JP2008261022A - Grain oriented electrical decarburized annealed steel sheet, and method for producing the same - Google Patents

Grain oriented electrical decarburized annealed steel sheet, and method for producing the same Download PDF

Info

Publication number
JP2008261022A
JP2008261022A JP2007105534A JP2007105534A JP2008261022A JP 2008261022 A JP2008261022 A JP 2008261022A JP 2007105534 A JP2007105534 A JP 2007105534A JP 2007105534 A JP2007105534 A JP 2007105534A JP 2008261022 A JP2008261022 A JP 2008261022A
Authority
JP
Japan
Prior art keywords
annealing
decarburized
steel sheet
sheet
grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007105534A
Other languages
Japanese (ja)
Inventor
Kenichi Murakami
健一 村上
Hodaka Honma
穂高 本間
Norisato Morishige
宣郷 森重
Hidekazu Nanba
英一 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007105534A priority Critical patent/JP2008261022A/en
Publication of JP2008261022A publication Critical patent/JP2008261022A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carburized annealed sheet capable of stably producing a product sheet on an industrial scale and a method for producing the same, regarding a method for producing a grain oriented electrical steel sheet used as the material for the iron core of an electrical component. <P>SOLUTION: In the carburized annealed sheet, provided that the number density and average grain diameter of the crystal grains in the ä110}<001> orientation are denoted as N and D, respectively, and the number density and average grain diameter of the crystal grains dispersed from the grains in the ä110}<001> are defined as n and d, 8×N×D<SP>3</SP>>n×d<SP>3</SP>is satisfied. The draft in the final cold rolling is controlled to 85 to 93%, and heating speed at 600 to 800°C in carburizing annealing is controlled to ≥80°C/s. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電気機器鉄心材料として使用される方向性電磁鋼板の製造方法に関し、工業的規模にて安定的に良好な製品板の製造を可能ならしめる脱炭焼鈍板およびその製造方法に関するものである。   The present invention relates to a method of manufacturing a grain-oriented electrical steel sheet used as an electrical equipment core material, and relates to a decarburized and annealed plate that enables stable production of a good product plate on an industrial scale and a method of manufacturing the same. is there.

方向性電磁鋼板は、Siを2〜4%程度含有し、製品の結晶粒の方位を{110}<001>方位(ゴス方位粒)に高度に集積させた鋼板である、その磁気特性として鉄損が低い(磁束密度1.7T,周波数50Hzのエネルギー損失W17/50で代表される)ことが要求される。特に、最近は省エネルギーの見地から電力損失低減の要求が高まっており方向性電磁鋼板においてはより一層の鉄損低減が望まれている。   The grain-oriented electrical steel sheet is a steel sheet containing about 2 to 4% Si and highly accumulating the crystal grain orientation of the product in the {110} <001> orientation (goth orientation grain). Low loss (represented by energy loss W17 / 50 with magnetic flux density 1.7T and frequency 50Hz) is required. In particular, recently, there is an increasing demand for reducing power loss from the viewpoint of energy saving, and further reduction of iron loss is desired in grain oriented electrical steel sheets.

方向性電磁鋼板の鉄損低減に関しては種々の技術が開発されている。例えば、中間工程の仕上焼鈍中の窒素分圧を制御する技術が特許文献1に開示されている。さらに、同じく中間工程である脱炭焼鈍板の集合組織を制御し製品板結晶粒の結晶方位を向上させる技術が特許文献2に開示されている。   Various techniques have been developed for reducing the iron loss of grain-oriented electrical steel sheets. For example, Patent Document 1 discloses a technique for controlling the nitrogen partial pressure during finish annealing in an intermediate process. Further, Patent Document 2 discloses a technique for improving the crystal orientation of the product plate crystal grains by controlling the texture of the decarburized annealing plate, which is also an intermediate process.

しかしながら、これらの技術を用いることで実験室内で作製された方向性電磁鋼板の磁束密度は向上するものの、実際の製造ラインにて数トン規模で製造する場合には、コイル全長全幅にて安定的に高い磁気特性を得る必要があり、これらの技術がそのまま活用できない場合が多い。このため、良好な磁気特性と並んで安定的に結晶方位の良好な結晶粒を制御する技術が要求されている。   However, although the magnetic flux density of grain-oriented electrical steel sheets produced in the laboratory is improved by using these technologies, it is stable at the full length of the entire coil when it is manufactured on the scale of several tons on an actual production line. In particular, it is necessary to obtain high magnetic characteristics, and these techniques cannot be used as they are. For this reason, a technique for stably controlling crystal grains having good crystal orientation along with good magnetic properties is required.

特開平7-278675号公報Japanese Patent Laid-Open No. 7-278675 特開平7-268469号公報Japanese Unexamined Patent Publication No. 7-268469 特公昭40-15644号公報Japanese Patent Publication No.40-15644 特開平6-192735号公報Japanese Patent Laid-Open No. 6-19335

本発明は、電気機器鉄心材料として使用される方向性電磁鋼板の製造方法に関し、工業的規模にて安定的に良好な製品板の製造を可能ならしめる脱炭焼鈍板およびその製造方法を提供するものである。   The present invention relates to a method of manufacturing a grain-oriented electrical steel sheet used as an electrical equipment iron core material, and provides a decarburized and annealed plate that enables stable production of a good product plate on an industrial scale and a method of manufacturing the same. Is.

本発明は上記課題を解決すべくなされたもので、その要旨は次のとおりである。
(1)質量%で、Si:2.5〜4.5%、C:0.02〜0.10%以下、Al:0.010〜0.050%、N:0.003〜0.013%、Mn:0.040〜0.120%、S:0.015〜0.40%、Cu:0.010〜0.20%、Ti:0.0010〜0.0040%、残部はFe及び不可避不純物元素よりなる方向性電磁鋼板用脱炭焼鈍板であって、脱炭焼鈍板における{110}<001>方位結晶粒の個数密度、平均粒径をそれぞれN、D、{110}<001>方位粒より分散した結晶粒の個数密度、平均粒径をn、dとしたとき、(1)式を満足する良好な方向性電磁鋼板脱炭焼鈍板。
8×N×D3>n×d3 … (1)
(2)質量%で、Si:2.5〜4.5%、C:0.02〜0.10%以下、Al:0.010〜0.050%、N:0.003〜0.013%、Mn:0.040〜0.120%、S:0.015〜0.40%、Cu:0.010〜0.20%、Ti:0.0010〜0.0040%、残部はFe及び不可避不純物元素より成るスラブを1250℃以上の温度で加熱し、熱間圧延後熱延板焼鈍を施し1回または中間焼鈍を含む2回以上の冷間圧延にて最終製品板厚の冷延鋼板とした後、引き続く脱炭焼鈍後に鋼板表面にMgOを主成分とする焼鈍分離剤を塗布し二次再結晶焼鈍を施す一連の工程からなる方向性電磁鋼板において,最終冷間圧下率を85%以上93%以下とし脱炭焼鈍における600〜800℃までの加熱速度を80℃/s以上とすることを特徴とする良好な方向性電磁鋼板脱炭焼鈍板の製造方法。
(3)質量%で、Si:2.5〜4.5%、C:0.02〜0.10%以下、Al:0.010〜0.050%、N:0.003〜0.013%、Mn:0.040〜0.120%、S+0.405Se:0.005〜0.020%、Cu:0.010〜0.20%、Ti:0.0010〜0.0040%、残部はFe及び不可避不純物元素よりなる方向性電磁鋼板用脱炭焼鈍板であって、脱炭焼鈍板における{110}<001>方位結晶粒の個数密度、平均粒径をそれぞれN、D、{110}<001>方位粒より分散した結晶粒の個数密度、平均粒径をn、dとしたとき、(1)式を満足する良好な方向性電磁鋼板脱炭焼鈍板。
8×N×D3>n×d3 … (1)
(4)質量%で、Si:2.5〜4.5%、C:0.02〜0.10%以下、Al:0.010〜0.050%、N:0.003〜0.013%、Mn:0.040〜0.120%、S+0.405Se:0.005〜0.020%、Cu:0.010〜0.20%、Ti:0.0010〜0.0040%、残部はFe及び不可避不純物元素より成るスラブを1250℃以上の温度で加熱し、熱間圧延後熱延板焼鈍を施し1回または中間焼鈍を含む2回以上の冷間圧延にて最終製品板厚の冷延鋼板とした後、引き続く脱炭焼鈍後に鋼板表面にMgOを主成分とする焼鈍分離剤を塗布し二次再結晶焼鈍を施す一連の工程からなる方向性電磁鋼板において、最終冷間圧下率を85%以上とし脱炭焼鈍における600〜800℃までの加熱速度を80℃/s以上とすることを特徴とする良好な方向性電磁鋼板脱炭焼鈍板の製造方法。
The present invention has been made to solve the above problems, and the gist thereof is as follows.
(1) By mass%, Si: 2.5 to 4.5%, C: 0.02 to 0.10% or less, Al: 0.010 to 0.050%, N: 0.003 to 0.013%, Mn: 0.040 to 0.120%, S: 0.015 to 0.40%, Cu: 0.010 to 0.20%, Ti: 0.0010 to 0.0040%, the balance is a decarburized annealing plate for grain-oriented electrical steel sheets made of Fe and inevitable impurity elements, and {110} <001> oriented crystal grains in the decarburized annealing plate When the number density and average particle diameter of the crystal grains dispersed from N, D, and {110} <001> oriented grains are n and d, respectively, Directional electrical steel sheet decarburized and annealed sheet.
8 × N × D 3 > n × d 3 (1)
(2) By mass%, Si: 2.5 to 4.5%, C: 0.02 to 0.10% or less, Al: 0.010 to 0.050%, N: 0.003 to 0.013%, Mn: 0.040 to 0.120%, S: 0.015 to 0.40%, Cu: 0.010 to 0.20%, Ti: 0.0010 to 0.0040%, the remainder is a slab composed of Fe and inevitable impurity elements at a temperature of 1250 ° C or higher, and after hot rolling, hot-rolled sheet annealing is performed once or intermediate annealing. A series of two or more cold rolling including a cold rolled steel sheet with the final product thickness, followed by secondary recrystallization annealing by applying an annealing separator mainly composed of MgO to the steel sheet surface after subsequent decarburization annealing. In the grain-oriented electrical steel sheet comprising the above process, the final cold reduction rate is 85% to 93%, and the heating rate from 600 to 800 ° C in decarburization annealing is 80 ° C / s or more. A method of manufacturing a grain-oriented electrical steel sheet decarburized and annealed sheet.
(3) In mass%, Si: 2.5 to 4.5%, C: 0.02 to 0.10% or less, Al: 0.010 to 0.050%, N: 0.003 to 0.013%, Mn: 0.040 to 0.120%, S + 0.405Se: 0.005 to 0.020%, Cu: 0.010-0.20%, Ti: 0.0010-0.0040%, the balance is a decarburized annealed sheet for grain-oriented electrical steel sheets composed of Fe and inevitable impurity elements, {110} <001> in the decarburized annealed sheet The number density and average grain size of orientation crystal grains are N, D, and the number density of crystal grains dispersed from {110} <001> orientation grains and the average grain size are n and d, respectively, satisfying equation (1) Good directionality electrical steel sheet decarburized and annealed sheet.
8 × N × D 3 > n × d 3 (1)
(4) By mass%, Si: 2.5 to 4.5%, C: 0.02 to 0.10% or less, Al: 0.010 to 0.050%, N: 0.003 to 0.013%, Mn: 0.040 to 0.120%, S + 0.405Se: 0.005 to 0.020%, Cu: 0.010-0.20%, Ti: 0.0010-0.0040%, the balance is heated at a temperature of 1250 ° C or higher with a slab composed of Fe and inevitable impurity elements, and hot-rolled sheet annealing is performed after hot rolling once or Cold rolled steel sheet with the final product thickness by two or more cold rolling processes including intermediate annealing, followed by secondary recrystallization annealing by applying an annealing separator mainly composed of MgO to the steel sheet surface after subsequent decarburization annealing. In a grain-oriented electrical steel sheet consisting of a series of processes for applying a heat treatment, the final cold rolling reduction is 85% or more, and the heating rate from 600 to 800 ° C. in decarburization annealing is 80 ° C./s or more. A method of manufacturing a grain-oriented electrical steel sheet decarburized and annealed sheet.

本発明は、電気機器鉄心材料として使用される方向性電磁鋼板を工業的規模にて安定的に良好な製品板の製造を可能とする。   INDUSTRIAL APPLICABILITY The present invention enables production of a good product plate stably on an industrial scale for a grain-oriented electrical steel sheet used as an electrical equipment iron core material.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明者らは、安定的に良好な製品板の製造を可能ならしめる脱炭焼鈍板およびその製造技術を発明するため以下の実験をおこなった。実験室の真空溶解炉において、質量%で、C:0.08%、Si:3.2%、Mn:0.09%、Cu:0.05%、Al:0.03%、N:0.009%、S:0.029%、Ti:0.0020%、残部はFeおよび不可避的不純物からなる鋼塊を作製し、1350℃にて1時間の焼鈍後、熱延を実施し2.3mm厚の熱延板を作製した。この熱延板を1140℃×120秒間の焼鈍を行い、酸洗を施した後冷間圧延を実施し板厚0.23mmとした。さらに、この冷延板を湿水素中で種々の加熱速度にて850℃ 120秒間の脱炭焼鈍を実施し、MgOを主成分とする焼鈍分離剤を水スラリーにて塗布を実施した。このようにして得られた鋼板を積層させた後、水素窒素混合雰囲気にて20℃/hの加熱速度で1200℃まで昇温し、さらに水素中で20時間の焼鈍を実施した。次いで、この鋼板を水洗後、単板磁気測定用サイズに剪断し、リン酸アルミニウムとコロイダルシリカを主成分とした絶縁膜を塗布、焼付し、磁束密度B8(50Hzにて800A/mの磁場を付与したときの磁束密度)を評価した。   The present inventors conducted the following experiment in order to invent a decarburized and annealed plate that enables stable production of a good product plate and its manufacturing technology. In a laboratory vacuum melting furnace, by mass, C: 0.08%, Si: 3.2%, Mn: 0.09%, Cu: 0.05%, Al: 0.03%, N: 0.009%, S: 0.029%, Ti: 0.0020 A steel ingot consisting of Fe and the balance of Fe and inevitable impurities was prepared, and after annealing at 1350 ° C. for 1 hour, hot rolling was performed to produce a hot-rolled sheet having a thickness of 2.3 mm. This hot-rolled sheet was annealed at 1140 ° C. for 120 seconds, pickled, and then cold-rolled to a sheet thickness of 0.23 mm. Further, this cold-rolled sheet was subjected to decarburization annealing at 850 ° C. for 120 seconds in wet hydrogen at various heating rates, and an annealing separator mainly composed of MgO was applied in a water slurry. After laminating the steel plates thus obtained, the temperature was raised to 1200 ° C. at a heating rate of 20 ° C./h in a hydrogen / nitrogen mixed atmosphere, and annealing was further performed in hydrogen for 20 hours. Next, after washing this steel plate with water, it was sheared to the size for single-plate magnetic measurement, and an insulating film mainly composed of aluminum phosphate and colloidal silica was applied and baked, and a magnetic flux density B8 (800 A / m magnetic field at 50 Hz) was applied. The magnetic flux density when applied) was evaluated.

ここで脱炭焼鈍における昇温速度は、通電加熱法を用い600〜800℃の温度範囲を20〜500℃/sの各昇温速度で調整した。さらに、この脱炭焼鈍板について、EBSD(electron back-scattering diffraction pattern)装置を用いた方位マッピングを実施し、板面に対し<110>方向を有する結晶粒(ND//<110>粒あるいは{110}面粒)を尤度5度でピックアップした。このときの方位マッピングは、脱炭板の1/10厚さのND面を2μmの測定点間隔にて1mm2の視野で20視野づつ採取した。このときピックアップした{110}面粒は1000個以上1500個未満の範囲であった。さらに、これらの結晶粒のうち、良好な製品板の粗大粒方位であるGoss方位(ミラー指数で{110}<001>)から5度以内の範囲に存在する{110}<001>方位結晶粒の個数及び平均結晶粒径、及びGoss方位から20〜25度の範囲に存在する粒(以降D-Goss=disperse Gossと表記:{110}<001>方位結晶粒より分散した結晶粒)の個数及び平均結晶粒径を導出した。D-Goss方位粒を選定した理由は、D-Goss粒はGoss粒に次いで粗大粒となり易いものの、その場合磁気特性の劣化を引き起こすからである。平均粒径の導出方法は、方位マッピングを実施した際のその結晶粒における測定ポイントの数から求めた。各結晶粒の測定ポイントの数は市販の解析ソフト(例えば株式会社TSLソリューションズ製)を用いれば容易に得ることができる。   Here, the temperature increase rate in the decarburization annealing was adjusted at a temperature increase rate of 20 to 500 ° C./s in a temperature range of 600 to 800 ° C. using an electric heating method. Furthermore, orientation mapping using an EBSD (electron back-scattering diffraction pattern) apparatus was performed on this decarburized annealed plate, and crystal grains (ND // <110> grains or { 110} grains) were picked up with a likelihood of 5 degrees. At this time, the orientation mapping was performed by collecting 1/10 thickness ND surface of the decarburized plate in 20 fields with a 1 mm2 field at a measurement point interval of 2 μm. The number of {110} face grains picked up at this time was in the range of 1000 to less than 1500. Furthermore, among these crystal grains, {110} <001> orientation crystal grains existing within 5 degrees from the Goss orientation (Miller index {110} <001>) which is a coarse grain orientation of a good product plate Number of grains, average grain size, and number of grains in the range of 20-25 degrees from Goss orientation (hereinafter referred to as D-Goss = disperse Goss: grains dispersed from {110} <001> orientation grains) And the average grain size was derived. The reason for selecting D-Goss oriented grains is that D-Goss grains tend to become coarse grains next to Goss grains, but in that case, the magnetic properties are deteriorated. The method for deriving the average grain size was obtained from the number of measurement points in the crystal grains when orientation mapping was performed. The number of measurement points of each crystal grain can be easily obtained by using commercially available analysis software (for example, manufactured by TSL Solutions).

表1に脱炭焼鈍板におけるGoss及びD-Goss粒の解析結果及び製品板のB8評価結果を示す。加熱速度増加に伴い、Goss粒の数Nは増加し粒径Dはやや増加した。一方、D-Goss粒の数n及び粒径dはほぼ一定であるものの、それらはともにGoss粒よりも大きかった。B8は加熱速度80℃/s以上で1.90T以上となり良好であった。   Table 1 shows the analysis results of Goss and D-Goss grains in the decarburized annealed plate and the B8 evaluation result of the product plate. As the heating rate increased, the number N of Goss grains increased and the grain size D increased slightly. On the other hand, although the number n and the particle size d of the D-Goss grains were almost constant, they were both larger than the Goss grains. B8 was good at 1.90T or higher at a heating rate of 80 ° C / s or higher.

Figure 2008261022
Figure 2008261022

脱炭板一次再結晶集合組織の解析において、従来の測定手法であるX線ポールフィギュアからの解析では任意方位の結晶粒の総面積に相当する量を評価していた。しかしながら、たとえGoss粒の総面積(ND2に相当)がいかに大きくとも結晶粒径Dが小さければ、その後で粗大粒となり難い。このため、製品板にて良好な方位の粗大粒を得るためにはX線で測定されるGoss粒の総面積だけの情報では不十分であり、EBSD等を用い粒数Nおよび粒径Dを別個に測定し、Dにより大きな重み付けを加えた評価を実施する必要がある。 In the analysis of the primary recrystallization texture of the decarburized plate, the analysis from the X-ray pole figure, which is a conventional measurement method, evaluated the amount corresponding to the total area of crystal grains in any orientation. However, no matter how large the total area of Goss grains (corresponding to ND 2 ), if the crystal grain size D is small, it is difficult to become coarse grains thereafter. For this reason, in order to obtain coarse grains with good orientation on the product plate, information on the total area of Goss grains measured by X-rays is not sufficient, and the number of grains N and grain diameter D are set using EBSD or the like. It is necessary to measure separately and perform an evaluation with a greater weighting on D.

そこで、総面積に相当するパラメータND2、nd2よりもさらに粒径に大きな評価を与えたパラメータND3及びnd3を考えると、8ND3>nd3のときにB8が良好となった。この理由は、8ND3<nd3のときは本来最も粗大粒となり易いGoss方位粒の頻度または粒径がD-Goss粒のそれらよりも小さ過ぎ粗大粒とは成り得ず、粗大粒形成が不安定化したものと推察される。一方、8ND3>nd3のときはGoss粒が粗大化するに足りる頻度または粒径が確保されたため良好な方位が得られたと判断されるため8ND3>nd3と限定した。 Therefore, when considering the parameters ND 3 and nd 3 that gave a larger evaluation to the particle size than the parameters ND 2 and nd 2 corresponding to the total area, B8 was good when 8ND 3 > nd 3 . The reason for this is that when 8ND 3 <nd 3 , the frequency or grain size of Goss-oriented grains that are likely to become the most coarse grains are too small to be coarse grains, and coarse grain formation is not possible. Presumed to have stabilized. On the other hand, when 8ND 3 > nd 3 , it was judged that a good orientation was obtained because the frequency or grain size sufficient for the Goss grains to become coarse was secured, so it was limited to 8ND 3 > nd 3 .

以上の知見より、本発明者らは、Goss方位の頻度、粒径を適切に制御することにより安定的に良好な磁気特性を有する方向性電磁鋼板を製造できる脱炭焼鈍板の形態を新規に知見することにより本発明を完成させた。   Based on the above findings, the present inventors have newly developed a decarburized and annealed plate form that can stably produce a grain-oriented electrical steel sheet having good magnetic properties by appropriately controlling the frequency and particle size of Goss orientation. The present invention was completed by knowledge.

次に本発明における実地形態について以下に説明する。本発明は基本的な製造法として、田口、坂倉等によるAlNとMnSを主インヒビターとして用いる製造法(例えば特許文献3)へ適用するものである。この理由は実施例1で詳述するように、本技術はスラブ加熱から熱延にかけての鋼板の温度偏差が生じた場合においても安定的に良好な特性を得られる脱炭焼鈍板の形態を知見したものであり、必然的にスラブ加熱温度1250℃以上でAlNとMnSを完全固溶させ、その後インヒビターとして微細析出させ特性向上に利用する製造法を対象とするからである。   Next, practical forms in the present invention will be described below. The present invention is applied as a basic production method to a production method using AlN and MnS by Taguchi, Sakakura, etc. as main inhibitors (for example, Patent Document 3). The reason for this is that, as will be described in detail in Example 1, the present technology has found out the form of a decarburized and annealed sheet that can stably obtain good characteristics even when a temperature deviation of the steel sheet from slab heating to hot rolling occurs. This is because a manufacturing method that inevitably completely dissolves AlN and MnS at a slab heating temperature of 1250 ° C. or higher and then finely precipitates as an inhibitor and is used for improving the characteristics is targeted.

Siは電気抵抗を高め、鉄損を下げる上で重要な元素である。含有量が4.5%を超えると冷間圧延時に材料が割れやすくなり圧延不可能となる。一方,Si量を下げ過ぎると電気抵抗が小さくなり製品における鉄損が増加してしまうため、下限は2.5%とすることが好ましく、さらに好ましい範囲は2.8〜3.5%である。   Si is an important element for increasing electric resistance and reducing iron loss. If the content exceeds 4.5%, the material is liable to crack during cold rolling, making rolling impossible. On the other hand, if the Si amount is too low, the electrical resistance decreases and the iron loss in the product increases, so the lower limit is preferably 2.5%, and more preferably 2.8 to 3.5%.

Cの役割は種々存在するが、少な過ぎるとスラブ加熱時の結晶粒径が大きくなり過ぎ製品の鉄損が増加してしまう。また多過ぎると、中間工程である脱炭焼鈍において長時間の焼鈍を余儀なくされ生産性を低下させる。このため下限は0.02%、上限は0.10%とする。この範囲内でより適正な範囲は0.05〜0.09%である。   Although there are various roles of C, if the amount is too small, the crystal grain size at the time of slab heating becomes too large and the iron loss of the product increases. On the other hand, if the amount is too large, the decarburization annealing, which is an intermediate process, is forced to be annealed for a long time, thereby reducing productivity. For this reason, the lower limit is 0.02%, and the upper limit is 0.10%. A more suitable range within this range is 0.05 to 0.09%.

酸可溶性AlとNは結合してAlNとなりインヒビターとして機能するため必須の元素である。酸可溶性Alの範囲は0.010〜0.050%、Nの範囲は0.003〜0.013%とする。これらの下限値未満ではAlNのインヒビターとしての機能が弱過ぎ二次再結晶を生じず、上限値を超えると二次再結晶温度が高くなり過ぎ二次再結晶不良を生じてしまう。この範囲でより適正な量は、酸可溶性Alは0.020〜0.035%、Nは0.006〜0.010%である。   Acid-soluble Al and N are essential elements because they combine to form AlN and function as an inhibitor. The range of acid-soluble Al is 0.010 to 0.050%, and the range of N is 0.003 to 0.013%. Below these lower limits, the function of AlN as an inhibitor is too weak to cause secondary recrystallization, and when the upper limit is exceeded, the secondary recrystallization temperature becomes too high and secondary recrystallization failure occurs. More appropriate amounts in this range are 0.020-0.035% for acid-soluble Al and 0.006-0.010% for N.

Mn及びSも結合しMnSとなりインヒビターとして機能するため必須の元素である。Mnの範囲は0.040〜0.120%であり、Sの範囲は0.015〜0.040%である。これらの下限値未満ではMnSのインヒビターとしての機能が弱過ぎ二次再結晶を生じず、上限値を超えると完全溶体化のためのスラブ加熱温度を高くあるいは焼鈍時間を長くする必要があるため操業上の負荷が大きくなる。この範囲でより適正な量は、Mnは0.060〜0.090%、Sは0.020〜0.030%である。   Mn and S also bind to MnS and function as an inhibitor, which is an essential element. The range of Mn is 0.040 to 0.120%, and the range of S is 0.015 to 0.040%. Below these lower limits, the function of MnS as an inhibitor is too weak to cause secondary recrystallization, and when the upper limit is exceeded, it is necessary to increase the slab heating temperature for complete solution formation or increase the annealing time. The upper load becomes larger. More appropriate amounts in this range are 0.060-0.090% for Mn and 0.020-0.030% for S.

MnSの代替として特許文献4に記載されている如くMnSeを使用する場合には、S+0.405Seで0.005〜0.020%の範囲とする。ここで係数0.405はSとSeの原子量比である。このときのSe量は0.010〜0.030%、S量は0.001〜0.010%の範囲とすることが好ましい。これらの下限値未満ではMnSe主体のインヒビターとしての機能が弱過ぎ二次再結晶を生じず、上限値を超えると完全溶体化のためのスラブ加熱温度を高くあるいは焼鈍時間を長くする必要があるため操業上の負荷が大きくなる。この範囲でより適正な量は、S+0.405Seで0.007〜0.012%であり、このときのSe量は0.014〜0.022%、S量は0.002〜0.005%がより好ましい。   When MnSe is used as described in Patent Document 4 as an alternative to MnS, the range is 0.005 to 0.020% with S + 0.405Se. Here, the coefficient 0.405 is the atomic weight ratio of S and Se. At this time, the Se content is preferably 0.010 to 0.030%, and the S content is preferably 0.001 to 0.010%. Below these lower limits, the function as an MnSe-based inhibitor is too weak to cause secondary recrystallization, and when the upper limit is exceeded, it is necessary to increase the slab heating temperature for complete solution formation or to increase the annealing time. The operational burden increases. A more appropriate amount within this range is 0.007 to 0.012% for S + 0.405Se, and the Se amount at this time is more preferably 0.014 to 0.022%, and the S amount is more preferably 0.002 to 0.005%.

Cuは硫化物あるいはSe化物を形成することにより、インヒビターであるMnSやMnSeを補助する役割を果たす。下限値である0.010%未満の場合、補助インヒビターの効果が得られず好ましくない。上限値の0.20%を超えると、SあるいはSeと結合するCu量が多くなり過ぎてしまい、必要最低限のMnSあるいはMnSeが確保できず特性不良の原因となる。この範囲でより適正なCu量は0.020〜0.15%である。   Cu forms a sulfide or Se compound to assist the inhibitors MnS and MnSe. When the lower limit is less than 0.010%, the effect of the auxiliary inhibitor cannot be obtained, which is not preferable. If it exceeds 0.20% of the upper limit value, the amount of Cu bonded to S or Se becomes too large, and the necessary minimum MnS or MnSe cannot be secured, causing a characteristic defect. A more appropriate amount of Cu in this range is 0.020 to 0.15%.

Tiは析出物であるTiNを形成するものの、過度に熱的安定性が高いため好ましいインヒビターとしては作用せず、製品板中に残存してしまい特性劣化を引き起こす。このため、上限値は0.0040%とする必要がある。また、過度に低いTi量の製品を製造することは原料、プロセスの観点から大きなコストアップを招くため、下限値を0.0010%とした。この範囲でより適正なTi量は0.0015〜0.0030%である。   Although Ti forms precipitates TiN, it does not act as a preferred inhibitor because of its excessively high thermal stability, and remains in the product plate, causing deterioration of properties. For this reason, the upper limit value needs to be 0.0040%. In addition, manufacturing a product with an excessively low amount of Ti causes a large cost increase from the viewpoint of raw materials and processes, so the lower limit was set to 0.0010%. A more appropriate amount of Ti in this range is 0.0015 to 0.0030%.

AlN,MnSあるいはMnSe以外のインヒビター構成元素として、Sn、Sb、Bi、B、Pb、Mo、Cr、Te、V等が存在するが、これらを添加しても構わない。特にSn、Sbは結晶粒界や界面へ濃化するため利用価値が高く、0.02〜0.15%程度添加すると特性が安定することが多い。   Sn, Sb, Bi, B, Pb, Mo, Cr, Te, V, etc. exist as inhibitor constituent elements other than AlN, MnS, or MnSe, but these may be added. In particular, Sn and Sb are highly useful because they are concentrated at the grain boundaries and interfaces, and when added in an amount of about 0.02 to 0.15%, the characteristics are often stabilized.

続いて各製造工程の各条件について述べる。   Subsequently, each condition of each manufacturing process will be described.

スラブ加熱温度に関してその下限温度を1250℃とした。前述のように本発明は、本技術はスラブ加熱から熱延にかけての鋼板の温度偏差が生じた場合においても安定的に良好な特性を得られる脱炭焼鈍板の形態を知見したものであり、必然的にスラブ加熱温度1250℃以上でAlNとMnSを完全固溶させ、その後インヒビターとして微細析出させ特性向上に利用する製造法を対象とするからである。上限は特に規定しないが1450℃以下であることが設備対策上好ましい。また、この範囲内でより好ましい温度域は1300℃以上であり、さらに言えば1330℃以上がより適正である。   The lower limit temperature of the slab heating temperature was 1250 ° C. As described above, the present invention is a knowledge of the form of the decarburized and annealed sheet that can stably obtain good characteristics even when a temperature deviation of the steel sheet from slab heating to hot rolling occurs. This is because the target is a manufacturing method in which AlN and MnS are solutely dissolved at a slab heating temperature of 1250 ° C. or more and then finely precipitated as an inhibitor and used for improving characteristics. Although the upper limit is not particularly specified, it is preferably 1450 ° C. or less for facility measures. Further, a more preferable temperature range within this range is 1300 ° C. or higher, and more preferably 1330 ° C. or higher.

上述のスラブ片は引き続く熱間圧延により熱延板となる。この熱延板板厚は後述の冷間圧延率と関連するため特に規定をするものではないが通常1.6〜3.3mmの厚さとするのが好ましい。次いで、この熱延板は直ちに、もしくは短時間焼鈍を経て冷間圧延される。ここで、短時間焼鈍は750〜1200℃の温度域で30秒〜10分間行われ、この焼鈍は製品の磁気特性を高めるために有効である。冷間圧延は、最終冷延圧下率85%以上93%以下とすれば、焼鈍を挟み2回の冷間圧延を実施しても良い。最終冷延圧下率が85%未満の場合、Goss方位は増加するものの特性が劣化し,93%を超えた場合,Goss方位の低下が著しくなり製品板にて粗大粒が形成され難くなるため好ましくない。この範囲でより好ましい圧下率は86〜92%である。また、特性向上のため必要に応じ、100〜300℃の範囲でのエイジング処理実施や当該温度範囲域でタンデム圧延を施すことでもよい。   The above-mentioned slab piece becomes a hot-rolled sheet by subsequent hot rolling. The hot-rolled sheet thickness is not particularly specified because it is related to the cold rolling rate described later, but it is usually preferable to set the thickness to 1.6 to 3.3 mm. Next, this hot-rolled sheet is cold-rolled immediately or after a short time annealing. Here, short-time annealing is performed in a temperature range of 750 to 1200 ° C. for 30 seconds to 10 minutes, and this annealing is effective for enhancing the magnetic properties of the product. In the cold rolling, if the final cold rolling reduction ratio is 85% or more and 93% or less, the cold rolling may be performed twice with annealing. If the final cold rolling reduction is less than 85%, the Goss orientation increases, but the characteristics deteriorate, and if it exceeds 93%, the Goss orientation decreases significantly, making it difficult to form coarse grains on the product plate. Absent. A more preferable rolling reduction within this range is 86 to 92%. Moreover, you may perform an aging process in the range of 100-300 degreeC, and may perform a tandem rolling in the said temperature range as needed for a characteristic improvement.

脱炭焼鈍に関しては水素窒素含有湿潤雰囲気中にて実施し、Cを20ppm以下に低減することが製品特性上必須となる。この間、鋼板内層では冷間圧延された組織が一次再結晶を生じるが、このときの組織回復から再結晶温度域、すなわち600〜800℃の温度域の昇温速度制御により、有効なGoss方位粒比率が増加し、安定的に良好な製品板の製造に必要な脱炭焼鈍板が得られる。この際の昇温速度は80℃/s以上とすることにより有効Goss方位粒が確保できるが、昇温速度100〜500℃/sの範囲がより好ましい。   Decarburization annealing is performed in a humidified atmosphere containing hydrogen and nitrogen, and it is essential for product characteristics to reduce C to 20 ppm or less. During this time, the cold-rolled structure in the inner layer of the steel sheet causes primary recrystallization, but effective Goss orientation grains are controlled by the temperature increase rate control in the recrystallization temperature range, that is, the temperature range of 600 to 800 ° C, from the recovery of the structure at this time. The ratio increases, and a decarburized and annealed plate necessary for the production of a stable and good product plate can be obtained. In this case, effective Goss orientation grains can be secured by setting the temperature rising rate to 80 ° C./s or more, but the temperature rising rate is more preferably in the range of 100 to 500 ° C./s.

この後MgOを主成分とするパウダーを塗布しコイル巻き取りを行う。次いで、このコイルにバッチ式の仕上焼鈍を実施し、その後巻き解きパウダー除去とリン酸アルミニウムとコロイダルシリカを主成分としたスラリー液を塗布、焼付を行い方向性電磁鋼板の製品を完成させることができる。   Thereafter, a powder containing MgO as a main component is applied and coiled. Next, batch-type finish annealing is performed on this coil, and then the unwinding powder removal, slurry liquid mainly composed of aluminum phosphate and colloidal silica are applied and baked to complete the product of grain-oriented electrical steel sheet. it can.

上記仕上焼鈍は、方向性電磁鋼板の製造の上で重要な良好な粗大粒を発現させる工程であり、通常は水素窒素混合雰囲気にて実施される。このうち結晶粒粗大化温度域である850〜1150℃では、5〜30℃/h程度の昇温速度とすることが好ましく、さらに引き続く1150〜1200℃の温度で20時間程度の焼鈍を実施しN、SあるいはSe等を鋼板外に放散することにより、製品板の磁気特性を良好なものとすることができる。   The finish annealing is a step of expressing good coarse grains that are important in the manufacture of grain-oriented electrical steel sheets, and is usually performed in a hydrogen-nitrogen mixed atmosphere. Among these, in the crystal grain coarsening temperature range of 850 to 1150 ° C, it is preferable to set the heating rate to about 5 to 30 ° C / h, and further, annealing is performed at a temperature of 1150 to 1200 ° C for about 20 hours. By diffusing N, S, Se or the like out of the steel plate, the magnetic properties of the product plate can be improved.

仕上焼鈍を終了したコイルは巻き解いてパウダーを除去した後、絶縁コーティング形成と鋼板フラットニングのための焼鈍を実施し、所定の幅、重量のコイルに剪断した後、製品として出荷される。   After the finish annealing, the coil is unwound to remove the powder, and then the insulating coating is formed and the steel plate is annealed for flattening, sheared into a coil having a predetermined width and weight, and then shipped as a product.

<実施例1>
実験室の真空溶解炉において、質量%で、C:0.07%、Si:3.3%、Mn:0.08%、Cu:0.08%、Al:0.03%、N:0.008%、S:0.028%、Ti:0.0025%、Sn:0.08%、残部Feおよび不可避的不純物からなる鋼塊を作製し、1320及び1360℃にて1時間加熱後、熱間圧延を実施し2.8mm厚の熱延板を作製した。この熱延板を1100℃×100秒間の焼鈍を行い、酸洗を施した後冷間圧延を実施し板厚0.27mmとした。さらに、この冷延板を湿水素中で840℃×150秒間の脱炭焼鈍を実施し、MgOを主成分とする焼鈍分離剤を水スラリーにて塗布し、種々の加熱条件で1190℃×20時間の仕上焼鈍を実施した。このようにして得られた鋼板を水洗後、単板磁気測定用サイズに剪断し、リン酸アルミニウムとコロイダルシリカを主成分とした絶縁膜を塗布、焼付し、磁束密度B8(50Hzにて800A/mの磁場を付与したときの磁束密度)を評価した。
<Example 1>
In a laboratory vacuum melting furnace, in mass%, C: 0.07%, Si: 3.3%, Mn: 0.08%, Cu: 0.08%, Al: 0.03%, N: 0.008%, S: 0.028%, Ti: 0.0025 A steel ingot composed of%, Sn: 0.08%, the remaining Fe and inevitable impurities was prepared, heated at 1320 and 1360 ° C. for 1 hour, and then hot-rolled to prepare a hot rolled sheet having a thickness of 2.8 mm. This hot-rolled sheet was annealed at 1100 ° C. for 100 seconds, pickled, and then cold-rolled to a sheet thickness of 0.27 mm. Furthermore, this cold-rolled sheet was decarburized and annealed in wet hydrogen at 840 ° C. for 150 seconds, an annealing separator mainly composed of MgO was applied as a water slurry, and 1190 ° C. × 20 under various heating conditions. Finished annealing for hours. The steel plate thus obtained was washed with water, sheared to a single-plate magnetic measurement size, coated with an insulating film mainly composed of aluminum phosphate and colloidal silica, and baked to obtain a magnetic flux density B8 (800 A / 50 Hz at 50 Hz). The magnetic flux density when a magnetic field of m was applied was evaluated.

ここで、脱炭焼鈍における昇温速度は通電加熱法を用い600〜800℃までの温度域を20〜360℃/sの範囲で調整した。また、脱炭焼鈍板は1/10厚さのND面が出るよう研磨した後、EBSD装置を用いた方位マッピングを実施し、板面に対し<110>方向を有する結晶粒を尤度5度でピックアップした。このときの方位マッピングは、脱炭板の1/10厚さのND面を2μmの測定点間隔にて1mm2の視野で10視野づつ採取した。このときピックアップした{110}面粒は500個以上700個未満の範囲であった。さらにこれらの結晶粒のうち、Goss方位(ミラー指数で{110}<001>)から5度以内の範囲に存在する粒の個数及び平均結晶粒径、及びGoss方位から20〜25度の範囲に存在するD-Goss粒の個数及び平均結晶粒径を導出した。平均粒径の導出方法は、方位マッピングを実施した際のその結晶粒における測定ポイントの数から求めた。   Here, the temperature increase rate in the decarburization annealing was adjusted in a temperature range of 600 to 800 ° C. within a range of 20 to 360 ° C./s using an electric heating method. The decarburized annealed plate is polished so that a 1 / 10-thick ND surface appears, then orientation mapping is performed using an EBSD device, and crystal grains having a <110> direction with respect to the plate surface have a likelihood of 5 degrees. I picked up at. At this time, the ND mapping of 1/10 thickness of the decarburized plate was sampled in 10 fields with a 1 mm2 field of view at a measurement point interval of 2 μm. The number of {110} face grains picked up at this time was in the range of 500 to less than 700. Further, among these crystal grains, the number of grains existing within 5 degrees from the Goss orientation (Miller index {110} <001>), the average crystal grain size, and the range from 20 to 25 degrees from the Goss orientation. The number of D-Goss grains present and the average grain size were derived. The method for deriving the average grain size was obtained from the number of measurement points in the crystal grains when orientation mapping was performed.

表2に実験条件、表3にGoss及びD-Goss粒の解析結果及び製品板のB8評価結果を示す。80℃/s以上を満足する試料C〜F、H〜Jのとき8ND3>nd3であり、このときスラブ加熱温度が低い1320℃においてもB8は1.90T以上となり良好であった。本実施例はスラブ加熱温度が実操業条件の中で多少低い側に変動したとしても、8ND3>nd3の場合安定的に良好な製品特性が得られることを意味している。 Table 2 shows the experimental conditions, and Table 3 shows the analysis results of Goss and D-Goss grains and the B8 evaluation results of the product plate. In Samples C to F and H to J that satisfy 80 ° C./s or higher, 8ND 3 > nd 3 and B8 was 1.90 T or higher even at 1320 ° C. where the slab heating temperature was low. This example means that good product characteristics can be stably obtained when 8ND 3 > nd 3 even if the slab heating temperature fluctuates somewhat in the actual operating conditions.

Figure 2008261022
Figure 2008261022

Figure 2008261022
Figure 2008261022

<実施例2>
実験室の真空溶解炉において、質量%で、C:0.09%、Si:3.1%、Mn:0.08%、Cu:0.02%、Al:0.03%、N:0.009%、S:0.025%、Ti:0.0013%、Sb:0.05%、残部Feおよび不可避的不純物からなる鋼塊を作製し、1380℃にて1時間加熱後、熱間圧延を実施し1.4〜3.8mm厚の熱延板を作製した。この熱延板を1080℃×120秒間の焼鈍を行い、酸洗を施した後冷間圧延を実施し全て板厚0.23mmとした。さらに、この冷延板を脱炭焼鈍するにあたり、600〜800℃までの温度域を250℃/sの昇温速度、かつ湿水素中で840℃×120秒間の焼鈍を実施し、MgOを主成分とする焼鈍分離剤を水スラリーにて塗布した。さらに1200℃×20時間の仕上焼鈍を実施した後、鋼板を水洗後、単板磁気測定用サイズに剪断し、リン酸アルミニウムとコロイダルシリカを主成分とした絶縁膜を塗布、焼付し、磁束密度B8(50Hzにて800A/mの磁場を付与したときの磁束密度)を評価した。EBSDによる脱炭焼鈍板解析手法は実施例1と同様に行った。
<Example 2>
In a laboratory vacuum melting furnace, by mass, C: 0.09%, Si: 3.1%, Mn: 0.08%, Cu: 0.02%, Al: 0.03%, N: 0.009%, S: 0.025%, Ti: 0.0013 A steel ingot comprising%, Sb: 0.05%, the balance Fe and inevitable impurities was prepared, heated at 1380 ° C. for 1 hour, and then hot-rolled to prepare a hot rolled sheet having a thickness of 1.4 to 3.8 mm. This hot-rolled sheet was annealed at 1080 ° C. for 120 seconds, pickled, and then cold-rolled to a thickness of 0.23 mm. Furthermore, when decarburizing and annealing this cold-rolled sheet, the temperature range from 600 to 800 ° C was increased at a rate of 250 ° C / s and annealed in wet hydrogen at 840 ° C for 120 seconds. An annealing separator as a component was applied in a water slurry. Furthermore, after finishing annealing at 1200 ° C for 20 hours, the steel sheet was washed with water, sheared to the size for single-plate magnetic measurement, and an insulating film mainly composed of aluminum phosphate and colloidal silica was applied and baked, and the magnetic flux density B8 (magnetic flux density when applying a magnetic field of 800 A / m at 50 Hz) was evaluated. The analysis method of decarburized annealing plate by EBSD was performed in the same manner as in Example 1.

表4に冷延圧下率とGoss及びD-Goss粒の解析結果及び製品板のB8評価結果の関係を示す。冷延圧下率93%以下のとき8ND3>nd3であり、B8は1.90T以上となり良好であった(請求項1)。特に冷延率85%以上のとき、B8は1.92T以上となりさらに良好であった(請求項1、2)。冷延率85%以上でB8がより良好であった理由の詳細は不明であるが、Goss以外の結晶方位が粗大粒形成の上で良好であったためと推察される。 Table 4 shows the relationship between the cold rolling reduction ratio, the analysis results of Goss and D-Goss grains, and the B8 evaluation results of the product plate. When the cold rolling reduction ratio was 93% or less, 8ND 3 > nd 3 and B8 was 1.90T or more, which was favorable (Claim 1). In particular, when the cold rolling rate was 85% or more, B8 was 1.92 T or more, which was even better (Claims 1 and 2). Details of the reason why B8 was better at a cold rolling rate of 85% or more are unclear, but it is presumed that the crystal orientation other than Goss was good for coarse grain formation.

Figure 2008261022
Figure 2008261022

<実施例3>
実験室の真空溶解炉において、質量%で、C:0.08%、Si:3.4%、Mn:0.08%、Cu:0.09%、Al:0.03%、N:0.008%、S:0.003%、Se:0.003%、Ti:0.0022%、Sb:0.05%、残部Feおよび不可避的不純物からなる鋼塊を作製し、1410℃にて1時間加熱後、熱間圧延を実施し2.3mm厚の熱延板を作製した。この熱延板を1000℃×60秒間の焼鈍を実施後、冷間圧延により1.6mm厚とし、さらに1050℃×120秒間の焼鈍を行い、酸洗を施した後冷間圧延を実施し全て板厚0.23mmとした。このとき最終冷延圧下率は86%であった。この冷延板を脱炭焼鈍するにあたり、600〜800℃までの温度域を種々の速度にて昇温し、湿水素中で850℃×120秒間の焼鈍を実施し、MgOを主成分とする焼鈍分離剤を水スラリーにて塗布した。さらに1200℃×20時間の仕上焼鈍を実施した後、鋼板を水洗後、単板磁気測定用サイズに剪断し、リン酸塩とコロイダルシリカを主成分とした絶縁膜を塗布、焼付し、磁束密度B8(50Hzにて800A/mの磁場を付与したときの磁束密度)を評価した。EBSDによる脱炭焼鈍板解析手法は実施例1と同様に行った。
<Example 3>
In the laboratory vacuum melting furnace, in mass%, C: 0.08%, Si: 3.4%, Mn: 0.08%, Cu: 0.09%, Al: 0.03%, N: 0.008%, S: 0.003%, Se: 0.003 %, Ti: 0.0022%, Sb: 0.05%, balance Fe and inevitable impurities ingot is made, heated at 1410 ° C for 1 hour, hot rolled to produce a 2.3mm thick hot rolled sheet did. This hot-rolled sheet was annealed at 1000 ° C for 60 seconds, then cold rolled to a thickness of 1.6 mm, further annealed at 1050 ° C for 120 seconds, pickled, and then cold-rolled for all sheets The thickness was 0.23 mm. At this time, the final cold rolling reduction ratio was 86%. When decarburizing and annealing the cold-rolled sheet, the temperature range from 600 to 800 ° C is raised at various speeds, and annealing is performed in wet hydrogen at 850 ° C for 120 seconds, with MgO as the main component. An annealing separator was applied in a water slurry. Further, after finishing annealing at 1200 ° C for 20 hours, after washing the steel plate with water, shearing to the size for single plate magnetic measurement, applying and baking an insulating film mainly composed of phosphate and colloidal silica, magnetic flux density B8 (magnetic flux density when applying a magnetic field of 800 A / m at 50 Hz) was evaluated. The analysis method of decarburized annealing plate by EBSD was performed in the same manner as in Example 1.

表5に昇温速度とGoss及びD-Goss粒の解析結果及び製品板のB8評価結果の関係を示す。昇温速度80℃以上のとき8ND3>nd3であり、脱炭焼鈍板の時点において仕上焼鈍後にGoss粒が安定的に粗大粒となる可能性が高かった。そして実際、仕上焼鈍後のB8は1.90T以上となり良好であった。 Table 5 shows the relationship between the heating rate, the analysis results of Goss and D-Goss grains, and the B8 evaluation results of the product plate. When the heating rate was 80 ° C or higher, 8ND 3 > nd 3 , and it was highly possible that the Goss grains became stable and coarse after finishing annealing at the time of decarburization annealing. Actually, B8 after finish annealing was 1.90 T or more, which was good.

Figure 2008261022
Figure 2008261022

Claims (4)

質量%で、Si:2.5〜4.5%、C:0.02〜0.10%以下、Al:0.010〜0.050%、N:0.003〜0.013%、Mn:0.040〜0.120%、S:0.015〜0.40%、Cu:0.010〜0.20%、Ti:0.0010〜0.0040%、残部はFe及び不可避不純物元素よりなる方向性電磁鋼板用脱炭焼鈍板であって、脱炭焼鈍板における{110}<001>方位結晶粒の個数密度、平均粒径をそれぞれN、D、{110}<001>方位粒より分散した結晶粒の個数密度、平均粒径をn、dとしたとき、(1)式を満足する良好な方向性電磁鋼板脱炭焼鈍板。
8×N×D3>n×d3 … (1)
In mass%, Si: 2.5 to 4.5%, C: 0.02 to 0.10% or less, Al: 0.010 to 0.050%, N: 0.003 to 0.013%, Mn: 0.040 to 0.120%, S: 0.015 to 0.40%, Cu: 0.010 ~ 0.20%, Ti: 0.0010 ~ 0.0040%, the balance is a decarburized annealed sheet for grain-oriented electrical steel sheets composed of Fe and inevitable impurity elements, and the number density of {110} <001> oriented grains in the decarburized annealed sheet When the average particle diameter is N, D, the number density of crystal grains dispersed from {110} <001> oriented grains, and the average particle diameter is n, d, good directional electromagnetic waves satisfying the formula (1) Steel sheet decarburized annealed plate.
8 × N × D 3 > n × d 3 (1)
質量%で、Si:2.5〜4.5%、C:0.02〜0.10%以下、Al:0.010〜0.050%、N:0.003〜0.013%、Mn:0.040〜0.120%、S:0.015〜0.40%、Cu:0.010〜0.20%、Ti:0.0010〜0.0040%、残部はFe及び不可避不純物元素より成るスラブを1250℃以上の温度で加熱し、熱間圧延後熱延板焼鈍を施し1回または中間焼鈍を含む2回以上の冷間圧延にて最終製品板厚の冷延鋼板とした後、引き続く脱炭焼鈍後に鋼板表面にMgOを主成分とする焼鈍分離剤を塗布し二次再結晶焼鈍を施す一連の工程からなる方向性電磁鋼板において,最終冷間圧下率を85%以上93%以下とし脱炭焼鈍における600〜800℃までの加熱速度を80℃/s以上とすることを特徴とする良好な方向性電磁鋼板脱炭焼鈍板の製造方法。   In mass%, Si: 2.5 to 4.5%, C: 0.02 to 0.10% or less, Al: 0.010 to 0.050%, N: 0.003 to 0.013%, Mn: 0.040 to 0.120%, S: 0.015 to 0.40%, Cu: 0.010 ~ 0.20%, Ti: 0.0010 ~ 0.0040%, the balance is Fe and inevitable impurity element slab is heated at a temperature of 1250 ° C or higher, hot-rolled sheet annealed after hot rolling, or twice including intermediate annealing After a cold rolled steel sheet with the final product thickness by cold rolling as described above, after the subsequent decarburization annealing, an annealing separator mainly composed of MgO is applied to the steel sheet surface and secondary recrystallization annealing is performed. A good directional electromagnetic steel characterized in that the final cold rolling reduction is 85% or more and 93% or less, and the heating rate from 600 to 800 ° C in decarburization annealing is 80 ° C / s or more. Manufacturing method of steel plate decarburized annealing plate. 質量%で、Si:2.5〜4.5%、C:0.02〜0.10%以下、Al:0.010〜0.050%、N:0.003〜0.013%、Mn:0.040〜0.120%、S+0.405Se:0.005〜0.020%、Cu:0.010〜0.20%、Ti:0.0010〜0.0040%、残部はFe及び不可避不純物元素よりなる方向性電磁鋼板用脱炭焼鈍板であって、脱炭焼鈍板における{110}<001>方位結晶粒の個数密度、平均粒径をそれぞれN、D、{110}<001>方位粒より分散した結晶粒の個数密度、平均粒径をn、dとしたとき、(1)式を満足する良好な方向性電磁鋼板脱炭焼鈍板。
8×N×D3>n×d3 … (1)
In mass%, Si: 2.5 to 4.5%, C: 0.02 to 0.10% or less, Al: 0.010 to 0.050%, N: 0.003 to 0.013%, Mn: 0.040 to 0.120%, S + 0.405Se: 0.005 to 0.020%, Cu: 0.010 to 0.20%, Ti: 0.0010 to 0.0040%, the balance is a decarburized annealing plate for grain-oriented electrical steel sheets made of Fe and inevitable impurity elements, and {110} <001> oriented crystal grains in the decarburized annealing plate When the number density and average particle diameter of the crystal grains dispersed from N, D, and {110} <001> oriented grains are n and d, respectively, Directional electrical steel sheet decarburized and annealed sheet.
8 × N × D 3 > n × d 3 (1)
質量%で、Si:2.5〜4.5%、C:0.02〜0.10%以下、Al:0.010〜0.050%、N:0.003〜0.013%、Mn:0.040〜0.120%、S+0.405Se:0.005〜0.020%、Cu:0.010〜0.20%、Ti:0.0010〜0.0040%、残部はFe及び不可避不純物元素より成るスラブを1250℃以上の温度で加熱し、熱間圧延後熱延板焼鈍を施し1回または中間焼鈍を含む2回以上の冷間圧延にて最終製品板厚の冷延鋼板とした後、引き続く脱炭焼鈍後に鋼板表面にMgOを主成分とする焼鈍分離剤を塗布し二次再結晶焼鈍を施す一連の工程からなる方向性電磁鋼板において、最終冷間圧下率を85%以上93%以下とし脱炭焼鈍における600〜800℃までの加熱速度を80℃/s以上とすることを特徴とする良好な方向性電磁鋼板脱炭焼鈍板の製造方法。   In mass%, Si: 2.5 to 4.5%, C: 0.02 to 0.10% or less, Al: 0.010 to 0.050%, N: 0.003 to 0.013%, Mn: 0.040 to 0.120%, S + 0.405Se: 0.005 to 0.020%, Cu: 0.010 to 0.20%, Ti: 0.0010 to 0.0040%, the remainder is a slab composed of Fe and inevitable impurity elements at a temperature of 1250 ° C or higher, and after hot rolling, hot-rolled sheet annealing is performed once or intermediate annealing. A series of two or more cold rolling including a cold rolled steel sheet with the final product thickness, followed by secondary recrystallization annealing by applying an annealing separator mainly composed of MgO to the steel sheet surface after subsequent decarburization annealing. In the grain-oriented electrical steel sheet comprising the above process, the final cold rolling reduction is 85% to 93%, and the heating rate from 600 to 800 ° C. in the decarburization annealing is 80 ° C./s or more. A method of manufacturing a grain-oriented electrical steel sheet decarburized and annealed sheet.
JP2007105534A 2007-04-13 2007-04-13 Grain oriented electrical decarburized annealed steel sheet, and method for producing the same Pending JP2008261022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007105534A JP2008261022A (en) 2007-04-13 2007-04-13 Grain oriented electrical decarburized annealed steel sheet, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007105534A JP2008261022A (en) 2007-04-13 2007-04-13 Grain oriented electrical decarburized annealed steel sheet, and method for producing the same

Publications (1)

Publication Number Publication Date
JP2008261022A true JP2008261022A (en) 2008-10-30

Family

ID=39983717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007105534A Pending JP2008261022A (en) 2007-04-13 2007-04-13 Grain oriented electrical decarburized annealed steel sheet, and method for producing the same

Country Status (1)

Country Link
JP (1) JP2008261022A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105220071A (en) * 2015-10-16 2016-01-06 宝山钢铁股份有限公司 A kind of low noise characteristic oriented silicon steel and manufacture method thereof
CN105562196A (en) * 2016-01-27 2016-05-11 宁波新大陆磁制品有限公司 Magnetic rod

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10273727A (en) * 1997-01-30 1998-10-13 Nippon Steel Corp Production of high magnetic flux density grain-oriented silicon steel sheet
JP2000199015A (en) * 1998-03-30 2000-07-18 Nippon Steel Corp Production of grain oriented silicon steel sheet excellent in magnetic property
WO2006132095A1 (en) * 2005-06-10 2006-12-14 Nippon Steel Corporation Grain-oriented magnetic steel sheet with extremely high magnetic property and process for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10273727A (en) * 1997-01-30 1998-10-13 Nippon Steel Corp Production of high magnetic flux density grain-oriented silicon steel sheet
JP2000199015A (en) * 1998-03-30 2000-07-18 Nippon Steel Corp Production of grain oriented silicon steel sheet excellent in magnetic property
WO2006132095A1 (en) * 2005-06-10 2006-12-14 Nippon Steel Corporation Grain-oriented magnetic steel sheet with extremely high magnetic property and process for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105220071A (en) * 2015-10-16 2016-01-06 宝山钢铁股份有限公司 A kind of low noise characteristic oriented silicon steel and manufacture method thereof
CN105562196A (en) * 2016-01-27 2016-05-11 宁波新大陆磁制品有限公司 Magnetic rod

Similar Documents

Publication Publication Date Title
JP5439866B2 (en) Method for producing grain-oriented electrical steel sheet with extremely high magnetic flux density
JP5610084B2 (en) Oriented electrical steel sheet and manufacturing method thereof
KR101558292B1 (en) Method for producing grain-oriented electrical steel sheet
JP6844125B2 (en) Manufacturing method of grain-oriented electrical steel sheet
KR102535436B1 (en) Method of production of tin containing non grain-oriented silicon steel sheet, steel sheet obtained and use thereof
JP5037728B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP5679090B2 (en) Method for producing grain-oriented electrical steel sheet
KR20190058542A (en) Directional electric steel sheet and manufacturing method thereof
JP2015529285A (en) High magnetic flux density directional silicon steel and manufacturing method thereof
JPWO2014017590A1 (en) Method for producing grain-oriented electrical steel sheet
WO2011102456A1 (en) Manufacturing method for grain-oriented electromagnetic steel sheet
JP5526609B2 (en) Method for producing grain-oriented electrical steel sheet with good magnetic flux density
JP7063032B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2020084303A (en) Production process of grain-oriented electromagnetic steel sheet
JP2008127635A (en) Method for coating annealing-separation agent for grain-oriented magnetic steel sheets, and method for manufacturing grain-oriented magnetic steel sheet
JP6369626B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP4608562B2 (en) Method for producing grain-oriented electrical steel sheet with extremely high magnetic flux density
JP4608514B2 (en) Method for producing grain-oriented electrical steel sheet with extremely high magnetic flux density
JP2008261022A (en) Grain oriented electrical decarburized annealed steel sheet, and method for producing the same
JPH055126A (en) Production of nonoriented silicon steel sheet
JP5846390B2 (en) Method for producing grain-oriented electrical steel sheet
JP5600991B2 (en) Method for producing grain-oriented electrical steel sheet
JP2003213338A (en) Method of producing grain oriented silicon steel sheet having excellent magnetic property and film property
JP4258149B2 (en) Method for producing grain-oriented electrical steel sheet
JP2008156693A (en) Method for manufacturing grain-oriented electromagnetic steel sheet excellent in magnetic characteristic having good film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120522