JP2009235574A - Method for producing grain-oriented electrical steel sheet having extremely high magnetic flux density - Google Patents

Method for producing grain-oriented electrical steel sheet having extremely high magnetic flux density Download PDF

Info

Publication number
JP2009235574A
JP2009235574A JP2009052396A JP2009052396A JP2009235574A JP 2009235574 A JP2009235574 A JP 2009235574A JP 2009052396 A JP2009052396 A JP 2009052396A JP 2009052396 A JP2009052396 A JP 2009052396A JP 2009235574 A JP2009235574 A JP 2009235574A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
grain
oriented electrical
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009052396A
Other languages
Japanese (ja)
Other versions
JP5439866B2 (en
Inventor
Norisato Morishige
宣郷 森重
Kenichi Murakami
健一 村上
Satoshi Arai
聡 新井
Hidekazu Nanba
英一 難波
Hodaka Honma
穂高 本間
Kazusane Mizukami
和実 水上
Yuji Kubo
祐治 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009052396A priority Critical patent/JP5439866B2/en
Publication of JP2009235574A publication Critical patent/JP2009235574A/en
Application granted granted Critical
Publication of JP5439866B2 publication Critical patent/JP5439866B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for stably producing a grain-oriented electrical steel sheet having extremely high magnetic flux density in an industrial scale. <P>SOLUTION: The method for producing the grain-oriented electrical steel sheet uses as material a slab composed of 0.02-0.10% C, 2.5-4.5% Si, 0.01-0.15% Mn, 0.001-0.050% S, 0.01-0.05% acid-soluble Al, 0.002-0.015% N, 0.0005-0.1000% Te. The method includes a series of processes: hot-rolling the above slab then applying a hot-rolled sheet annealing to the hot-rolled steel sheet; obtaining cold-rolled steel sheet by applying cold-rolling one time or two or more times with a process annealing interposed therebetween; then applying decarburization-annealing to the cold-rolled steel sheet and coating the cold-rolled steel sheet with an annealing separator; then applying finish-annealing to the steel sheet. In the method, just before the decarburization annealing or in the temperature raising process for decarburization annealing, the heating treatment to the temperature of ≥800°C at ≥50°C/sec heating speed, is performed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、著しく磁束密度の高い方向性電磁鋼板を、工業的規模にて安定的に製造する方法に関するものである。   The present invention relates to a method for stably producing a grain-oriented electrical steel sheet having a remarkably high magnetic flux density on an industrial scale.

方向性電磁鋼板は、Siを2〜5%程度含有し、製品の結晶粒の方位を{110}<001>方位に高度に集積させた鋼板であり、主として、変圧器等の静止誘導器の鉄心材料として利用される。そのような方向性電磁鋼板の製造における結晶方位の制御は、二次再結晶とよばれるカタストロフィックな粒成長現象を利用して達成される。   The grain-oriented electrical steel sheet is a steel sheet containing about 2 to 5% Si and highly accumulating the crystal grain orientation of the product in the {110} <001> orientation, and is mainly used for stationary inductors such as transformers. Used as iron core material. Control of crystal orientation in the production of such grain-oriented electrical steel sheets is achieved by utilizing a catastrophic grain growth phenomenon called secondary recrystallization.

この二次再結晶を制御するための方法として、インヒビターとよばれる微細析出物を熱間圧延前の鋼片加熱時に完全固溶させた後に、熱間圧延及びその後の焼鈍工程で微細析出させる方法がある。この方法では、特許文献1で例示されるようなMnSとAlNをインヒビターとし、最終冷延工程で80%を超える圧下率の圧延を行う方法や、特許文献2で例示されるようなMnSとMnSeをインヒビターとし、2回の冷延工程を行う方法が工業的に実施されている。この方法では、析出物を完全固溶させるために、熱間圧延前の鋼片は、1280℃以上の高温で加熱される。   As a method for controlling this secondary recrystallization, a fine precipitate called an inhibitor is completely dissolved at the time of heating the steel slab before hot rolling, and then finely precipitated in hot rolling and subsequent annealing steps. There is. In this method, MnS and AlN as exemplified in Patent Document 1 are used as inhibitors, rolling at a rolling reduction exceeding 80% in the final cold rolling step, and MnS and MnSe as exemplified in Patent Document 2 are performed. A method of carrying out the cold rolling step twice using the above as an inhibitor has been practiced industrially. In this method, the steel slab before hot rolling is heated at a high temperature of 1280 ° C. or higher in order to completely dissolve the precipitate.

また、二次再結晶を制御する他の方法として、特許文献3、4に例示されるように、熱間圧延前の鋼片の加熱を1280℃未満の温度で実施し、冷延後の窒化処理により形成したAlNをインヒビターとして用いる方法が工業的に実施されている。   Further, as another method for controlling secondary recrystallization, as exemplified in Patent Documents 3 and 4, heating of the steel slab before hot rolling is performed at a temperature lower than 1280 ° C., and nitriding after cold rolling is performed. A method of using AlN formed by treatment as an inhibitor has been industrially implemented.

以上のような方向性電磁鋼板の製造において、より優れた磁気特性を有する鋼板を得るために、多くの開発がなされてきたが、近年の省エネルギー化への要望が高まるにつれて、さらなる低鉄損化が求められている。
方向性電磁鋼板の低鉄損化を図るには種々の方法があるが、前記の特許文献1にも示されているように磁束密度を高くしてヒステリシス損を下げることが有効である。
In the production of the grain-oriented electrical steel sheet as described above, many developments have been made to obtain a steel sheet having superior magnetic properties. However, as the demand for energy saving increases in recent years, the iron loss has been further reduced. Is required.
There are various methods for reducing the iron loss of the grain-oriented electrical steel sheet, but it is effective to increase the magnetic flux density and reduce the hysteresis loss as shown in Patent Document 1 described above.

方向性電磁鋼板の磁束密度を向上させるには、製品板の結晶粒の方位を{110}<001>方位により高度に集積させることが必要であり、そのためのひとつの方法として、インヒビターの作用を強化すると考えられる補助的な添加元素を利用する方法がある。
そのような添加元素として、Teを利用する方法が、特許文献5〜特許文献7に開示されている。
In order to improve the magnetic flux density of the grain-oriented electrical steel sheet, it is necessary to highly accumulate the crystal grain orientation of the product plate in the {110} <001> orientation. There is a method using an auxiliary additive element that is considered to be strengthened.
Patent Documents 5 to 7 disclose methods using Te as such an additive element.

しかしながら、本発明者の検討によれば、Teを添加すると、前述のいずれの製造方法を用いて製造した場合でも、二次再結晶不良に基づく細粒が発生しやすく、コイル全長にわたって安定して磁束密度の高い鋼板を得られない場合があることが解った。
また、Teを添加すると、二次再結晶後の鋼板マクロ粒組織が圧延方向に延伸した特異な形状となる。工業的生産条件では、二次再結晶の生じる仕上焼鈍はコイル状で実施されるため、圧延方向にマクロ粒が大きくなり過ぎると、コイルセットに基づいて結晶方位のずれ角が大きくなり、鉄損が劣化することもわかった。
However, according to the inventor's study, when Te is added, fine grains based on secondary recrystallization defects are likely to occur even when manufactured using any of the above-described manufacturing methods, and stable over the entire coil length. It was found that a steel plate with a high magnetic flux density could not be obtained.
Moreover, when Te is added, the steel plate macro grain structure after secondary recrystallization becomes a unique shape extending in the rolling direction. Under industrial production conditions, finish annealing in which secondary recrystallization occurs is performed in a coil shape, so if the macro grains become too large in the rolling direction, the deviation angle of the crystal orientation becomes large based on the coil set, resulting in iron loss. It was also found that deteriorated.

特公昭40−15644号公報Japanese Patent Publication No. 40-15644 特公昭51−13469号公報Japanese Patent Publication No. 51-13469 特公昭62−45285号公報Japanese Examined Patent Publication No. 62-45285 特開平2−77525号公報Japanese Patent Laid-Open No. 2-77525 特開平06−184640号公報Japanese Patent Laid-Open No. 06-184640 特開平06−207220号公報Japanese Patent Laid-Open No. 06-207220 特開平10−273727号公報Japanese Patent Laid-Open No. 10-273727

そこで、本発明は、Teの添加により、著しく磁束密度を高めた方向性電磁鋼板を、工業的規模にて安定的に、かつ、鉄損の劣化を抑制して製造する方法を提供することを課題とする。   Therefore, the present invention provides a method for producing a grain-oriented electrical steel sheet having a significantly increased magnetic flux density by adding Te, stably on an industrial scale, and suppressing deterioration of iron loss. Let it be an issue.

上記課題を解決する本発明の要旨は、次のとおりである。   The gist of the present invention for solving the above problems is as follows.

(1) 質量%で、C:0.02〜0.10%、Si:2.5〜4.5%、Mn:0.01〜0.15%、S:0.001〜0.050%、酸可溶性Al:0.01〜0.05%、N:0.002〜0.015%、Te:0.0005〜0.1000%を含有し、残部Feおよび不可避的不純物からなるスラブを、1280℃以上に加熱し、熱間圧延を施した後、熱延板焼鈍を施し、一回の冷間圧延もしくは中間焼鈍を挟む二回以上の冷間圧延を施して冷延鋼板とした後、脱炭焼鈍を施し、鋼板表面にMgOを主成分とする焼鈍分離剤を塗布してから仕上焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法において、脱炭焼鈍する直前もしくは脱炭焼鈍の昇温過程において50℃/sec以上の加熱速度で800℃以上の温度へ加熱する処理を行うことを特徴とする著しく磁束密度が高い方向性電磁鋼板の製造方法。   (1) By mass%, C: 0.02 to 0.10%, Si: 2.5 to 4.5%, Mn: 0.01 to 0.15%, S: 0.001 to 0.050% Slab containing acid-soluble Al: 0.01 to 0.05%, N: 0.002 to 0.015%, Te: 0.0005 to 0.1000%, the balance Fe and unavoidable impurities, After heating to 1280 ° C. or higher and performing hot rolling, it is subjected to hot rolled sheet annealing, and after performing cold rolling of two times or more sandwiching one cold rolling or intermediate annealing to make a cold rolled steel sheet, In the manufacturing method for grain-oriented electrical steel sheets, which consists of a series of steps in which decarburization annealing is performed and an annealing separator containing MgO as a main component is applied to the steel sheet surface and then finish annealing is performed, immediately before decarburization annealing or decarburization annealing. Heating to 800 ° C or higher at a heating rate of 50 ° C / sec or higher Significantly the manufacturing method of the magnetic flux density is high oriented electrical steel sheet, which comprises carrying out.

(2) 質量%で、C:0.02〜0.10%、Si:2.5〜4.5%、Mn:0.01〜0.15%、SおよびSeを合計で:0.001〜0.050%、酸可溶性Al:0.010〜0.050%、N:0.002〜0.015%、Te:0.0005〜0.1000%を含有し、残部Feおよび不可避的不純物からなるスラブを、1280℃以上に加熱し、熱間圧延を施した後、熱延板焼鈍を施し、一回の冷間圧延もしくは中間焼鈍を挟む二回以上の冷間圧延を施して冷延鋼板とした後、脱炭焼鈍を施し、鋼板表面にMgOを主成分とする焼鈍分離剤を塗布してから仕上焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法において、脱炭焼鈍する直前もしくは脱炭焼鈍の昇温過程において50℃/sec以上の加熱速度で800℃以上の温度へ加熱する処理を行うことを特徴とする著しく磁束密度が高い方向性電磁鋼板の製造方法。   (2) By mass%, C: 0.02 to 0.10%, Si: 2.5 to 4.5%, Mn: 0.01 to 0.15%, S and Se in total: 0.001 -0.050%, acid-soluble Al: 0.010-0.050%, N: 0.002-0.015%, Te: 0.0005-0.1000%, the balance Fe and inevitable impurities The slab made of is heated to 1280 ° C. or higher, hot-rolled, then subjected to hot-rolled sheet annealing, and cold-rolled by performing two or more cold rollings with one cold rolling or intermediate annealing. After making a steel plate, decarburization annealing is performed, and decarburization annealing is performed in a method for producing a grain-oriented electrical steel sheet consisting of a series of steps in which an annealing separator containing MgO as a main component is applied to the steel plate surface and then finish annealing is performed. Immediately before or at a heating rate of decarburization annealing at a heating rate of 50 ° C / sec or higher at 800 ° C Significantly the manufacturing method of the magnetic flux density is high oriented electrical steel sheet, which comprises carrying out the process of heating to the temperature.

(3) 質量%で、C:0.02〜0.10%、Si:2.5〜4.5%、Mn:0.05〜0.50%、S単独で、あるいはSおよびSeを合計で:0.02%以下、酸可溶性Al:0.010〜0.050%、N:0.001〜0.015%、Te:0.0005〜0.1000%を含有し、残部Feおよび不可避的不純物からなるスラブを、1280℃未満で加熱し、熱間圧延を施した後、熱延板焼鈍を施し、一回の冷間圧延もしくは中間焼鈍を挟む二回以上の冷間圧延を施して冷延鋼板とした後、脱炭焼鈍および窒化焼鈍を施し、鋼板表面にMgOを主成分とする焼鈍分離剤を塗布してから仕上焼鈍を施す一連の工程からなる方向性電磁鋼板の製造法において、脱炭焼鈍する直前もしくは脱炭焼鈍の昇温過程において50℃/sec以上の加熱速度で800℃以上の温度へ加熱する処理を行うことを特徴とする著しく磁束密度が高い方向性電磁鋼板の製造方法。
(4)前記スラブが、さらにBi:0.0005〜0.1000%を含有することを特徴とする請求項1〜3のいずれかに記載の著しく磁束密度が高い方向性電磁鋼板の製造方法。
(5)請求項1〜4のいずれかに記載の方向性電磁鋼板の製造方法によって製造された方向性電磁鋼板であって、製品板における鋼板結晶粒の形状が、形状比C={(圧延方向長さ)/(板幅方向長さ)}の平均値をCaveとするとCave>2であり、かつ圧延方向長さDの平均値をDaveとするとDave≦150mmであることを特徴とする著しく磁束密度が高い方向性電磁鋼板。
(3) By mass%, C: 0.02 to 0.10%, Si: 2.5 to 4.5%, Mn: 0.05 to 0.50%, S alone or S and Se in total In: 0.02% or less, acid-soluble Al: 0.010 to 0.050%, N: 0.001 to 0.015%, Te: 0.0005 to 0.1000%, balance Fe and inevitable A slab made of a general impurity is heated below 1280 ° C., hot-rolled, then subjected to hot-rolled sheet annealing, and subjected to one or more cold rolling or two or more cold rolling sandwiching intermediate annealing. In the manufacturing method of grain-oriented electrical steel sheet, which consists of a series of steps in which after cold-rolled steel sheet, decarburization annealing and nitridation annealing are performed, and an annealing separator containing MgO as a main component is applied to the steel sheet surface and then finish annealing is performed. More than 50 ℃ / sec immediately before decarburization annealing or in the temperature raising process of decarburization annealing Significantly the manufacturing method of the magnetic flux density is high oriented electrical steel sheet, which comprises carrying out the process of heating at a heat rate to 800 ° C. or higher.
(4) The method for producing a grain-oriented electrical steel sheet according to any one of claims 1 to 3, wherein the slab further contains Bi: 0.0005 to 0.1000%.
(5) A grain-oriented electrical steel sheet produced by the method for producing a grain-oriented electrical steel sheet according to any one of claims 1 to 4, wherein the shape of the steel sheet crystal grains in the product plate is a shape ratio C = {(rolling If the average value of (direction length) / (length in the plate width direction)} is Cave, then Cave> 2, and if the average value of rolling direction length D is Dave, Dave ≦ 150 mm. Directional electrical steel sheet with high magnetic flux density.

本発明によれば、著しく磁束密度の高い方向性電磁鋼板を、工業的規模にて、安定的に製造することができる。したがって、本発明は、近年の省エネルギー化への要望に沿いつつ、世界的な発電量増加に伴う高品質方向性電磁鋼板の需要増を満たすことができ、その効果は甚大である。   According to the present invention, a grain-oriented electrical steel sheet having a remarkably high magnetic flux density can be stably produced on an industrial scale. Therefore, the present invention can satisfy the increasing demand for high-quality grain-oriented electrical steel sheets accompanying an increase in the amount of power generation around the world while meeting the recent demand for energy saving, and the effect is enormous.

製品板の磁束密度と細粒発生面積率に対する脱炭焼鈍の昇温速度の影響を説明するための図である。It is a figure for demonstrating the influence of the temperature increase rate of decarburization annealing with respect to the magnetic flux density of a product plate, and the fine grain generation | occurrence | production area ratio.

以下、本発明の実施の形態について、詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

Teを添加した鋼板は、二次再結晶開始温度が高温側に移行しており、それが原因で二次再結晶が不安定になると考えられる。また、二次再結晶後の鋼板マクロ粒組織は、圧延方向に延伸した特異な形状となり、その形状によっては、コイルセットに基づく鉄損劣化の原因となると考えられる。そこで本発明者らは、脱炭焼鈍後の組織を二次再結晶が発現しやすい組織にすることにより、Teの添加効果を確実にして、著しく磁束密度の高い方向性電磁鋼板を鉄損の劣化を抑制して安定製造する技術を確立するため、以下の実験を行った。   The steel sheet to which Te is added has a secondary recrystallization start temperature shifted to a high temperature side, which is considered to cause the secondary recrystallization to become unstable. Moreover, the steel plate macro grain structure after the secondary recrystallization has a unique shape extending in the rolling direction, and depending on the shape, it is considered to cause iron loss deterioration based on the coil set. Therefore, the present inventors have made the structure after decarburization annealing easy to develop secondary recrystallization, thereby ensuring the effect of addition of Te, and making the grain-oriented electrical steel sheet with extremely high magnetic flux density iron loss. The following experiment was conducted to establish a technique for stable production while suppressing deterioration.

真空溶解炉において、質量%で、C:0.08%、Si:3.23%、Mn:0.08%、S:0.025%、酸可溶性Al:0.03%、N:0.008%を含有し、残部Feおよび不可避的不純物からなる組成のスラブ(Te無)と、これにさらにTe:0.013%を添加した組成のスラブ(Te入)を作製し、1300℃にて1時間の焼鈍後、熱間圧延を実施した。   In a vacuum melting furnace, in mass%, C: 0.08%, Si: 3.23%, Mn: 0.08%, S: 0.025%, acid-soluble Al: 0.03%, N: 0.00. A slab containing 008% and composed of the balance Fe and unavoidable impurities (without Te) and a slab with a composition added with Te: 0.013% (with Te) were prepared at 1300 ° C. Hot rolling was performed after annealing for 1 hour.

得られた熱延板に1100℃にて120秒間の焼鈍を行い、酸洗を施した後に冷間圧延を実施し、板厚0.23mmの冷延板とした。この冷延板に、湿水素中850℃で150秒の脱炭焼鈍を施した。脱炭焼鈍の昇温では、800℃までの加熱速度を25℃/sec〜1000℃/secの範囲で変更した。
脱炭焼鈍後の鋼板表面にMgOを主成分とする焼鈍分離剤を水スラリーにて塗布した後、1150℃で20時間の仕上焼鈍を施した。仕上焼鈍後の鋼板マクロ粒組織を観察する試験においては、実機コイルを模擬して曲率半径500mmの曲率を付与した後、仕上焼鈍を実施した。
The obtained hot-rolled sheet was annealed at 1100 ° C. for 120 seconds, pickled, and then cold-rolled to obtain a cold-rolled sheet having a thickness of 0.23 mm. This cold-rolled sheet was decarburized and annealed at 850 ° C. in wet hydrogen for 150 seconds. In the decarburization annealing, the heating rate up to 800 ° C. was changed in the range of 25 ° C./sec to 1000 ° C./sec.
An annealing separator containing MgO as a main component was applied to the steel sheet surface after decarburization annealing with a water slurry, and then finish annealing was performed at 1150 ° C. for 20 hours. In the test for observing the macro grain structure of the steel sheet after the finish annealing, the actual coil was simulated to give a curvature with a radius of curvature of 500 mm, and then the finish annealing was performed.

仕上焼鈍後の鋼板を水洗した後、単板磁気測定用サイズに剪断し、リン酸アルミニウムとコロイダルシリカを主成分とした絶縁被膜を塗布、焼付して試料を作成した。
得られた試料の磁束密度B8値(50Hzにて800A/mの磁場を付与したときの磁束密度の値)を測定した後、試料の被膜を除去し、粒径が2mm未満の細粒が発生している領域(二次再結晶不良部)の面積率を測定した。
The steel plate after the finish annealing was washed with water, then sheared to a single plate magnetic measurement size, and an insulating coating mainly composed of aluminum phosphate and colloidal silica was applied and baked to prepare a sample.
After measuring the magnetic flux density B8 value of the obtained sample (the magnetic flux density value when a magnetic field of 800 A / m is applied at 50 Hz), the sample coating is removed and fine particles with a particle size of less than 2 mm are generated. The area ratio of the area | region (secondary recrystallization defect part) which is carrying out was measured.

図1に、脱炭焼鈍時における昇温速度に対する磁束密度の関係、及びスラブ(Te入)を用いた場合における細粒発生面積率を示す。
図に示されるように、Teを添加したスラブを用いた場合は、Teを添加しなかったスラグを用いた場合に比べて、得られた鋼板の磁束密度が大きく向上している。特に、脱炭焼鈍の昇温過程において50℃/sec以上の加熱速度で800℃以上の温度へ加熱する処理を行うでは、スラブ加熱温度が比較的低い1300℃であるにもかかわらず、B8で1.960T以上の良好な磁束密度が得られている。
In FIG. 1, the relationship of the magnetic flux density with respect to the temperature increase rate at the time of decarburization annealing, and the fine grain generation | occurrence | production area ratio in the case of using a slab (Te entering) are shown.
As shown in the figure, when the slab added with Te is used, the magnetic flux density of the obtained steel plate is greatly improved as compared with the case where the slag not added with Te is used. In particular, in the temperature raising process of decarburization annealing, in the process of heating to a temperature of 800 ° C. or higher at a heating rate of 50 ° C./sec or higher, even though the slab heating temperature is 1300 ° C., B8 A good magnetic flux density of 1.960 T or more is obtained.

また、昇温速度が50℃/sec以上の範囲では、細粒発生面積率がいずれも1%以下で、試料全体にわたって安定して二次再結晶が発現していたが、昇温速度が25℃/secでは、細粒発生面積率が5%であり、二次再結晶の発現が不安定であった。   In addition, in the range where the temperature rising rate was 50 ° C./sec or more, the fine grain generation area ratio was 1% or less, and secondary recrystallization appeared stably over the entire sample, but the temperature rising rate was 25 At ° C / sec, the fine grain generation area ratio was 5%, and the occurrence of secondary recrystallization was unstable.

これらのことから、Teを添加し、かつ、脱炭焼鈍の昇温過程において50℃/sec以上の加熱速度で800℃以上の温度へ加熱する条件において、二次再結晶不良による細粒の発生が1%以下で、B8>1.960T以上となり、良好な特性が得られることが知見された。   From these facts, generation of fine grains due to secondary recrystallization failure under the conditions of adding Te and heating to a temperature of 800 ° C. or higher at a heating rate of 50 ° C./sec or higher in the temperature raising process of decarburization annealing. Is 1% or less, B8> 1.960T or more, and it has been found that good characteristics can be obtained.

また組織観察の結果、仕上焼鈍後の鋼板マクロ粒組織は、昇温速度が50℃/sec以上の範囲では、圧延方向の粒長さの平均値がいずれも150mm以下であり、コイルセットに伴う鉄損劣化は見られなかった。昇温速度が25℃/secでは、圧延方向の粒長さの平均値が183mmとなり、コイルセットに伴う鉄損劣化が見られた。   In addition, as a result of the structure observation, the steel grain macro grain structure after the finish annealing has an average value of the grain length in the rolling direction of 150 mm or less in the range where the rate of temperature rise is 50 ° C./sec or more. No iron loss deterioration was observed. When the heating rate was 25 ° C./sec, the average value of the grain length in the rolling direction was 183 mm, and iron loss deterioration accompanying the coil set was observed.

これらのことから、Teを添加し、かつ、脱炭焼鈍の昇温過程において50℃/sec以上の加熱速度で800℃以上の温度へ加熱する条件において、圧延方向の粒長さの平均値がいずれも150mm以下となり、良好な特性が得られることが知見された。   From these, in the condition of adding Te and heating to a temperature of 800 ° C. or higher at a heating rate of 50 ° C./sec or more in the temperature raising process of decarburization annealing, the average value of the grain length in the rolling direction is It was found that all of them were 150 mm or less, and good characteristics were obtained.

以上より、本発明者らは、Teを添加し、かつ、脱炭焼鈍する直前もしくは脱炭焼鈍の昇温過程において50℃/sec以上の加熱速度で800℃以上の温度へ加熱する処理を行うことにより、著しく高い磁束密度および低い鉄損を、全長および全幅で実現する手法を新規に知見し、この知見をもとに本発明を完成させた。   As described above, the present inventors perform a treatment of adding Te and heating to a temperature of 800 ° C. or higher at a heating rate of 50 ° C./sec or more immediately before decarburization annealing or in the temperature raising process of decarburization annealing. As a result, a new technique for realizing a remarkably high magnetic flux density and low iron loss over the entire length and width was newly found, and the present invention was completed based on this knowledge.

以下、本発明における実施形態について詳細に説明する。
方向性電磁鋼板の工業的に実施されている製造方法は、前述のように、インヒビターを冷間圧延前に形成するかどうかによって、(1)熱間圧延前のスラブを1280℃以上で加熱する場合と(2)1280℃未満で加熱する場合がある。
本発明では、Teの添加の効果を、二次再結晶において十分に発現することを主眼としているので、仕上焼鈍までの製造法の違いによって特に左右されることはなく、いずれの製造法を採用にしてもよい。
そこでまず、それぞれの製造法について説明し、次に脱炭焼鈍の直前あるいは脱炭焼鈍の昇温過程における加熱処理について説明する。
Hereinafter, embodiments of the present invention will be described in detail.
As described above, the manufacturing method of industrially oriented grain-oriented electrical steel sheets is as follows. (1) The slab before hot rolling is heated at 1280 ° C. or higher depending on whether the inhibitor is formed before cold rolling. In some cases, (2) heating may be performed at less than 1280 ° C.
In the present invention, the effect of addition of Te is mainly intended to be fully expressed in secondary recrystallization, so it is not particularly affected by the difference in the manufacturing method until finish annealing, and any manufacturing method is adopted. It may be.
Therefore, first, each manufacturing method will be described, and then the heat treatment immediately before decarburization annealing or in the temperature rising process of decarburization annealing will be described.

前記(1)の製造法について説明する。
この製造法では、質量%で、C:0.02〜0.10%、Si:2.5〜4.5%、Mn:0.01〜0.15%、S単独で、あるいはSとSeを合計で:0.001〜0.050%、酸可溶性Al:0.01〜0.05%、N:0.002〜0.015%、残部Feおよび不可避的不純物よりなる鋼を基本として用いる。本発明では、この鋼に、さらにTe:0.0005〜0.1000%を単独で、あるいはTe:0.0005〜0.1000%とBi:0.0005〜0.1000%を同時に含有させる。
The production method (1) will be described.
In this production method, by mass%, C: 0.02 to 0.10%, Si: 2.5 to 4.5%, Mn: 0.01 to 0.15%, S alone, or S and Se In total: 0.001 to 0.050%, acid-soluble Al: 0.01 to 0.05%, N: 0.002 to 0.015%, the balance Fe and steel consisting of inevitable impurities are used as a basis . In the present invention, the steel further contains Te: 0.0005 to 0.1000% alone, or Te: 0.0005 to 0.1000% and Bi: 0.0005 to 0.1000% simultaneously.

鋼の組成が上記のように選定されるのは次の理由による。なお、以下、元素の含有量を単に%で表記する場合があるが、%は質量%を意味する。   The reason why the steel composition is selected as described above is as follows. Hereinafter, the content of the element may be simply expressed as%, but% means mass%.

Cには、種々の役割があるが、質量%で0.02%未満では、スラブ加熱時の結晶粒径が大きくなり過ぎて製品の鉄損が劣化する。一方、質量%で0.10%を超えた場合は、冷延後の脱炭焼鈍において、脱炭時間が長時間必要となり経済的でないばかりでなく、脱炭が不完全となり易く、製品での磁気時効と呼ばれる磁性不良を起こすので、好ましくない。
このため、Cの含有量の下限は0.02%、上限は0.10%とする。この範囲内でより適正な範囲は、0.05〜0.09%である。
C has various roles, but if it is less than 0.02% by mass, the crystal grain size at the time of slab heating becomes too large and the iron loss of the product deteriorates. On the other hand, if it exceeds 0.10% by mass, decarburization annealing after cold rolling requires not only a long time, but is not economical, and decarburization tends to be incomplete. This is not preferable because it causes a magnetic defect called magnetic aging.
For this reason, the lower limit of the C content is 0.02%, and the upper limit is 0.10%. A more appropriate range within this range is 0.05 to 0.09%.

Siは、鋼の電気抵抗を高めて、鉄損の一部を構成する渦電流損失を低減するのに極めて有効な元素であり、質量%で、2.5%以上4.5%以下の範囲に制御しなければならない。2.5%未満では、製品の渦電流損失を抑制できず、また、4.5%を超えると、加工性が劣化するので、好ましくない。   Si is an extremely effective element for increasing the electrical resistance of steel and reducing the eddy current loss that constitutes a part of the iron loss. The mass% ranges from 2.5% to 4.5%. Must be controlled. If it is less than 2.5%, eddy current loss of the product cannot be suppressed, and if it exceeds 4.5%, workability deteriorates, which is not preferable.

Mnは、二次再結晶を左右するインヒビターであるMnSおよび/またはMnSeを形成する重要な元素であり、質量%で、0.01%以上0.15%以下の範囲に制御する必要がある。0.01%未満では、二次再結晶を生じさせるのに必要なMnS、MnSeの絶対量が不足するので、好ましくない。また、0.15%を超えた場合には、スラブ加熱時の固溶が困難になるばかりでなく、析出サイズが粗大化し易く、インヒビターとしての最適サイズ分布が損なわれて、好ましくない。   Mn is an important element for forming MnS and / or MnSe, which is an inhibitor that influences secondary recrystallization, and it is necessary to control Mn in a range of 0.01% to 0.15%. If it is less than 0.01%, the absolute amount of MnS and MnSe necessary for causing secondary recrystallization is insufficient, which is not preferable. On the other hand, if it exceeds 0.15%, not only the solid solution during slab heating becomes difficult, but also the precipitation size tends to become coarse, and the optimum size distribution as an inhibitor is impaired.

Sは、上述したMnとインヒビターを形成する重要な元素であり、その含有量を0.001%以上0.05%以下の範囲に制御する必要がある。上記範囲を逸脱すると、十分なインヒビター効果が得られない。   S is an important element that forms an inhibitor with Mn described above, and its content needs to be controlled in the range of 0.001% to 0.05%. If it deviates from the above range, a sufficient inhibitor effect cannot be obtained.

Seは、上述したMnとインヒビターを形成する重要な元素であり、Sとともに含有されてもよい。含有する場合は、Sとの合計量で0.001%以上0.05%以下の範囲に制御する必要がある。上記範囲を逸脱すると、十分なインヒビター効果が得られない。   Se is an important element that forms an inhibitor with Mn as described above, and may be contained together with S. When it contains, it is necessary to control to 0.001% or more and 0.05% or less of the total amount with S. If it deviates from the above range, a sufficient inhibitor effect cannot be obtained.

酸可溶性Alは、高磁束密度方向性電磁鋼板を製造するための主要インヒビター構成元素であり、質量%で、0.01%以上0.05%以下の範囲に制御する必要がある。0.01%未満では、量的に不足して、インヒビター強度が不足するので、好ましくない。一方、0.05%を超えると、インヒビターとして析出させるAlNが粗大化し、結果として、インヒビター強度を低下させるので、好ましくない。   Acid-soluble Al is a main inhibitor constituting element for producing a high magnetic flux density grain-oriented electrical steel sheet and needs to be controlled in a range of 0.01% to 0.05% by mass. If it is less than 0.01%, the quantity is insufficient, and the inhibitor strength is insufficient. On the other hand, if it exceeds 0.05%, AlN precipitated as an inhibitor becomes coarse, and as a result, the inhibitor strength is lowered, which is not preferable.

Nは、上述した酸可溶性AlとAlNを形成する重要な元素であり、質量%で、0.002%以上0.015%以下の範囲に制御する必要がある。上記範囲を逸脱すると、十分なインヒビター効果が得られない。   N is an important element that forms the above-described acid-soluble Al and AlN, and is required to be controlled in a range of 0.002% to 0.015% by mass. If it deviates from the above range, a sufficient inhibitor effect cannot be obtained.

Teは、インヒビターを強化して鋼板磁束密度を向上させるのに有効な元素である。その効果を得るためには、0.0005〜0.10%の範囲に添加量を制御する必要がある。0.0005%未満では十分な効果が得られず、0.10%を超えると、圧延性が劣化して、好ましくない。
Biは、Teと複合添加することにより、さらに磁束密度を向上させる。その効果を得るためには、0.0005〜0.10%の範囲に添加量を制御する必要がある。0.0005%未満では十分な効果が得られず、0.10%を超えると圧延性が劣化して好ましくない。
Te is an element effective for strengthening the inhibitor and improving the magnetic flux density of the steel sheet. In order to obtain the effect, it is necessary to control the addition amount in the range of 0.0005 to 0.10%. If it is less than 0.0005%, a sufficient effect cannot be obtained, and if it exceeds 0.10%, the rollability deteriorates, which is not preferable.
Bi is further added to Te to further improve the magnetic flux density. In order to obtain the effect, it is necessary to control the addition amount in the range of 0.0005 to 0.10%. If it is less than 0.0005%, a sufficient effect cannot be obtained, and if it exceeds 0.10%, the rollability is deteriorated.

この他、二次再結晶を安定化させる元素として、Sn、Sb、Cu、Ag、As、Mo、Cr、P、Ni、B、Pb、V、Ge、Ti、Biの一種または二種以上を、合計して、質量%で、0.0005〜1.0%含有させることも有用である。これら元素の添加量としては、0.0005%未満では、二次再結晶安定化の効果が十分でなく、また、1.0%を超えると効果が飽和するために、コストの観点から、上限を1.0%に限定する。   In addition, Sn, Sb, Cu, Ag, As, Mo, Cr, P, Ni, B, Pb, V, Ge, Ti, and Bi are used as elements for stabilizing secondary recrystallization. In addition, it is useful to contain 0.0005 to 1.0% by mass in total. If the amount of these elements is less than 0.0005%, the effect of stabilizing the secondary recrystallization is not sufficient, and if it exceeds 1.0%, the effect is saturated. Is limited to 1.0%.

上記のごとく成分を調整した方向性電磁鋼板製造用溶鋼は、通常の方法で鋳造する。特に鋳造方法に限定はない。次いで、スラブ加熱処理するが、加熱温度の下限値は、インヒビターを完全固溶するために1280℃とする。1280℃未満では、MnS、MnSe、AlN等のインヒビター成分を充分に溶体化させることができない。上限は、特に定めないが、設備保護の観点から1450℃以下が好ましい。   The molten steel for producing grain-oriented electrical steel sheets with the components adjusted as described above is cast by a normal method. There is no particular limitation on the casting method. Next, slab heat treatment is performed, and the lower limit of the heating temperature is set to 1280 ° C. in order to completely dissolve the inhibitor. If it is less than 1280 degreeC, inhibitor components, such as MnS, MnSe, and AlN, cannot fully be made into solution. The upper limit is not particularly defined, but is preferably 1450 ° C. or less from the viewpoint of equipment protection.

上述のように加熱されたスラブは、引き続く熱間圧延により熱延板となる。この熱延板の板厚は、特に規定するものではないが、後述の冷間圧延率と関連するため、通常は、1.8〜3.5mmとする。この熱延板は、短時間焼鈍を経て冷間圧延される。上記焼鈍は、750〜1200℃の温度域で30秒〜10分間行い、製品の磁気特性を高めるために有効である。   The slab heated as described above becomes a hot-rolled sheet by subsequent hot rolling. The thickness of the hot-rolled sheet is not particularly specified, but is usually 1.8 to 3.5 mm because it is related to the cold rolling rate described later. This hot-rolled sheet is cold-rolled after being annealed for a short time. The annealing is performed in a temperature range of 750 to 1200 ° C. for 30 seconds to 10 minutes, and is effective for enhancing the magnetic properties of the product.

冷間圧延は、1回で行うか、または、中間焼鈍を間に挟んで2回以上に分けて行う。1回の冷間圧延とは、板温が600℃を超える焼鈍を途中に含まずに、一回もしくは複数回の圧延を施すことを意味する。その際、圧延の間に300℃以下程度の焼鈍を施すことは、むしろ磁気特性にとって好ましい。
冷間圧延を2回以上に分ける場合は、冷間圧延の間に中間焼鈍を行う。中間焼鈍は、750〜1200℃の温度域で30秒〜10分間とするのが好ましい。
Cold rolling is performed once or divided into two or more times with intermediate annealing in between. One cold rolling means that one or a plurality of rollings are performed without including an annealing process in which the plate temperature exceeds 600 ° C. At that time, it is preferable for the magnetic properties to perform annealing at about 300 ° C. or less during rolling.
When cold rolling is divided into two or more times, intermediate annealing is performed during cold rolling. The intermediate annealing is preferably performed in a temperature range of 750 to 1200 ° C. for 30 seconds to 10 minutes.

冷間圧延を1回で行うと製品の全長全幅特性が不安定になり易く、冷間圧延を2回以上に分けて行うと製品特性は安定するが到達磁束密度は低くなる傾向がある。このため、冷間圧延の回数は、望む製品の特性レベルとコストとを勘案して適宜選択される。
また、いずれの場合も、最終冷延圧下率を80〜95%の範囲とするのが好ましい。
When the cold rolling is performed once, the full width characteristics of the product are likely to be unstable, and when the cold rolling is performed twice or more, the product characteristics are stabilized but the ultimate magnetic flux density tends to be low. For this reason, the number of cold rolling is appropriately selected in consideration of the desired characteristic level and cost of the product.
In any case, the final cold rolling reduction is preferably in the range of 80 to 95%.

冷間圧延された鋼板は、続いて、水素窒素含有湿潤雰囲気中、900℃以下の温度で脱炭焼鈍され、Cを製品特性上必須となる20ppm以下に低減する。本発明では、後述するように、脱炭焼鈍の昇温過程において加熱速度を制御する。
この後、MgOを主成分とするパウダーを塗布しコイル巻取りを行う。そして、巻取られたコイルにバッチ式の仕上焼鈍を実施し、その後、巻き解き、パウダー除去と、リン酸アルミニウムとコロイダルシリカを主成分としたスラリー液を塗布、焼付を行い、方向性電磁鋼板の製品を完成させる。
Subsequently, the cold-rolled steel sheet is decarburized and annealed at a temperature of 900 ° C. or lower in a wet atmosphere containing hydrogen nitrogen, and C is reduced to 20 ppm or lower, which is essential for product characteristics. In the present invention, as described later, the heating rate is controlled in the temperature raising process of decarburization annealing.
Thereafter, a powder mainly composed of MgO is applied and coiled. Then, batch-type finish annealing is performed on the wound coil, and then unwinding, removing the powder, applying a slurry liquid mainly composed of aluminum phosphate and colloidal silica, and baking are performed. Complete the product.

前記仕上焼鈍は、{110}<001>方位粒を二次再結晶させる工程であり、鋼板の磁束密度を向上させるために極めて重要である。通常は、窒素水素混合雰囲気にて1100〜1200℃の温度に昇温する過程で二次再結晶を発現させた後、水素雰囲気に切り替え、1100〜1200℃の焼鈍温度で20時間程度の焼鈍を実施することにより、N、S、Se等を鋼板外に拡散除去して製品板の磁気特性を良好なものとする。   The finish annealing is a step of secondary recrystallization of {110} <001> oriented grains, and is extremely important for improving the magnetic flux density of the steel sheet. Usually, after secondary recrystallization is developed in the process of raising the temperature to 1100 to 1200 ° C. in a nitrogen-hydrogen mixed atmosphere, switching to a hydrogen atmosphere and annealing for about 20 hours at an annealing temperature of 1100 to 1200 ° C. By carrying out the process, N, S, Se, etc. are diffused and removed out of the steel sheet to improve the magnetic properties of the product plate.

仕上焼鈍における焼鈍雰囲気は、前記のように窒素および水素の混合雰囲気とすることが製品特性および生産性の観点から好ましい。窒素分圧を上げると二次再結晶が安定化する傾向があり、窒素分圧を下げると高磁束密度特性が得られるものの、二次再結晶が不安定化する傾向がある。   The annealing atmosphere in the finish annealing is preferably a mixed atmosphere of nitrogen and hydrogen as described above from the viewpoint of product characteristics and productivity. Increasing the nitrogen partial pressure tends to stabilize secondary recrystallization, and decreasing the nitrogen partial pressure provides high magnetic flux density characteristics but tends to destabilize secondary recrystallization.

なお、Teを添加した鋼板は、二次再結晶温度が高くなる傾向があり、昇温過程における高温側の昇温速度を20℃/h以下の遅い速度とすることも、二次再結晶を安定化するために有効である。またMgOパウダー中に含まれる水分を減じて、製品におけるグラス被膜の鋼板への密着性を向上させる目的から、昇温途中で保定焼鈍を施すことも有効である。   Note that the steel sheet added with Te tends to have a high secondary recrystallization temperature, and the temperature increase rate on the high temperature side in the temperature increasing process may be a slow rate of 20 ° C./h or less. It is effective for stabilization. In addition, it is also effective to perform retention annealing in the middle of the temperature rise for the purpose of reducing the moisture contained in the MgO powder and improving the adhesion of the glass coating in the product to the steel plate.

ついで、(2)の製造法について説明する。
この製造法では、質量%で、C:0.02〜0.10%、Si:2.5〜4.5%、Mn:0.05〜0.50%、S単独、あるいはSおよびSeを合計で:0.02%以下、酸可溶性Al:0.010〜0.050%、N:0.001〜0.015%、残部Feおよび不可避的不純物よりなる鋼を基本とし、この鋼に、同様に、さらにTe:0.0005〜0.1000%を含有させた鋼を用いる。
Next, the production method (2) will be described.
In this production method, by mass%, C: 0.02 to 0.10%, Si: 2.5 to 4.5%, Mn: 0.05 to 0.50%, S alone, or S and Se. Total: 0.02% or less, acid-soluble Al: 0.010 to 0.050%, N: 0.001 to 0.015%, based on steel consisting of the balance Fe and unavoidable impurities, Similarly, steel further containing Te: 0.0005 to 0.1000% is used.

この製造法では、インヒビターとして(Al,Si)Nを用いるので、インヒビターとしてMnSは特に必要としない。そのため、MnやS及びSeの含有量は次の理由で選定される。その他の成分については、(1)の製造法の場合と同様である。   In this manufacturing method, since (Al, Si) N is used as an inhibitor, MnS is not particularly required as an inhibitor. Therefore, the contents of Mn, S and Se are selected for the following reasons. About other components, it is the same as that of the case of the manufacturing method of (1).

Mnは、比抵抗を高めて鉄損を低減させる目的のために、また、熱間圧延における割れの発生を防止する目的のために0.05%以上0.5%以下の範囲で含有される。添加量が0.05%未満ではこれらの目的を達成することができず、一方、0.5%を超えると製品の磁束密度を低下させるため好ましくない。
S及びSeは磁気特性に悪影響を及ぼすので総量で0.02%以下とする。
Mn is contained in the range of 0.05% or more and 0.5% or less for the purpose of increasing the specific resistance and reducing iron loss and for the purpose of preventing the occurrence of cracks in hot rolling. . If the addition amount is less than 0.05%, these objects cannot be achieved. On the other hand, if it exceeds 0.5%, the magnetic flux density of the product is lowered, which is not preferable.
Since S and Se adversely affect the magnetic properties, the total amount is 0.02% or less.

上記のごとく成分を調整した方向性電磁鋼板製造用溶鋼から、通常の方法で鋳造されてスラブとされ、熱間圧延前に加熱処理される。その際の加熱温度は1280℃未満で十分である。
その後、(1)の製造法と同様にして、熱間圧延され、冷間圧延される。冷間圧延後の鋼板は、鋼中に含まれるCを除去するために湿潤雰囲気中で脱炭焼鈍が施され、その後、仕上焼鈍される。
From the molten steel for producing grain-oriented electrical steel sheets, the components of which are adjusted as described above, the slab is cast by a normal method and heat-treated before hot rolling. The heating temperature at that time is sufficient to be less than 1280 ° C.
Thereafter, in the same manner as the production method (1), hot rolling and cold rolling are performed. The steel sheet after cold rolling is subjected to decarburization annealing in a humid atmosphere in order to remove C contained in the steel, and then finish annealing.

この製造法では、インヒビターとしての(Al,Si)Nを形成するために、冷間圧延から仕上焼鈍の間で鋼板中の窒素を増加させる処理が行われる。窒素を増加させる処理としては、アンモニア等の窒化能のあるガスを含有する雰囲気中で焼鈍する窒化焼鈍によって行われる。
この窒化焼鈍の時期は、冷間圧延から仕上焼鈍の間であればよく、脱炭焼鈍の前あるいは後のどちらで施しても構わない。また、脱炭焼鈍と窒化焼鈍を同時に施しても、同様の効果が得られる。
In this manufacturing method, in order to form (Al, Si) N as an inhibitor, a process of increasing nitrogen in the steel sheet between cold rolling and finish annealing is performed. The treatment for increasing nitrogen is performed by nitridation annealing in an atmosphere containing a gas having nitriding ability such as ammonia.
The time of this nitridation annealing may be between cold rolling and finish annealing, and may be performed either before or after decarburization annealing. Moreover, the same effect is acquired even if it performs decarburization annealing and nitridation annealing simultaneously.

以上のようにそれぞれの製造法に従って冷間圧延された鋼板は、続いて前述のように脱炭焼鈍され、仕上焼鈍されるが、本発明は、Teの添加効果をより発現するために、脱炭焼鈍する直前もしくは脱炭焼鈍の昇温過程において50℃/sec以上の加熱速度で800℃以上の温度へ加熱する処理を行って、磁束密度の向上と二次再結晶の安定化の効果を得る。また、仕上焼鈍後の鋼板マクロ粒組織の圧延方向長さを短くすることにより、鉄損劣化を抑制する効果を得る。   As described above, the steel sheets cold-rolled in accordance with the respective production methods are subsequently decarburized and finish-annealed as described above. Improving the magnetic flux density and stabilizing secondary recrystallization by heating to 800 ° C or higher at a heating rate of 50 ° C / sec or higher immediately before the carbon annealing or in the temperature raising process of decarburization annealing. obtain. Moreover, the effect which suppresses iron loss deterioration is acquired by shortening the rolling direction length of the steel plate macro grain structure after finish annealing.

この50℃/sec以上の加熱速度で800℃以上の温度へ加熱する加熱処理は、脱炭焼鈍する直前に脱炭焼鈍とは別に実施してもよく、また、脱炭焼鈍の昇温過程に組み込んで実施してもよい。   The heat treatment for heating to a temperature of 800 ° C. or higher at a heating rate of 50 ° C./sec or higher may be performed separately from the decarburization annealing immediately before the decarburization annealing. It may also be implemented.

Teを添加した鋼板は、二次再結晶開始温度が高温側に移行しており、それが原因で二次再結晶が不安定になると考えられが、本発明では、上記のような加熱処理を行って、脱炭焼鈍後の組織を二次再結晶が発現しやすい組織にする。   The steel sheet to which Te is added has a secondary recrystallization start temperature shifted to a high temperature side, and it is considered that secondary recrystallization becomes unstable due to this, but in the present invention, the above heat treatment is performed. The structure after decarburization annealing is made into a structure in which secondary recrystallization is easy to develop.

また、Teを添加した鋼板の仕上焼鈍後における鋼板マクロ組織は、圧延方向に延伸した特異な形状となる。このような延伸マクロ組織は、理由は明確ではないが、鋼板方位集積度が著しく高く、磁気特性が良好である。しかし、工業的生産条件では、二次再結晶の生じる仕上焼鈍はコイル状で実施され、鋼板は圧延方向に曲げられた状態にある。このため、圧延方向に粒径が大きくなり過ぎると、コイルセットに基づいて結晶方位のずれ角が大きくなり、鉄損が劣化するようになる。   Moreover, the steel plate macro structure after the finish annealing of the steel plate to which Te has been added has a unique shape extending in the rolling direction. The reason for such a stretched macrostructure is not clear, but the steel sheet orientation integration degree is remarkably high and the magnetic properties are good. However, in industrial production conditions, finish annealing in which secondary recrystallization occurs is performed in a coil shape, and the steel sheet is bent in the rolling direction. For this reason, if the grain size becomes too large in the rolling direction, the deviation angle of the crystal orientation becomes large based on the coil set, and the iron loss deteriorates.

本発明では、上記のような加熱処理を行って、脱炭焼鈍後の組織を二次再結晶が発現しやすい組織にすることで、仕上焼鈍後の鋼板マクロ粒を次の条件を満たす形状にして、鉄損の劣化を抑制する。
すなわち、仕上焼鈍後の鋼板結晶粒について、形状比C={(圧延方向長さ)/(板幅方向長さ)}の平均値をCaveとし、圧延方向最大長さDの平均値をDaveとするとき、形状比平均:Cave>2、かつ、圧延方向最大長さ平均:Dave≦150mm、とする。
ここで、形状比平均:Cave>2としたのは、Caveが2以下となると、Dave≦150mmであっても結晶方位のずれ角が大きくなるためである。
In the present invention, the heat treatment as described above is performed, and the structure after decarburization annealing is made into a structure in which secondary recrystallization is likely to occur, so that the steel plate macro grains after finish annealing are shaped to satisfy the following conditions. Suppresses the deterioration of iron loss.
That is, regarding the steel plate crystal grains after the finish annealing, the average value of the shape ratio C = {(length in the rolling direction) / (length in the plate width direction)} is Cave, and the average value of the maximum length D in the rolling direction is Dave. In this case, average shape ratio: Cave> 2, and maximum length in rolling direction: Dave ≦ 150 mm.
Here, the average shape ratio: Cave> 2 is because when Cave is 2 or less, the deviation angle of crystal orientation becomes large even if Dave ≦ 150 mm.

加熱速度を制御する温度範囲は、少なくとも800℃である。800℃未満では加熱速度を制御する効果が十分でない。また、加熱速度の下限は50℃/secとする。これより遅くすると良好な磁束密度が得られず、かつ、二次再結晶不良が生じ易くなる。   The temperature range that controls the heating rate is at least 800 ° C. If it is less than 800 degreeC, the effect which controls a heating rate is not enough. The lower limit of the heating rate is 50 ° C./sec. If it is slower than this, a good magnetic flux density cannot be obtained, and secondary recrystallization failure tends to occur.

加熱速度は、より速いほうが磁束密度の向上効果及び二次再結晶不良部の発生が抑制されてより製造安定性が増すので好ましく、特に300℃/secを超える加熱速度が好ましい。加熱速度の上限は特に限定されるものではないが、2000℃/sec程度の加熱速度で十分である。   A higher heating rate is preferable because the effect of improving the magnetic flux density and the occurrence of secondary recrystallization failure are suppressed, and the production stability is further increased. In particular, a heating rate exceeding 300 ° C./sec is preferable. The upper limit of the heating rate is not particularly limited, but a heating rate of about 2000 ° C./sec is sufficient.

上記の加熱速度を制御する方法は特に限定するものではなく、加熱速度に応じて既存の加熱手段が適宜採用される。脱炭焼鈍の昇温過程で例えば100℃/sec以上の速度で加熱処理を行う場合は、従来の通常輻射熱を利用したラジアントチューブやエレマによる脱炭焼鈍設備の前段に、誘導加熱や通電加熱などの電気的加熱装置を組込んで実施することも可能である。   The method for controlling the heating rate is not particularly limited, and an existing heating means is appropriately employed depending on the heating rate. For example, when heat treatment is performed at a rate of 100 ° C / sec or higher in the temperature raising process of decarburization annealing, induction heating, electric heating, etc. are performed before the decarburization annealing equipment using a conventional radiant tube or elema using normal radiant heat. It is also possible to implement by incorporating the electric heating device.

以下、実施例を用いて、本発明の実施可能性及び効果についてさらに説明する。
なお、実施例に用いた条件はその確認のための一条件例であり、本発明は、この条件例に限定されるものではない。
Hereinafter, the feasibility and effects of the present invention will be further described using examples.
The conditions used in the examples are a condition example for the confirmation, and the present invention is not limited to this condition example.

(実施例1)
表1に示す成分を含み、残部は不可避的不純物とFeよりなる鋼スラブを、実験室の真空溶解炉において作製した。このスラブを1300℃及び1350℃にて1時間の焼鈍後、熱間圧延を実施した。得られた熱延板につき1100℃にて120秒間の焼鈍を行い、酸洗を施した後に冷間圧延を実施し板厚0.23mmの冷延板とした。その後、この冷延板を湿水素中850℃で150秒の脱炭焼鈍を施した。その際、脱炭焼鈍の昇温過程における800℃までの加熱速度を、表2に示すように10〜1000℃/secの範囲で変更した。
Example 1
A steel slab containing the components shown in Table 1 and the balance being inevitable impurities and Fe was produced in a laboratory vacuum melting furnace. This slab was subjected to hot rolling after annealing at 1300 ° C. and 1350 ° C. for 1 hour. The obtained hot-rolled sheet was annealed at 1100 ° C. for 120 seconds, pickled, and then cold-rolled to obtain a cold-rolled sheet having a thickness of 0.23 mm. Then, this cold-rolled sheet was subjected to decarburization annealing at 850 ° C. in wet hydrogen for 150 seconds. At that time, the heating rate up to 800 ° C. in the temperature raising process of the decarburization annealing was changed in the range of 10 to 1000 ° C./sec as shown in Table 2.

ついで、脱炭焼鈍後の鋼板にMgOを主成分とする焼鈍分離剤を水スラリーにて塗布し、750℃以上を平均昇温速度20℃/hで加熱して最高到達温度1150℃で20時間の仕上焼鈍を施した。得られた鋼板を水洗した後、単板磁気測定用サイズに剪断し、リン酸アルミニウムとコロイダルシリカを主成分とした絶縁被膜を塗布、焼付し、磁束密度B8値を測定した。その後、被膜を除去し、二次再結晶不良部の面積率を測定した。   Next, an annealing separator mainly composed of MgO is applied to the steel sheet after decarburization annealing in a water slurry, and heated at 750 ° C. or higher at an average temperature increase rate of 20 ° C./h for 20 hours at a maximum reached temperature of 1150 ° C. for 20 hours. The finish annealing was performed. The obtained steel sheet was washed with water, then sheared to a size for single-plate magnetism measurement, an insulating film mainly composed of aluminum phosphate and colloidal silica was applied and baked, and a magnetic flux density B8 value was measured. Thereafter, the coating was removed, and the area ratio of the secondary recrystallization failure portion was measured.

ここで、B8は50Hzにて800A/mの磁場を付与したときの磁束密度の値である。また、二次再結晶不良部は、粒径が2mmに満たない細かい粒の領域と定義した。以下の実施例でも同様である。   Here, B8 is a magnetic flux density value when a magnetic field of 800 A / m is applied at 50 Hz. Moreover, the secondary recrystallization defect part was defined as the area | region of a fine grain whose particle size is less than 2 mm. The same applies to the following embodiments.

評価は10試験片について行い、いずれのスラブ加熱温度においても、最高B8:B8max≧1.960Tで、かつ二次再結晶不良部の面積率:A≦1%、平均B8:B8ave≧1.950Tのものを良好と判定した。
なお、両方のスラブ加熱温度としたのは、加熱後のスラブは必ず場所によって温度の低い部分が存在するので、低めのスラブ加熱温度で必要な磁気特性を得ることができない場合には、製品コイル全長全幅にわたり安定して良好な磁気特性を得ることができないためである。
Evaluation was performed on 10 test pieces, and at any slab heating temperature, the maximum B8: B8max ≧ 1.960T, the area ratio of secondary recrystallization failure portion: A ≦ 1%, and the average B8: B8ave ≧ 1.950T. Were judged as good.
Note that both slab heating temperatures were set because the slab after heating always has a low temperature depending on the location, so if the required magnetic characteristics cannot be obtained at a lower slab heating temperature, the product coil This is because good magnetic properties cannot be obtained stably over the entire length.

結果を表2に示す。スラブ加熱温度が1300℃及び1350℃のいずれにおいても良好の判定を満たすものは、Teを含有するスラブBを用い、脱炭焼鈍の昇温過程における800℃までの加熱速度が50℃/sec以上の範囲であった。特に加熱速度が100℃/sec以上では、B8ave≧1.955T以上となりさらに良好であった。さらに、加熱速度が300℃/secを超えた範囲では、B8ave≧1.960T以上となり極めて良好であった。   The results are shown in Table 2. The slab heating temperature satisfying the good judgment at both 1300 ° C. and 1350 ° C. uses Te-containing slab B, and the heating rate up to 800 ° C. in the temperature raising process of decarburization annealing is 50 ° C./sec or more. Range. In particular, when the heating rate was 100 ° C./sec or higher, B8ave ≧ 1.955 T or higher, which was even better. Furthermore, in the range where the heating rate exceeded 300 ° C./sec, B8ave ≧ 1.960T or more, which was very good.

Figure 2009235574
Figure 2009235574

Figure 2009235574
Figure 2009235574

(実施例2)
表3に示す成分を含み、残部は不可避的不純物とFeよりなる鋼スラブを、実験室の真空溶解炉において作製した。このスラブを1350℃及び1400℃にて1時間の焼鈍後、熱間圧延を実施した。得られた熱延板につき1000℃にて100秒間の焼鈍を行い、酸洗を施した後に冷間圧延を実施して板厚1.7mmの鋼板を得た。この鋼板に1050℃にて100秒間の中間焼鈍を施した後に冷間圧延を実施し、板厚0.23mmの冷延板を得た。さらにこの冷延板を湿水素中850℃で150秒の脱炭焼鈍を施した。その際、脱炭焼鈍の昇温過程における800℃までの加熱速度を、表4に示すように10〜1000℃/secの範囲で変更した。
(Example 2)
A steel slab containing the components shown in Table 3 and the balance consisting of inevitable impurities and Fe was produced in a laboratory vacuum melting furnace. This slab was subjected to hot rolling after annealing at 1350 ° C. and 1400 ° C. for 1 hour. The obtained hot-rolled sheet was annealed at 1000 ° C. for 100 seconds, pickled, and then cold-rolled to obtain a steel sheet having a thickness of 1.7 mm. This steel sheet was subjected to an intermediate annealing at 1050 ° C. for 100 seconds and then cold-rolled to obtain a cold-rolled sheet having a thickness of 0.23 mm. Further, this cold-rolled sheet was decarburized and annealed at 850 ° C. in wet hydrogen for 150 seconds. At that time, the heating rate up to 800 ° C. in the temperature raising process of decarburization annealing was changed in the range of 10 to 1000 ° C./sec as shown in Table 4.

ついで、脱炭焼鈍後の鋼板にMgOを主成分とする焼鈍分離剤を水スラリーにて塗布し、750℃以上を平均昇温速度20℃/hで加熱して最高到達温度1150℃で20時間の仕上焼鈍を施した。得られた鋼板を水洗した後、単板磁気測定用サイズに剪断し、リン酸アルミニウムとコロイダルシリカを主成分とした絶縁被膜を塗布、焼付し、磁束密度B8値を測定した。その後、被膜を除去し、二次再結晶不良部の面積率を測定した。
測定結果を10試験片について実施例1と同様に評価した。
Next, an annealing separator mainly composed of MgO is applied to the steel sheet after decarburization annealing in a water slurry, and heated at 750 ° C. or higher at an average temperature increase rate of 20 ° C./h for 20 hours at a maximum reached temperature of 1150 ° C. for 20 hours. The finish annealing was performed. The obtained steel sheet was washed with water, then sheared to a size for single-plate magnetism measurement, an insulating film mainly composed of aluminum phosphate and colloidal silica was applied and baked, and a magnetic flux density B8 value was measured. Thereafter, the coating was removed, and the area ratio of the secondary recrystallization failure portion was measured.
The measurement results were evaluated in the same manner as in Example 1 for 10 test pieces.

結果を表4に示す。スラブ加熱温度が1350℃及び1400℃のいずれにおいても良好の判定を満たすものは、Teを含有するスラブDを用い、かつ脱炭焼鈍の昇温過程における800℃までの加熱速度が50℃/sec以上の範囲であった。特に加熱速度が100℃/sec以上では、B8ave≧1.955T以上となりさらに良好であった。さらに、加熱速度が300℃/secを超えた範囲では、B8ave≧1.960T以上となり極めて良好であった。   The results are shown in Table 4. The slab heating temperature satisfying the good judgment at both 1350 ° C. and 1400 ° C. uses the slab D containing Te, and the heating rate up to 800 ° C. in the temperature raising process of decarburization annealing is 50 ° C./sec. It was the above range. In particular, when the heating rate was 100 ° C./sec or higher, B8ave ≧ 1.955 T or higher, which was even better. Further, in the range where the heating rate exceeded 300 ° C./sec, B8ave ≧ 1.960T or more, which was very good.

Figure 2009235574
Figure 2009235574

Figure 2009235574
Figure 2009235574

(実施例3)
表5に示す成分を含み、残部は不可避的不純物とFeよりなる鋼スラブを、実験室の真空溶解炉において作製した。このスラブを1150℃にて1時間の焼鈍後、熱間圧延を実施した。得られた熱延板につき1100℃にて100秒間の焼鈍を行い、酸洗を施した後に冷間圧延を実施して板厚0.23mmの冷延板を得た。さらに、この冷延板を湿水素中800℃及び850℃で150秒の脱炭焼鈍を施した。窒化焼鈍は脱炭焼鈍後もしくは脱炭焼鈍と同時に施した。その際、脱炭焼鈍の昇温過程における800℃までの加熱速度を、表4に示すように10〜1000℃/secの範囲で変更した。
(Example 3)
A steel slab containing the components shown in Table 5 and the balance being inevitable impurities and Fe was produced in a laboratory vacuum melting furnace. This slab was annealed at 1150 ° C. for 1 hour and then hot-rolled. The obtained hot-rolled sheet was annealed at 1100 ° C. for 100 seconds, pickled, and then cold-rolled to obtain a cold-rolled sheet having a thickness of 0.23 mm. Further, this cold-rolled sheet was subjected to decarburization annealing at 800 ° C. and 850 ° C. for 150 seconds in wet hydrogen. Nitriding annealing was performed after decarburization annealing or simultaneously with decarburization annealing. At that time, the heating rate up to 800 ° C. in the temperature raising process of decarburization annealing was changed in the range of 10 to 1000 ° C./sec as shown in Table 4.

ついで、脱炭焼鈍後の鋼板にMgOを主成分とする焼鈍分離剤を水スラリーにて塗布し、750℃以上を平均昇温速度20℃/hで加熱して最高到達温度1150℃で20時間の仕上焼鈍を施した。得られた鋼板を水洗した後、単板磁気測定用サイズに剪断し、リン酸アルミニウムとコロイダルシリカを主成分とした絶縁被膜を塗布、焼付し、磁束密度B8値を測定した。その後、被膜を除去し、二次再結晶不良部の面積率を測定した。
測定結果を10試験片について実施例1と同様に評価した。
Next, an annealing separator mainly composed of MgO is applied to the steel sheet after decarburization annealing in a water slurry, and heated at 750 ° C. or higher at an average temperature increase rate of 20 ° C./h for 20 hours at a maximum reached temperature of 1150 ° C. for 20 hours. The finish annealing was performed. The obtained steel sheet was washed with water, then sheared to a size for single-plate magnetism measurement, an insulating film mainly composed of aluminum phosphate and colloidal silica was applied and baked, and a magnetic flux density B8 value was measured. Thereafter, the coating was removed, and the area ratio of the secondary recrystallization failure portion was measured.
The measurement results were evaluated in the same manner as in Example 1 for 10 test pieces.

結果を表6、7に示す。脱炭焼鈍温度が800℃及び850℃のいずれにおいても良好の判定を満たすものは、Teを含有するスラブFを用い、かつ脱炭焼鈍の昇温過程における800℃までの加熱速度が50℃/sec以上の範囲であった。特に加熱速度が100℃/sec以上では、B8ave≧1.955T以上となりさらに良好であった。さらに、加熱速度が300℃/secを超えた範囲では、B8ave≧1.960T以上となり極めて良好であった。   The results are shown in Tables 6 and 7. What satisfy | fills favorable determination in both decarburization annealing temperature of 800 degreeC and 850 degreeC uses the slab F containing Te, and the heating rate to 800 degreeC in the temperature rising process of decarburization annealing is 50 degreeC / It was in the range of sec or more. In particular, when the heating rate was 100 ° C./sec or higher, B8ave ≧ 1.955 T or higher, which was even better. Furthermore, in the range where the heating rate exceeded 300 ° C./sec, B8ave ≧ 1.960T or more, which was very good.

Figure 2009235574
Figure 2009235574

Figure 2009235574
Figure 2009235574

Figure 2009235574
Figure 2009235574

(実施例4)
表8に示す成分を含み、残部は不可避的不純物とFeよりなる鋼スラブを、実験室の真空溶解炉において作製した。このスラブを1300℃及び1350℃にて1時間の焼鈍後、熱間圧延を実施した。得られた熱延板につき1100℃にて120秒間の焼鈍を行い、酸洗を施した後に冷間圧延を実施し板厚0.23mmの冷延板とした。その後、この冷延板を湿水素中850℃で150秒の脱炭焼鈍を施した。その際、脱炭焼鈍の昇温過程における800℃までの加熱速度を、表9に示すように10〜1000℃/secの範囲で変更した。
Example 4
A steel slab containing the components shown in Table 8 with the balance being inevitable impurities and Fe was prepared in a laboratory vacuum melting furnace. This slab was subjected to hot rolling after annealing at 1300 ° C. and 1350 ° C. for 1 hour. The obtained hot-rolled sheet was annealed at 1100 ° C. for 120 seconds, pickled, and then cold-rolled to obtain a cold-rolled sheet having a thickness of 0.23 mm. Then, this cold-rolled sheet was subjected to decarburization annealing at 850 ° C. in wet hydrogen for 150 seconds. At that time, the heating rate up to 800 ° C. in the temperature raising process of the decarburization annealing was changed in the range of 10 to 1000 ° C./sec as shown in Table 9.

ついで、脱炭焼鈍後の鋼板にMgOを主成分とする焼鈍分離剤を水スラリーにて塗布し、750℃以上を平均昇温速度20℃/hで加熱して最高到達温度1150℃で20時間の仕上焼鈍を施した。得られた鋼板を水洗した後、単板磁気測定用サイズに剪断し、リン酸アルミニウムとコロイダルシリカを主成分とした絶縁被膜を塗布、焼付し、磁束密度B8値を測定した。その後、被膜を除去し、二次再結晶不良部の面積率を測定した。
評価は10試験片について行い、この実施例では、最高B8:B8max≧1.965Tで、かつ二次再結晶不良部の面積率:A≦1%、平均B8:B8ave≧1.955Tのものを◎とし、いずれのスラブ加熱温度においても◎の場合をさらに良好と判定した。
Next, an annealing separator mainly composed of MgO is applied to the steel sheet after decarburization annealing in a water slurry, and heated at 750 ° C. or higher at an average temperature increase rate of 20 ° C./h for 20 hours at a maximum reached temperature of 1150 ° C. for 20 hours. The finish annealing was performed. The obtained steel sheet was washed with water, then sheared to a size for single-plate magnetism measurement, an insulating film mainly composed of aluminum phosphate and colloidal silica was applied and baked, and a magnetic flux density B8 value was measured. Thereafter, the coating was removed, and the area ratio of the secondary recrystallization failure portion was measured.
Evaluation was performed on 10 test pieces. In this example, the maximum B8: B8max ≧ 1.965T, the area ratio of secondary recrystallization failure portion: A ≦ 1%, and the average B8: B8ave ≧ 1.955T. The case of ◎ was determined to be even better at any slab heating temperature.

結果を表9に示す。TeおよびBiを含有するスラブHを用いた場合には、Teのみを含有するスラブGを用いた場合より、いずれの加熱速度においても磁束密度が向上していた。また、スラブ加熱温度が1300℃及び1350℃のいずれにおいてもさらに良好の判定を満たすものは、Teのみを含有するスラブGを用いた場合では、加熱速度が300℃/secを超える範囲であったが、TeおよびBiを含有するスラブHを用いた場合には、加熱速度が50℃/sec以上の範囲であった。   The results are shown in Table 9. When the slab H containing Te and Bi was used, the magnetic flux density was improved at any heating rate than when the slab G containing only Te was used. Moreover, what satisfy | filled the further favorable determination in any of slab heating temperature 1300 degreeC and 1350 degreeC was the range where a heating rate exceeded 300 degreeC / sec in the case of using slab G containing only Te. However, when the slab H containing Te and Bi was used, the heating rate was in the range of 50 ° C./sec or more.

Figure 2009235574
Figure 2009235574

Figure 2009235574
Figure 2009235574

(実施例5)
表10に示す成分を含み、残部は不可避的不純物とFeよりなる鋼スラブを、実験室の真空溶解炉において作製した。このスラブを1350℃にて1時間の焼鈍後、熱間圧延を実施した。得られた熱延板につき1100℃にて120秒間の焼鈍を行い、酸洗を施した後に冷間圧延を実施し板厚0.23mmの冷延板とした。その後、この冷延板を湿水素中850℃で150秒の脱炭焼鈍を施した。その際、脱炭焼鈍の昇温過程における800℃までの加熱速度を、表11に示すように10〜1000℃/secの範囲で変更した。
(Example 5)
A steel slab containing the components shown in Table 10 and the balance being inevitable impurities and Fe was produced in a laboratory vacuum melting furnace. The slab was annealed at 1350 ° C. for 1 hour and then hot-rolled. The obtained hot-rolled sheet was annealed at 1100 ° C. for 120 seconds, pickled, and then cold-rolled to obtain a cold-rolled sheet having a thickness of 0.23 mm. Then, this cold-rolled sheet was subjected to decarburization annealing at 850 ° C. in wet hydrogen for 150 seconds. At that time, the heating rate up to 800 ° C. in the temperature raising process of decarburization annealing was changed in the range of 10 to 1000 ° C./sec as shown in Table 11.

ついで、脱炭焼鈍後の鋼板にMgOを主成分とする焼鈍分離剤を水スラリーにて塗布し、コイルセット付与を目的として曲率半径500mmの曲率を付与した後、750℃以上を平均昇温速度20℃/hで加熱して最高到達温度1150℃で20時間の仕上焼鈍を施した。得られた鋼板を水洗した後、単板磁気測定用サイズに剪断し、リン酸アルミニウムとコロイダルシリカを主成分とした絶縁被膜を塗布、焼付し、磁束密度B8値を測定した。その後、被膜を除去し、二次再結晶不良部の面積率を測定した。また、鋼板マクロ粒の形状について、圧延方向長さと板幅方向長さを測定し、形状比C={(圧延方向長さ)/(板幅方向長さ)}の平均値Caveおよび圧延方向長さDの平均値をDaveを測定した。
評価は10試験片について行い、最高B8:B8max≧1.960Tで、かつ二次再結晶不良部の面積率:A≦1%、平均B8:B8ave≧1.950Tであり、形状比平均:Cave>2かつ圧延方向最大長さ平均:Dave≦150mmのものを良好と判定し、Dave≦100mmのものをさらに良好と判定した。
Next, an annealing separator containing MgO as a main component is applied to the steel sheet after decarburization annealing with a water slurry, and a curvature with a radius of curvature of 500 mm is imparted for the purpose of providing a coil set, and then an average heating rate of 750 ° C. or higher. Heat annealing was performed at 20 ° C./h, and a final annealing for 20 hours was performed at a maximum temperature of 1150 ° C. The obtained steel sheet was washed with water, then sheared to a size for single-plate magnetism measurement, an insulating film mainly composed of aluminum phosphate and colloidal silica was applied and baked, and a magnetic flux density B8 value was measured. Thereafter, the coating was removed, and the area ratio of the secondary recrystallization failure portion was measured. Further, the length in the rolling direction and the length in the sheet width direction are measured for the shape of the steel plate macro grain, and the average value Cave and the length in the rolling direction of the shape ratio C = {(length in the rolling direction) / (length in the sheet width direction)} The average value of D was measured for Dave.
Evaluation was performed on 10 test pieces, the maximum B8: B8max ≧ 1.960T, the area ratio of the secondary recrystallization failure portion: A ≦ 1%, the average B8: B8ave ≧ 1.950T, and the shape ratio average: Cave > 2 and average length in the rolling direction: those having Dave ≦ 150 mm were determined to be good, and those having Dave ≦ 100 mm were determined to be even better.

結果を表11に示す。良好の判定を満たすものは、TeおよびBiを含有するスラブJを用い、かつ脱炭焼鈍の昇温過程における800℃までの加熱速度が50℃/sec以上の範囲であった。特に加熱速度が300℃/secを超える範囲では、Dave<100mmとなりさらに良好であった。   The results are shown in Table 11. What satisfy | filled favorable determination used the slab J containing Te and Bi, and the heating rate to 800 degreeC in the temperature rising process of decarburization annealing was the range of 50 degree-C / sec or more. In particular, in the range where the heating rate exceeds 300 ° C./sec, Dave <100 mm, which is even better.

Figure 2009235574
Figure 2009235574

Figure 2009235574
Figure 2009235574

本発明は、著しく磁束密度の高い方向性電磁鋼板を、工業的規模にて安定的に製造することができるので、大きな産業上の利用可能性がある。   Since the grain-oriented electrical steel sheet having a remarkably high magnetic flux density can be stably produced on an industrial scale, the present invention has a great industrial applicability.

Claims (5)

質量%で、C:0.02〜0.10%、Si:2.5〜4.5%、Mn:0.01〜0.15%、S:0.001〜0.050%、酸可溶性Al:0.01〜0.05%、N:0.002〜0.015%、Te:0.0005〜0.1000%を含有し、残部Feおよび不可避的不純物からなるスラブを、1280℃以上に加熱し、熱間圧延を施した後、熱延板焼鈍を施し、一回の冷間圧延もしくは中間焼鈍を挟む二回以上の冷間圧延を施して冷延鋼板とした後、脱炭焼鈍を施し、鋼板表面にMgOを主成分とする焼鈍分離剤を塗布してから仕上焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法において、
脱炭焼鈍する直前もしくは脱炭焼鈍の昇温過程において50℃/sec以上の加熱速度で800℃以上の温度へ加熱する処理を行うことを特徴とする著しく磁束密度が高い方向性電磁鋼板の製造方法。
In mass%, C: 0.02 to 0.10%, Si: 2.5 to 4.5%, Mn: 0.01 to 0.15%, S: 0.001 to 0.050%, acid-soluble A slab containing Al: 0.01 to 0.05%, N: 0.002 to 0.015%, Te: 0.0005 to 0.1000%, and the balance Fe and unavoidable impurities is 1280 ° C or higher. After performing hot rolling, hot-rolled sheet annealing is performed, and cold rolling steel sheet is subjected to cold rolling of two or more times with one cold rolling or intermediate annealing, followed by decarburization annealing. In the method for producing a grain-oriented electrical steel sheet comprising a series of steps of applying a finish annealing after applying an annealing separator mainly composed of MgO to the steel sheet surface,
Production of grain-oriented electrical steel sheet having a remarkably high magnetic flux density characterized by performing a treatment immediately before decarburization annealing or in a temperature raising process of decarburization annealing at a heating rate of 50 ° C / sec or higher to a temperature of 800 ° C or higher. Method.
質量%で、C:0.02〜0.10%、Si:2.5〜4.5%、Mn:0.01〜0.15%、SおよびSeを合計で:0.001〜0.050%、酸可溶性Al:0.010〜0.050%、N:0.002〜0.015%、Te:0.0005〜0.1000%を含有し、残部Feおよび不可避的不純物からなるスラブを、1280℃以上に加熱し、熱間圧延を施した後、熱延板焼鈍を施し、一回の冷間圧延もしくは中間焼鈍を挟む二回以上の冷間圧延を施して冷延鋼板とした後、脱炭焼鈍を施し、鋼板表面にMgOを主成分とする焼鈍分離剤を塗布してから仕上焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法において、
脱炭焼鈍する直前もしくは脱炭焼鈍の昇温過程において50℃/sec以上の加熱速度で800℃以上の温度へ加熱する処理を行うことを特徴とする著しく磁束密度が高い方向性電磁鋼板の製造方法。
In mass%, C: 0.02-0.10%, Si: 2.5-4.5%, Mn: 0.01-0.15%, S and Se in total: 0.001-0. A slab containing 050%, acid-soluble Al: 0.010 to 0.050%, N: 0.002 to 0.015%, Te: 0.0005 to 0.1000%, the balance being Fe and inevitable impurities The steel sheet is heated to 1280 ° C. or higher, hot-rolled, then subjected to hot-rolled sheet annealing, and cold-rolled steel sheet is obtained by performing one or more cold rolling or two or more cold-rolling sandwiches intermediate annealing. Then, in the method for producing a grain-oriented electrical steel sheet comprising a series of steps in which decarburization annealing is performed and finish annealing is performed after applying an annealing separator mainly composed of MgO to the steel sheet surface.
Production of grain-oriented electrical steel sheet having a remarkably high magnetic flux density characterized by performing a treatment immediately before decarburization annealing or in a temperature raising process of decarburization annealing at a heating rate of 50 ° C / sec or higher to a temperature of 800 ° C or higher. Method.
質量%で、C:0.02〜0.10%、Si:2.5〜4.5%、Mn:0.05〜0.50%、S単独で、あるいはSおよびSeを合計で:0.02%以下、酸可溶性Al:0.010〜0.050%、N:0.001〜0.015%、Te:0.0005〜0.1000%を含有し、残部Feおよび不可避的不純物からなるスラブを、1280℃未満で加熱し、熱間圧延を施した後、熱延板焼鈍を施し、一回の冷間圧延もしくは中間焼鈍を挟む二回以上の冷間圧延を施して冷延鋼板とした後、脱炭焼鈍および窒化焼鈍を施し、鋼板表面にMgOを主成分とする焼鈍分離剤を塗布してから仕上焼鈍を施す一連の工程からなる方向性電磁鋼板の製造法において、
脱炭焼鈍する直前もしくは脱炭焼鈍の昇温過程において50℃/sec以上の加熱速度で800℃以上の温度へ加熱する処理を行うことを特徴とする著しく磁束密度が高い方向性電磁鋼板の製造方法。
In mass%, C: 0.02 to 0.10%, Si: 2.5 to 4.5%, Mn: 0.05 to 0.50%, S alone or S and Se in total: 0 0.02% or less, acid-soluble Al: 0.010 to 0.050%, N: 0.001 to 0.015%, Te: 0.0005 to 0.1000%, from the balance Fe and inevitable impurities The resulting slab is heated at less than 1280 ° C., hot-rolled, then subjected to hot-rolled sheet annealing, and subjected to one or more cold rollings or two or more cold rollings sandwiching the intermediate annealing to cold-rolled steel sheet After the decarburization annealing and nitridation annealing, in the manufacturing method of the grain-oriented electrical steel sheet consisting of a series of steps of applying a finishing annealing after applying an annealing separator mainly composed of MgO to the steel sheet surface,
Production of grain-oriented electrical steel sheet having a remarkably high magnetic flux density characterized by performing a treatment immediately before decarburization annealing or in a temperature raising process of decarburization annealing at a heating rate of 50 ° C / sec or higher to a temperature of 800 ° C or higher. Method.
前記スラブが、さらにBi:0.0005〜0.1000%を含有することを特徴とする請求項1〜3のいずれかに記載の著しく磁束密度が高い方向性電磁鋼板の製造方法。   The said slab contains Bi: 0.0005 to 0.1000% further, The manufacturing method of the grain-oriented electrical steel sheet with remarkably high magnetic flux density in any one of Claims 1-3 characterized by the above-mentioned. 請求項1〜4のいずれかに記載の方向性電磁鋼板の製造方法によって製造された方向性電磁鋼板であって、製品板における鋼板結晶粒の形状が、形状比C={(圧延方向長さ)/(板幅方向長さ)}の平均値をCaveとするとCave>2であり、かつ圧延方向長さDの平均値をDaveとするとDave≦150mmであることを特徴とする著しく磁束密度が高い方向性電磁鋼板。   A grain-oriented electrical steel sheet produced by the method for producing a grain-oriented electrical steel sheet according to any one of claims 1 to 4, wherein the shape of the steel sheet crystal grains in the product sheet is a shape ratio C = {(length in the rolling direction). ) / (Length in the plate width direction)} is Cave> 2 where Cave is the average value, and Dave ≦ 150 mm where the average value in the rolling direction length D is Dave. Highly oriented electrical steel sheet.
JP2009052396A 2008-03-05 2009-03-05 Method for producing grain-oriented electrical steel sheet with extremely high magnetic flux density Active JP5439866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009052396A JP5439866B2 (en) 2008-03-05 2009-03-05 Method for producing grain-oriented electrical steel sheet with extremely high magnetic flux density

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008054730 2008-03-05
JP2008054730 2008-03-05
JP2009052396A JP5439866B2 (en) 2008-03-05 2009-03-05 Method for producing grain-oriented electrical steel sheet with extremely high magnetic flux density

Publications (2)

Publication Number Publication Date
JP2009235574A true JP2009235574A (en) 2009-10-15
JP5439866B2 JP5439866B2 (en) 2014-03-12

Family

ID=41249872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009052396A Active JP5439866B2 (en) 2008-03-05 2009-03-05 Method for producing grain-oriented electrical steel sheet with extremely high magnetic flux density

Country Status (1)

Country Link
JP (1) JP5439866B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110217A1 (en) * 2009-03-23 2010-09-30 新日本製鐵株式会社 Process for producing grain-oriented magnetic steel sheet, grain-oriented magnetic steel sheet for wound core, and wound core
WO2011115120A1 (en) 2010-03-17 2011-09-22 新日本製鐵株式会社 Method for producing directional electromagnetic steel sheet
JP2011208196A (en) * 2010-03-29 2011-10-20 Nippon Steel Corp Method for manufacturing grain-oriented electromagnetic steel sheet having considerably low iron loss
JP2012188733A (en) * 2011-02-24 2012-10-04 Jfe Steel Corp Manufacturing method for grain-oriented electrical steel sheet
JP2014167147A (en) * 2013-02-28 2014-09-11 Jfe Steel Corp Method for producing grain-oriented electromagnetic steel sheets
CN104838028A (en) * 2012-12-12 2015-08-12 杰富意钢铁株式会社 Oriented electromagnetic steel sheet
WO2017057487A1 (en) * 2015-09-28 2017-04-06 新日鐵住金株式会社 Grain-oriented electromagnetic steel sheet and hot-rolled steel sheet for grain-oriented electromagnetic steel sheet
JP2017222898A (en) * 2016-06-14 2017-12-21 新日鐵住金株式会社 Production method of grain oriented magnetic steel sheet
JP2018505961A (en) * 2014-12-15 2018-03-01 ポスコPosco Oriented electrical steel sheet and manufacturing method thereof
JP2018070974A (en) * 2016-11-01 2018-05-10 Jfeスチール株式会社 Production method for grain-oriented electromagnetic steel sheet
JP2019178377A (en) * 2018-03-30 2019-10-17 日本製鉄株式会社 Manufacturing method of oriented electromagnetic steel sheet
JP2019178378A (en) * 2018-03-30 2019-10-17 日本製鉄株式会社 Manufacturing method of oriented electromagnetic steel sheet
JP2020084303A (en) * 2018-11-30 2020-06-04 Jfeスチール株式会社 Production process of grain-oriented electromagnetic steel sheet
WO2020145319A1 (en) * 2019-01-08 2020-07-16 日本製鉄株式会社 Method for manufacturing oriented electromagnetic steel sheet, and oriented electromagnetic steel sheet
JP2020169368A (en) * 2019-04-05 2020-10-15 日本製鉄株式会社 Method for manufacturing grain oriented electrical steel sheet
JP2020169366A (en) * 2019-04-05 2020-10-15 日本製鉄株式会社 Method for manufacturing grain oriented electrical steel sheet
JP2020169367A (en) * 2019-04-05 2020-10-15 日本製鉄株式会社 Method for manufacturing grain oriented electrical steel sheet
JP7477762B2 (en) 2020-06-24 2024-05-02 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556412A (en) * 1978-06-26 1980-01-17 Kawasaki Steel Corp Manufacture of one-way type electromagnetic steel sheet with extremely high magnetic flux density
JPH07113120A (en) * 1993-10-13 1995-05-02 Nippon Steel Corp Production of grain oriented silicon steel sheet reduced in iron loss and having high magnetic flux density
JP2003003215A (en) * 2001-04-16 2003-01-08 Nippon Steel Corp Method for producing grain-oriented silicon steel sheet having high magnetic flux density
WO2006126660A1 (en) * 2005-05-23 2006-11-30 Nippon Steel Corporation Grain oriented electromagnetic steel sheet having excellent film adhesion and process for producing the same
JP2008261013A (en) * 2007-04-12 2008-10-30 Nippon Steel Corp Method of producing grain-oriented magnetic steel sheet with markedly high magnetic flux density

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556412A (en) * 1978-06-26 1980-01-17 Kawasaki Steel Corp Manufacture of one-way type electromagnetic steel sheet with extremely high magnetic flux density
JPH07113120A (en) * 1993-10-13 1995-05-02 Nippon Steel Corp Production of grain oriented silicon steel sheet reduced in iron loss and having high magnetic flux density
JP2003003215A (en) * 2001-04-16 2003-01-08 Nippon Steel Corp Method for producing grain-oriented silicon steel sheet having high magnetic flux density
WO2006126660A1 (en) * 2005-05-23 2006-11-30 Nippon Steel Corporation Grain oriented electromagnetic steel sheet having excellent film adhesion and process for producing the same
JP2008261013A (en) * 2007-04-12 2008-10-30 Nippon Steel Corp Method of producing grain-oriented magnetic steel sheet with markedly high magnetic flux density

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110217A1 (en) * 2009-03-23 2010-09-30 新日本製鐵株式会社 Process for producing grain-oriented magnetic steel sheet, grain-oriented magnetic steel sheet for wound core, and wound core
CN104087823A (en) * 2009-03-23 2014-10-08 新日铁住金株式会社 Grain oriented electrical steel sheet for wound core and wound core
US9273371B2 (en) 2010-03-17 2016-03-01 Nippon Steel & Sumitomo Metal Corporation Manufacturing method of grain-oriented electrical steel sheet
WO2011115120A1 (en) 2010-03-17 2011-09-22 新日本製鐵株式会社 Method for producing directional electromagnetic steel sheet
JP2011208196A (en) * 2010-03-29 2011-10-20 Nippon Steel Corp Method for manufacturing grain-oriented electromagnetic steel sheet having considerably low iron loss
JP2012188733A (en) * 2011-02-24 2012-10-04 Jfe Steel Corp Manufacturing method for grain-oriented electrical steel sheet
US10643770B2 (en) 2012-12-12 2020-05-05 Jfe Steel Corporation Grain-oriented electrical steel sheet
CN104838028A (en) * 2012-12-12 2015-08-12 杰富意钢铁株式会社 Oriented electromagnetic steel sheet
JP2014167147A (en) * 2013-02-28 2014-09-11 Jfe Steel Corp Method for producing grain-oriented electromagnetic steel sheets
JP2018505961A (en) * 2014-12-15 2018-03-01 ポスコPosco Oriented electrical steel sheet and manufacturing method thereof
US10760141B2 (en) 2014-12-15 2020-09-01 Posco Grain-oriented electrical steel sheet and manufacturing method of grain-oriented electrical steel sheet
JPWO2017057487A1 (en) * 2015-09-28 2018-08-09 新日鐵住金株式会社 Oriented electrical steel sheet and hot rolled steel sheet for grain oriented electrical steel sheet
WO2017057487A1 (en) * 2015-09-28 2017-04-06 新日鐵住金株式会社 Grain-oriented electromagnetic steel sheet and hot-rolled steel sheet for grain-oriented electromagnetic steel sheet
US11680302B2 (en) 2015-09-28 2023-06-20 Nippon Steel Corporation Grain-oriented electrical steel sheet and hot-rolled steel sheet for grain-oriented electrical steel sheet
JP2017222898A (en) * 2016-06-14 2017-12-21 新日鐵住金株式会社 Production method of grain oriented magnetic steel sheet
JP2018070974A (en) * 2016-11-01 2018-05-10 Jfeスチール株式会社 Production method for grain-oriented electromagnetic steel sheet
JP2019178377A (en) * 2018-03-30 2019-10-17 日本製鉄株式会社 Manufacturing method of oriented electromagnetic steel sheet
JP2019178378A (en) * 2018-03-30 2019-10-17 日本製鉄株式会社 Manufacturing method of oriented electromagnetic steel sheet
JP7159594B2 (en) 2018-03-30 2022-10-25 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet
JP7214974B2 (en) 2018-03-30 2023-01-31 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet
JP2020084303A (en) * 2018-11-30 2020-06-04 Jfeスチール株式会社 Production process of grain-oriented electromagnetic steel sheet
JPWO2020145319A1 (en) * 2019-01-08 2021-02-18 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
KR20210096236A (en) * 2019-01-08 2021-08-04 닛폰세이테츠 가부시키가이샤 Method for manufacturing grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
RU2771131C1 (en) * 2019-01-08 2022-04-26 Ниппон Стил Корпорейшн Method for producing electrical steel sheet with oriented grain structure and electrical steel sheet with oriented grain structure
KR102493707B1 (en) 2019-01-08 2023-02-06 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet manufacturing method and grain-oriented electrical steel sheet
WO2020145319A1 (en) * 2019-01-08 2020-07-16 日本製鉄株式会社 Method for manufacturing oriented electromagnetic steel sheet, and oriented electromagnetic steel sheet
JP2020169367A (en) * 2019-04-05 2020-10-15 日本製鉄株式会社 Method for manufacturing grain oriented electrical steel sheet
JP2020169366A (en) * 2019-04-05 2020-10-15 日本製鉄株式会社 Method for manufacturing grain oriented electrical steel sheet
JP2020169368A (en) * 2019-04-05 2020-10-15 日本製鉄株式会社 Method for manufacturing grain oriented electrical steel sheet
JP7284393B2 (en) 2019-04-05 2023-05-31 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet
JP7284392B2 (en) 2019-04-05 2023-05-31 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet
JP7284391B2 (en) 2019-04-05 2023-05-31 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet
JP7477762B2 (en) 2020-06-24 2024-05-02 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP5439866B2 (en) 2014-03-12

Similar Documents

Publication Publication Date Title
JP5439866B2 (en) Method for producing grain-oriented electrical steel sheet with extremely high magnetic flux density
JP6844125B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP5031934B2 (en) Method for producing grain-oriented electrical steel sheet
JP4746716B2 (en) Method for producing grain-oriented electrical steel sheet, grain-oriented electrical steel sheet for wound iron core, and wound iron core
KR101389248B1 (en) Manufacturing method for grain-oriented electromagnetic steel sheet
WO2014013615A1 (en) Process for producing grain-oriented electrical steel sheet
JP4943560B2 (en) Method for producing grain-oriented electrical steel sheet
KR101683693B1 (en) Method for producing grain-oriented electrical steel sheet
WO2018021332A1 (en) Hot-rolled steel sheet for grain-oriented magnetic steel sheet and production method therefor, and production method for grain-oriented magnetic steel sheet
KR20190058542A (en) Directional electric steel sheet and manufacturing method thereof
JP5526609B2 (en) Method for producing grain-oriented electrical steel sheet with good magnetic flux density
JP6344263B2 (en) Method for producing grain-oriented electrical steel sheet
JP4608562B2 (en) Method for producing grain-oriented electrical steel sheet with extremely high magnetic flux density
JP4608514B2 (en) Method for producing grain-oriented electrical steel sheet with extremely high magnetic flux density
JP5600991B2 (en) Method for producing grain-oriented electrical steel sheet
JP6056675B2 (en) Method for producing grain-oriented electrical steel sheet
JP7053848B2 (en) Electrical steel sheet and its manufacturing method
JP5712652B2 (en) Method for producing grain-oriented electrical steel sheet
JP5712626B2 (en) Method for producing grain-oriented electrical steel sheet
JP2008261022A (en) Grain oriented electrical decarburized annealed steel sheet, and method for producing the same
JP6863310B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2008156693A (en) Method for manufacturing grain-oriented electromagnetic steel sheet excellent in magnetic characteristic having good film
KR20230159874A (en) Manufacturing method of grain-oriented electrical steel sheet
JP2023508294A (en) Non-oriented electrical steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131202

R151 Written notification of patent or utility model registration

Ref document number: 5439866

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350