JP4962516B2 - Method for producing grain-oriented electrical steel sheet - Google Patents

Method for producing grain-oriented electrical steel sheet Download PDF

Info

Publication number
JP4962516B2
JP4962516B2 JP2009080090A JP2009080090A JP4962516B2 JP 4962516 B2 JP4962516 B2 JP 4962516B2 JP 2009080090 A JP2009080090 A JP 2009080090A JP 2009080090 A JP2009080090 A JP 2009080090A JP 4962516 B2 JP4962516 B2 JP 4962516B2
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
grain
ppm
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009080090A
Other languages
Japanese (ja)
Other versions
JP2010229521A (en
Inventor
今村  猛
峰男 村木
大村  健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009080090A priority Critical patent/JP4962516B2/en
Priority to KR1020147015188A priority patent/KR20140077223A/en
Priority to CN200980141876.5A priority patent/CN102197149B/en
Priority to KR1020117009021A priority patent/KR20110074547A/en
Priority to PCT/JP2009/068444 priority patent/WO2010047414A1/en
Publication of JP2010229521A publication Critical patent/JP2010229521A/en
Application granted granted Critical
Publication of JP4962516B2 publication Critical patent/JP4962516B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、変圧器の鉄心材料等の用途に供して好適な方向性電磁鋼板の製造方法に関するものである。   The present invention relates to a method for producing a grain-oriented electrical steel sheet that is suitable for applications such as iron core materials for transformers.

方向性電磁鋼板については、インヒビターと呼ばれる析出物を使用して、最終仕上焼鈍中にゴス(Goss)方位を有する粒を優先的に二次再結晶させることが一般的な技術として知られている。例えば、特許文献1には、AlN,MnSをインヒビターとして使用する方法が、特許文献2には、MnS,MnSeをインヒビターとして使用する方法が開示されていて、それぞれ工業的に実用化されている。
さらに、これらのインヒビターの作用を強化することを目的として、特許文献3には、Pb,Sb,Nb,Teを利用する方法が、また特許文献4には、Zr,Ti,B,Nb,Ta,V,Cr,Moを利用する方法が開示されている。
For grain-oriented electrical steel sheets, it is known as a common technique to preferentially recrystallize grains having Goss orientation during final finish annealing using precipitates called inhibitors. . For example, Patent Document 1 discloses a method of using AlN and MnS as an inhibitor, and Patent Document 2 discloses a method of using MnS and MnSe as an inhibitor, which are industrially put into practical use.
Further, for the purpose of enhancing the action of these inhibitors, Patent Document 3 discloses a method using Pb, Sb, Nb, Te, and Patent Document 4 discloses Zr, Ti, B, Nb, Ta. , V, Cr, and Mo are disclosed.

これらのインヒビターを用いる方法は、安定して二次再結晶粒を発達させるのに有効な方法ではあるが、インヒビターを鋼中に微細分散させるために、1300℃以上の高温でのスラブ加熱が必要であった。また、インヒビター成分は、二次再結晶後には磁気特性を劣化させる原因となることから、インヒビターを除去する純化焼鈍工程が必要となり、その工程は、1100℃以上の高温で、しかもその雰囲気を制御する必要があった。   Although the method using these inhibitors is an effective method for stably developing secondary recrystallized grains, slab heating at a high temperature of 1300 ° C or higher is required to finely disperse the inhibitor in steel. Met. In addition, since the inhibitor component causes deterioration of the magnetic properties after secondary recrystallization, a purification annealing process is required to remove the inhibitor, and the process is controlled at a high temperature of 1100 ° C or higher. There was a need to do.

一方、インヒビター成分を含有しない素材において、ゴス方位結晶粒を二次再結晶により発達させる技術が、特許文献5に提案されている。この方法は、インヒビター成分のような不純物を極力排除することで、一次再結晶時の結晶粒界が持つ粒界エネルギーの粒界方位差角依存性を顕在化させることにより、インヒビターを用いることなしにゴス方位を有する粒を二次再結晶させる技術であり、その効果はテクスチャーインヒビション効果と呼ばれている。上記特許文献5の方法では、インヒビターを純化する工程が不要であるため、最終仕上げ焼鈍を高温にする必要がなく、またインヒビターを鋼中に微細分散させる必要がなく、高温スラブ加熱も必要としないことから、製造コスト面でも設備メンテナンス面でも大きなメリットを有する方法である。   On the other hand, Patent Document 5 proposes a technique for developing Goss-oriented crystal grains by secondary recrystallization in a material that does not contain an inhibitor component. This method eliminates impurities such as inhibitor components as much as possible, and makes the grain boundary energy dependency of the grain boundary energy at the time of primary recrystallization obvious, without using an inhibitor. Is a technique for secondary recrystallization of grains having goth orientation, and the effect is called a texture inhibition effect. In the method of Patent Document 5, the step of purifying the inhibitor is unnecessary, so that the final finish annealing does not need to be performed at a high temperature, the inhibitor does not need to be finely dispersed in the steel, and high-temperature slab heating is not necessary. For this reason, this method has great advantages both in terms of manufacturing cost and equipment maintenance.

特公昭40-15644号公報Japanese Patent Publication No.40-15644 特公昭51-13469号公報Japanese Patent Publication No.51-13469 特公昭38-8214号公報Japanese Patent Publication No.38-8214 特開昭52-24116号公報JP-A-52-24116 特開2000-129356号公報JP 2000-129356 JP

しかしながら、インヒビターを含まない成分系は、粒成長を抑制する析出物が少ないため、焼鈍時の粒成長で粒径が大きくなりやすい、すなわち焼鈍温度依存性が強かった。このため、若干の工程条件の変動、具体的には焼鈍温度のばらつきで、熱延板焼鈍後や再結晶焼鈍後の粒径も変動し、製品コイルの全長全幅での磁気特性が変動し、コイル全体として良好な磁気特性が得られない、という問題が顕在化するようになった。   However, since the component system not containing an inhibitor has few precipitates that suppress grain growth, the grain size tends to increase due to grain growth during annealing, that is, the annealing temperature dependency is strong. For this reason, the grain size after hot-rolled sheet annealing and after recrystallization annealing also fluctuates due to slight variations in process conditions, specifically the annealing temperature, and the magnetic characteristics over the entire length of the product coil vary, The problem that good magnetic properties cannot be obtained as a whole coil has become apparent.

本発明は、上記の問題を有利に解決するもので、製品磁気特性の高位安定化を図ることができる方向性電磁鋼板の有利な製造方法を提案することを目的とする。   The present invention advantageously solves the above-described problems, and an object of the present invention is to propose an advantageous method for producing a grain-oriented electrical steel sheet capable of achieving high-level stabilization of product magnetic properties.

さて、発明者らは、上記の問題を解決すべく鋭意検討を重ねた結果、特定の元素を微量添加すると共に、不純物であるAlとNの比を規定し、さらに再結晶焼鈍時における昇温速度を制御することにより、所期した目的が有利に達成されることの知見を得た。   Now, as a result of intensive studies to solve the above problems, the inventors have added a small amount of a specific element, specified the ratio of impurities Al and N, and further increased the temperature during recrystallization annealing. It has been found that the intended purpose can be advantageously achieved by controlling the speed.

以下、本発明を成功に至らしめた実験について説明する。なお、成分に関する「%」表示は特に断らない限り質量%を意味するものとする。
<実験1>
C:0.035〜0.043%、Si:3.23〜3.30%、Mn:0.06〜0.09%、Sb:0.027〜0.045%、Cr:0.02〜0.06%、P:0.012〜0.015%、Al:28〜100ppm、N:17〜50ppm、S:15〜26ppmおよびNb:25〜47ppmを含有し、残部はFeおよび不可避的不純物からなる鋼スラブを、連続鋳造にて製造し、1250℃でスラブ加熱した後、熱間圧延により2.3mm厚の熱延板とし、ついで1050℃で15秒の熱延板焼鈍後、冷間圧延により0.23mmの最終板厚に仕上げた。その後、50%N2-50%H2の湿潤雰囲気中にて均熱条件:850℃,60秒で再結晶焼鈍を施したのち、MgOを主体とする焼鈍分離剤を塗布してから、1200℃に10時間保定する純化焼鈍を行った。その後、リン酸マグネシウムとほう酸を主体とする張力付与コーティング形成を兼ねた平坦化焼鈍を900℃で15秒の条件で施した。
Hereinafter, experiments that have made the present invention successful will be described. Unless otherwise specified, “%” in relation to ingredients means mass%.
<Experiment 1>
C: 0.035 to 0.043%, Si: 3.23 to 3.30%, Mn: 0.06 to 0.09%, Sb: 0.027 to 0.045%, Cr: 0.02 to 0.06%, P: 0.012 to 0.015%, Al: 28 to 100 ppm, N: Steel slab containing 17-50ppm, S: 15-26ppm and Nb: 25-47ppm, the balance being Fe and unavoidable impurities is manufactured by continuous casting, and after slab heating at 1250 ° C, hot rolling Then, a hot-rolled sheet having a thickness of 2.3 mm was formed, and then annealed at 1050 ° C. for 15 seconds, followed by cold rolling to a final thickness of 0.23 mm. After applying recrystallization annealing in a soaking condition of 50% N 2 -50% H 2 at 850 ° C for 60 seconds, after applying an annealing separator mainly composed of MgO, 1200 Purification annealing was carried out at 10 ° C. for 10 hours. Thereafter, planarization annealing was performed at 900 ° C. for 15 seconds under the condition of forming a tension-imparting coating mainly composed of magnesium phosphate and boric acid.

平坦化焼鈍後に、インライン鉄損計でコイル全長の鉄損を予め測定し、全長測定で鉄損が悪かった箇所:3箇所とコイル両端部:2箇所の計5箇所のサンプルを採取した。
得られたサンプルの磁気特性(磁束密度B8)をJIS C 2550に記載の方法で測定し、5箇所のうち最も磁気特性が悪かった値をそのコイルの代表値とした。この方法では、磁気特性のばらつきが大きい場合は代表値が悪くなることから、コイル内のばらつきも数値化できているとみなすことができる。
After the flattening annealing, the iron loss of the entire length of the coil was measured in advance with an in-line iron loss meter, and a total of 5 samples were collected: 3 places where the iron loss was bad in the full length measurement and 2 ends of the coil: 2 places.
The magnetic properties (magnetic flux density B 8 ) of the obtained sample were measured by the method described in JIS C 2550, and the value having the worst magnetic properties among the five locations was taken as the representative value of the coil. In this method, when the variation in the magnetic characteristics is large, the representative value is deteriorated. Therefore, it can be considered that the variation in the coil can be quantified.

得られた磁気特性は一見ばらついているように見えたが、鋼スラブ成分中のAlとNの比Al/Nで整理するとよい相関が得られた。その結果を図1に示す。
図1より、Al/Nが小さくなると磁気特性が劣化し、特に1.4を下回るとばらつきが大きくなることが分かる。また、磁束密度が高い範囲においても、Al/Nが2.0を下回ると磁束密度が幾分低下する傾向が認められた。
Although the obtained magnetic characteristics seemed to vary at first glance, a good correlation was obtained by arranging the ratio Al / N of Al and N in the steel slab component. The result is shown in FIG.
As can be seen from FIG. 1, when Al / N is decreased, the magnetic characteristics are deteriorated, and particularly when the Al / N is less than 1.4, the variation is increased. Even in the range where the magnetic flux density is high, when Al / N is less than 2.0, the magnetic flux density tends to decrease somewhat.

そこで、Al/Nが磁束密度と相関を有する理由を追究するため、さらに実験を行った。
Al/Nが2.0付近でも磁束密度に変化が認められたことから、不純物として存在しているAlとNがAlNを形成(Al/Nは質量比で27/14≒1.93)しており、この化合物の挙動が関与していているのではないかと推測し、窒化物形成元素を種々加えた実験を試みた。
Therefore, further experiments were conducted to investigate the reason why Al / N has a correlation with the magnetic flux density.
Since a change in magnetic flux density was observed even when Al / N was around 2.0, Al and N present as impurities formed AlN (Al / N was 27 / 14≈1.93 by mass ratio). Presuming that the behavior of the compound might be involved, we experimented with various additions of nitride-forming elements.

<実験2>
C:0.045〜0.062%、Si:3.20〜3.31%、Mn:0.04〜0.16%、Sb:0.015〜0.037%、Cr:0.03〜0.11%、Mo:0.03〜0.05%、Al:55〜97ppm、N:20〜49ppm(Al/N:1.98〜3.10)およびS:17〜27ppmを含有し、さらにZr,Ti,Nb,B,Vのうちから選んだ一種のみを約50ppm添加した鋼スラブ、およびこれらZr,Ti,Nb,B,Vを含まない鋼スラブを、連続鋳造にて製造し、1250℃でスラブ加熱した後、熱間圧延により2.8mm厚の熱延板とし、ついで1100℃で60秒の熱延板焼鈍後、冷間圧延により0.30mmの最終板厚に仕上げた。その後、50%N2-50%H2の湿潤雰囲気中にて均熱条件:840℃,80秒で再結晶焼鈍を施した後、MgOを主体とする焼鈍分離剤を塗布してから、1200℃に10時間保定する純化焼鈍を行った。その後、リン酸マグネシウムとほう酸を主体とする張力付与コーティング形成を兼ねた平坦化焼鈍を900℃で15秒の条件で施した。
<Experiment 2>
C: 0.045 to 0.062%, Si: 3.20 to 3.31%, Mn: 0.04 to 0.16%, Sb: 0.015 to 0.037%, Cr: 0.03 to 0.11%, Mo: 0.03 to 0.05%, Al: 55 to 97 ppm, N: Steel slabs containing 20 to 49 ppm (Al / N: 1.98 to 3.10) and S: 17 to 27 ppm, and further containing only about 50 ppm of one selected from Zr, Ti, Nb, B, and V, and these Zr Steel slabs that do not contain Ti, Nb, B, and V are manufactured by continuous casting, slab heated at 1250 ° C, then hot rolled into a 2.8mm thick hot rolled sheet, and then heated at 1100 ° C for 60 seconds. After hot-rolled sheet annealing, it was finished to a final sheet thickness of 0.30 mm by cold rolling. Then, after applying recrystallization annealing in a soaking condition of 50% N 2 -50% H 2 at 840 ° C. for 80 seconds, after applying an annealing separator mainly composed of MgO, 1200 Purification annealing was carried out at 10 ° C. for 10 hours. Thereafter, planarization annealing was performed at 900 ° C. for 15 seconds under the condition of forming a tension-imparting coating mainly composed of magnesium phosphate and boric acid.

平坦化焼鈍後に、インライン鉄損計でコイル全長の鉄損をあらかじめ測定し、実験1と同様の手法でコイル内から計5箇所のサンプルを採取し、得られたサンプルの磁気特性をJIS C 2550に記載の方法で測定し、5箇所のうち最も磁気特性が悪かった値をそのコイルの代表値とした。   After flattening annealing, the iron loss of the entire length of the coil is measured in advance with an in-line iron loss meter, and a total of five samples are taken from within the coil using the same method as in Experiment 1, and the magnetic properties of the obtained sample are JIS C 2550 As a representative value of the coil, the value having the worst magnetic characteristics among the five locations was measured.

得られた結果を図2に示す。
図2より、約50ppm添加した微量元素により磁束密度が大きく異なることが分かる。ここで、磁束密度が低いZrおよびTi添加材は、二次再結晶が発現していなかった。また、B,Nb,Vを添加した場合は、なにも添加しなかった場合と比較して磁束密度が高くなることが明らかとなった。
The obtained results are shown in FIG.
FIG. 2 shows that the magnetic flux density varies greatly depending on the trace element added with about 50 ppm. Here, secondary recrystallization did not appear in the Zr and Ti additive materials having a low magnetic flux density. Further, it has been clarified that when B, Nb, and V are added, the magnetic flux density is higher than when nothing is added.

上記したように、微量元素の添加により磁気特性が変化する理由については、必ずしも明確に解明されたわけではないが、発明者らは次のように考えている。
微量添加物や不純物における窒化物の熱力学的な安定性は、詳細に調べられており、窒素に結合している元素によって、その安定性が異なることが分かっている。本実験で添加した元素では、その窒化物の安定性は、安定な方からZr,Ti,Al,B,Nb,Vである。
図2の結果によれば、磁気特性が悪かった元素は窒化物がAlより安定なZr,Tiであり、磁気特性が良好であった元素は窒化物がAlより不安定なB,Nb,Vであった。このことより、ZrやTiが存在すると、鋼中のNはこれらの元素と結合し、ZrNやTiNを形成することが磁気特性を劣化させているものと推測される。また、たとえ、BやNb、Vが存在していても、鋼中のNはAlと安定な窒化物を形成し、BやNb,Vとの窒化物は形成されないと考えられる。
As described above, the reason why the magnetic characteristics change due to the addition of a trace element is not necessarily clearly clarified, but the inventors consider as follows.
The thermodynamic stability of nitrides in trace additives and impurities has been investigated in detail, and it has been found that the stability varies depending on the element bound to nitrogen. In the element added in this experiment, the stability of the nitride is Zr, Ti, Al, B, Nb, V from the stable side.
According to the results of FIG. 2, the elements having poor magnetic characteristics are Zr and Ti whose nitrides are more stable than Al, and the elements having good magnetic characteristics are B, Nb and V whose nitrides are more unstable than Al. Met. From this, when Zr and Ti are present, it is presumed that N in the steel is combined with these elements and the formation of ZrN and TiN deteriorates the magnetic properties. Moreover, even if B, Nb, and V are present, N in the steel is considered to form a stable nitride with Al, and a nitride with B, Nb, and V is not formed.

さらに、実験1で、Al/Nが低い場合にはNbの存在下においても磁気特性が劣化した理由は、化学量論的にAlと比較してNが過剰となり、Nbが残ったNと結合して窒化物を形成したことが原因と考えられる。
極論すれば、ZrやTi,B,Nb,Vの窒化物の存在が磁気特性を劣化させていると考えられる。おそらく、窒化物のような不純物が増加することによって、鋼板の結晶粒の粒界エネルギー差を駆動力としたテクスチャーインヒビション効果が薄れてしまうことが原因と推測される。
Furthermore, in Experiment 1, when Al / N is low, the reason why the magnetic properties deteriorated even in the presence of Nb is that the stoichiometric amount of N is excessive as compared with Al, and Nb remains bound to N. This is thought to be due to the formation of nitride.
From the extreme point of view, it is considered that the presence of nitrides of Zr, Ti, B, Nb, and V deteriorates the magnetic properties. Presumably, this is because the texture inhibition effect using the grain boundary energy difference between the crystal grains of the steel sheet as a driving force is diminished due to an increase in impurities such as nitride.

また、BやNb,Vを微量添加した場合は、添加したかった場合と比較して磁気特性が良好となった理由も定かではない。しかしながら、これらを添加した場合は再結晶焼鈍後の結晶粒径が細かく、均一になっていることが判明しており、このことが粒径のサイズ効果の影響を排除し、テクスチャーインヒビション効果を最大限発揮できたため、磁気特性の向上につながったと推測している。粒径均一化効果は、同一サンプル内の磁気特性のばらつき改善にも寄与している。   In addition, when a small amount of B, Nb, or V is added, the reason why the magnetic characteristics are better than when it is desired to be added is not clear. However, it has been found that when these are added, the crystal grain size after recrystallization annealing is fine and uniform, which eliminates the effect of the size effect on the grain size and provides a texture inhibition effect. It is speculated that this has led to an improvement in magnetic properties. The effect of uniforming the particle size also contributes to the improvement of variations in magnetic properties within the same sample.

上記の結果および考察を受け、粒径均一化効果を追究するためにさらに実験を行った。
<実験3>
C:0.034%、Si:3.30%、Mn:0.07%、Sb:0.030%、Sn:0.059%、Cr:0.05%、Al:56ppm、N:29ppm(Al/N:1.93)、S:15ppmおよびNb:35ppmを含有し、残部はFeおよび不可避的不純物からなる鋼スラブを、連続鋳造にて製造し、1150℃でスラブ加熱した後、熱間圧延により3.0mm厚の熱延板とし、ついで950℃で30秒の熱延板焼鈍後、1回目の冷間圧延により1.8mmの中間板厚とし、1000℃で40秒の中間焼鈍後、2回目の冷間圧延により0.23mmの最終板厚に仕上げた。その後、50%N2-50%H2湿潤雰囲気中にて均熱条件:850℃,60秒で再結晶焼鈍を施した。この際、600〜800℃間の平均昇温速度を種々に変更した。
Based on the above results and considerations, further experiments were conducted to investigate the effect of particle size uniformity.
<Experiment 3>
C: 0.034%, Si: 3.30%, Mn: 0.07%, Sb: 0.030%, Sn: 0.059%, Cr: 0.05%, Al: 56ppm, N: 29ppm (Al / N: 1.93), S: 15ppm and Nb : A steel slab containing 35 ppm, the balance being Fe and inevitable impurities, manufactured by continuous casting, heated at 1150 ° C, then hot rolled into a hot rolled sheet of 3.0 mm thickness, then 950 ° C After 30 seconds of hot-rolled sheet annealing, the first sheet is cold rolled to an intermediate thickness of 1.8 mm. After 1000 seconds of intermediate annealing for 40 seconds, the second sheet is cold rolled to a final thickness of 0.23 mm. It was. Thereafter, recrystallization annealing was performed in a soaking condition of 50% N 2 -50% H 2 at 850 ° C. for 60 seconds. Under the present circumstances, the average temperature increase rate between 600-800 degreeC was changed variously.

得られたサンプルの再結晶粒径を測定し、粒度分布から平均粒径とその標準偏差を求めた。再結晶粒径の測定方法は、サンプルの圧延方向に垂直な断面を切り出して、ナイタール液でエッチング後に光学顕微鏡で観察し、視野内の粒を画像処理装置により楕円近似法で楕円に近似し、その長軸と短軸の平均をその粒の粒径とした。その際のサンプルは、作製した再結晶板の幅方向における両端部と中央部から採取し、観察箇所は板厚全厚とした。観察した粒の個数は、両端部と中央部の合計で少なくとも2000個以上となるようにサンプルを採取した。   The recrystallized particle size of the obtained sample was measured, and the average particle size and its standard deviation were determined from the particle size distribution. The recrystallized grain size is measured by cutting a cross section perpendicular to the rolling direction of the sample, observing it with an optical microscope after etching with a nital solution, approximating the grains in the field of view with an ellipse approximation method by an image processing device, The average of the major and minor axes was taken as the particle size of the grains. Samples at that time were collected from both end portions and the central portion in the width direction of the produced recrystallized plate, and the observation location was the plate thickness full thickness. Samples were collected so that the number of particles observed was a total of at least 2000 at both ends and the center.

図3に、平均粒径を1.0に規格化したときの標準偏差を、再結晶焼鈍の昇温速度との関係で示す。
同図に示したとおり、600〜800℃間の平均昇温速度が速いほど標準偏差が小さい、すなわち粒径のばらつきが小さいことが分かる。
FIG. 3 shows the standard deviation when the average grain size is normalized to 1.0 in relation to the temperature increase rate of recrystallization annealing.
As shown in the figure, it can be seen that the standard deviation is smaller, that is, the variation in the particle size is smaller, as the average heating rate between 600 and 800 ° C. is faster.

以上のような実験、考察を経て、発明者らは、インヒビターを含まない成分系にBやNb,Vを微量に添加した系において、不純物として存在するAlとNの比を規定し、かつ再結晶焼鈍時の昇温速度を制御することにより、優れた磁気特性の方向性電磁鋼板が得られるとの結論に達した。
本発明は、上記知見に立脚するものである。
Through the above experiments and considerations, the inventors have defined the ratio of Al and N present as impurities in a system in which a small amount of B, Nb, or V is added to a component system that does not contain an inhibitor, and again It was concluded that a grain-oriented electrical steel sheet with excellent magnetic properties can be obtained by controlling the rate of temperature rise during crystal annealing.
The present invention is based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
1.質量%で、C:0.10%以下、Si:2.0〜8.0%およびMn:0.005〜1.0%を含有し、かつAlを100ppm以下、かつN,S,Seを各々50ppm以下に低減し、残部はFeおよび不可避的不純物からなるスラブを、熱間圧延し、必要に応じて熱延板焼鈍を施したのち、1回または中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚に仕上げ、ついで再結晶焼鈍を施したのち、純化焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法において、
該スラブ中にさらに、B,NbおよびVのうちから選んだ一種または二種以上を合計で10〜150ppmの範囲で含有し、また不純物として含まれるAlとNの比を質量比でAl/N≧1.4とし、さらに再結晶焼鈍における600〜800℃間の平均昇温速度を15℃/s以上とすることを特徴とする方向性電磁鋼板の製造方法。
That is, the gist configuration of the present invention is as follows.
1. In mass%, C: 0.10% or less, Si: 2.0-8.0%, and Mn: 0.005-1.0%, Al is reduced to 100 ppm or less, N, S, and Se are each reduced to 50 ppm or less, and the balance is Fe And after slab consisting of unavoidable impurities, hot-rolled, and subjected to hot-rolled sheet annealing as necessary, finish it to the final sheet thickness by performing cold rolling twice or more sandwiching once or intermediate annealing, Then, after performing recrystallization annealing, in the manufacturing method of grain oriented electrical steel sheet consisting of a series of steps to perform purification annealing,
The slab further contains one or more selected from B, Nb and V in a total range of 10 to 150 ppm, and the ratio of Al to N contained as impurities is expressed as Al / N by mass ratio. A method for producing a grain-oriented electrical steel sheet, wherein ≧ 1.4 and the average rate of temperature increase between 600 and 800 ° C. in recrystallization annealing is 15 ° C./s or more.

2.前記スラブ中に、質量%でさらに、Ni:0.010〜1.50%、Cr:0.01〜0.50%、Cu:0.01〜0.50%、P:0.005〜0.50%、Sn:0.005〜0.50%、Sb:0.005〜0.50%、Bi:0.005〜0.50%のうちから選んだ少なくとも一種を含有することを特徴とする前記1に記載の方向性電磁鋼板の製造方法。 2. In the slab, Ni: 0.010 to 1.50%, Cr: 0.01 to 0.50%, Cu: 0.01 to 0.50%, P: 0.005 to 0.50%, Sn: 0.005 to 0.50%, Sb: 0.005 to 0.50 %, Bi: at least one selected from 0.005 to 0.50 % . The method for producing a grain-oriented electrical steel sheet according to 1, wherein the grain-oriented electrical steel sheet is produced.

3.再結晶焼鈍後の鋼板の再結晶粒の粒度分布が、平均粒径を1.0に規格化した場合の標準偏差が0.3以下であることを特徴とする前記1または2に記載の方向性電磁鋼板の製造方法。 3. The grain size distribution of recrystallized grains in the steel sheet after recrystallization annealing has a standard deviation of 0.3 or less when the average grain size is normalized to 1.0. Production method.

本発明によれば、インヒビターを含まない成分系において、コイルの長手方向および幅方向における磁気特性のばらつきを小さくすることができ、その結果製品コイル全体として良好な磁気特性を得ることができる。   According to the present invention, in a component system that does not contain an inhibitor, variation in magnetic characteristics in the longitudinal direction and width direction of the coil can be reduced, and as a result, good magnetic characteristics can be obtained as a whole product coil.

鋼中の不純物AlとNの比Al/Nと磁束密度B8との関係を示した図である。It is a diagram showing the relationship between the ratio Al / N and the magnetic flux density B 8 of impurities Al and N in the steel. 鋼中に添加した微量元素の種類と磁束密度B8との関係を示した図である。It is a diagram illustrating a relationship between the type and the magnetic flux density B 8 of the added trace elements in the steel. 平均粒径を1.0に規格化したときの標準偏差を、再結晶焼鈍の昇温速度との関係で示した図である。It is the figure which showed the standard deviation when an average particle diameter is normalized to 1.0 with respect to the temperature increase rate of recrystallization annealing.

以下、本発明を具体的に説明する。
まず、本発明において、スラブの成分組成を前記の範囲に限定した理由について説明する。
C:0.10%以下
C量が0.10%を超えると、脱炭処理を行っても磁気時効の起こらない50ppm以下に低減することが困難になるので、C量は0.10%以下に限定した。
Hereinafter, the present invention will be specifically described.
First, the reason why the component composition of the slab is limited to the above range in the present invention will be described.
C: 0.10% or less When the C content exceeds 0.10%, it is difficult to reduce to 50 ppm or less where magnetic aging does not occur even if decarburization is performed. Therefore, the C content is limited to 0.10% or less.

Si:2.0〜8.0%
Siは、鋼の比抵抗を高め、鉄損を改善するために必要な元素であるが、2.0%未満ではその効果に乏しく、一方8.0%を超えると加工性が劣化し、圧延が困難となるため、Si量は2.0〜8.0%の範囲に限定した。
Si: 2.0-8.0%
Si is an element necessary to increase the specific resistance of steel and improve iron loss. However, if it is less than 2.0%, its effect is poor. On the other hand, if it exceeds 8.0%, workability deteriorates and rolling becomes difficult. Therefore, the Si content is limited to a range of 2.0 to 8.0%.

Mn:0.005〜1.0%
Mnは、熱間加工性を良好にするために必要な元素であるが、0.005%未満ではその効果に乏しく、一方1.0%を超えると製品板の磁束密度が低下するため、Mn量は0.005〜1.0%の範囲に限定した。
Mn: 0.005 to 1.0%
Mn is an element necessary for improving the hot workability. However, if it is less than 0.005%, its effect is poor. On the other hand, if it exceeds 1.0%, the magnetic flux density of the product plate is lowered. Limited to 1.0% range.

Al:100ppm以下、かつN,S,Se:各々50ppm以下
本発明において、Al量を100ppm以下、かつN、SおよびSeの量については、それぞれ50ppm以下にすることが、鋼板を良好に二次再結晶させる上で不可欠である。かかる成分は、極力低減することが磁気特性の観点からは望ましいが、これらの成分の低減はコスト高となるため、上記範囲内で残存させても問題はない。このうち、AlとSeは純化焼鈍時に鋼中から純化することが困難な元素であることから、Alは80ppm、Seは20ppm以下とすることがさらに望ましい。また、N,Sの軽元素は、鋼スラブ作製前の成分調整時に完全に除去することが困難であり、特殊な処理を行わない場合は、各々20ppmほど鋼板中に残存しているのが一般的である。
Al: 100 ppm or less, and N, S, Se: 50 ppm or less In the present invention, the amount of Al is 100 ppm or less, and the amount of N, S, and Se is 50 ppm or less. Indispensable for recrystallization. Although it is desirable to reduce these components as much as possible from the viewpoint of magnetic characteristics, since the reduction of these components increases the cost, there is no problem even if they are left within the above range. Among these, since Al and Se are elements that are difficult to purify from the steel during the purification annealing, it is more desirable that Al is 80 ppm and Se is 20 ppm or less. In addition, it is difficult to completely remove N and S light elements at the time of adjusting the components before making the steel slab, and in the case where no special treatment is performed, it is generally left in the steel plate by about 20 ppm each. Is.

これら不純物の中でも、AlとNの比(Al/N)を1.4以上とすることが、前述した理由により必須であり、特にAl/Nを2.0以上とすると磁気特性が向上するのでさらに望ましい。また、上述したとおり、Nは完全に除去することが困難であるため、Al/N≧1.4を満たすためにAlを100ppm以下の範囲で微量添加することも妨げない。   Among these impurities, it is essential that the ratio of Al to N (Al / N) is 1.4 or more for the reasons described above, and it is more desirable to set Al / N to 2.0 or more, since the magnetic characteristics are improved. Further, as described above, since it is difficult to completely remove N, addition of a small amount of Al in the range of 100 ppm or less to satisfy Al / N ≧ 1.4 is not prevented.

B,NbおよびVのうちから選んだ一種または二種以上を合計で:10〜150ppm
さらに、本発明における磁気特性向上の効果を十分に得るためには、B、NbおよびVの1種または2種以上を10ppm以上添加することが必要である。各々の添加量が10ppm未満ではその添加効果が少ない。好ましくは、各々20ppm以上である。しかしながら、これらの微量添加元素は、最終製品においても地鉄中に残存し、鉄損を劣化させる原因となることから、総量で150ppm以下に制限される。鉄損劣化抑制の観点からは総量で50ppm以下とすることがが望ましい。
One or more selected from B, Nb and V in total: 10 to 150 ppm
Furthermore, in order to sufficiently obtain the effect of improving the magnetic characteristics in the present invention, it is necessary to add 10 ppm or more of one or more of B, Nb and V. If each addition amount is less than 10 ppm, the effect of addition is small. Preferably, each is 20 ppm or more. However, these trace additive elements remain in the base iron even in the final product and cause deterioration of iron loss, so the total amount is limited to 150 ppm or less. From the viewpoint of suppressing iron loss deterioration, the total amount is desirably 50 ppm or less.

以上、必須元素および抑制元素について説明したが、本発明では、その他にも磁気特性改善元素として、Ni,Cr,Cu,P,Sn,Sb,Biのうちから選んだ少なくとも一種を以下の範囲で適宜含有させることができる。
Ni:0.010〜1.50%
Niは、熱延板組織を改善して磁気特性を向上させる上で有用な元素であるが、添加量が0.010%未満ではその添加効果に乏しく、一方1.50%を超えると二次再結晶が不安定になり磁気特性が低下する。
As described above, the essential element and the suppressing element have been described. In the present invention, at least one selected from Ni, Cr, Cu, P, Sn, Sb, and Bi is also used as the magnetic property improving element in the following range. It can be contained as appropriate.
Ni: 0.010 to 1.50%
Ni is an element that is useful for improving the magnetic properties by improving the hot-rolled sheet structure. However, if the addition amount is less than 0.010%, the effect of the addition is poor, while if it exceeds 1.50%, secondary recrystallization does not occur. It becomes stable and the magnetic properties deteriorate.

Cr:0.01〜0.50%、Cu:0.01〜0.50%、P:0.005〜0.50%
これらの元素はいずれも、鉄損の改善に有用な元素であるが、それぞれ下限に満たないとその添加効果に乏しく、一方上限を超えると二次再結晶粒の発達が抑制され、むしろ磁気特性の劣化を招く。
Cr: 0.01 to 0.50%, Cu: 0.01 to 0.50%, P: 0.005 to 0.50%
All of these elements are useful elements for improving iron loss, but if they do not reach the lower limit, the effect of addition is poor.On the other hand, if the upper limit is exceeded, the growth of secondary recrystallized grains is suppressed, rather magnetic properties. Cause deterioration.

Sn:0.005〜0.50%、Sb:0.005〜0.50%、Bi:0.005〜0.50
これらの元素も、磁気特性の向上に有用な元素であるが、それぞれ下限に満たないとその添加効果に乏しく、一方上限を超えると二次再結晶粒の発達が抑制され、むしろ磁気特性の劣化を招く。
Sn: 0.005-0.50%, Sb: 0.005-0.50%, Bi: 0.005-0.50 %
These elements are also useful elements for improving the magnetic properties. However, when the lower limit is not reached, the effect of addition is poor.On the other hand, when the upper limit is exceeded, the development of secondary recrystallized grains is suppressed, and rather the deterioration of the magnetic properties. Invite.

次に、本発明の製造工程について説明する。
上記の好適成分組成に調整した溶鋼を、通常の造塊法や連続鋳造法でスラブとする。また、100mm以下の厚さの薄鋳片を直接鋳造法で製造してもよい。スラブの場合は、通常の方法で加熱して熱間圧延するが、鋳造後加熱せずに直ちに熱間圧延に供してもよい。薄鋳片の場合は、熱間圧延しても良いし、熱間圧延を省略してそのまま以後の工程に進んでもよい。熱間圧延前のスラブ加熱温度は、Al,N,S,Seを低減したインヒビター成分を含まない成分系であることから、従来必須であったインヒビターを固溶させるための高温焼鈍を必要とせず、1250℃以下の低温とすることがコストの面で望ましい。
Next, the manufacturing process of the present invention will be described.
The molten steel adjusted to the above preferred component composition is made into a slab by a normal ingot-making method or a continuous casting method. Further, a thin cast piece having a thickness of 100 mm or less may be manufactured by a direct casting method. In the case of a slab, it is heated and rolled by a normal method, but may be immediately subjected to hot rolling without heating after casting. In the case of a thin slab, hot rolling may be performed, or the hot rolling may be omitted and the process may proceed as it is. Since the slab heating temperature before hot rolling is a component system that does not contain an inhibitor component with reduced Al, N, S, and Se, it does not require high-temperature annealing to dissolve the inhibitor, which has been essential in the past. In view of cost, a low temperature of 1250 ° C. or lower is desirable.

ついで、必要に応じて熱延板焼鈍を施す。良好な磁気特性を得るための熱延板焼鈍温度は800〜1150℃程度とするのが好適である。熱延板焼鈍温度が800℃に満たないと、熱延でのバンド組織が残留し、整粒した一次再結晶組織を実現することが困難となり、二次再結晶の発達が阻害される。一方、熱延板焼鈍温度が1150℃を超えると、熱延板焼鈍後の粒径が粗大化しすぎるため、整粒した一次再結晶組織を実現する上で極めて不利となる。   Next, hot-rolled sheet annealing is performed as necessary. The hot-rolled sheet annealing temperature for obtaining good magnetic properties is preferably about 800 to 1150 ° C. If the hot-rolled sheet annealing temperature is less than 800 ° C., a band structure in hot rolling remains, and it becomes difficult to realize a sized primary recrystallized structure, which hinders the development of secondary recrystallization. On the other hand, when the hot-rolled sheet annealing temperature exceeds 1150 ° C., the grain size after the hot-rolled sheet annealing is excessively coarsened, which is extremely disadvantageous for realizing a sized primary recrystallized structure.

熱延板焼鈍後、1回または中間焼鈍を挟む2回以上の冷間圧延を施した後、再結晶焼鈍を行う。冷間圧延は、その温度を100〜300℃に上昇させて行うことや、冷間圧延の途中で100〜300℃の時効処理を1回または複数回行うことは、磁気特性を向上させる上で有利である。   After hot-rolled sheet annealing, re-annealing is performed after performing cold rolling twice or more sandwiching once or intermediate annealing. Cold rolling is performed by raising the temperature to 100 to 300 ° C., or performing aging treatment at 100 to 300 ° C. once or a plurality of times during the cold rolling in order to improve magnetic properties. It is advantageous.

再結晶焼鈍は、脱炭を必要とする場合には雰囲気を湿潤雰囲気とするが、脱炭を必要としない場合には乾燥雰囲気で行っても良い。この再結晶焼鈍における均熱温度は、再結晶温度以上であれば特に制限はないが、あまりに高温で焼鈍すると結晶粒径が粗大となり、二次再結晶発現が不安定となることが懸念されるので、焼鈍温度の上限は1050℃程度とするのが好ましい。なお、再結晶焼鈍後は、浸珪法によってSi量を増加させる技術を併用してもよい。   Recrystallization annealing is performed in a wet atmosphere when decarburization is required, but may be performed in a dry atmosphere when decarburization is not required. The soaking temperature in this recrystallization annealing is not particularly limited as long as it is equal to or higher than the recrystallization temperature, but there is a concern that annealing at an excessively high temperature results in a coarse crystal grain size and unstable secondary recrystallization. Therefore, the upper limit of the annealing temperature is preferably about 1050 ° C. In addition, after recrystallization annealing, you may use together the technique which increases Si amount by a siliconization method.

本発明では、上記した再結晶焼鈍工程において、600℃から800℃までの平均昇温速度を15℃/s以上とすることが重要である。
というのは、昇温速度の平均値を15℃/sに満たないと、図3に示したように、平均粒径を1.0に規格化したときの標準偏差が大きくなる、すなわち粒径のばらつきが大きくなり、優れた磁気特性が安定して得られないからである。
なお、この平均昇温速度の上限値については特に制限はなく、大きいほど好ましいが、温度制御の観点からは昇温速度を300℃/s以下の範囲で調整することが好ましい。
In the present invention, in the above-described recrystallization annealing step, it is important that the average rate of temperature increase from 600 ° C. to 800 ° C. is 15 ° C./s or more.
This is because if the average value of the heating rate is less than 15 ° C./s, as shown in FIG. 3, the standard deviation when the average particle size is normalized to 1.0 increases, that is, the variation in particle size. This is because the excellent magnetic properties cannot be stably obtained.
The upper limit value of the average temperature increase rate is not particularly limited and is preferably as large as possible. However, from the viewpoint of temperature control, it is preferable to adjust the temperature increase rate within a range of 300 ° C./s or less.

その後、鉄損を重視してフォルステライト被膜を形成させる場合には、MgOを主体とする焼鈍分離剤を塗布した後に、仕上げ焼鈍を施すことにより、二次再結晶組織を発達させると共に、フォルステライト被膜を形成させることが可能である。
一方、打ち抜き加工性を重視してフォルステライト被膜を形成させない場合には、焼鈍分離剤を使用しないか、使用するにしても、フォルステライト被膜を形成を阻害するシリカやアルミナ等を主成分としたものを使用する。これらの焼鈍分離剤を塗布する際には、水分を持ち込まない静電塗布を行うことなどが有効であり、また耐熱無機材料シート(シリカ、アルミナ、マイカ)を用いても良い。
After that, when forming a forsterite film with an emphasis on iron loss, a secondary recrystallized structure is developed by applying a final annealing after applying an annealing separator mainly composed of MgO. A coating can be formed.
On the other hand, if the forsterite film is not formed with emphasis on the punching processability, the main component is silica or alumina that inhibits the formation of the forsterite film even if it is used or not. Use things. When these annealing separators are applied, it is effective to perform electrostatic coating that does not carry moisture, and a heat-resistant inorganic material sheet (silica, alumina, mica) may be used.

純化焼鈍(仕上げ焼鈍)は、二次再結晶発現のために800℃以上で行うことが望ましい。また、二次再結晶を完了させるためには800℃以上の温度に20時間以上保持させることが望ましい。打ち抜き性を重視してフォルステライト被膜を形成させない場合には、二次再結晶が完了すればよいので、保持温度は850〜950℃程度とするのが望ましく、保持の段階で仕上げ焼鈍を終了することも可能である。鉄損を重視する場合やトランスの騒音を低下させるためにフォルステライト被膜を形成させる場合には、1200℃程度まで昇温させることが望ましい。   The purification annealing (finish annealing) is desirably performed at 800 ° C. or higher for secondary recrystallization. Further, in order to complete the secondary recrystallization, it is desirable to hold at a temperature of 800 ° C. or higher for 20 hours or longer. If the forsterite film is not formed with emphasis on punchability, secondary recrystallization should be completed, so the holding temperature is preferably about 850 to 950 ° C., and finish annealing is finished at the holding stage. It is also possible. When placing importance on iron loss or forming a forsterite film to reduce transformer noise, it is desirable to raise the temperature to about 1200 ° C.

純化焼鈍後は、付着した未反応の焼鈍分離剤を除去するため、水洗やブラッシング、酸洗等を行う。その後、平坦化焼鈍を行い形状を矯正することが、鉄損低減のために有効である。   After the purification annealing, water washing, brushing, pickling or the like is performed in order to remove the unreacted annealing separation agent that has adhered. Thereafter, it is effective to correct the shape by performing flattening annealing in order to reduce iron loss.

なお、鋼板を積層して使用する場合には、鉄損を改善する目的で、平坦化焼鈍前または後に、鋼板表面に絶縁コーティングを施すことが有効である。この絶縁コーティングは、鉄損低減のために、鋼板に張力を付与できるコーティングとすることが望ましく、バインダーを介した張力コーティング塗布方法や物理蒸着法、化学蒸着法によって、無機物を鋼板表面に蒸着させるコーティング方法を採用すると、密着性に優れたコーティング膜が得られ、また鉄損低減効果も向上する。   In addition, when laminating | stacking and using a steel plate, in order to improve an iron loss, it is effective to give an insulating coating to the steel plate surface before or after planarization annealing. In order to reduce iron loss, this insulating coating is desirably a coating that can impart tension to the steel sheet. Inorganic coating is deposited on the steel sheet surface by a tension coating application method, physical vapor deposition method, or chemical vapor deposition method using a binder. When the coating method is employed, a coating film having excellent adhesion can be obtained, and the iron loss reduction effect can be improved.

実施例1
C:0.018〜0.023%、Si:3.20〜3.40%、Mn:0.10〜0.15%、Cr:0.03〜0.05%、Al:30〜140ppmおよびN:29〜50ppmを含有し、Al/N比が表1に示す値になり、さらに表1に示す量のNbを含有し、残部はFeおよび不可避的不純物からなる鋼スラブを、連続鋳造にて製造し、1200℃でスラブ加熱した後、熱間圧延により2.2mm厚の熱延板とし、ついで1060℃で40秒の熱延板焼鈍後、冷間圧延により0.23mmの最終板厚に仕上げた。その後、25%N2-75%H2の湿潤雰囲気中にて820℃,90秒の再結晶焼鈍を行った。このとき、600〜800℃間の平均昇温速度はいずれも36℃/sとした。なお、再結晶粒の粒度分布の標準偏差はいずれも0.21程度であった。ついで、MgOを主体とする焼鈍分離剤を塗布してから、1200℃で10時間の純化焼鈍を行った。その後、1200℃,60秒の平坦化焼鈍を施し、その際、化学蒸着法によりTiNを鋼板表層に蒸着させてコーティングとした。
Example 1
C: 0.018-0.023%, Si: 3.20-3.40%, Mn: 0.10-0.15%, Cr: 0.03-0.05%, Al: 30-140ppm and N: 29-50ppm, Al / N ratio is shown in Table 1. The steel slab containing the amount of Nb shown in Table 1 and the balance being Fe and inevitable impurities is manufactured by continuous casting, heated at 1200 ° C., and then hot-rolled. A hot-rolled sheet with a thickness of 2.2 mm was obtained, followed by hot-rolled sheet annealing at 1060 ° C. for 40 seconds, followed by cold rolling to a final sheet thickness of 0.23 mm. Thereafter, recrystallization annealing was performed at 820 ° C. for 90 seconds in a humid atmosphere of 25% N 2 -75% H 2 . At this time, the average rate of temperature increase between 600 and 800 ° C. was 36 ° C./s. The standard deviation of the recrystallized grain size distribution was about 0.21 in all cases. Next, after applying an annealing separator mainly composed of MgO, purification annealing was performed at 1200 ° C. for 10 hours. Then, planarization annealing was performed at 1200 ° C. for 60 seconds, and TiN was vapor-deposited on the surface of the steel sheet by chemical vapor deposition to form a coating.

平坦化焼鈍後に、インライン鉄損計でコイル全長の鉄損を予め測定し、全長測定で鉄損が悪かった箇所:3箇所とコイル両端部:2箇所の計5箇所のサンプルを採取した。
得られたサンプルの磁気特性(磁束密度B8)をJIS C 2550に記載の方法で測定し、5箇所のうち最も磁気特性が悪かった値をそのコイルの代表値とした。この方法では、磁気特性のばらつきが大きい場合は代表値が悪くなることから、コイル内のばらつきも数値化できているとみなすことができる。
得られた結果を表1に併記する。
After the flattening annealing, the iron loss of the entire length of the coil was measured in advance with an in-line iron loss meter, and a total of 5 samples were collected: 3 places where the iron loss was bad in the full length measurement and 2 ends of the coil: 2 places.
The magnetic properties (magnetic flux density B 8 ) of the obtained sample were measured by the method described in JIS C 2550, and the value having the worst magnetic properties among the five locations was taken as the representative value of the coil. In this method, when the variation in the magnetic characteristics is large, the representative value is deteriorated. Therefore, it can be considered that the variation in the coil can be quantified.
The obtained results are also shown in Table 1.

Figure 0004962516
Figure 0004962516

同表から明らかなように、微量元素として適正量のNbを添加し、かつAl/N比を適正範囲に調整することによって、良好な磁気特性を得られることが分かる。   As is apparent from the table, it is understood that good magnetic properties can be obtained by adding an appropriate amount of Nb as a trace element and adjusting the Al / N ratio within an appropriate range.

実施例2
表2に示す成分組成になる鋼スラブを、連続鋳造にて製造し、1200℃のスラブ加熱後、熱間圧延により2.8mm厚の熱延板とした。ついで、1回目の冷間圧延により2.0mmの中間板厚とし、1000℃,40秒の中間焼鈍後、2回目の冷間圧延により0.23mmの最終板厚に仕上げた。その後、40%N2-60%H2の湿潤雰囲気中にて830℃,60秒の再結晶焼鈍を行った。このとき、600〜800℃間の平均昇温速度はいずれも70℃/sとした。なお、再結晶粒の粒度分布の標準偏差はいずれも0.19程度であった。ついで、MgOを主体とする焼鈍分離剤を塗布してから、1250℃で10時間の純化焼鈍を行った。その際、10時間の保定のうち、後半5時間をAr雰囲気とし、それ以外は水素雰囲気とした。その後、リン酸マグネシウムとほう酸を主体とした張力付与コーティング形成を兼ねた平坦化焼鈍を900℃で15秒の条件で施した。
Example 2
Steel slabs having the composition shown in Table 2 were manufactured by continuous casting, heated to 1200 ° C., and hot-rolled into 2.8 mm thick hot-rolled sheets. Then, the intermediate plate thickness was 2.0 mm by the first cold rolling, and after the intermediate annealing at 1000 ° C. for 40 seconds, the final thickness was 0.23 mm by the second cold rolling. Thereafter, recrystallization annealing was performed at 830 ° C. for 60 seconds in a wet atmosphere of 40% N 2 -60% H 2 . At this time, the average rate of temperature increase between 600 and 800 ° C. was 70 ° C./s. The standard deviation of the recrystallized grain size distribution was about 0.19 for all. Next, after applying an annealing separator mainly composed of MgO, purification annealing was performed at 1250 ° C. for 10 hours. At that time, out of the 10-hour retention, the latter half 5 hours was an Ar atmosphere, and the rest was a hydrogen atmosphere. Thereafter, flattening annealing was performed at 900 ° C. for 15 seconds under the condition of forming a tension-imparting coating mainly composed of magnesium phosphate and boric acid.

平坦化焼鈍後に、インライン鉄損計でコイル全長の鉄損を予め測定し、全長測定で鉄損が悪かった箇所:3箇所とコイル両端部:2箇所の計5箇所のサンプルを採取した。
得られたサンプルの磁気特性(磁束密度B8、W17/50)をJIS C 2550に記載の方法で測定し、5箇所のうち最も磁気特性が悪かった値をそのコイルの代表値とした。この方法では、磁気特性のばらつきが大きい場合は代表値が悪くなることから、コイル内のばらつきも数値化できているとみなすことができる。
得られた結果を表2に併記する。
After the flattening annealing, the iron loss of the entire length of the coil was measured in advance with an in-line iron loss meter, and a total of 5 samples were collected: 3 places where the iron loss was bad in the full length measurement and 2 ends of the coil: 2 places.
The magnetic properties (magnetic flux density B 8 , W 17/50 ) of the obtained sample were measured by the method described in JIS C 2550, and the value having the worst magnetic properties among the five locations was taken as the representative value of the coil. In this method, when the variation in the magnetic characteristics is large, the representative value is deteriorated. Therefore, it can be considered that the variation in the coil can be quantified.
The obtained results are also shown in Table 2.

Figure 0004962516
Figure 0004962516

同表から明らかなように、成分組成が本発明の適正範囲を満足する発明例はいずれも、良好な磁気特性が得られていた。   As is clear from the table, good magnetic properties were obtained in any of the invention examples in which the component composition satisfied the proper range of the present invention.

実施例3
C:0.082%、Si:3.30%、Mn:0.07%、Cr:0.05%、P:0.012%、Sn:0.054%、Sb:0.035%、Al:70ppm、N:32ppm(Al/N=2.19)およびV:40ppmを含有し、残部はFeおよび不可避的不純物からなる鋼スラブを、連続鋳造にて製造し、1200℃のスラブ加熱後、熱間圧延により2.7mm厚の熱延板とした。ついで、950℃で30秒の熱延板焼鈍後、150℃の温間圧延により0.30mmの最終板厚に仕上げた。その後、60%N2-40%H2の湿潤雰囲気中にて835℃,90秒の再結晶焼鈍を行った。このとき、600〜800℃間の平均昇温速度を表3に示すように種々に変化させた。ついで、MgOを主体とする焼鈍分離剤を塗布してから、1200℃,25時間の純化焼鈍を施した。その後、リン酸マグネシウムとほう酸を主体とした張力付与コーティング形成を兼ねた平坦化焼鈍を900℃で15秒の条件で施した。
Example 3
C: 0.082%, Si: 3.30%, Mn: 0.07%, Cr: 0.05%, P: 0.012%, Sn: 0.054%, Sb: 0.035%, Al: 70ppm, N: 32ppm (Al / N = 2.19) and A steel slab containing V: 40 ppm, the balance being Fe and inevitable impurities was manufactured by continuous casting, and after heating the slab at 1200 ° C., a hot rolled sheet having a thickness of 2.7 mm was formed by hot rolling. Next, after hot-rolled sheet annealing at 950 ° C. for 30 seconds, a final sheet thickness of 0.30 mm was finished by warm rolling at 150 ° C. Thereafter, recrystallization annealing was performed at 835 ° C. for 90 seconds in a humid atmosphere of 60% N 2 -40% H 2 . At this time, the average heating rate between 600 and 800 ° C. was variously changed as shown in Table 3. Next, after applying an annealing separator mainly composed of MgO, purification annealing was performed at 1200 ° C. for 25 hours. Thereafter, flattening annealing was performed at 900 ° C. for 15 seconds under the condition of forming a tension-imparting coating mainly composed of magnesium phosphate and boric acid.

平坦化焼鈍後に、インライン鉄損計でコイル全長の鉄損を予め測定し、全長測定で鉄損が悪かった箇所:3箇所とコイル両端部:2箇所の計5箇所のサンプルを採取した。
得られたサンプルの磁気特性(磁束密度B8、W17/50)をJIS C 2550に記載の方法で測定し、5箇所のうち最も磁気特性が悪かった値をそのコイルの代表値とした。この方法では、磁気特性のばらつきが大きい場合は代表値が悪くなることから、コイル内のばらつきも数値化できているとみなすことができる。
得られた結果を表3に併記する。
After the flattening annealing, the iron loss of the entire length of the coil was measured in advance with an in-line iron loss meter, and a total of 5 samples were collected: 3 places where the iron loss was bad in the full length measurement and 2 ends of the coil: 2 places.
The magnetic properties (magnetic flux density B 8 , W 17/50 ) of the obtained sample were measured by the method described in JIS C 2550, and the value having the worst magnetic properties among the five locations was taken as the representative value of the coil. In this method, when the variation in the magnetic characteristics is large, the representative value is deteriorated. Therefore, it can be considered that the variation in the coil can be quantified.
The results obtained are also shown in Table 3.

Figure 0004962516
Figure 0004962516

同表から明らかなように、再結晶焼鈍工程における600〜800℃間の平均昇温速度を15℃/s以上とすることにより、良好な磁気特性を得られることが分かる。   As is apparent from the table, it is understood that good magnetic properties can be obtained by setting the average temperature rising rate between 600 and 800 ° C. in the recrystallization annealing step to 15 ° C./s or more.

Claims (3)

質量%で、C:0.10%以下、Si:2.0〜8.0%およびMn:0.005〜1.0%を含有し、かつAlを100ppm以下、かつN,S,Seを各々50ppm以下に低減し、残部はFeおよび不可避的不純物からなるスラブを、熱間圧延し、必要に応じて熱延板焼鈍を施したのち、1回または中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚に仕上げ、ついで再結晶焼鈍を施したのち、純化焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法において、
該スラブ中にさらに、B,NbおよびVのうちから選んだ一種または二種以上を合計で10〜150ppmの範囲で含有し、また不純物として含まれるAlとNの比を質量比でAl/N≧1.4とし、さらに再結晶焼鈍における600〜800℃間の平均昇温速度を15℃/s以上とすることを特徴とする方向性電磁鋼板の製造方法。
In mass%, C: 0.10% or less, Si: 2.0-8.0%, and Mn: 0.005-1.0%, Al is reduced to 100 ppm or less, N, S, and Se are each reduced to 50 ppm or less, and the balance is Fe And after slab consisting of unavoidable impurities, hot-rolled, and subjected to hot-rolled sheet annealing as necessary, finish it to the final sheet thickness by performing cold rolling twice or more sandwiching once or intermediate annealing, Then, after performing recrystallization annealing, in the manufacturing method of grain oriented electrical steel sheet consisting of a series of steps to perform purification annealing,
The slab further contains one or more selected from B, Nb and V in a total range of 10 to 150 ppm, and the ratio of Al to N contained as impurities is expressed as Al / N by mass ratio. A method for producing a grain-oriented electrical steel sheet, wherein ≧ 1.4 and the average rate of temperature increase between 600 and 800 ° C. in recrystallization annealing is 15 ° C./s or more.
前記スラブ中に、質量%でさらに、Ni:0.010〜1.50%、Cr:0.01〜0.50%、Cu:0.01〜0.50%、P:0.005〜0.50%、Sn:0.005〜0.50%、Sb:0.005〜0.50%、Bi:0.005〜0.50%のうちから選んだ少なくとも一種を含有することを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。 In the slab, Ni: 0.010 to 1.50%, Cr: 0.01 to 0.50%, Cu: 0.01 to 0.50%, P: 0.005 to 0.50%, Sn: 0.005 to 0.50%, Sb: 0.005 to 0.50 %, Bi: 0.005 to 0.50 % . The method for producing a grain-oriented electrical steel sheet according to claim 1, comprising at least one selected from 0.005 to 0.50 % . 再結晶焼鈍後の鋼板の再結晶粒の粒度分布が、平均粒径を1.0に規格化した場合の標準偏差が0.3以下であることを特徴とする請求項1または2に記載の方向性電磁鋼板の製造方法。   3. The grain-oriented electrical steel sheet according to claim 1 or 2, wherein the grain size distribution of the recrystallized grains of the steel sheet after recrystallization annealing has a standard deviation of 0.3 or less when the average grain size is normalized to 1.0. Manufacturing method.
JP2009080090A 2008-10-22 2009-03-27 Method for producing grain-oriented electrical steel sheet Active JP4962516B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009080090A JP4962516B2 (en) 2009-03-27 2009-03-27 Method for producing grain-oriented electrical steel sheet
KR1020147015188A KR20140077223A (en) 2008-10-22 2009-10-21 Method for manufacturing grain-oriented electrical steel sheet
CN200980141876.5A CN102197149B (en) 2008-10-22 2009-10-21 Method for manufacturing grain-oriented electrical steel sheet
KR1020117009021A KR20110074547A (en) 2008-10-22 2009-10-21 Method for manufacturing grain-oriented electrical steel sheet
PCT/JP2009/068444 WO2010047414A1 (en) 2008-10-22 2009-10-21 Method for manufacturing grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009080090A JP4962516B2 (en) 2009-03-27 2009-03-27 Method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2010229521A JP2010229521A (en) 2010-10-14
JP4962516B2 true JP4962516B2 (en) 2012-06-27

Family

ID=43045602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009080090A Active JP4962516B2 (en) 2008-10-22 2009-03-27 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP4962516B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020027215A1 (en) 2018-07-31 2020-02-06 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
WO2020027219A1 (en) 2018-07-31 2020-02-06 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
WO2020027218A1 (en) 2018-07-31 2020-02-06 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
WO2021156980A1 (en) 2020-02-05 2021-08-12 日本製鉄株式会社 Oriented electromagnetic steel sheet
WO2021156960A1 (en) 2020-02-05 2021-08-12 日本製鉄株式会社 Grain-oriented electrical steel sheet

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5754115B2 (en) * 2010-11-26 2015-07-29 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
JP5862582B2 (en) * 2013-02-15 2016-02-16 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet, grain-oriented electrical steel sheet and surface glass coating for grain-oriented electrical steel sheet
KR101884428B1 (en) * 2016-10-26 2018-08-01 주식회사 포스코 Grain oriented electrical steel sheet and method for manufacturing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3707268B2 (en) * 1998-10-28 2005-10-19 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
JP4106815B2 (en) * 1999-06-21 2008-06-25 Jfeスチール株式会社 Oriented silicon steel sheet and manufacturing method thereof
JP4725711B2 (en) * 2004-12-28 2011-07-13 Jfeスチール株式会社 Manufacturing method of low iron loss grain oriented electrical steel sheet

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020027215A1 (en) 2018-07-31 2020-02-06 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
WO2020027219A1 (en) 2018-07-31 2020-02-06 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
WO2020027218A1 (en) 2018-07-31 2020-02-06 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
KR20210024077A (en) 2018-07-31 2021-03-04 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet
KR20210024076A (en) 2018-07-31 2021-03-04 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet
KR20210024614A (en) 2018-07-31 2021-03-05 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet
US11753691B2 (en) 2018-07-31 2023-09-12 Nippon Steel Corporation Grain oriented electrical steel sheet
US11851726B2 (en) 2018-07-31 2023-12-26 Nippon Steel Corporation Grain oriented electrical steel sheet
WO2021156980A1 (en) 2020-02-05 2021-08-12 日本製鉄株式会社 Oriented electromagnetic steel sheet
WO2021156960A1 (en) 2020-02-05 2021-08-12 日本製鉄株式会社 Grain-oriented electrical steel sheet
KR20220123453A (en) 2020-02-05 2022-09-06 닛폰세이테츠 가부시키가이샤 grain-oriented electrical steel sheet
KR20220124785A (en) 2020-02-05 2022-09-14 닛폰세이테츠 가부시키가이샤 grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP2010229521A (en) 2010-10-14

Similar Documents

Publication Publication Date Title
US11066722B2 (en) Method of producing grain-oriented electrical steel sheet
JP4840518B2 (en) Method for producing grain-oriented electrical steel sheet
JP4962516B2 (en) Method for producing grain-oriented electrical steel sheet
CN107849656B (en) Method for producing grain-oriented electromagnetic steel sheet
US9214275B2 (en) Method for manufacturing grain oriented electrical steel sheet
US9514868B2 (en) Grain oriented electrical steel sheet and method for manufacturing the same
WO2010047414A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JP6617827B2 (en) Method for producing grain-oriented electrical steel sheet
JP6132103B2 (en) Method for producing grain-oriented electrical steel sheet
WO2014132354A1 (en) Production method for grain-oriented electrical steel sheets
WO2016199423A1 (en) Oriented electromagnetic steel sheet and method for producing same
WO2011102456A1 (en) Manufacturing method for grain-oriented electromagnetic steel sheet
WO2016067636A1 (en) Production method for oriented electromagnetic steel sheet
JP5338254B2 (en) Method for producing grain-oriented electrical steel sheet
JP5375694B2 (en) Method for producing grain-oriented electrical steel sheet
JP6418226B2 (en) Method for producing grain-oriented electrical steel sheet
JP5310510B2 (en) Method for producing grain-oriented electrical steel sheet
JP7255761B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP6900977B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP5712626B2 (en) Method for producing grain-oriented electrical steel sheet
WO2022250160A1 (en) Method for producing grain-oriented electrical steel sheet
JP6866869B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2006144042A (en) Method for producing grain-oriented magnetic steel sheet excellent in magnetic characteristic and coating characteristic
KR20230159874A (en) Manufacturing method of grain-oriented electrical steel sheet
JP2018087366A (en) Production method of grain-oriented electromagnetic steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111027

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20111027

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20111116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120312

R150 Certificate of patent or registration of utility model

Ref document number: 4962516

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250