nb and V is added. This eliminates the influence of the size effect on the particle size (a phenomenon in which grains that are approximately twice the average value of the particle size are prone to abnormal grain growth) and maximizes the texture inhibition effect. It is speculated that this has led to improved magnetic properties. The effect of uniforming the particle size contributes to the improvement of the variation in magnetic properties within the same sample, which was a problem of the component system not containing an inhibitor.
 上記の結果および考察を受け、発明者らは粒径均一化効果を追究するためにさらに実験を行った。 その結果、上記のように特定の元素を微量添加し、不純物であるAlとNの比を規定した上で、さらに再結晶焼鈍時における昇温速度を制御することにより、所期した目的がさらに有利に達成されることの知見を得た。 In response to the above results and considerations, the inventors conducted further experiments to investigate the effect of uniformizing the particle size. As a result, a specific element is added in a small amount as described above, and the ratio of the impurities Al and N is specified, and further, the intended purpose is further controlled by controlling the rate of temperature increase during recrystallization annealing. The knowledge that it was achieved advantageously was obtained.
 (実験3)
 C:0.034%、Si:3.30%、Mn:0.07%、Sb:0.030%、Sn:0.059%、Cr:0.05%、Al:56ppm、N:29ppm(Al/N:1.93)、S:15ppmおよびNb:35ppmを含有し、残部はFeおよび不可避的不純物からなる鋼スラブを、連続鋳造にて製造した。 この鋼スラブを1150℃でスラブ加熱した後、熱間圧延により3.0mm厚の熱延板とし、ついで950℃で30秒の熱延板焼鈍後、1回目の冷間圧延により1.8mmの中間板厚とし、1000℃で40秒の中間焼鈍後、2回目の冷間圧延により0.23mmの最終板厚に仕上げた。 その後、50%N−50%H湿潤雰囲気中にて均熱条件:850℃,60秒で再結晶焼鈍を施した。 この際、600~800℃間の平均昇温速度を種々に変更した。
(Experiment 3)
C: 0.034%, Si: 3.30%, Mn: 0.07%, Sb: 0.030%, Sn: 0.059%, Cr: 0.05%, Al: 56 ppm, N: 29 ppm ( A steel slab containing Al / N: 1.93), S: 15 ppm and Nb: 35 ppm with the balance being Fe and inevitable impurities was produced by continuous casting. This steel slab was slab heated at 1150 ° C., then hot rolled to a 3.0 mm thick hot rolled sheet, then annealed at 950 ° C. for 30 seconds, and then cold rolled for the first time to 1.8 mm. An intermediate thickness was obtained, and after an intermediate annealing at 1000 ° C. for 40 seconds, the final thickness was 0.23 mm by the second cold rolling. Thereafter, recrystallization annealing was performed in a soaking condition of 50% N 2 -50% H 2 at 850 ° C. for 60 seconds. At this time, the average rate of temperature increase between 600 and 800 ° C. was variously changed.
 得られたサンプルの再結晶粒径を測定し、粒度分布から平均粒径とその標準偏差を求めた。 再結晶粒径の測定方法は、サンプルの圧延方向に垂直な断面を切り出して、ナイタール液(nital)でエッチング後に光学顕微鏡で観察し、視野内の粒を画像処理装置により楕円近似法(fitting an ellipse to the grains)で楕円に近似し、その長軸の寸法と短軸の寸法の平均をその粒の粒径とした。 上記サンプルは、作製した再結晶板の幅方向における両端部と中央部から採取し、観察箇所は板厚全厚とした。 観察した粒の個数が、両端部と中央部の合計で少なくとも2000個以上となるようにサンプルを採取した。 The recrystallized particle size of the obtained sample was measured, and the average particle size and its standard deviation were determined from the particle size distribution. The recrystallized grain size is measured by cutting a section perpendicular to the rolling direction of the sample, etching with a nital liquid (nitral) and observing it with an optical microscope, and using an image processing device to check the grains in the field of view by an elliptical approximation method (fitting an approximate to an ellipse, and the average of the major axis and minor axis dimensions was taken as the grain size of the grains. The above samples were collected from both ends and the center in the width direction of the produced recrystallized plate, and the observation location was set to the full thickness. Samples were collected so that the number of observed grains was at least 2000 in total in both ends and the center.
 図5に、平均粒径を1.0に規格化したときの標準偏差(縦軸)を、再結晶焼鈍の昇温速度(横軸(600~800℃間の平均昇温速度):単位℃/s)との関係で示す。
 同図に示したとおり、600~800℃間の平均昇温速度が速いほど標準偏差が小さい、すなわち粒径のばらつきが小さいことが分かる。
In FIG. 5, the standard deviation (vertical axis) when the average grain size is normalized to 1.0 is the temperature increase rate of recrystallization annealing (horizontal axis (average temperature increase rate between 600 to 800 ° C.): unit ° C. / S).
As shown in the figure, it can be seen that the faster the average heating rate between 600 and 800 ° C., the smaller the standard deviation, that is, the smaller the variation in particle size.
 以上のような、実験、考察を経て、発明者らは、インヒビターを含まない成分系の方向性電磁鋼板中に不純物として存在するAlとNとの比を規制し、加えて、B、NbおよびVの少なくともいずれかを微量添加することにより、良好な磁気特性が得られるとの結論に至った。 Through the experiments and considerations as described above, the inventors regulate the ratio of Al and N present as impurities in the component-oriented grain-oriented electrical steel sheet not containing an inhibitor, and in addition, B, Nb and It was concluded that good magnetic properties can be obtained by adding a trace amount of at least one of V.
 またさらなる実験、考察を経て、発明者らは、AlとNの比を規定し、B,NbおよびVの少なくともいずれかを微量に添加した系において、再結晶焼鈍時の昇温速度を制御することにより、さらに優れた磁気特性(磁気特性の均一性も含む)の方向性電磁鋼板が得られるとの結論に達した。
 本発明は、上記知見に立脚するものである。
Further, through further experiments and discussions, the inventors define the ratio of Al and N, and control the rate of temperature rise during recrystallization annealing in a system in which at least one of B, Nb and V is added in a trace amount. This led to the conclusion that a grain-oriented electrical steel sheet having even better magnetic properties (including uniformity of magnetic properties) can be obtained.
The present invention is based on the above findings.
 すなわち、本発明の要旨構成は次のとおりである。
 (1)質量%で、C:0.10%以下、Si:2.0~8.0%およびMn:0.005~1.0%を含有し、Alを100ppm以下、かつN、SおよびSeを各々50ppm以下とし、残部はFeおよび不可避的不純物からなるスラブを圧延して最終板厚に仕上げ、ついで再結晶焼鈍を施した後、仕上焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法において、
 上記スラブ中に含有されるAl量とN量との比を質量比で1.4以上にすると共に、上記スラブ中にさらに、B、NbおよびVのうちから選んだ1種または2種以上を合計で10~150ppm含有させることを特徴とする方向性電磁鋼板の製造方法。
That is, the gist configuration of the present invention is as follows.
(1) By mass%, C: 0.10% or less, Si: 2.0 to 8.0% and Mn: 0.005 to 1.0%, Al 100 ppm or less, N, S and A grain-oriented electrical steel sheet comprising a series of steps in which Se is set to 50 ppm or less, and the balance is finished by rolling a slab composed of Fe and inevitable impurities to finish the final plate thickness, and then performing recrystallization annealing and then finishing annealing. In the manufacturing method,
The ratio of the amount of Al and the amount of N contained in the slab is set to 1.4 or more in terms of mass ratio, and one or more selected from B, Nb and V are further added to the slab. A method for producing a grain-oriented electrical steel sheet, characterized by containing 10 to 150 ppm in total.
 (2)スラブを圧延して最終板厚に仕上げる前記工程が、スラブを熱間圧延し、必要に応じて熱延板焼鈍を施した後、1回または中間焼鈍を挟む2回以上の冷間圧延を施す工程である、上記(1)に記載の方向性電磁鋼板の製造方法。 (2) After the slab is rolled and finished to the final plate thickness, the slab is hot-rolled and subjected to hot-rolled sheet annealing as necessary, and then cold once or two times with intermediate annealing interposed therebetween. The method for producing a grain-oriented electrical steel sheet according to (1), which is a step of rolling.
 (3)前記スラブ中に、さらに、Ni:0.010~1.50%、Cr:0.01~0.50%、Cu:0.01~0.50%、P:0.005~0.50%、Sn:0.005~0.50%、Sb:0.005~0.50%、Bi:0.005~0.50%およびMo:0.005~0.10%のうちから選んだ少なくとも1種を含有することを特徴とする上記(1)または(2)に記載の方向性電磁鋼板の製造方法。 (3) In the slab, Ni: 0.010 to 1.50%, Cr: 0.01 to 0.50%, Cu: 0.01 to 0.50%, P: 0.005 to 0 .50%, Sn: 0.005 to 0.50%, Sb: 0.005 to 0.50%, Bi: 0.005 to 0.50% and Mo: 0.005 to 0.10% The method for producing a grain-oriented electrical steel sheet according to the above (1) or (2), comprising at least one selected.
 (4)質量%で、C:0.10%以下、Si:2.0~8.0%およびMn:0.005~1.0%を含有し、かつAlを100ppm以下、かつN,SおよびSeを各々50ppm以下に低減し、残部はFeおよび不可避的不純物からなるスラブを圧延して最終板厚に仕上げ、ついで再結晶焼鈍を施したのち、仕上焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法において、
 該スラブ中にさらに、B,NbおよびVのうちから選んだ1種または2種以上を合計で10~150ppmの範囲で含有し、また不純物として含まれるAlとNとの比を質量比でAl/N≧1.4とし、さらに再結晶焼鈍における600~800℃間の平均昇温速度を15℃/s以上とすることを特徴とする方向性電磁鋼板の製造方法。
(4) By mass%, C: 0.10% or less, Si: 2.0 to 8.0% and Mn: 0.005 to 1.0%, Al 100 ppm or less, N, S And Se are each reduced to 50 ppm or less, and the balance is composed of a series of steps in which a final slab is rolled by rolling a slab composed of Fe and inevitable impurities, and then subjected to recrystallization annealing and then finish annealing. In the manufacturing method of electrical steel sheet,
The slab further contains one or more selected from B, Nb and V in a total range of 10 to 150 ppm, and the ratio of Al to N contained as impurities is expressed as Al by mass ratio. /N≧1.4, and the average heating rate between 600 and 800 ° C. in recrystallization annealing is set to 15 ° C./s or more.
 (5)スラブを圧延して最終板厚に仕上げる前記工程が、スラブを熱間圧延し、必要に応じて熱延板焼鈍を施したのち、1回または中間焼鈍を挟む2回以上の冷間圧延を施す工程である、上記(4)に記載の方向性電磁鋼板の製造方法。 (5) After the slab is rolled and finished to the final sheet thickness, the slab is hot-rolled and subjected to hot-rolled sheet annealing as necessary, and then cold once or two times sandwiching the intermediate annealing. The method for producing a grain-oriented electrical steel sheet according to (4), which is a step of rolling.
 (6)前記スラブ中に、質量%でさらに、Ni:0.010~1.50%、Cr:0.01~0.50%、Cu:0.01~0.50%、P:0.005~0.50%、Sn:0.005~0.50%、Sb:0.005~0.50%、Bi:0.005~0.50%およびMo:0.005~0.100%のうちから選んだ少なくとも1種を含有することを特徴とする上記(4)または(5)に記載の方向性電磁鋼板の製造方法。 (6) In the slab, Ni: 0.010 to 1.50%, Cr: 0.01 to 0.50%, Cu: 0.01 to 0.50%, P: 0.0. 005 to 0.50%, Sn: 0.005 to 0.50%, Sb: 0.005 to 0.50%, Bi: 0.005 to 0.50%, and Mo: 0.005 to 0.100% The method for producing a grain-oriented electrical steel sheet according to the above (4) or (5), comprising at least one selected from the above.
 (7)再結晶焼鈍後の鋼板の再結晶粒の粒度分布が、平均粒径を1.0に規格化した場合の標準偏差が0.3以下を満足することを特徴とする上記(4)~(6)のいずれかに記載の方向性電磁鋼板の製造方法。 (7) The above-mentioned (4), wherein the grain size distribution of the recrystallized grains of the steel sheet after the recrystallization annealing satisfies a standard deviation of 0.3 or less when the average grain size is normalized to 1.0. A method for producing a grain-oriented electrical steel sheet according to any one of (6).
 本発明によれば、インヒビターを実質的に含まない成分系において、コイルの長手方向および幅方向における磁気特性のばらつきを小さくすることができ、その結果製品コイル全体として良好な磁気特性(すなわち高位安定な磁気特性)を有する方向性電磁鋼板を得ることができる。 According to the present invention, in a component system that does not substantially contain an inhibitor, it is possible to reduce variations in magnetic characteristics in the longitudinal direction and width direction of the coil, and as a result, excellent magnetic characteristics (that is, high-level stability) as a whole product coil. Can be obtained.
図1は鋼中のAlとNとの比Al/N(横軸:質量比)と磁束密度B(縦軸:単位T)との関係を示した図である。FIG. 1 is a graph showing the relationship between the Al / N ratio Al / N (horizontal axis: mass ratio) in steel and the magnetic flux density B 8 (vertical axis: unit T). 図2は、鋼中の不純物AlとNとの比Al/N(横軸:質量比)と磁束密度B(縦軸:単位T)との関係を示した図である。FIG. 2 is a graph showing the relationship between the ratio Al / N (horizontal axis: mass ratio) between impurities Al and N in steel and the magnetic flux density B 8 (vertical axis: unit T). 図3は鋼中に添加した微量元素の種類(横軸)と磁束密度B(縦軸:単位T)との関係を比較して示した図である。FIG. 3 is a diagram showing a comparison of the relationship between the type of trace elements added to steel (horizontal axis) and the magnetic flux density B 8 (vertical axis: unit T). 図4は、鋼中に添加した微量元素の種類(横軸)と磁束密度B(縦軸:単位T)との関係を示した図である。FIG. 4 is a diagram showing the relationship between the type of trace elements added to the steel (horizontal axis) and the magnetic flux density B 8 (vertical axis: unit T). 図5は、平均粒径を1.0に規格化したときの標準偏差(縦軸)を、再結晶焼鈍の昇温速度(横軸:℃/s)との関係で示した図である。FIG. 5 is a diagram showing the standard deviation (vertical axis) when the average grain size is normalized to 1.0 in relation to the rate of temperature increase of recrystallization annealing (horizontal axis: ° C./s).
 以下、本発明を具体的に説明する。
 まず、本発明において、スラブの成分組成を前記の範囲に限定した理由について説明する。
 なお、原則として元素毎に限定理由を述べるが、これは各元素が互いに独立して影響するという意味ではなく、他の元素が本願規定の範囲内にあるとの前提で効果を奏するものである。 言い換えれば、各元素の範囲限定は他の元素の範囲限定、あるいは製造条件との組合せ効果により、目的とする効果やより好ましい効果を得ているものである。
 前記したように、組成における%やppmは特に断らない限り質量基準である。
The present invention will be specifically described below.
First, the reason why the component composition of the slab is limited to the above range in the present invention will be described.
In principle, the reason for limitation will be described for each element, but this does not mean that each element affects each other independently, and it is effective on the assumption that other elements are within the scope of the present specification. . In other words, the range limitation of each element achieves the target effect or a more preferable effect by the range limitation of other elements or the combination effect with manufacturing conditions.
As described above,% and ppm in the composition are based on mass unless otherwise specified.
C:0.10%以下
 C量が0.10%を超えると、脱炭(decarburization)処理を行っても磁気時効の起こらない50ppm以下に低減することが困難になる。従って、C量は0.10%以下に限定した。 特に好ましい範囲は0.04%以下である。 Cは少ないほうが望ましいが、工業的には30ppm以上含有されることが一般的である。
C: 0.10% or less When the amount of C exceeds 0.10%, it is difficult to reduce to 50 ppm or less where magnetic aging does not occur even when decarburization treatment is performed. Therefore, the C content is limited to 0.10% or less. A particularly preferable range is 0.04% or less. A smaller amount of C is desirable, but industrially, it is generally contained at 30 ppm or more.
Si:2.0~8.0%
 Siは、鋼の比抵抗を高め、鉄損を改善するために必要な元素であるが、2.0%未満ではその効果に乏しい。 一方8.0%を超えると加工性が劣化し、圧延が困難となる。 このため、Si量は2.0~8.0%の範囲に限定した。 特に好ましい下限は2.8%である。 また特に好ましい上限は3.5%である。
Si: 2.0 to 8.0%
Si is an element necessary for increasing the specific resistance of steel and improving iron loss, but its effect is poor at less than 2.0%. On the other hand, if it exceeds 8.0%, workability deteriorates and rolling becomes difficult. Therefore, the Si content is limited to the range of 2.0 to 8.0%. A particularly preferred lower limit is 2.8%. A particularly preferred upper limit is 3.5%.
Mn:0.005~1.0%
 Mnは、熱間加工性を良好にするために必要な元素であるが、0.005%未満ではその効果に乏しい。 一方、1.0%を超えると製品板の磁束密度が低下する。 このため、Mn量は0.005~1.0%の範囲に限定した。 特に好ましい下限は0.02%である。 また特に好ましい上限は0.20%である。
Mn: 0.005 to 1.0%
Mn is an element necessary for improving the hot workability, but its effect is poor when it is less than 0.005%. On the other hand, if it exceeds 1.0%, the magnetic flux density of the product plate decreases. For this reason, the amount of Mn was limited to the range of 0.005 to 1.0%. A particularly preferred lower limit is 0.02%. A particularly preferred upper limit is 0.20%.
Al:100ppm以下、かつN,S,Se:各々50ppm以下
 本発明において、Al量を100ppm以下、かつN、SおよびSeの量については、それぞれ50ppm以下にすることが、鋼板を良好に二次再結晶させる上で不可欠である。 かかる成分は、極力低減することが磁気特性の観点からは望ましいが、これらの成分の低減はコスト高となるため、上記範囲内で残存させても問題はない。
Al: 100 ppm or less, and N, S, Se: 50 ppm or less In the present invention, the amount of Al is 100 ppm or less, and the amount of N, S, and Se is 50 ppm or less. Indispensable for recrystallization. Although it is desirable to reduce these components as much as possible from the viewpoint of magnetic characteristics, since the reduction of these components increases the cost, there is no problem even if they are left within the above range.
 このうち、AlとSeは仕上焼鈍等によって鋼中から除去する(純化する)ことが困難な元素であることから、Alは80ppm、Seは20ppm以下とすることがさらに望ましい。なお、工業的には各々20ppm以上、6ppm以上含有されることが一般的である。 Of these, Al and Se are elements that are difficult to remove (purify) from the steel by finish annealing or the like, and therefore, it is more preferable that Al is 80 ppm and Se is 20 ppm or less. In general, it is generally contained 20 ppm or more and 6 ppm or more, respectively.
 また、 軽元素であるNやSは、鋼スラブ作製前の成分調整時に完全に除去することが困難であり、特殊な処理を行わない場合は、各々20ppmほど鋼板中に残存しているのが一般的である。 Also, N and S, which are light elements, are difficult to remove completely at the time of adjusting the components before making the steel slab, and if no special treatment is performed, about 20 ppm each remains in the steel plate. It is common.
 これら不純物の中でも、AlとNとの質量比(Al/N)を1.4以上とすることが、前述した理由により必須であり、特にAl/Nを2.0以上とすると磁気特性が向上するのでさらに望ましい。 また、上述したとおり、Nは完全に除去することが困難であるため、Al/N≧1.4を満たすためにAlを100ppm以下の範囲で微量添加することも妨げない。
 Al/Nの上限は効果の観点からは不要であるが、前記の工業的なN量の下限20ppmから、一般には5を超えない程度となる。
Among these impurities, the mass ratio of Al to N (Al / N) is required to be 1.4 or more for the reasons described above, and in particular, when Al / N is set to 2.0 or more, the magnetic properties are improved. More desirable. Further, as described above, since it is difficult to completely remove N, addition of a trace amount of Al in the range of 100 ppm or less to satisfy Al / N ≧ 1.4 is not prevented.
The upper limit of Al / N is not necessary from the viewpoint of the effect, but generally does not exceed 5 from the lower limit of 20 ppm of the industrial N amount.
B,NbおよびVのうちから選んだ1種または2種以上:合計で10~150ppm
 さらに、本発明における磁気特性向上の効果を十分に得るためには、B、NbおよびVの1種または2種以上を10ppm以上添加することが必要である。 理由は既に述べたとおりである。 添加量の合計が10ppm未満ではその添加効果が少ない。 好ましくは各々の添加量が10ppm以上とすると、より確実に本発明の効果を得ることができる。 さらに好ましくは、各々20ppm以上である。 しかしながら、これらの微量添加元素は、最終製品においても地鉄中に残存し、鉄損を劣化させる原因となることから、総量で150ppm以下に制限される。 鉄損劣化抑制の観点からは、総量で100ppm以下とすることが望ましく、総量で50ppm以下とすることがさらに望ましい。
 なお、最も好ましい元素はNbであり再結晶焼鈍後の結晶粒径を均一化する効果において他よりも優れる。
One or more selected from B, Nb and V: 10 to 150 ppm in total
Furthermore, in order to sufficiently obtain the effect of improving the magnetic characteristics in the present invention, it is necessary to add 10 ppm or more of one or more of B, Nb and V. The reason is as described above. If the total addition amount is less than 10 ppm, the addition effect is small. Preferably, when each addition amount is 10 ppm or more, the effect of the present invention can be obtained more reliably. More preferably, each is 20 ppm or more. However, since these trace additive elements remain in the base iron even in the final product and cause deterioration of iron loss, the total amount is limited to 150 ppm or less. From the viewpoint of suppressing iron loss deterioration, the total amount is preferably 100 ppm or less, and more preferably 50 ppm or less.
The most preferable element is Nb, which is superior to others in the effect of making the crystal grain size uniform after recrystallization annealing.
 以上、必須元素および抑制元素について説明したが、本発明では、その他にも磁気特性改善元素として、Ni,Cr,Cu,P,Sn,Sb,BiおよびMoのうちから選んだ少なくとも1種を以下の範囲で適宜含有させることができる。 As described above, the essential element and the suppressing element have been described. In the present invention, at least one selected from Ni, Cr, Cu, P, Sn, Sb, Bi, and Mo as other magnetic property improving elements is described below. It can contain suitably in the range.
Ni:0.01~1.50%
 Niは、熱延板組織を改善して磁気特性を向上させる上で有用な元素であるが、添加量が0.01%未満ではその添加効果に乏しい。 一方1.50%を超えると二次再結晶が不安定になり磁気特性が低下する。 好ましくは0.010%以上である。
Ni: 0.01-1.50%
Ni is an element useful for improving the magnetic properties by improving the hot-rolled sheet structure, but if the addition amount is less than 0.01%, the addition effect is poor. On the other hand, if it exceeds 1.50%, the secondary recrystallization becomes unstable and the magnetic properties deteriorate. Preferably it is 0.010% or more.
Cr:0.01~0.50%、Cu:0.01~0.50%、P:0.005~0.50%
 これらの元素はいずれも、鉄損の改善に有用な元素であるが、それぞれ下限に満たないとその添加効果に乏しい。 一方上限を超えると二次再結晶粒の発達が抑制され、むしろ磁気特性の劣化を招く。
Cr: 0.01 to 0.50%, Cu: 0.01 to 0.50%, P: 0.005 to 0.50%
All of these elements are useful elements for improving the iron loss, but their addition effect is poor unless the lower limit is reached. On the other hand, when the upper limit is exceeded, the development of secondary recrystallized grains is suppressed, and rather the magnetic properties are deteriorated.
Sn:0.005~0.50%、Sb:0.005~0.50%、Bi:0.005~0.50%、Mo:0.005~0.10%
 これらの元素も、磁気特性の向上に有用な元素であるが、それぞれ下限に満たないとその添加効果に乏しい。 一方上限を超えると二次再結晶粒の発達が抑制され、むしろ磁気特性の劣化を招く。 Moの上限は好ましくは0.100%以下である。
Sn: 0.005 to 0.50%, Sb: 0.005 to 0.50%, Bi: 0.005 to 0.50%, Mo: 0.005 to 0.10%
These elements are also elements useful for improving the magnetic properties, but their addition effect is poor unless the lower limit is reached. On the other hand, when the upper limit is exceeded, the development of secondary recrystallized grains is suppressed, and rather the magnetic properties are deteriorated. The upper limit of Mo is preferably 0.100% or less.
 次に、本発明の製造工程について説明する。
 上記の好適成分組成に調整した溶鋼を、通常の造塊法や連続鋳造法でスラブとする。また、100mm以下の厚さの薄鋳片を直接鋳造法で製造してもよい。 スラブの場合は、通常の方法で加熱して熱間圧延するが、鋳造後加熱せずに直ちに熱間圧延に供してもよい。薄鋳片の場合は、熱間圧延しても良いし、熱間圧延を省略してそのまま以後の工程に進んでもよい。
Next, the manufacturing process of the present invention will be described.
The molten steel adjusted to the above preferred component composition is made into a slab by a normal ingot-making method or a continuous casting method. Further, a thin cast piece having a thickness of 100 mm or less may be manufactured by a direct casting method. In the case of a slab, it is heated and rolled by a normal method, but may be immediately subjected to hot rolling without heating after casting. In the case of a thin slab, hot rolling may be performed, or the hot rolling may be omitted and the process may proceed as it is.
 熱間圧延前のスラブ加熱温度は、Al,N,SおよびSeを低減した、インヒビター成分を含まない成分系であることから、従来必須であったインヒビターを固溶させるための高温焼鈍を必要としない。 従って、1250℃以下の低温とすることがコストの面で望ましい。 Since the slab heating temperature before hot rolling is a component system that does not contain an inhibitor component with reduced Al, N, S, and Se, high temperature annealing is required to dissolve the inhibitor, which has been essential in the past. do not do. Therefore, a low temperature of 1250 ° C. or lower is desirable in terms of cost.
 ついで、必要に応じて熱延板焼鈍を施す。 良好な磁気特性を得るための熱延板焼鈍温度としては800~1150℃程度とするのが好適である。 熱延板焼鈍温度が800℃に満たないと、熱延でのバンド組織(band texture)が残留し、整粒した一次再結晶組織を実現することが困難となり、二次再結晶の発達が阻害される(熱延板焼鈍を必要とするほどのバンド組織が予め存在した場合)。 一方、熱延板焼鈍温度が1150℃を超えると、熱延板焼鈍後の粒径が粗大化しすぎるため、整粒した一次再結晶組織を実現する上で極めて不利となる。 Next, hot-rolled sheet annealing is performed as necessary. The hot-rolled sheet annealing temperature for obtaining good magnetic properties is preferably about 800 to 1150 ° C. If the hot-rolled sheet annealing temperature is less than 800 ° C., a band texture in hot rolling remains, making it difficult to achieve a sized primary recrystallized structure and inhibiting the development of secondary recrystallization. (When a band structure that requires hot-rolled sheet annealing is present in advance). On the other hand, if the hot-rolled sheet annealing temperature exceeds 1150 ° C., the grain size after the hot-rolled sheet annealing is excessively coarsened, which is extremely disadvantageous in realizing a sized primary recrystallized structure.
 熱延板焼鈍後、1回または中間焼鈍を挟む2回以上の冷間圧延を施した後、再結晶焼鈍を行う。 冷間圧延に際し、その温度を100~300℃に上昇させて行うことや、冷間圧延の途中で100~300℃の時効処理を1回または複数回行うことは、磁気特性を向上させる上で有利である。 After hot-rolled sheet annealing, it is subjected to recrystallization annealing after cold rolling at least once with intermediate or intermediate annealing. When performing cold rolling, the temperature is raised to 100 to 300 ° C., and the aging treatment at 100 to 300 ° C. is performed once or a plurality of times in the course of cold rolling in order to improve the magnetic properties. It is advantageous.
 再結晶焼鈍は、脱炭を必要とする場合には雰囲気を湿潤雰囲気とするが、脱炭を必要としない場合には乾燥雰囲気で行っても良い。 この再結晶焼鈍における均熱温度は、再結晶温度以上であれば特に制限はないが、あまりに高温で焼鈍すると結晶粒径が粗大となり、二次再結晶発現が不安定となることが懸念されるので、焼鈍温度の上限は1050℃程度とするのが好ましい。 なお、再結晶焼鈍後に、浸珪法によってSi量を増加させる技術を併用してもよい。 Recrystallization annealing is performed in a wet atmosphere when decarburization is required, but may be performed in a dry atmosphere when decarburization is not required. The soaking temperature in this recrystallization annealing is not particularly limited as long as it is equal to or higher than the recrystallization temperature, but there is a concern that annealing at an excessively high temperature results in a coarse crystal grain size and unstable secondary recrystallization. Therefore, the upper limit of the annealing temperature is preferably about 1050 ° C. In addition, after recrystallization annealing, a technique for increasing the amount of Si by a siliconization method may be used in combination.
 本発明では、上記した再結晶焼鈍工程において、600℃から800℃までの平均昇温速度を15℃/s以上とすることが極めて好ましい。 というのは、昇温速度の平均値を15℃/s以上とすることで、図5に示したように、平均粒径を1.0に規格化したときの標準偏差が極めて小さくなる、すなわち粒径のばらつきが非常に小さくなり、優れた磁気特性を安定して得る上で、さらに格段に有利となるからである。 なお、この平均昇温速度の上限値については特に制限はなく、大きいほど好ましいが、温度制御の観点からは昇温速度を300℃/s以下の範囲で調整することが好ましい。 平均昇温速度は、放射温度計で板の表面温度を測定し、600℃から800℃に到るまでの時間で昇温量(200℃)を除してもとめるとよい。 In the present invention, in the above-described recrystallization annealing step, it is extremely preferable that the average temperature increase rate from 600 ° C. to 800 ° C. is 15 ° C./s or more. This is because when the average value of the heating rate is 15 ° C./s or more, as shown in FIG. 5, the standard deviation when the average particle size is normalized to 1.0 is extremely small. This is because the variation in the particle size becomes very small, which is further advantageous in obtaining excellent magnetic characteristics stably. The upper limit value of the average temperature increase rate is not particularly limited and is preferably as large as possible. However, from the viewpoint of temperature control, it is preferable to adjust the temperature increase rate within a range of 300 ° C./s or less. The average rate of temperature rise may be determined by measuring the surface temperature of the plate with a radiation thermometer and dividing the temperature rise (200 ° C.) by the time from 600 ° C. to 800 ° C.
 その後、鉄損を重視してフォルステライト(forsterite)被膜を形成させる場合には、MgOを主体とする焼鈍分離剤を塗布した後に、仕上げ焼鈍を施すことにより、二次再結晶組織を発達させると共に、フォルステライト被膜を形成させることが可能である。
 一方、打ち抜き加工性を重視してフォルステライト被膜を形成させない場合には、焼鈍分離剤を使用しないか、使用するにしても、フォルステライト被膜の形成を阻害するシリカやアルミナ等を主成分としたものを使用する。 これらの焼鈍分離剤を塗布する際には、水分を持ち込まない静電塗布を行うことなどが有効であり、また耐熱無機材料シート(シリカ、アルミナ、マイカ)を用いても良い。
Thereafter, when forming a forsterite film with an emphasis on iron loss, a secondary recrystallized structure is developed by applying a final annealing after applying an annealing separator mainly composed of MgO. It is possible to form a forsterite film.
On the other hand, if the forsterite film is not formed with emphasis on the punching processability, the main component is silica or alumina that inhibits the formation of the forsterite film even if it is used or not used. Use things. When these annealing separators are applied, it is effective to perform electrostatic coating that does not carry moisture, and a heat-resistant inorganic material sheet (silica, alumina, mica) may be used.
 仕上焼鈍は、二次再結晶発現のために800℃以上で行うことが望ましい。また、二次再結晶を完了させるためには800℃以上の温度に20時間以上保持させることが望ましい。打ち抜き性を重視してフォルステライト被膜を形成させない場合には、二次再結晶が完了すればよいので、保持温度は850~950℃程度とするのが望ましく、保持の段階で仕上げ焼鈍を終了することも可能である。鉄損を重視する場合やトランスの騒音を低下させるためにフォルステライト被膜を形成させる場合には、1200℃程度まで昇温させることが望ましい。
 なお、本発明においては仕上焼鈍においてインヒビターを除去する必要は無く、従って仕上焼鈍温度の自由度は高いが、インヒビター以外であっても不純物を仕上焼鈍により、除去する(純化する)ことは依然として好ましい。 従って、本発明においても、仕上焼鈍は純化焼鈍の意味をも有する。
The finish annealing is desirably performed at 800 ° C. or higher for secondary recrystallization. In order to complete the secondary recrystallization, it is desirable to hold at a temperature of 800 ° C. or higher for 20 hours or longer. If the forsterite film is not formed with emphasis on punchability, secondary recrystallization should be completed, so the holding temperature is preferably about 850 to 950 ° C., and the finish annealing is finished at the holding stage. It is also possible. When emphasizing iron loss or forming a forsterite film to reduce transformer noise, it is desirable to raise the temperature to about 1200 ° C.
In the present invention, it is not necessary to remove the inhibitor in the finish annealing, and therefore the degree of freedom of the finish annealing temperature is high, but it is still preferable to remove (purify) impurities by finish annealing even if it is other than the inhibitor. . Therefore, in the present invention, finish annealing also has the meaning of purification annealing.
 仕上焼鈍後は、付着した未反応の焼鈍分離剤を除去するため、水洗やブラッシング、酸洗等を行う。 その後、平坦化焼鈍を行って形状を矯正することが、鉄損低減のために有効である。 After finishing annealing, water washing, brushing, pickling, etc. are performed to remove the unreacted annealing separator adhering. After that, it is effective to reduce the iron loss by performing flattening annealing to correct the shape.
 なお、鋼板を積層して使用する場合には、鉄損を改善する目的で、平坦化焼鈍前または後に、鋼板表面に絶縁コーティングを施すことが有効である。 この絶縁コーティングは、鉄損低減のために、鋼板に張力を付与できるコーティングとすることが望ましい。 すなわち、バインダーを介した張力コーティング塗布方法や、物理蒸着法、化学蒸着法によって、無機物を鋼板表面に蒸着させるコーティング方法を採用すると、密着性に優れたコーティング膜が得られ、また鉄損低減効果も向上する。 In addition, when laminating and using steel plates, it is effective to apply an insulating coating to the steel plate surface before or after flattening annealing for the purpose of improving iron loss. This insulating coating is desirably a coating that can apply tension to the steel sheet in order to reduce iron loss. In other words, if a coating method that deposits inorganic material on the steel sheet surface by a tension coating application method through a binder, physical vapor deposition method, or chemical vapor deposition method, a coating film with excellent adhesion can be obtained, and iron loss reduction effect Will also improve.
 (実施例1)
 C:0.018~0.023%、Si:3.20~3.40%、Mn:0.10~0.15%、Cr:0.03~0.05%、Al:30~140ppmおよびN:29~50ppmを含み、表1記載のAl/N比を有し、さらに表1記載のNb量を含有し、残部がFeおよび不可避的不純物からなる鋼スラブを、連続鋳造にて製造した。ついで1200℃でスラブ加熱し、熱間圧延により板厚2.2mm厚さの熱延板とした。次に、1060℃で40秒の熱延板焼鈍を施し、1回の冷間圧延により板厚0.23mmの厚さに仕上げた。さらに、均熱条件が850℃で100秒の再結晶焼鈍を施したのち、MgOを主体とする焼鈍分離剤を塗布してから、900℃に50時間保定して二次再結晶させたのち、1200℃に10時間保定してフォルステライト被膜を形成させた。最後に、1200℃で60秒の平坦化焼鈍を施し、その後、化学蒸着法によりTiNを鋼板表面に蒸着させてコーティングとした。
Example 1
C: 0.018 to 0.023%, Si: 3.20 to 3.40%, Mn: 0.10 to 0.15%, Cr: 0.03 to 0.05%, Al: 30 to 140 ppm and A steel slab containing N: 29 to 50 ppm, having an Al / N ratio shown in Table 1, further containing the Nb amount shown in Table 1, and the balance being Fe and inevitable impurities was produced by continuous casting. . Subsequently, the slab was heated at 1200 ° C., and a hot rolled sheet having a thickness of 2.2 mm was formed by hot rolling. Next, hot-rolled sheet annealing was performed at 1060 ° C. for 40 seconds, and finished to a thickness of 0.23 mm by one cold rolling. Furthermore, after applying recrystallization annealing at 850 ° C. for 100 seconds, after applying an annealing separator mainly composed of MgO, it was held at 900 ° C. for 50 hours for secondary recrystallization, The forsterite film was formed by holding at 1200 ° C. for 10 hours. Finally, flattening annealing was performed at 1200 ° C. for 60 seconds, and then TiN was vapor-deposited on the steel sheet surface by chemical vapor deposition to form a coating.
 ここで、本実施例での磁気特性測定サンプルの採取および磁気特性の測定を、以下の手順で実施した。
 まず、平坦化焼鈍ラインの焼鈍炉出側に設置したインライン鉄損計によって、コイルの全長にわたって鉄損を測定し、コイル長手方向の鉄損プロファイルを取得しておく。次に、TiNコーティング後、上記鉄損プロファイルでの鉄損が高かった部位から、板幅方向に3箇所、およびコイル長手方向の両端部2箇所(幅方向中央)、の計5箇所からサンプルを採取し、磁気特性をJIS C2550の方法に準拠して測定した。
 上記5箇所の内、最も磁気特性が悪かったサンプルにおける磁束密度B8およびW17/50を、そのコイルの代表値とし、その値の良否により、コイル全長で優れた磁気特性が得られているか否かの評価をした。
 以上の測定評価結果を、表1に併記する。
Here, the collection of the magnetic property measurement sample and the measurement of the magnetic property in this example were performed according to the following procedure.
First, the iron loss is measured over the entire length of the coil by an in-line iron loss meter installed on the exit side of the annealing furnace of the flattening annealing line, and the iron loss profile in the coil longitudinal direction is acquired. Next, after TiN coating, samples were taken from a total of 5 locations, from the location where the iron loss in the iron loss profile was high, to 3 locations in the plate width direction and 2 locations in the coil longitudinal direction (center in the width direction) The magnetic properties were collected and measured according to the method of JIS C2550.
Of the above five locations, the magnetic flux density B8 and W17 / 50 in the sample having the worst magnetic characteristics is used as a representative value of the coil. Was evaluated.
The above measurement evaluation results are also shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 同表に示したとおり、本発明によれば、インヒビターを含まない成分系において、コイル全長にわたり良好な磁気特性の方向性電磁鋼板を得ることができた。
 (実施例2)
As shown in the table, according to the present invention, it was possible to obtain a grain-oriented electrical steel sheet having good magnetic properties over the entire coil length in a component system that does not contain an inhibitor.
(Example 2)
 C:0.018~0.023%、Si:3.20~3.40%、Mn:0.10~0.15%、Cr:0.03~0.05%、Al:30~140ppmおよびN:29~50ppmを含有し、Al/N比が表2に示す値になり、さらに表2に示す量のNbを含有し、残部はFeおよび不可避的不純物からなる鋼スラブを、連続鋳造にて製造し、1200℃でスラブ加熱した後、熱間圧延により2.2mm厚の熱延板とし、ついで1060℃で40秒の熱延板焼鈍後、冷間圧延により0.23mmの最終板厚に仕上げた。 その後、25%N−75%Hの湿潤雰囲気中にて820℃,90秒の再結晶焼鈍を行った。 このとき、600~800℃間の平均昇温速度はいずれも36℃/sとした。 なお、再結晶粒の粒度分布の標準偏差はいずれも0.21程度であった。 ついで、MgOを主体とする焼鈍分離剤を塗布してから、1200℃で10時間の純化焼鈍を行った。 その後、1200℃,60秒の平坦化焼鈍を施し、その際、化学蒸着法によりTiNを鋼板表層に蒸着させてコーティングとした。 C: 0.018 to 0.023%, Si: 3.20 to 3.40%, Mn: 0.10 to 0.15%, Cr: 0.03 to 0.05%, Al: 30 to 140 ppm and N: 29 to 50 ppm, the Al / N ratio is the value shown in Table 2, and further contains the amount of Nb shown in Table 2, with the balance being a steel slab composed of Fe and inevitable impurities. Manufactured, and slab heated at 1200 ° C., then hot-rolled to a 2.2 mm thick hot-rolled sheet, then annealed at 1060 ° C. for 40 seconds and then cold-rolled to a final thickness of 0.23 mm Finished. Thereafter, recrystallization annealing was performed at 820 ° C. for 90 seconds in a humid atmosphere of 25% N 2 -75% H 2 . At this time, the average heating rate between 600 and 800 ° C. was 36 ° C./s. The standard deviation of the recrystallized grain size distribution was about 0.21. Next, after applying an annealing separator mainly composed of MgO, purification annealing was performed at 1200 ° C. for 10 hours. Thereafter, planarization annealing was performed at 1200 ° C. for 60 seconds. At that time, TiN was vapor-deposited on the steel sheet surface layer by chemical vapor deposition to form a coating.
 平坦化焼鈍後に、インライン鉄損計でコイル全長の鉄損を予め測定し、全長測定で鉄損が悪かった箇所:3箇所とコイル両端部:2箇所の計5箇所のサンプルを採取した。
 得られたサンプルの磁気特性(磁束密度B、鉄損W17/50)をJIS C 2550に記載の方法で測定し、5箇所のうち最も磁気特性が悪かった値をそのコイルの代表値とした。この方法では、磁気特性のばらつきが大きい場合は代表値が悪くなることから、コイル内のばらつきも数値化できているとみなすことができる。
 得られた結果を表2に併記する。
After the flattening annealing, the iron loss of the entire length of the coil was measured in advance with an in-line iron loss meter, and a total of 5 samples were collected: 3 places where the iron loss was bad in the full length measurement and 2 ends of the coil: 2 places.
The magnetic properties (magnetic flux density B 8 , iron loss W 17/50 ) of the obtained sample were measured by the method described in JIS C 2550, and the value with the worst magnetic properties among the five locations was taken as the representative value of the coil. did. In this method, when the variation in the magnetic characteristics is large, the representative value is deteriorated. Therefore, it can be considered that the variation in the coil can be quantified.
The obtained results are also shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 同表から明らかなように、微量元素として適正量のNbを添加し、かつAl/N比を適正範囲に調整することによって、良好な磁気特性を得られることが分かる。 As is apparent from the table, it is understood that good magnetic properties can be obtained by adding an appropriate amount of Nb as a trace element and adjusting the Al / N ratio to an appropriate range.
 (実施例3)
 表3に示す成分を含み、残部がFeおよび不可避的不純物からなる鋼スラブを連続鋳造にて製造した。 ついで、1250℃でスラブ加熱し、熱間圧延により板厚2.3mm厚さの熱延板とした。 次に、1000℃で35秒の熱延板焼鈍を施し、1回目の冷間圧延により板厚0.82mmの鋼板とした。 ついで、1000℃で40秒の中間焼鈍を施したのち、2回目の冷間圧延により板厚0.23mmの最終厚さに仕上げた。 引き続き、850℃で60秒の再結晶焼鈍を行い、MgOを主体とする焼鈍分離剤を塗布し、1250℃で10時間の仕上げ焼鈍を行った。 この際10時間の保定のうち後半5時間をAr雰囲気とし、それ以外は水素雰囲気とした。 最後にリン酸マグネシウムとほう酸を主体とした張力付与コーティングの形成を兼ねた平坦化焼鈍を900℃で15秒行った。
(Example 3)
A steel slab containing the components shown in Table 3 with the balance being Fe and inevitable impurities was produced by continuous casting. Subsequently, the slab was heated at 1250 ° C., and a hot-rolled sheet having a thickness of 2.3 mm was formed by hot rolling. Next, hot-rolled sheet annealing was performed at 1000 ° C. for 35 seconds, and a steel sheet having a thickness of 0.82 mm was formed by the first cold rolling. Subsequently, after performing an intermediate annealing at 1000 ° C. for 40 seconds, a final thickness of 0.23 mm was obtained by the second cold rolling. Subsequently, recrystallization annealing was performed at 850 ° C. for 60 seconds, an annealing separator mainly composed of MgO was applied, and final annealing was performed at 1250 ° C. for 10 hours. In this case, the Ar atmosphere was set for the latter half 5 hours out of the 10-hour holding, and the hydrogen atmosphere was set for the rest. Finally, planarization annealing was performed at 900 ° C. for 15 seconds, which also served to form a tension-imparting coating mainly composed of magnesium phosphate and boric acid.
 得られたサンプルの磁気特性を、実施例1と同様な手順に従い、焼鈍後の鋼板について測定および評価をした。
 その結果を表3に併記する。
The magnetic properties of the obtained samples were measured and evaluated for the steel plates after annealing according to the same procedure as in Example 1.
The results are also shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 同表に示したとおり、本発明によれば、インヒビターを含まない成分系において、コイル全長にわたり良好な磁気特性の方向性電磁鋼板を得ることができた。
 (実施例4)
As shown in the table, according to the present invention, it was possible to obtain a grain-oriented electrical steel sheet having good magnetic properties over the entire coil length in a component system that does not contain an inhibitor.
Example 4
 表4に示す成分組成になる鋼スラブを、連続鋳造にて製造し、1200℃のスラブ加熱後、熱間圧延により2.8mm厚の熱延板とした。 ついで、1回目の冷間圧延により2.0mmの中間板厚とし、1000℃,40秒の中間焼鈍後、2回目の冷間圧延により0.23mmの最終板厚に仕上げた。 その後、40%N−60%Hの湿潤雰囲気中にて830℃,60秒の再結晶焼鈍を行った。 このとき、600~800℃間の平均昇温速度はいずれも70℃/sとした。 なお、再結晶粒の粒度分布の標準偏差はいずれも0.19程度であった。 ついで、MgOを主体とする焼鈍分離剤を塗布してから、1250℃で10時間の純化焼鈍を行った。 その際、10時間の保定のうち、後半5時間をAr雰囲気とし、それ以外は水素雰囲気とした。 その後、リン酸マグネシウムとほう酸を主体とした張力付与コーティング形成を兼ねた平坦化焼鈍を900℃で15秒の条件で施した。 Steel slabs having the composition shown in Table 4 were manufactured by continuous casting, and after heating the slabs at 1200 ° C., hot-rolled sheets having a thickness of 2.8 mm were formed by hot rolling. Then, the intermediate sheet thickness was 2.0 mm by the first cold rolling, and after the intermediate annealing at 1000 ° C. for 40 seconds, the final sheet thickness was 0.23 mm by the second cold rolling. Thereafter, recrystallization annealing was performed at 830 ° C. for 60 seconds in a wet atmosphere of 40% N 2 -60% H 2 . At this time, the average temperature rising rate between 600 and 800 ° C. was 70 ° C./s. The standard deviation of the recrystallized grain size distribution was about 0.19 in all cases. Then, after applying an annealing separator mainly composed of MgO, purification annealing was performed at 1250 ° C. for 10 hours. At that time, out of the 10-hour retention, the latter half 5 hours was set to Ar atmosphere, and the rest was set to hydrogen atmosphere. Thereafter, flattening annealing was performed at 900 ° C. for 15 seconds under the condition of forming a tension-imparting coating mainly composed of magnesium phosphate and boric acid.
 平坦化焼鈍後に、インライン鉄損計でコイル全長の鉄損を予め測定し、全長測定で鉄損が悪かった箇所:3箇所とコイル両端部:2箇所の計5箇所のサンプルを採取した。
 得られたサンプルの磁気特性(磁束密度B、鉄損W17/50)をJIS C 2550に記載の方法で測定し、5箇所のうち最も磁気特性が悪かった値をそのコイルの代表値とした。 この方法では、磁気特性のばらつきが大きい場合は代表値が悪くなることから、コイル内のばらつきも数値化できているとみなすことができる。
 得られた結果を表4に併記する。
After the flattening annealing, the iron loss of the entire length of the coil was measured in advance with an in-line iron loss meter, and a total of 5 samples were collected: 3 places where the iron loss was bad in the full length measurement and 2 ends of the coil: 2 places.
The magnetic properties (magnetic flux density B 8 , iron loss W 17/50 ) of the obtained sample were measured by the method described in JIS C 2550, and the value with the worst magnetic properties among the five locations was taken as the representative value of the coil. did. In this method, when the variation in the magnetic characteristics is large, the representative value is deteriorated. Therefore, it can be considered that the variation in the coil can be quantified.
The obtained results are also shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 同表から明らかなように、成分組成が本発明の適正範囲を満足する発明例はいずれも、良好な磁気特性が得られていた。
 (実施例5)
As is clear from the table, good magnetic properties were obtained in any of the invention examples in which the component composition satisfied the proper range of the present invention.
(Example 5)
 C:0.082%、Si:3.30%、Mn:0.07%、Cr:0.05%、P:0.012%、Sn:0.054%、Sb:0.035%、Al:70ppm、N:32ppm(Al/N=2.19)およびV:40ppmを含有し、残部はFeおよび不可避的不純物からなる鋼スラブを、連続鋳造にて製造し、1200℃のスラブ加熱後、熱間圧延により2.7mm厚の熱延板とした。 ついで、950℃で30秒の熱延板焼鈍後、150℃の温間圧延により0.30mmの最終板厚に仕上げた。 その後、60%N−40%Hの湿潤雰囲気中にて835℃,90秒の再結晶焼鈍を行った。 このとき、600~800℃間の平均昇温速度を表5に示すように種々に変化させた。 ついで、MgOを主体とする焼鈍分離剤を塗布してから、1200℃,25時間の純化焼鈍を施した。 その後、リン酸マグネシウムとほう酸を主体とした張力付与コーティング形成を兼ねた平坦化焼鈍を900℃で15秒の条件で施した。 C: 0.082%, Si: 3.30%, Mn: 0.07%, Cr: 0.05%, P: 0.012%, Sn: 0.054%, Sb: 0.035%, Al : 70 ppm, N: 32 ppm (Al / N = 2.19) and V: 40 ppm, and the balance is produced by continuous casting of a steel slab composed of Fe and inevitable impurities, and after heating at 1200 ° C., A hot-rolled sheet having a thickness of 2.7 mm was obtained by hot rolling. Then, after hot-rolled sheet annealing at 950 ° C. for 30 seconds, a final sheet thickness of 0.30 mm was finished by warm rolling at 150 ° C. Thereafter, recrystallization annealing was performed at 835 ° C. for 90 seconds in a wet atmosphere of 60% N 2 -40% H 2 . At this time, the average temperature increase rate between 600 and 800 ° C. was variously changed as shown in Table 5. Then, after applying an annealing separator mainly composed of MgO, purification annealing was performed at 1200 ° C. for 25 hours. Thereafter, flattening annealing was performed at 900 ° C. for 15 seconds under the condition of forming a tension-imparting coating mainly composed of magnesium phosphate and boric acid.
 平坦化焼鈍後に、インライン鉄損計でコイル全長の鉄損を予め測定し、全長測定で鉄損が悪かった箇所:3箇所とコイル両端部:2箇所の計5箇所のサンプルを採取した。
 得られたサンプルの磁気特性(磁束密度B、鉄損W17/50)をJIS C 2550に記載の方法で測定し、5箇所のうち最も磁気特性が悪かった値をそのコイルの代表値とした。この方法では、磁気特性のばらつきが大きい場合は代表値が悪くなることから、コイル内のばらつきも数値化できているとみなすことができる。
 得られた結果を表5に併記する。
After the flattening annealing, the iron loss of the entire length of the coil was measured in advance with an in-line iron loss meter, and a total of 5 samples were collected: 3 places where the iron loss was bad in the full length measurement and 2 ends of the coil: 2 places.
The magnetic properties (magnetic flux density B 8 , iron loss W 17/50 ) of the obtained sample were measured by the method described in JIS C 2550, and the value with the worst magnetic properties among the five locations was taken as the representative value of the coil. did. In this method, when the variation in the magnetic characteristics is large, the representative value is deteriorated. Therefore, it can be considered that the variation in the coil can be quantified.
The obtained results are also shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 同表から明らかなように、再結晶焼鈍工程における600~800℃間の平均昇温速度を15℃/s以上とすることにより、さらに良好な磁気特性を得られることが分かる。 なお、平均昇温速度が15℃/sを下回るとばらつきにより磁気特性は劣化するが、この場合もAl/Nを1.4以上とし微量元素を所定量含有させることにより磁気特性を改善することができる。 As is clear from the table, it can be seen that by setting the average temperature increase rate between 600 to 800 ° C. in the recrystallization annealing step to 15 ° C./s or more, even better magnetic properties can be obtained. In addition, when the average temperature rising rate is less than 15 ° C./s, the magnetic properties deteriorate due to variations. In this case, the magnetic properties can be improved by making Al / N 1.4 or more and containing a predetermined amount of trace elements. Can do.
 本発明によれば、インヒビターを含まない成分系において、コイルの長手方向および幅方向における磁気特性のばらつきを小さくすることができ、その結果製品コイル全体として良好な磁気特性を得ることができる。 すなわち、コイル全長・全幅にわたって磁気特性に優れた方向性電磁鋼板を得ることができ、この方向性電磁鋼板は、強い磁束密度が必要なコイルの鉄心などの用途に供して極めて有効である。 According to the present invention, in a component system that does not contain an inhibitor, variation in magnetic characteristics in the longitudinal direction and width direction of the coil can be reduced, and as a result, good magnetic characteristics can be obtained as a whole product coil. That is, it is possible to obtain a grain-oriented electrical steel sheet having excellent magnetic characteristics over the entire length and width of the coil, and this grain-oriented electrical steel sheet is extremely effective for applications such as a coil core that requires a strong magnetic flux density.

Claims (8)

  1.  質量%で、C:0.10%以下、Si:2.0~8.0%およびMn:0.005~1.0%を含有し、Alを100ppm以下、かつN、SおよびSeを各々50ppm以下とし、残部はFeおよび不可避的不純物からなるスラブを圧延して最終板厚に仕上げ、ついで再結晶焼鈍を施した後、仕上焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法において、
     上記スラブ中に含有されるAl量とN量との比を質量比で1.4以上にすると共に、上記スラブ中にさらに、B、NbおよびVのうちから選んだ1種または2種以上を合計で10~150ppm含有させることを特徴とする方向性電磁鋼板の製造方法。
    In mass%, C: 0.10% or less, Si: 2.0-8.0% and Mn: 0.005-1.0%, Al is 100 ppm or less, and N, S and Se are each In the manufacturing method of grain-oriented electrical steel sheet comprising a series of steps of rolling a slab composed of Fe and inevitable impurities to the final sheet thickness and then performing recrystallization annealing and then finishing annealing. ,
    The ratio of the amount of Al and the amount of N contained in the slab is set to 1.4 or more in terms of mass ratio, and one or more selected from B, Nb and V are further added to the slab. A method for producing a grain-oriented electrical steel sheet, characterized by containing 10 to 150 ppm in total.
  2.  スラブを圧延して最終板厚に仕上げる前記工程が、スラブを熱間圧延し、必要に応じて熱延板焼鈍を施した後、1回または中間焼鈍を挟む2回以上の冷間圧延を施す工程である、請求項1に記載の方向性電磁鋼板の製造方法。 The step of rolling the slab to finish to the final plate thickness is performed by hot rolling the slab and, if necessary, performing hot-rolled sheet annealing, and then performing cold rolling at least once with one or intermediate annealing in between. The manufacturing method of the grain-oriented electrical steel sheet according to claim 1, which is a process.
  3.  前記スラブ中に、質量%でさらに、Ni:0.01~1.50%、Cr:0.01~0.50%、Cu:0.01~0.50%、P:0.005~0.50%、Sn:0.005~0.50%、Sb:0.005~0.50%、Bi:0.005~0.50%およびMo:0.005~0.10%のうちから選んだ少なくとも1種を含有することを特徴とする請求項1または2に記載の方向性電磁鋼板の製造方法。 In the slab, Ni: 0.01 to 1.50%, Cr: 0.01 to 0.50%, Cu: 0.01 to 0.50%, P: 0.005 to 0% by mass%. .50%, Sn: 0.005 to 0.50%, Sb: 0.005 to 0.50%, Bi: 0.005 to 0.50% and Mo: 0.005 to 0.10% The method for producing a grain-oriented electrical steel sheet according to claim 1 or 2, comprising at least one selected.
  4.  質量%で、C:0.10%以下、Si:2.0~8.0%およびMn:0.005~1.0%を含有し、かつAlを100ppm以下、かつN,S,Seを各々50ppm以下に低減し、残部はFeおよび不可避的不純物からなるスラブを圧延して最終板厚に仕上げ、ついで再結晶焼鈍を施したのち、仕上焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法において、
     該スラブ中にさらに、B,NbおよびVのうちから選んだ1種または2種以上を合計で10~150ppmの範囲で含有し、またAlとNとの比を質量比でAl/N≧1.4とし、さらに再結晶焼鈍における600~800℃間の平均昇温速度を15℃/s以上とすることを特徴とする方向性電磁鋼板の製造方法。
    In mass%, C: 0.10% or less, Si: 2.0 to 8.0% and Mn: 0.005 to 1.0%, Al is 100 ppm or less, and N, S, and Se are contained. Each is reduced to 50 ppm or less, and the balance is made of a grain-oriented electrical steel sheet consisting of a series of steps of rolling a slab composed of Fe and inevitable impurities to finish the final plate thickness, then performing recrystallization annealing, and then finishing annealing. In the manufacturing method,
    The slab further contains one or more selected from B, Nb and V in a total range of 10 to 150 ppm, and the ratio of Al to N is expressed as Al / N ≧ 1 by mass ratio. And a mean temperature increase rate between 600 and 800 ° C. in recrystallization annealing is set to 15 ° C./s or more.
  5.  スラブを圧延して最終板厚に仕上げる前記工程が、スラブを熱間圧延し、必要に応じて熱延板焼鈍を施したのち、1回または中間焼鈍を挟む2回以上の冷間圧延を施す工程である、請求項4に記載の方向性電磁鋼板の製造方法。 The above-mentioned process of rolling the slab to finish to the final plate thickness is performed by hot rolling the slab and performing hot-rolled sheet annealing as necessary, followed by one or more cold rollings with intermediate annealing interposed therebetween. The manufacturing method of the grain-oriented electrical steel sheet according to claim 4, which is a process.
  6.  前記スラブ中に、質量%でさらに、Ni:0.010~1.50%、Cr:0.01~0.50%、Cu:0.01~0.50%、P:0.005~0.50%、Sn:0.005~0.50%、Sb:0.005~0.50%、Bi:0.005~0.50%およびMo:0.005~0.100%のうちから選んだ少なくとも1種を含有することを特徴とする請求項4または5に記載の方向性電磁鋼板の製造方法。 In the slab, Ni: 0.010 to 1.50%, Cr: 0.01 to 0.50%, Cu: 0.01 to 0.50%, P: 0.005 to 0% by mass%. .50%, Sn: 0.005 to 0.50%, Sb: 0.005 to 0.50%, Bi: 0.005 to 0.50% and Mo: 0.005 to 0.100% The method for producing a grain-oriented electrical steel sheet according to claim 4 or 5, comprising at least one selected.
  7.  再結晶焼鈍後の鋼板の再結晶粒の粒度分布が、平均粒径を1.0に規格化した場合の標準偏差が0.3以下を満足することを特徴とする請求項4または5に記載の方向性電磁鋼板の製造方法。 6. The grain size distribution of recrystallized grains of a steel sheet after recrystallization annealing satisfies a standard deviation of 0.3 or less when the average grain size is normalized to 1.0. Method for producing a grain-oriented electrical steel sheet.
  8.  再結晶焼鈍後の鋼板の再結晶粒の粒度分布が、平均粒径を1.0に規格化した場合の標準偏差が0.3以下を満足することを特徴とする請求項6に記載の方向性電磁鋼板の製造方法。 The direction according to claim 6, wherein the grain size distribution of the recrystallized grains of the steel sheet after recrystallization annealing satisfies a standard deviation of 0.3 or less when the average grain size is normalized to 1.0. Method for producing an electrical steel sheet.
PCT/JP2009/068444 2008-10-22 2009-10-21 Method for manufacturing grain-oriented electrical steel sheet WO2010047414A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147015188A KR20140077223A (en) 2008-10-22 2009-10-21 Method for manufacturing grain-oriented electrical steel sheet
CN200980141876.5A CN102197149B (en) 2008-10-22 2009-10-21 Method for manufacturing grain-oriented electrical steel sheet

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-272261 2008-10-22
JP2008272261A JP5338254B2 (en) 2008-10-22 2008-10-22 Method for producing grain-oriented electrical steel sheet
JP2009-080090 2009-03-27
JP2009080090A JP4962516B2 (en) 2009-03-27 2009-03-27 Method for producing grain-oriented electrical steel sheet

Publications (1)

Publication Number Publication Date
WO2010047414A1 true WO2010047414A1 (en) 2010-04-29

Family

ID=42119443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068444 WO2010047414A1 (en) 2008-10-22 2009-10-21 Method for manufacturing grain-oriented electrical steel sheet

Country Status (3)

Country Link
KR (2) KR20140077223A (en)
CN (1) CN102197149B (en)
WO (1) WO2010047414A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115003843A (en) * 2019-12-19 2022-09-02 Posco公司 Non-oriented electrical steel sheet and method for manufacturing the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5672273B2 (en) * 2012-07-26 2015-02-18 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
EP2915889B1 (en) * 2012-10-30 2019-06-19 JFE Steel Corporation Method of manufacturing grain-oriented electrical steel sheet exhibiting low iron loss
CN103695791B (en) * 2013-12-11 2015-11-18 武汉钢铁(集团)公司 A kind of high magnetic induction grain-oriented silicon steel and production method
CN108699621B (en) * 2016-03-09 2020-06-26 杰富意钢铁株式会社 Method for producing grain-oriented electromagnetic steel sheet
RU2736566C2 (en) * 2016-07-29 2020-11-18 ДжФЕ СТИЛ КОРПОРЕЙШН Hot-rolled steel sheet for textured electrical steel sheet and method of manufacturing thereof and method for manufacturing of textured electrical steel sheet
KR101947026B1 (en) * 2016-12-22 2019-02-12 주식회사 포스코 Grain oriented electrical steel sheet and method for manufacturing the same
CN113366125B (en) * 2019-01-31 2023-01-20 杰富意钢铁株式会社 Grain-oriented electromagnetic steel sheet and iron core using same
CN111763872B (en) * 2020-08-13 2021-06-01 包头市威丰稀土电磁材料股份有限公司 Production process of rare earth microalloy oriented silicon steel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129356A (en) * 1998-10-28 2000-05-09 Kawasaki Steel Corp Production of grain oriented silicon steel sheet
JP2001003145A (en) * 1999-06-21 2001-01-09 Kawasaki Steel Corp Grain oriented silicon steel sheet excellent in magnetic property and punchability and its production
JP2006183118A (en) * 2004-12-28 2006-07-13 Jfe Steel Kk Method for producing low core loss grain oriented silicon steel sheet

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990088437A (en) * 1998-05-21 1999-12-27 에모또 간지 Grain oriented electromagnetic steel sheet and manufacturing method thereof
US6309473B1 (en) * 1998-10-09 2001-10-30 Kawasaki Steel Corporation Method of making grain-oriented magnetic steel sheet having low iron loss
EP1279747B1 (en) * 2001-07-24 2013-11-27 JFE Steel Corporation A method of manufacturing grain-oriented electrical steel sheets

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129356A (en) * 1998-10-28 2000-05-09 Kawasaki Steel Corp Production of grain oriented silicon steel sheet
JP2001003145A (en) * 1999-06-21 2001-01-09 Kawasaki Steel Corp Grain oriented silicon steel sheet excellent in magnetic property and punchability and its production
JP2006183118A (en) * 2004-12-28 2006-07-13 Jfe Steel Kk Method for producing low core loss grain oriented silicon steel sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115003843A (en) * 2019-12-19 2022-09-02 Posco公司 Non-oriented electrical steel sheet and method for manufacturing the same

Also Published As

Publication number Publication date
CN102197149B (en) 2014-07-02
KR20140077223A (en) 2014-06-23
KR20110074547A (en) 2011-06-30
CN102197149A (en) 2011-09-21

Similar Documents

Publication Publication Date Title
WO2010047414A1 (en) Method for manufacturing grain-oriented electrical steel sheet
US11066722B2 (en) Method of producing grain-oriented electrical steel sheet
JP5754097B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5772410B2 (en) Method for producing grain-oriented electrical steel sheet
JP5988026B2 (en) Method for producing grain-oriented electrical steel sheet
US9240266B2 (en) Grain oriented electrical steel sheet
JP4962516B2 (en) Method for producing grain-oriented electrical steel sheet
RU2519691C2 (en) Production of texture sheets from electrical steel
WO2012001952A1 (en) Oriented electromagnetic steel plate and production method for same
US11332801B2 (en) Method of producing grain-oriented electrical steel sheet
WO2016067636A1 (en) Production method for oriented electromagnetic steel sheet
JP2015200002A (en) Method for producing grain oriented magnetic steel sheet
JP6443355B2 (en) Method for producing grain-oriented electrical steel sheet
JP5338254B2 (en) Method for producing grain-oriented electrical steel sheet
JP5375694B2 (en) Method for producing grain-oriented electrical steel sheet
JP6418226B2 (en) Method for producing grain-oriented electrical steel sheet
JP5754115B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP6369626B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP5527094B2 (en) Method for producing grain-oriented electrical steel sheet
JP5310510B2 (en) Method for producing grain-oriented electrical steel sheet
JP2014173103A (en) Method of producing grain-oriented magnetic steel sheet
JP6866869B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2002194444A (en) Method for producing grain oriented electrical steel sheet having excellent magnetic characteristic and film characteristic
JP2018087366A (en) Production method of grain-oriented electromagnetic steel sheet
JP2018090851A (en) Production method of directionality magnetic steel sheet

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980141876.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09822107

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117009021

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1926/KOLNP/2011

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 09822107

Country of ref document: EP

Kind code of ref document: A1