JP5712626B2 - Method for producing grain-oriented electrical steel sheet - Google Patents
Method for producing grain-oriented electrical steel sheet Download PDFInfo
- Publication number
- JP5712626B2 JP5712626B2 JP2011007855A JP2011007855A JP5712626B2 JP 5712626 B2 JP5712626 B2 JP 5712626B2 JP 2011007855 A JP2011007855 A JP 2011007855A JP 2011007855 A JP2011007855 A JP 2011007855A JP 5712626 B2 JP5712626 B2 JP 5712626B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- annealing
- steel sheet
- oriented electrical
- grain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910001224 Grain-oriented electrical steel Inorganic materials 0.000 title claims description 29
- 238000004519 manufacturing process Methods 0.000 title claims description 29
- 238000000137 annealing Methods 0.000 claims description 104
- 229910000831 Steel Inorganic materials 0.000 claims description 32
- 239000010959 steel Substances 0.000 claims description 32
- 238000001953 recrystallisation Methods 0.000 claims description 27
- 239000003112 inhibitor Substances 0.000 claims description 21
- 229910052757 nitrogen Inorganic materials 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 10
- 238000002791 soaking Methods 0.000 claims description 10
- 229910052839 forsterite Inorganic materials 0.000 claims description 8
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 claims description 8
- 229910052711 selenium Inorganic materials 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 229910052717 sulfur Inorganic materials 0.000 claims description 6
- 229910052718 tin Inorganic materials 0.000 claims description 5
- 229910052787 antimony Inorganic materials 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 81
- 229910052742 iron Inorganic materials 0.000 description 40
- 230000000694 effects Effects 0.000 description 16
- 238000000034 method Methods 0.000 description 16
- 238000000746 purification Methods 0.000 description 15
- 230000006872 improvement Effects 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 230000004907 flux Effects 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 229910000976 Electrical steel Inorganic materials 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 5
- 238000005261 decarburization Methods 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 4
- 239000008119 colloidal silica Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 3
- 230000005381 magnetic domain Effects 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 230000008707 rearrangement Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 2
- 238000001887 electron backscatter diffraction Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- GVALZJMUIHGIMD-UHFFFAOYSA-H magnesium phosphate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GVALZJMUIHGIMD-UHFFFAOYSA-H 0.000 description 1
- 229910000157 magnesium phosphate Inorganic materials 0.000 description 1
- 239000004137 magnesium phosphate Substances 0.000 description 1
- 229960002261 magnesium phosphate Drugs 0.000 description 1
- 235000010994 magnesium phosphates Nutrition 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Description
本発明は、鉄損特性に優れた方向性電磁鋼板の製造方法に関するものである。 The present invention relates to a method for producing a grain-oriented electrical steel sheet having excellent iron loss characteristics.
方向性電磁鋼板は、トランスの鉄心材料として広く用いられている軟磁性材料であり、磁気特性に優れる、中でも、鉄損特性に優れる(鉄損が低い)ことが求められている。斯かる特性を満たすものとして、二次再結晶を起こさせて、鋼板板面上の圧延方向にゴス方位と呼ばれる{110}<001>方位を高度に集積させた方向性電磁鋼板が開発され、実用化されているのは周知のとおりである。 The grain-oriented electrical steel sheet is a soft magnetic material that is widely used as a core material for transformers, and is required to have excellent magnetic properties, in particular, excellent iron loss properties (low iron loss). As a material satisfying such characteristics, a grain-oriented electrical steel sheet in which {110} <001> orientation called Goth orientation is highly integrated in the rolling direction on the steel plate surface by causing secondary recrystallization has been developed. As is well known, it is put into practical use.
鋼板板面上の圧延方向に{110}<001>方位を高度に集積させる方法としては、インヒビターと呼ばれる析出物を利用して二次再結晶を制御する方法が一般的である。しかし、析出物(インヒビター)が製品鋼板中に残留すると、磁気特性の劣化につながるため、仕上焼鈍で二次再結晶させた後、引き続き高温焼鈍して不純物を除去する、いわゆる純化焼鈍を施すことが行われている。この純化焼鈍は、例えば、鋼板中の窒素濃度を0.0020mass%以下に低減するためには、1100〜1250℃の温度で3hr以上の焼鈍が必要とされるように、高温かつ長時間の条件で行う必要がある。 As a method for highly accumulating the {110} <001> orientation in the rolling direction on the steel plate surface, a method of controlling secondary recrystallization using precipitates called inhibitors is common. However, if precipitates (inhibitors) remain in the product steel sheet, it will lead to deterioration of the magnetic properties. Therefore, after recrystallization by secondary annealing, so-called purification annealing is performed to remove impurities by high-temperature annealing. Has been done. For example, this purification annealing is performed under conditions of high temperature and long time so that annealing at a temperature of 1100 to 1250 ° C. is required for 3 hours or more in order to reduce the nitrogen concentration in the steel sheet to 0.0020 mass% or less. It is necessary to do in.
そこで、純化焼鈍における焼鈍温度を低温度化することが検討されている。例えば、特許文献1には、インヒビターとしてAl,Nを含有する冷延板を二次再結晶させた後、水素ガスを含有する雰囲気中の窒素分圧を0.10気圧以下として、1000〜1250℃の温度で純化焼鈍を行うことによって、鋼板中のインヒビターを除去する純化焼鈍方法が開示されている。また、特許文献2には、鋼素材のCを0.01重量%以下に低減し、二次再結晶が完了した仕上焼鈍の後半で、925℃超え1050℃以下の温度で、H2雰囲気中で純化焼鈍を行うことで、脱炭焼鈍を必要とせずに、C+Nを0.0020重量%以下に低減する技術が開示されている。
Thus, it has been studied to lower the annealing temperature in the purification annealing. For example,
また、最近では、インヒビターを含まない素材を用いて二次再結晶を起こさせ、ゴス方位粒を発達させる、いわゆる、インヒビターレス技術が提案されている(例えば、特許文献3参照。)。この技術は、インヒビターとなる成分を極力排除し、一次再結晶粒の結晶粒界が有する粒界エネルギーの粒界方位差角依存性を顕在化させることで、インヒビターを用いることなく二次再結晶させてゴス方位粒を成長させるものである。この方法は、二次再結晶後にインヒビターを除去する工程が不要であるため、純化焼鈍を行う必要がないこと、また、インヒビターを鋼中に微細分散させる必要がないため、高温スラブ加熱も必要ないことなどから、コスト面や設備メンテナンス面で有利な方法である。 Recently, a so-called inhibitorless technique has been proposed in which secondary recrystallization is caused using a material not containing an inhibitor to develop goth-oriented grains (see, for example, Patent Document 3). This technology eliminates the inhibitory component as much as possible, and reveals the grain boundary orientation angle dependence of the grain boundary energy of the primary recrystallized grain boundary, thereby enabling secondary recrystallization without using an inhibitor. To grow goth-oriented grains. This method does not require the step of removing the inhibitor after the secondary recrystallization, so there is no need for purification annealing, and there is no need to finely disperse the inhibitor in the steel, so no high-temperature slab heating is required. This is an advantageous method in terms of cost and equipment maintenance.
ところで、近年、省エネルギーを目的として、さらなる低鉄損化が要請されている。そこで、上記不純物(インヒビター成分)を純化する技術や、インヒビターレス技術に加え、さらに鉄損を低減する技術として、鋼板とは熱膨張率の異なる被膜を高温で形成して鋼板に張力を付与したり、磁区細分化処理を施したりする技術が開発されている。これらの技術の適用により、方向性電磁鋼板の鉄損は、かなり低いレベルまで改善された。しかし、昨今、地球環境を保護する観点から、省エネルギーへの要求は強くなる一方であり、方向性電磁鋼板に対してもさらなる鉄損の低減が求められている。 By the way, in recent years, further reduction of iron loss has been demanded for the purpose of energy saving. Therefore, in addition to the technology to purify the impurities (inhibitor components) and the inhibitorless technology, as a technology to further reduce iron loss, a coating with a different coefficient of thermal expansion from that of the steel plate is formed at a high temperature to apply tension to the steel plate. In addition, techniques for magnetic domain subdivision have been developed. By applying these techniques, the iron loss of grain-oriented electrical steel sheets has been improved to a considerably low level. However, in recent years, from the viewpoint of protecting the global environment, the demand for energy saving is becoming stronger, and further reduction of iron loss is required for grain oriented electrical steel sheets.
しかしながら、上記技術で、さらなる鉄損の低減を図るには製造上問題がある。例えば、鋼板に張力を付与する技術は、高い張力を付与できる被膜としてTiNコーティングなどが開発されているが、特別な処理設備が必要となり、実用的ではない。また、磁区細分化技術は、物理的な溝の形成や、レーザー、プラズマ炎、電子ビームといった熱歪みを利用したものなど多岐に渡る提案がなされているが、いずれも、通常の方向性電磁鋼板の製造とは異なる特別な処理設備や工程が必要なり、製造工程が煩雑化したり、製造コストの上昇を招いたりしている。 However, there is a manufacturing problem in order to further reduce the iron loss with the above technique. For example, a technique for imparting tension to a steel sheet has been developed as a coating capable of imparting high tension, such as TiN coating, but requires special processing equipment and is not practical. In addition, magnetic domain refinement technology has been proposed in a variety of ways, including physical groove formation and thermal distortion such as lasers, plasma flames, and electron beams. Therefore, special processing equipment and processes different from those of the above manufacturing are required, which complicates the manufacturing process and increases the manufacturing cost.
本発明は、上記従来技術の問題点に鑑みてなされたものであり、その目的は、特別な設備や工程を必要とすることなく、鉄損の改善を効率的に図ることができる方向性電磁鋼板の有利な製造方法を提案することにある。 The present invention has been made in view of the above-described problems of the prior art, and the purpose thereof is a directional electromagnetic wave that can efficiently improve iron loss without requiring special equipment or processes. The object is to propose an advantageous method of manufacturing a steel sheet.
発明者らは、上記課題の解決に向け、仕上焼鈍後の製造工程に着目し、鋭意検討を重ねた。その結果、従来の純化焼鈍技術もしくはインヒビターレス技術をさらに改善する、即ち、従来の仕上焼鈍を行った後、さらに適正な条件で追加焼鈍を施すことで、大きな鉄損低減を実現できることを見出し、本発明を完成させた。 In order to solve the above-mentioned problems, the inventors focused on the manufacturing process after finish annealing, and conducted intensive studies. As a result, the conventional purification annealing or inhibitorless technology is further improved, that is, after performing the conventional finish annealing, it is found that a large iron loss reduction can be realized by performing additional annealing under more appropriate conditions, The present invention has been completed.
上記知見に基づき開発した本発明は、C:0.01〜0.08mass%、Si:2.0〜8.0mass%およびMn:0.005〜1.0mass%を含有する鋼素材を用いる方向性電磁鋼板の製造方法において、二次再結晶を起こさせ、フォルステライト被膜を形成する仕上焼鈍、あるいは、二次再結晶を起こさせ、フォルステライト被膜を形成し、純化する仕上焼鈍を最高到達温度1100℃以上で施した後、一旦、800℃以下まで降温し、その後、均熱温度が950〜1200℃で均熱保持時間が3hr以上の追加焼鈍を施すことを特徴とする方向性電磁鋼板の製造方法である。 The present invention developed on the basis of the above findings is directed to using a steel material containing C: 0.01 to 0.08 mass%, Si: 2.0 to 8.0 mass%, and Mn: 0.005 to 1.0 mass%. In the manufacturing method of heat- resistant electrical steel sheets, the highest temperature is achieved by the final annealing that causes secondary recrystallization to form a forsterite film, or the final annealing that causes secondary recrystallization to form a forsterite film and purifies it. A grain-oriented electrical steel sheet characterized by being subjected to additional annealing at a temperature of 950 to 1200 ° C. and a soaking time of 3 hours or more after the temperature is once lowered to 800 ° C. or less after being applied at 1100 ° C. or higher. It is a manufacturing method.
本発明の方向性電磁鋼板の製造方法における上記鋼素材は、上記成分組成に加えてさらに、AlN系インヒビター成分としてAl:0.01〜0.065mass%およびN:0.005〜0.012mass%、および/または、MnS・MnSe系インヒビター成分としてS:0.005〜0.03mass%およびSe:0.005〜0.03mass%を含有することを特徴とする。 In the manufacturing method of the grain-oriented electrical steel sheet of the present invention, the steel material further includes Al: 0.01 to 0.065 mass% and N: 0.005 to 0.012 mass% as an AlN-based inhibitor component in addition to the above component composition. And / or S: 0.005 to 0.03 mass% and Se: 0.005 to 0.03 mass% as a MnS · MnSe-based inhibitor component.
また、本発明の方向性電磁鋼板の製造方法における上記鋼素材は、上記成分組成に加えてさらに、Al,N,SおよびSeをAl:0.0100mass%以下、N:0.0050mass%以下、S:0.0050mass%以下およびSe:0.0050mass%以下を含有することを特徴とする。 Moreover, the steel material in the method for producing a grain-oriented electrical steel sheet according to the present invention further includes Al, N, S, and Se in addition to the above component composition, Al: 0.0100 mass% or less, N: 0.0050 mass% or less, It contains S: 0.0050 mass% or less and Se: 0.0050 mass% or less.
また、本発明の方向性電磁鋼板の製造方法における上記鋼素材は、上記成分組成に加えてさらに、Ni:0.03〜1.50mass%、Sn:0.01〜1.50mass%、Sb:0.005〜1.50mass%、Cu:0.03〜3.0mass%、P:0.03〜0.50mass%、Mo:0.005〜0.10mass%およびCr:0.03〜1.50mass%のうちから選ばれる1種または2種以上を含有することを特徴とする。 Moreover, in addition to the said component composition, the said steel raw material in the manufacturing method of the grain-oriented electrical steel sheet of this invention is further Ni: 0.03-1.50 mass%, Sn: 0.01-1.50 mass%, Sb: 0.005-1.50 mass%, Cu: 0.03-3.0 mass%, P: 0.03-0.50 mass%, Mo: 0.005-0.10 mass%, and Cr: 0.03-1. 1 type or 2 types or more selected from 50 mass% are contained.
本発明によれば、特別な処理設備や製造工程を必要とすることなく鉄損特性の改善を図ることができるので、鉄損特性に優れる方向性電磁鋼板を安価にかつ安定して提供することが可能となる。 According to the present invention, since it is possible to improve the iron loss characteristics without requiring special processing equipment and manufacturing processes, it is possible to stably provide a grain-oriented electrical steel sheet having excellent iron loss characteristics at low cost. Is possible.
発明者らは、仕上焼鈍後、さらに別の焼鈍を施すことで鉄損を低減できないかを検討するため、以下の実験を行なった。
<実験1>
二次再結晶させた後、1200℃で均熱する仕上焼鈍を施した板厚が0.27mmの方向性電磁鋼板コイルの、仕上焼鈍による歪の少ない長手方向中央部かつ幅方向中央部からエプスタイン試験片を10組切り出し、750℃×5hrの平坦化焼鈍を施した後、磁化力800A/mでの磁束密度(B8)と、交流50Hz、1.7T励磁条件での鉄損(W17/50)を測定した。
その後、改めてH2雰囲気中で、800〜1250℃で5hrの追加焼鈍を施した後、上記と同様の条件で磁気特性の測定を行なった。
Inventors conducted the following experiment in order to investigate whether iron loss could be reduced by performing another annealing after finishing annealing.
<
Epstein from the center in the longitudinal direction and the center in the width direction of the directional electrical steel sheet coil having a thickness of 0.27 mm subjected to finish annealing that is soaked at 1200 ° C. after secondary recrystallization and less distortion due to finish annealing After 10 sets of test pieces were cut out and subjected to flattening annealing at 750 ° C. × 5 hr, the magnetic flux density (B 8 ) at a magnetizing force of 800 A / m and the iron loss (W 17 at
Thereafter, additional annealing was performed again at 800 to 1250 ° C. for 5 hours in an H 2 atmosphere, and then the magnetic properties were measured under the same conditions as described above.
図1は、追加焼鈍温度が磁束密度B8に及ぼす影響を示したものである。この図から、磁束密度B8は、いずれの追加焼鈍温度でも0.002T以上改善されているが、特に、追加焼鈍温度が高温になるほど改善代が増加する傾向があることがわかる。
また、図2は、追加焼鈍温度が鉄損W17/50に及ぼす影響を示したものである。この図から、鉄損W17/50は、いずれの追加焼鈍温度でも改善されるが、950〜1200℃の温度範囲で追加焼鈍した場合には0.02W/kg以上の改善代が、さらに、1000〜1100℃の範囲では0.03W/kg以上の改善代が得られることがわかる。したがって、鉄損低減効果を得るためには、追加焼鈍温度は950〜1200℃の範囲で行う必要があり、好ましくは1000〜1100℃の範囲であることがわかる。
Figure 1 is a additional annealing temperature shows the effect on the magnetic flux density B 8. From this figure, it can be seen that the magnetic flux density B 8 is improved by 0.002 T or more at any additional annealing temperature, but in particular, the improvement margin tends to increase as the additional annealing temperature becomes higher.
FIG. 2 shows the effect of additional annealing temperature on iron loss W 17/50 . From this figure, the iron loss W 17/50 is improved at any additional annealing temperature, but when the additional annealing is performed at a temperature range of 950 to 1200 ° C., an improvement cost of 0.02 W / kg or more is further obtained. It can be seen that an improvement margin of 0.03 W / kg or more is obtained in the range of 1000 to 1100 ° C. Therefore, in order to acquire an iron loss reduction effect, it is necessary to perform additional annealing temperature in the range of 950-1200 degreeC, Preferably it is understood that it is the range of 1000-1100 degreeC.
上記のように、磁気特性、特に鉄損特性を改善する適正な追加焼鈍温度が存在する理由について、現時点では、まだ十分明確とはなっていないが、以下のように考えている。
図2では、すべての追加焼鈍温度で鉄損特性の改善が認められているが、このうちの900℃以下で認められる鉄損特性の改善は、追加焼鈍前に行われた750℃×5hrの平坦化焼鈍後に残された湾曲形状が、追加焼鈍により解消されたためと考えられる。
As described above, the reason why there is an appropriate additional annealing temperature that improves the magnetic properties, particularly the iron loss properties, is not yet clear enough at present, but is considered as follows.
In FIG. 2, the iron loss characteristics are improved at all additional annealing temperatures. Of these, the improvement in the iron loss characteristics recognized at 900 ° C. or less is 750 ° C. × 5 hr performed before the additional annealing. It is considered that the curved shape left after the flattening annealing was eliminated by the additional annealing.
また、大きく鉄損が改善された950〜1200℃の温度範囲は、さらに別の要因が働いていると考えられる。すなわち、追加焼鈍後の鋼板断面をEBSD(Electron Backscatter Diffraction)観察およびSEM観察した結果からは、結晶粒内でのGN転位の再配列や、鋼板とフォルステライト被膜の界面の平滑性の変化が起こっている可能性が示唆されている。前者の原因であれば、適当な転位の再配列(転位が一列に並ぶ:ポリゴン化)によって結晶粒が小さくなったような効果が、また、後者の原因であれば、磁壁移動のピンニングが起こりにくくなったような効果が関係しているものと考えられる。このような原因による鉄損改善効果は、950℃以上で得られる。しかし、焼鈍温度が高くなるとともに、被膜中から鋼中への不純物元素の拡散が進み、鉄損が劣化する逆の効果が起こるようになる。そのため、鉄損改善に最適な追加焼鈍温度範囲が存在したものと考えられる。 Moreover, it is thought that another factor is working in the temperature range of 950 to 1200 ° C. in which the iron loss is greatly improved. That is, from the results of EBSD (Electron Backscatter Diffraction) observation and SEM observation of the cross section of the steel sheet after additional annealing, rearrangement of GN dislocations within the crystal grains and changes in the smoothness of the interface between the steel sheet and the forsterite film occurred. It has been suggested that If the cause is the former, the effect is as if the crystal grains have been reduced by appropriate rearrangement of dislocations (dislocations arranged in a line: polygonization), and if the cause is the latter, pinning of domain wall motion occurs. It seems that the effect which became difficult is related. The iron loss improvement effect due to such a cause is obtained at 950 ° C. or higher. However, as the annealing temperature increases, the impurity element diffuses from the coating into the steel, and the reverse effect of deteriorating iron loss occurs. Therefore, it is considered that there was an additional annealing temperature range optimal for iron loss improvement.
<実験2>
二次再結晶焼鈍と1180℃での純化焼鈍からなる仕上焼鈍を施した、磁区細分化のための溝を有する板厚0.23mmの方向性電磁鋼板コイルからエプスタイン試験片を6組切り出し、そのうちの5組については、平坦化焼鈍を施すことなくコイル形状を保持したまま、1050℃の温度で、保持時間を1〜5hrの範囲で1hrずつ変化させる追加焼鈍を施し、残りの1組については、追加焼鈍を施さないで比較用とした。次いで、上記追加焼鈍後の試験片と比較用の試験片に、60mass%のコロイダルシリカとリン酸アルミニウムからなる絶縁コートを塗布し、平坦化焼鈍を兼ねて800℃で焼付けた後、交流50Hz、1.7Tの励磁条件で鉄損W17/50を測定した。
上記測定の結果を図3に示した。図3から、保持時間が2hr以下では、鉄損低減効果が得られないこと、したがって、追加焼鈍による鉄損改善効果を得るためには均熱保持時間を3hr以上確保することが必要であることがわかる。
本発明は、上記新規な知見に基づき開発したものである。
<
Six sets of Epstein test pieces were cut out from a 0.23 mm-thick directional electrical steel sheet coil having a groove for magnetic domain refinement, which was subjected to finish annealing consisting of secondary recrystallization annealing and purification annealing at 1180 ° C. As for the 5 sets, additional annealing was performed by changing the holding time by 1 hr in the range of 1 to 5 hr at a temperature of 1050 ° C. while keeping the coil shape without performing flattening annealing. The sample was used for comparison without additional annealing. Next, after applying the insulating coating made of 60 mass% colloidal silica and aluminum phosphate to the test piece after the additional annealing and the test piece for comparison, after baking at 800 ° C. also for flattening annealing,
The result of the measurement is shown in FIG. From FIG. 3, when the holding time is 2 hours or less, the iron loss reduction effect cannot be obtained. Therefore, in order to obtain the iron loss improvement effect by the additional annealing, it is necessary to secure the soaking time for 3 hours or more. I understand.
The present invention has been developed based on the above novel findings.
次に、本発明の方向性電磁鋼板の製造方法について説明する。
本発明の方向性電磁鋼板の製造方法は、仕上焼鈍後の方向性電磁鋼板に対してさらに追加焼鈍を施すところに特徴があり、仕上焼鈍までの製造条件および追加焼鈍後の製造条件については特に限定されるものではなく、従来公知の方法を用いることができる。
Next, the manufacturing method of the grain-oriented electrical steel sheet of this invention is demonstrated.
The method for producing a grain-oriented electrical steel sheet according to the present invention is characterized in that additional annealing is further performed on the grain-oriented electrical steel sheet after finish annealing, and the manufacturing conditions until finish annealing and the manufacturing conditions after additional annealing are particularly important. It is not limited and a conventionally well-known method can be used.
ただし、優れた磁気特性を有する方向性電磁鋼板を得るためには、基本成分としてC,SiおよびMnを下記の範囲で含有する鋼スラブを用いることが必要である。なお、鋼の溶製方法、鋼スラブの製造方法については、常法に従って行えばよく、特に問わない。
C:0.01〜0.08mass%
Cは、一次再結晶時の集合組織の改善のために必要な元素であり、その効果を得るためには0.01mass%以上含有させる必要がある。一方、C添加量が0.08mass%を超えると、脱炭焼鈍で、磁気時効の起こらない0.0050mass%以下に低減することが困難となる。よって、Cは0.01〜0.08mass%の範囲とする。
However, in order to obtain a grain-oriented electrical steel sheet having excellent magnetic properties, it is necessary to use a steel slab containing C, Si and Mn as basic components in the following range. In addition, about the melting method of steel, and the manufacturing method of a steel slab, what is necessary is just to follow a conventional method and it does not ask | require in particular.
C: 0.01-0.08 mass%
C is an element necessary for improving the texture at the time of primary recrystallization, and in order to obtain the effect, it is necessary to contain 0.01% by mass or more. On the other hand, if the amount of C added exceeds 0.08 mass%, it is difficult to reduce to 0.0050 mass% or less at which demagnetization annealing does not cause magnetic aging. Therefore, C is in the range of 0.01 to 0.08 mass%.
Si:2.0〜8.0mass%
Siは、鋼の電気抵抗を高め、鉄損を改善するのに有効な元素であるが、含有量が2.0mass%未満では、十分な鉄損低減効果が得られない。一方、8.0mass%を超えると、加工性が著しく低下して圧延して製造することが難しくなり、また、磁束密度も低下する。よって、Siは2.0〜8.0mass%の範囲とする。
Si: 2.0 to 8.0 mass%
Si is an element effective for increasing the electrical resistance of steel and improving iron loss. However, if the content is less than 2.0 mass%, a sufficient effect of reducing iron loss cannot be obtained. On the other hand, if it exceeds 8.0 mass%, the workability is remarkably lowered and it is difficult to roll and manufacture, and the magnetic flux density is also lowered. Therefore, Si is set to a range of 2.0 to 8.0 mass%.
Mn:0.005〜1.0mass%
Mnは、熱間加工性を改善するために必要な元素であるが、含有量が0.005mass%未満では、上記効果は得られず、一方、1.0mass%を超えると、磁束密度が低下するようになる。よって、Mnは0.005〜1.0mass%の範囲とする。
Mn: 0.005 to 1.0 mass%
Mn is an element necessary for improving hot workability. However, if the content is less than 0.005 mass%, the above effect cannot be obtained. On the other hand, if the content exceeds 1.0 mass%, the magnetic flux density decreases. To come. Therefore, Mn is set to a range of 0.005 to 1.0 mass%.
また、本発明の方向性電磁鋼板は、二次再結晶を起こさせるためにインヒビターを用いる場合には、例えば、AlN系インヒビターを利用するときには、AlおよびNをそれぞれAl:0.01〜0.065mass%、N:0.005〜0.012mass%の範囲で含有させることが好ましく、また、MnS・MnSe系インヒビターを利用するときには、Seおよび/またはSを、それぞれS:0.005〜0.03mass%、Se:0.005〜0.03mass%の範囲で含有させることが好ましい。 In the grain-oriented electrical steel sheet according to the present invention, when an inhibitor is used to cause secondary recrystallization, for example, when an AlN-based inhibitor is used, Al and N are each changed to Al: 0.01-0. 065 mass% and N: 0.005 to 0.012 mass% are preferably included. When a MnS · MnSe-based inhibitor is used, Se and / or S is changed to S: 0.005 to 0.005, respectively. It is preferable to make it contain in the range of 03mass%, Se: 0.005-0.03mass%.
一方、二次再結晶を起こさせるためにインヒビターを用いない場合には、インヒビター成分であるAl,N,SおよびSeは、それぞれAl:0.0100mass%以下、N:0.0050mass%以下、S:0.0050mass%以下、Se:0.0050mass%以下に低減するのが好ましい。 On the other hand, when an inhibitor is not used for causing secondary recrystallization, the inhibitor components Al, N, S and Se are Al: 0.0100 mass% or less, N: 0.0050 mass% or less, S : 0.0050 mass% or less, preferably Se: 0.0050 mass% or less.
また、本発明の方向性電磁鋼板は、磁気特性の改善を目的として、上記成分組成に加えてさらに、Ni:0.03〜1.50mass%、Sn:0.01〜1.50mass%、Sb:0.005〜1.50mass%、Cu:0.03〜3.0mass%、P:0.03〜0.50mass%、Mo:0.005〜0.10mass%およびCr:0.03〜1.50mass%のうちから選ばれる1種または2種以上を含有させてもよい。
Niは、熱延板組織を改善して磁気特性を向上させるのに有用な元素である。しかし、0.03mass%未満では上記効果が小さく、一方、1.50mass%を超えると二次再結晶が不安定となり磁気特性が劣化する。また、Sn,Sb,Cu,P,MoおよびCrは、磁気特性の向上に有用な元素であるが、いずれも上記下限値未満では磁気特性向上効果が小さく、一方、上記した各上限値を超えると、二次再結晶粒の発達が阻害されるようになるため、それぞれ上記範囲で含有させることが好ましい。
なお、上記成分以外の残部は、Feおよび不可避的不純物である。
Further, the grain-oriented electrical steel sheet of the present invention is further provided with Ni: 0.03-1.50 mass%, Sn: 0.01-1.50 mass%, Sb in addition to the above component composition for the purpose of improving magnetic properties. : 0.005 to 1.50 mass%, Cu: 0.03 to 3.0 mass%, P: 0.03 to 0.50 mass%, Mo: 0.005 to 0.10 mass%, and Cr: 0.03 to 1 One or two or more selected from .50 mass% may be contained.
Ni is an element useful for improving the magnetic properties by improving the hot-rolled sheet structure. However, if the amount is less than 0.03 mass%, the above effect is small. On the other hand, if it exceeds 1.50 mass%, the secondary recrystallization becomes unstable and the magnetic characteristics deteriorate. Sn, Sb, Cu, P, Mo, and Cr are elements useful for improving the magnetic properties, but any of them is less effective in improving the magnetic properties if it is less than the above lower limit value, but exceeds the above upper limit values. In addition, since the development of secondary recrystallized grains is inhibited, it is preferable to contain them in the above ranges.
The balance other than the above components is Fe and inevitable impurities.
成分組成を上記適正範囲に調整した鋼スラブは、その後、常法に従って、スラブ再加熱し、熱間圧延し、必要に応じて熱延板焼鈍した後、1回または中間焼鈍を挟む2回以上の冷間圧延して最終板厚の冷延板とし、その後、上記冷延板に、脱炭を兼ねた一次再結晶焼鈍を施し、焼鈍分離剤を塗布した後、二次再結晶と純化のための仕上焼鈍を施して方向性電磁鋼板とする。なお、脱炭は、上記一次再結晶焼鈍を湿潤雰囲気とすることで行うことができるが、別途行ってもよい。 After the steel slab whose component composition has been adjusted to the above appropriate range, the slab is re-heated, hot-rolled, and hot-rolled sheet annealed as necessary, in accordance with a conventional method. After cold rolling to a cold-rolled sheet of the final sheet thickness, the cold-rolled sheet is subjected to primary recrystallization annealing also serving as decarburization, and after applying an annealing separator, secondary recrystallization and purification are performed. For this purpose, a grain-oriented electrical steel sheet is obtained by performing finish annealing. In addition, although decarburization can be performed by making the said primary recrystallization annealing into a humid atmosphere, you may perform separately.
上記仕上焼鈍における二次再結晶焼鈍後の純化焼鈍は、二次再結晶にインヒビターを利用している場合には、最高到達温度を1100℃以上とする必要があり、均熱時間は3hr以上とするのが好ましい。1100℃未満の温度では、析出物が分解して鋼板表面まで拡散することができないため、十分な純化が得られないからである。
一方、二次再結晶にインヒビターを用いない場合には、窒素などが十分に低減できていれば必ずしも純化焼鈍は必要ではないが、良好なフォルステライト被膜を形成させるためには、1100℃以上の高温焼鈍が必要である。
The purification annealing after the secondary recrystallization annealing in the finish annealing described above requires that the highest temperature be 1100 ° C. or higher when an inhibitor is used for the secondary recrystallization, and the soaking time is 3 hours or more. It is preferable to do this. This is because if the temperature is lower than 1100 ° C., the precipitate cannot be decomposed and diffused to the surface of the steel sheet, so that sufficient purification cannot be obtained.
On the other hand, when an inhibitor is not used for secondary recrystallization, purification annealing is not necessarily required if nitrogen or the like can be sufficiently reduced. However, in order to form a good forsterite film, the temperature is 1100 ° C. or higher. High temperature annealing is required.
本発明の方向性電磁鋼板の製造方法は、上記仕上焼鈍に引き続き、さらに、鉄損特性の改善を目的として、950〜1200℃の均熱温度で3hr以上保持する追加焼鈍を施すところに特徴がある。上記焼鈍温度が950℃未満あるいは1200℃を超えると、図2に示したように、鉄損改善効果が限定的なものに留まり、十分な効果が得られない。
また、均熱保持時間が3hr未満では、図3に示したように、やはり十分な鉄損低減効果が得られない。なお、均熱保持時間の上限については特に規定しないが、必要以上の長時間焼鈍は、熱エネルギーの無駄や焼鈍炉の損傷を招いたり、生産性を低下させて製造コストの上昇を招いたりするので、24hr以下とするのが好ましい。
The method for producing a grain-oriented electrical steel sheet according to the present invention is characterized in that, following the above-described finish annealing, for the purpose of improving iron loss characteristics, additional annealing is performed for 3 hours or more at a soaking temperature of 950 to 1200 ° C. is there. When the annealing temperature is less than 950 ° C. or exceeds 1200 ° C., as shown in FIG. 2, the iron loss improvement effect is limited, and a sufficient effect cannot be obtained.
Further, if the soaking time is less than 3 hr, a sufficient iron loss reduction effect cannot be obtained as shown in FIG. The upper limit of the soaking time is not specified, but excessive annealing for longer periods may lead to wasted heat energy and damage to the annealing furnace, or may reduce productivity and increase manufacturing costs. Therefore, it is preferably 24 hours or less.
なお、この追加焼鈍は、仕上焼鈍したコイルをいったん800℃以下に冷却した後に行う必要がある。仕上焼鈍後、温度を十分に低下させずに、単に、仕上焼鈍の保持時間を延長するだけでは、同様の鉄損改善効果は認められない。これは、フォルステライト被膜が完全に形成され、冷却によって鋼板に張力がある程度付与された後、再度加熱下場合には、その張力が緩和するとともに、GN転位の再配列(ポリゴン化)が生じたり、フォルステライト被膜のアンカー形状の変化(平滑性向上)が生じたりして、特性改善の条件が満たされるためと考えられる。 This additional annealing needs to be performed after the finish-annealed coil is once cooled to 800 ° C. or lower. After the finish annealing, the same iron loss improvement effect is not recognized only by extending the holding time of the finish annealing without sufficiently lowering the temperature. This is because when the forsterite film is completely formed and tension is applied to the steel sheet to some extent by cooling and then heated again, the tension relaxes and rearrangement of GN dislocations (polygonization) occurs. This is probably because the forsterite film has a change in anchor shape (improved smoothness) and the conditions for improving the characteristics are satisfied.
なお、本発明の追加焼鈍は、一旦、冷却することが可能であれば、仕上焼鈍に用いた炉をそのまま用いて行うことができる。また、追加焼鈍時の雰囲気ガスは、短時間でコイルを均一に昇温して生産性を高める観点から、熱伝達係数の高いガスを用いるのが望ましく、例えば、H2ガスあるいはH2混合ガスを用いるのが好ましい。 Note that the additional annealing of the present invention can be performed using the furnace used for the finish annealing as it is once it can be cooled. Further, as the atmospheric gas during the additional annealing, it is desirable to use a gas having a high heat transfer coefficient from the viewpoint of increasing the temperature of the coil uniformly in a short time and increasing the productivity, for example, H 2 gas or H 2 mixed gas. Is preferably used.
追加焼鈍したコイルは、その後、公知の方法で製品コイルとすればよく、例えば、コロイダルシリカと、リン酸マグネシウムやリン酸アルミニウム等のリン酸塩からなる張力絶縁コーティングを塗布・焼付して製品コイルとすることができ、あるいは、さらに平坦化焼鈍を行ってもよい。 After that, the additionally annealed coil may be made into a product coil by a known method. For example, a product coil is formed by applying and baking a colloidal silica and a tensile insulating coating made of a phosphate such as magnesium phosphate or aluminum phosphate. Alternatively, planarization annealing may be further performed.
上記本発明によれば、仕上焼鈍に用いた炉を用いて追加焼鈍を行なうことができるので、新たな処理設備や製造工程を必要とすることなく、鉄損特性に優れた方向性電磁鋼板を安定してかつ安価に製造することが可能となる。 According to the present invention, since additional annealing can be performed using the furnace used for finish annealing, a grain-oriented electrical steel sheet having excellent iron loss characteristics can be obtained without requiring new processing equipment and manufacturing processes. It becomes possible to manufacture stably and inexpensively.
C:0.05mass%、Si:3.0mass%、Mn:0.02mass%、Al:0.02mass%、N:0.01mass%、S:0.005mass%およびSe:0.01mass%を含有する、インヒビター成分を含む鋼スラブを常法に従って熱間圧延し、冷間圧延して最終板厚が0.27mmの冷延板とした後、常法に従って脱炭を兼ねた一次再結晶焼鈍し、MgOを主成分とした焼鈍分離剤を塗布し、その後、二次再結晶焼鈍と、均熱温度1200℃で10hr均熱保持する純化焼鈍を含む仕上焼鈍を施した方向性電磁鋼板を7コイル準備した。これらのうち6コイルをコイル形状のまま、H2:70vol%+N2:30vol%の雰囲気下で、焼鈍温度を900℃、1050℃、1200℃および1250℃の4水準、均熱時間を1hrと5hrの2水準に変化させて追加焼鈍し、残りの1コイルについては、追加焼鈍せずに参考コイルとした。その後、上記の各コイルに、60mass%のコロイダルシリカとリン酸アルミニウムからなる絶縁コートを塗布し、800℃で焼き付けて製品コイルとした。 C: 0.05 mass%, Si: 3.0 mass%, Mn: 0.02 mass%, Al: 0.02 mass%, N: 0.01 mass%, S: 0.005 mass% and Se: 0.01 mass% A steel slab containing an inhibitor component is hot-rolled according to a conventional method, cold-rolled to obtain a cold-rolled sheet having a final thickness of 0.27 mm, and then subjected to primary recrystallization annealing that also serves as a decarburization according to a conventional method. 7 coils of a grain oriented electrical steel sheet coated with an annealing separator mainly composed of MgO and then subjected to finish annealing including secondary recrystallization annealing and purification annealing that maintains soaking temperature at 1200 ° C. for 10 hours. Got ready. Among these, 6 coils remain in the coil shape, and the annealing temperature is set to 4 levels of 900 ° C., 1050 ° C., 1200 ° C. and 1250 ° C. in an atmosphere of H 2 : 70 vol% + N 2 : 30 vol%, and the soaking time is 1 hr. Additional annealing was carried out by changing to two levels of 5 hr, and the remaining one coil was used as a reference coil without additional annealing. Thereafter, an insulating coat made of 60 mass% colloidal silica and aluminum phosphate was applied to each of the coils, and baked at 800 ° C. to obtain product coils.
斯くして得た各製品コイルの長手方向中央部かつ幅方向中央部からエプスタイン試験片を切り出し、鉄損W17/50を測定し、その結果を、焼鈍条件と併せて表1に示した。表1から、仕上焼鈍(純化焼鈍)後、本発明に適合する条件で追加焼鈍した製品コイルでは、鉄損W17/50が0.02W/kg以上改善されていることがわかる。 The Epstein test piece was cut out from the longitudinal center and the width center of each product coil thus obtained, the iron loss W 17/50 was measured, and the results are shown in Table 1 together with the annealing conditions. From Table 1, it can be seen that the iron loss W 17/50 is improved by 0.02 W / kg or more in the product coil additionally annealed under the conditions suitable for the present invention after finish annealing (purification annealing).
表2に示した成分組成を有する各種の鋼スラブを、常法に従って熱間圧延し、冷間圧延して最終板厚が0.30mmの冷延板とし、脱炭を兼ねた一次再結晶焼鈍し、MgOを主成分とする焼鈍分離剤を塗布した後、同じく表2に示した条件で二次再結晶焼鈍と純化焼鈍を含む仕上焼鈍を施して方向性電磁鋼板とした。なお、上記方向性電磁鋼板は、各条件で2コイルずつ製造した。次いで、上記2コイルのうちの1コイルには、コイル形状のまま、100vol%H2の雰囲気下で、表2に示した条件で追加焼鈍を施した後、また、残りの1コイルは追加焼鈍することなく、鋼板表面に60mass%のコロイダルシリカとリン酸アルミニウムからなる絶縁コートを塗布し、800℃で焼き付けて製品コイルとした。 Various steel slabs having the composition shown in Table 2 are hot-rolled according to a conventional method, cold-rolled to obtain a cold-rolled sheet having a final thickness of 0.30 mm, and primary recrystallization annealing also serving as decarburization Then, after applying an annealing separator mainly composed of MgO, finish annealing including secondary recrystallization annealing and purification annealing was performed under the conditions shown in Table 2 to obtain a grain-oriented electrical steel sheet. The grain-oriented electrical steel sheet was produced in two coils under each condition. Next, one of the two coils is subjected to additional annealing under the conditions shown in Table 2 in the atmosphere of 100 vol% H 2 while maintaining the coil shape, and the remaining one coil is additionally annealed. Without application, an insulating coating made of 60 mass% colloidal silica and aluminum phosphate was applied to the steel sheet surface, and baked at 800 ° C. to obtain a product coil.
斯くして得た各製品コイルの長手方向中央部かつ幅方向中央部からエプスタイン試験片を切り出し、鉄損W17/50を測定し、その結果を、焼鈍条件と併せて表2に示した。
表2から、本発明に適合する成分組成の方向性電磁鋼板に、本発明に適合する条件で追加焼鈍した製品コイルでは、鉄損特性に優れた方向性電磁鋼板が得られていることがわかる。
The Epstein test piece was cut out from the longitudinal center and the width center of each product coil thus obtained, the iron loss W 17/50 was measured, and the results are shown in Table 2 together with the annealing conditions.
From Table 2, it can be seen that a directional electrical steel sheet having excellent iron loss characteristics is obtained in a product coil that is additionally annealed to a directional electrical steel sheet having a composition suitable for the present invention under conditions suitable for the present invention. .
Claims (4)
二次再結晶を起こさせ、フォルステライト被膜を形成する仕上焼鈍、あるいは、二次再結晶を起こさせ、フォルステライト被膜を形成し、純化する仕上焼鈍を最高到達温度1100℃以上で施した後、一旦、800℃以下まで降温し、その後、均熱温度が950〜1200℃で均熱保持時間が3hr以上の追加焼鈍を施すことを特徴とする方向性電磁鋼板の製造方法。 In the method for producing a grain-oriented electrical steel sheet using a steel material containing C: 0.01 to 0.08 mass%, Si: 2.0 to 8.0 mass% and Mn: 0.005 to 1.0 mass%,
After performing secondary recrystallization and finishing annealing to form a forsterite film, or causing secondary recrystallization to form a forsterite film and purifying finishing annealing at a maximum attained temperature of 1100 ° C. or higher , A method for producing a grain-oriented electrical steel sheet, wherein the temperature is once lowered to 800 ° C. or less, and then subjected to additional annealing at a soaking temperature of 950 to 1200 ° C. and a soaking time of 3 hours or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011007855A JP5712626B2 (en) | 2011-01-18 | 2011-01-18 | Method for producing grain-oriented electrical steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011007855A JP5712626B2 (en) | 2011-01-18 | 2011-01-18 | Method for producing grain-oriented electrical steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012149292A JP2012149292A (en) | 2012-08-09 |
JP5712626B2 true JP5712626B2 (en) | 2015-05-07 |
Family
ID=46791817
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011007855A Active JP5712626B2 (en) | 2011-01-18 | 2011-01-18 | Method for producing grain-oriented electrical steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5712626B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5958501B2 (en) * | 2013-08-07 | 2016-08-02 | Jfeスチール株式会社 | Method for evaluating grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07292420A (en) * | 1994-04-22 | 1995-11-07 | Nippon Steel Corp | Production of grain oriented silicon steel and continuous decarburized annealing equipment |
JP4598702B2 (en) * | 2006-03-23 | 2010-12-15 | 新日本製鐵株式会社 | Manufacturing method of high Si content grain-oriented electrical steel sheet with excellent magnetic properties |
JP2008261033A (en) * | 2007-04-13 | 2008-10-30 | Nippon Steel Corp | Manufacturing method of grain-oriented silicon steel sheet, and its continuous decarburizing-nitriding annealing apparatus |
-
2011
- 2011-01-18 JP JP2011007855A patent/JP5712626B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012149292A (en) | 2012-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5854233B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP5988026B2 (en) | Method for producing grain-oriented electrical steel sheet | |
US9214275B2 (en) | Method for manufacturing grain oriented electrical steel sheet | |
JP5031934B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP6132103B2 (en) | Method for producing grain-oriented electrical steel sheet | |
WO2014013615A1 (en) | Process for producing grain-oriented electrical steel sheet | |
JP2009235574A (en) | Method for producing grain-oriented electrical steel sheet having extremely high magnetic flux density | |
JP6617827B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JPWO2013058239A1 (en) | Oriented electrical steel sheet and manufacturing method thereof | |
JPWO2014132930A1 (en) | Method for producing grain-oriented electrical steel sheet | |
JP6119959B2 (en) | Method for producing grain-oriented electrical steel sheet | |
WO2011102456A1 (en) | Manufacturing method for grain-oriented electromagnetic steel sheet | |
WO2014132354A1 (en) | Production method for grain-oriented electrical steel sheets | |
JP6856179B1 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP5871137B2 (en) | Oriented electrical steel sheet | |
JP2012188733A (en) | Manufacturing method for grain-oriented electrical steel sheet | |
JP6947147B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP5920387B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP5712626B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP5527094B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP2021509149A (en) | Directional electrical steel sheet and its manufacturing method | |
JP6866901B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP7338511B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP7221480B6 (en) | Grain-oriented electrical steel sheet and manufacturing method thereof | |
JP2012162773A (en) | Method for manufacturing grain-oriented electrical steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130823 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140423 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140513 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140711 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150210 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150223 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5712626 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |