JP4258149B2 - Method for producing grain-oriented electrical steel sheet - Google Patents

Method for producing grain-oriented electrical steel sheet Download PDF

Info

Publication number
JP4258149B2
JP4258149B2 JP2001399406A JP2001399406A JP4258149B2 JP 4258149 B2 JP4258149 B2 JP 4258149B2 JP 2001399406 A JP2001399406 A JP 2001399406A JP 2001399406 A JP2001399406 A JP 2001399406A JP 4258149 B2 JP4258149 B2 JP 4258149B2
Authority
JP
Japan
Prior art keywords
annealing
mass
steel sheet
oriented electrical
seconds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001399406A
Other languages
Japanese (ja)
Other versions
JP2003193132A (en
Inventor
哲雄 峠
稔 高島
光正 黒沢
日出雄 山上
道郎 小松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001399406A priority Critical patent/JP4258149B2/en
Publication of JP2003193132A publication Critical patent/JP2003193132A/en
Application granted granted Critical
Publication of JP4258149B2 publication Critical patent/JP4258149B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、磁気特性および被膜特性の優れた方向性電磁鋼板を安定して製造する方法に関するものである。
【0002】
【従来の技術】
方向性電磁鋼板は、軟磁性体であり、変圧器や発電機の鉄心材料として広く用いられている。
近年、省エネルギーの観点から、これら電気機器のエネルギーロスを小さくするニーズが高まっており、鉄心材料として用いられている方向性電磁鋼板についても、従来にも増して、良好な磁気特性が求められるようになってきた。
【0003】
方向性電磁鋼板は、鉄の磁化容易軸である〈001〉方位が鋼板の圧延方向に高度に揃った結晶組織を有するものであり、かような集合組織は、方向性電磁鋼板の製造工程中、仕上焼鈍の際にいわゆるゴス方位と称される(110)〔001〕方位の結晶粒を優先的に巨大成長させる、二次再結晶を通じて形成される。従って、二次再結晶粒の結晶方位が磁気特性に大さな影響を及ぼす。
【0004】
また、方向性電磁鋼板の需要家においては、磁気特性と共に被膜特性も重要視される。なぜなら、方向性電磁鋼板の被膜には、トランスの鉄心において絶縁性を保つ役割はもとより、ビルディングファクターを改善する役割、さらには騒音に影響する磁歪・歪み感受性を変化させる役割があるからである。
【0005】
さて、このような方向性電磁鋼板は、4.5 mass%以下のSiを含む鋼スラブを、加熱し、熱間圧延し、必要に応じて熱延板焼鈍を施したのち、1回あるいは中間焼鈍を挟む2回以上の冷間圧延により最終板厚とし、次いで湿潤水素雰囲気での連続焼鈍を施したのち、マグネシアを主成分とする焼鈍分離剤を塗布してから、1200℃5時間程度の仕上焼鈍を行うことにより製造されてきた。例えば、米国特許第1965559 号明細書、特公昭40−15644 号および同51−13469 号各公報などに、その技術が開示されている。
【0006】
{110}<001>方位に集積した二次再結晶を効果的に促進させる技術として、従来、一次再結晶粒の正常粒成長を抑制するインヒビターと呼ばれる分散相を、均一かつ適正なサイズに分散させることが重要であると言われてきた。このインヒビターの作用により、最終仕上げ焼鈍時に、一次再結晶粒の成長が抑制され、最も粒成長の優位性の高い{110}<001>方位の粒だけが、他の方位を蚕食して大きく成長するのである。
【0007】
かかるインヒビターとして代表的なものは、MnS、MnSe、AlN及びVNのような硫化物、Se化合物や窒化物等で、鋼中への溶解度が極めて小さいものが用いられており、熱間圧延前のスラブ加熱時にインヒビターを一旦完全に固溶させた後、その後の工程で微細に析出させる方法がとられてきた。インヒビターを十分に固溶させるためのスラブ加熱温度は1400℃程度であり、普通鋼のスラブ加熱温度に比べて約200 ℃も高い。
【0008】
このため、かような高温スラブ加熱に対して、以下に示す問題点が指摘されるようになってきた。
1)高温加熱を行うためにエネルギー原単位が高い。
2)溶融スケールが発生し易く、またスラブ垂れが生じ易い。
3)スラブ表層の過脱炭が生じる。
上記2)および3)の問題点を解決するために、方向性珪素鋼専用の誘導加熱炉が考案されたが、依然として、エネルギーコストが高いという問題点が残されている。
【0009】
そこで、方向性珪素鋼の低温スラブ加熱化を図る研究がなされるようになった。しかしながら、スラブ加熱温度の低下は、インヒビター成分の固溶量不足を招くために、抑制力の低下を必然的に引き起こす。
【0010】
そこで、低温スラブ加熱に起因する抑制力の低下を、後工程で補う技術として、途中窒化技術が開発された。例えば、特開昭57−207114号公報には脱炭焼鈍時に窒化する技術が、特開昭62−70521 号公報には仕上げ焼鈍条件を特定し、仕上げ焼鈍時に途中窒化することで低温スラブ加熱を可能にする技術が、それぞれ開示されている。また、特開昭62−40315 号公報には、AlやNがスラブ加熱時に固溶していなくても、後工程の途中窒化によってインヒビターを適正状態に制御する方法が開示されている。
【0011】
一方、二次再結晶発現の重要なポイントとして、インヒビターの存在の他に、一次再結晶組織における方位差角に注目し、インヒビターに頼らなくても二次再結晶を生じさせる技術が開発されている。すなわち、方位差角が20〜45°である粒界(高エネルギー粒界)が二次再結晶発現に重要な役割を果たしていることが、Acta Materia1 45巻で報告され、これに基づいて、インヒビターを使用しない方向性電磁鋼板の研究が盛んに行われるようになった。
【0012】
しかしながら、上記の途中窒化技術および高エネルギー粒界に基づく技術はいずれも、二次再結晶のための最終仕上焼鈍時の粒成長を制御する技術であるため、その前工程での一次再結晶板においては、粒成長の制御がうまくいかず、粒径が不ぞろい(非整粒)になり、製品の磁気特性がコイルの部位によって不安定になり易いところに問題を残していた。
【0013】
また、硫化物、Se化合物をスラブ加熱時に完全に固溶させる必要性から、スラブ加熱温度が普通鋼並に低い条件下では、従来の高温スラブ加熱を前提とする技術と比較して、SやSeの含有量を低減する必要がある。SやSeの含有量が少ないと、一次再結晶焼鈍の際に形成されるサブスケールの緻密性が劣化し、デンドライト状の粗なサブスケールなりやすい。このようなサブスケールの性状の変化は、最終仕上焼鈍時のフォルステライト被膜形成に悪影響を及ぼすことも問題であった。
【0014】
【発明が解決しようとする課題】
この発明は、上記した問題を有利に解決するものであり、スラブ加熱温度が普通鋼なみに低い条件下でも、一次再結晶板における粒成長を適正に制御して仕上焼鈍後の磁気特性を改善すると共に、被膜特性の改善をも実現するための方途について提案することを目的とする。
【0015】
【課題を解決するための手段】
さて、発明者らは、スラブ加熱温度が普通鋼なみに低い場合に、磁気特性がコイルの部位によって大きくばらつく原因について、詳細な検討を行った。
その結果、
(i) 脱炭焼鈍板において粒径の小さな粒と大きな粒が混在している、
(ii)また、集合組織が測定部位によって大きくばらついている、
ことが判明した。
このようなばらつきが生じる主因としては、インヒビターの抑制力が弱いために、脱炭焼鈍中に一次再結晶粒が粒成長し易いことが考えられる。
【0016】
インヒビターの抑制力が弱くても、高エネルギー粒界が高移動度を有する性質を利用することにより、あるいは窒化処理によるインヒビター補強により、引き続く仕上焼鈍において二次再結晶を生じさせることは可能である。
しかしながら、脱炭焼鈍終了時点での組織の不均一は製品の磁気特性の不均一を引き起こしてしまう。
【0017】
そこで、脱炭焼鈍終了段階での組織を均一化する方法について鋭意研究を行った結果、従来は並行して行われていた一次再結晶と脱炭とを分離して行う方法に想い至った。
すなわち、一次再結晶が完了するまでの期間は脱炭を抑制し、一次再結晶完了後に脱炭を促進するように制御する方法が極めて有効であることが新たに見出されたのである。
この発明は、上記の知見に立脚するものである。
【0018】
すなわち、この発明の要旨構成は次のとおりである。
(1)C:0.01〜0.1 mass%、Si:2.0 〜4.5 mass%およびMn:0.03〜2.5 mass%を含む鋼スラブを、1300℃以下に加熱後、熱間圧延し、その後必要に応じて熱延板焼鈍を施してから、1回または中間焼鈍を挟む2回以上の冷間圧延により最終板厚とし、次いで一次再結晶および脱炭のための焼鈍を施したのち最終仕上焼鈍を施す、一連の工程からなる方向性電磁鋼板の製造方法において、鋼スラブの鋳造時に電磁攪拌を施すこと、一次再結晶および脱炭のための焼鈍に関して、鋼板を600 ℃以上1000℃以下の温度域に10 秒以上120 秒以内で滞在させ、かつこの滞在期間の雰囲気を水素:30〜60 vol%および露点:15〜40℃に制御し、しかる後、鋼板を750 ℃以上900 ℃以下の温度域に60秒以上滞在させ、この滞在期間の雰囲気を水素:40〜70 vol%および露点:40〜70℃に制御することを特徴とする方向性電磁鋼板の製造方法。
【0019】
(2)冷間圧延工程において、少なくとも1パスを100 ℃以上の温度で行うことを特徴とする上記(1)記載の方向性電磁鋼板の製造方法。
【0020】
(3)冷間圧延工程において、該圧延途中の少なくとも1回のパス間おいて、150 ℃以上の温度域で1分以上保持することを特徴とする上記(1)または(2)記載の方向性電磁鋼板の製造方法。
【0021】
【発明の実施の形態】
以下、この発明を具体的に説明する。
まず、この発明のスラブは、製鋼−連続鋳造によって製造され、その連続鋳造の際に、柱状晶の成長を抑制するために電磁攪拌を施す、必要がある。この詳細については、後述する。
【0022】
また、鋼スラブの組成は、少なくともC,SiおよびMnについては、所定の範囲に制限する必要があるが、その他の元素については従来公知の組成いずれもが適合する。
【0023】
鋼スラブの成分組成において、Siについては、2.0 mass%以上4.5 mass%以下とする。すなわち、Siは、電気抵抗を高めて鉄損を低減する作用があり、そのためには 2.0mass%以上の含有を必要とするが、4.5 mass%を超えると冷間圧延性が著しく劣化するため、4.5 mass%以下とした。
【0024】
Cは、組織改善のため、0.01mass%以上0.1 mass%以下の範囲で含有させるものとした。
【0025】
Mnは、Siと同じように電気抵抗を増加させ、鉄損を改善する効果があり、また製造時の熱間加工性を向上させる上でも有用な成分である。この目的のためには、0.03mass%以上の含有が必要であるが、2.5 mass%を超えて含有させた場合、γ変態を誘起して磁気特性が劣化することから、Mnは0.03mass%以上2.5 mass%以下の範囲とした。
【0026】
その他、二次再結晶を制御するために、インヒビターとなる微量のSやSeならびに硫化物形成元素、セレン化物形成元素(Mn,Cuなど)、さらには粒界偏析元素(Sb,Sn,Biなど)を含有させることもできる。
これらのインヒビター形成元素を含有させる場合の適正量は、次のとおりである。
【0027】
S,Seはそれぞれ、硫化物やSe化合物としてインヒビター機能を発揮する元素であり、単独添加または複合添加いずれの場合も 0.005mass%以上 0.030mass%以下の範囲で含有させることが好適である。というのは、含有量が 0.005mass%未満ではインヒビター機能を十分に発揮できず、一方0.030mass %をこえるとスラブ加熱時に均一固溶させることが困難となり、かえってインヒビターとしての機能が損なわれてしまうからである。
【0028】
Cuは、CuSやCuSeを形成してインヒビターとして機能する他、被膜特性の改善にも有効に寄与する。この目的のためには、0.01mass%以上の含有を必要とするが、0.50mass%を超えると表面性状が悪化するので、0.01mass%以上0.50mass%以下が好適である。
【0029】
Sb,SnおよびBiはいずれも、粒界に偏析してインヒビター機能を発揮する元素であるが、過剰に含有させると製品のベンド特性などの機械的特性が劣化する。従って、Sbは 0.001mass%以上0.1 mass%以下、Snは 0.001mass%以上0.1mass%以下、Biは0.0005mass%以上0.05mass%以下の範囲が好適である。
【0030】
窒化物形成元素のAlに関しては、高温スラブ加熱の条件下では有効なインヒビターであるが、1300℃以下の低温スラブ加熱を前提とする、この発明においては、均一に析出させることが困難なため、一次再結晶組織(および集合組織)を不均一たらしめる。従って、Alの含有量は0.01mass%未満に低減することが好ましい。
【0031】
なお、最近、これらのインヒビター元素を特に添加しなくても二次再結晶させる技術が開示されているが、この技術はこの発明においても好適に適用できる。
【0032】
上記の成分組成に調整したスラブを、1300℃以下の低温でスラブ加熱し、熱間圧延を施す。
次いで、熱間圧延板に、必要に応じて熱延板焼鈍を施したのち、1回または中間焼鈍を挟む2回以上の冷間圧延を施して、最終板厚とする。中間焼鈍を挟む二回以上の冷間圧延を施して、最終板厚とする場合には、熱延板焼鈍は行っても行わなくてもいい。冷間圧延は常温で行っても良いが、圧延温度を 100℃以上に上げ、動的歪時効によって集合組織を制御する、いわゆる温間圧延方法、また圧延のパス間に 150℃以上の温度域で1分以上保持し、静的歪時効によって集合組織を制御する、いわゆるパス間時効処理も、この発明において好適に適用することができる。
【0033】
次いで、最終冷間圧延板に、一次再結晶と脱炭のための焼鈍を施す。この焼鈍においては、一次再結晶完了までは脱炭を抑制し、一次再結晶完了後に脱炭を促進することが重要であり、この発明の中心技術である。
具体的には、鋼板を600 ℃以上1000℃以下の温度域に120 秒以内で滞在させ、かつこの滞在期間の雰囲気を水素:30〜60 vol%および露点:15〜40℃に制御する、前段焼鈍と、しかる後、鋼板を750 ℃以上900 ℃以下の温度域に60秒以上滞在させ、この滞在期間の雰囲気を水素:40〜70 vol%および露点:40〜70℃に制御する、後段焼鈍と、を組み合わせることにある。なお、これら前段焼鈍と後段焼鈍とは、連続して行ってもよいし、両者を切り離して行ってもよい。
【0034】
ここで、一次再結晶完了まで脱炭を抑制する理由は、一次再結晶の進行過程での粒成長抑制力を補強するためであり、一次再結晶後に脱炭を促進する理由は、製品鉄損の時効劣化を防ぐためである。
【0035】
さらに、焼鈍条件は、磁気特性と被膜特性とを両立させる観点からも、上記の条件に従うことが有利である。すなわち、一次再結晶板における粒成長が適正に制御されることにより、仕上焼鈍後の磁気特性が向上することに加え、一次再結晶焼鈍時に形成される、サブスケールの緻密性が増すことにより、仕上焼鈍後のフォルステライト被膜の密着性を高めることができる。
【0036】
この発明に従い、炭素をある程度含有させた状態で一次再結晶を生じさせ、一次再結晶完了後に脱炭を完了させることによって、組織、集合組織が均一化される理由については、未だ明確に解明されたわけではないが、発明者らは次のように考えている。
すなわち、一次再結晶完了までの期間に炭素を含有していると、炭素によって粒成長の抑制力が補強される。再結晶初期から再結晶完了までの区間は、局所的に再結晶の進行具合が異なり、比較的早期に核生成する粒と遅れて核生成する粒とが混在する。この段階での抑制力は重要であり、抑制力が弱い場合には、早期に核生成した粒が粗大化するため、粒径が不均一になり、そのことが集合組織の不均一につながる。従って、一次再結晶が完了するまでの間は、炭素によって抑制力を補強することが有効である。一方、一次再結晶が鋼板全体で完了し、一次再結晶粒どうしの粒成長が均衡した後は、抑制力の必要性は弱まるため、脱炭を促進すればいいと考えられる。
【0037】
ここに、一次再結晶完了までの期間の脱炭を抑制するという観点からは、前段焼鈍の雰囲気酸化性は低い程良いが、酸化性が低すぎると、形成されるサブスケールの緻密性が劣化し、製品の被膜劣化につながるという問題が生じた。発明者らは、製品の磁気特性、被膜特性の両立という観点からさらに研究を重ねたところ、
(a)スラブ鋳造時に電磁攪拌を施し、柱状晶の成長を抑制すること
(b)1回の冷間圧延で最終板厚にする場合は熱延板焼鈍を施し、2回以上の冷間圧延で最終板厚にする場合は中間焼鈍を施すこと
(c)前段焼鈍の雰囲気は水素30〜60 vol%かつ露点15〜40℃の範囲内にすること
を組み合わせることが、有効であることを突き止めた。
【0038】
すなわち、スラブ段階で柱状晶が発達すると、熱間圧延後、<110>//RDに集積した未再結晶バンドが発達しやすい。この未再結晶バンドは、引き続く冷延工程でもそのまま方位を維持しやすく、焼鈍の際には再結晶しにくい特徴がある。この発明では、インヒビターが弱いため、このバンド組織は途中の焼鈍過程で再結晶したり未再結晶のまま残ったりと、まちまちの形態をとり、その結果一次再結晶組織(および集合組織)の不均一性が助長される。従って、電磁攪拌によって柱状晶の成長を抑制することが、一次再結晶組織(および集合組織)の均一化という観点から必要となる。
【0039】
また、1回の冷間圧延で最終板厚にする場合の熱延板焼鈍や、2回以上の冷間圧延で最終板厚にする場合の中間焼鈍も、最終冷間圧延前の段階で、組織を均一化し、ひいては一次再結晶組織(および集合組織)の均一化につながるため、この発明に必須の要件となる。
【0040】
従って、上記(a)および(b)の技術を併用すれば、上記(c)に示す雰囲気にて、被膜劣化を起こすことなく、磁気特性の良好な方向性電磁鋼板の製造が可能になる。
かくして、発明者らは、スラブ加熱温度が普通鋼並みに低い条件下で、磁気特性が良好な方向性電磁鋼板を安定して製造する方法に関する発明を完成させるに到ったのである。
【0041】
また、集合組織を制御するに当り、圧延温度を100 ℃以上に上げ、動的歪時効によって集合組織を制御することおよび、圧延のパス間に150 ℃以上の温度域で1分間以上保持し、静的歪時効によって集合組織を制御することは、一次再結晶進行過程での抑制力の確保に繋がるため、有利である。
【0042】
なお、炭素を抑制力の補強として利用する技術としては、脱炭焼鈍後に30〜200ppmの炭素を含有させて磁束密度を向上させることが、特開昭58−11738 号公報に開示されているが、この技術はあくまで、仕上焼鈍中の抑制力を補強する技術であり、この発明とは本質的に異なる。
【0043】
さらに、特開平6−2040号公報には、最終圧延後に、750 〜1050℃の温度域において30秒〜10分間、少なくとも10 vol%以上の水素を含む露点15℃以下の焼鈍雰囲気中での焼鈍を施した後に、通常の脱炭焼鈍を施す技術が開示されているが、この技術は露点の範囲が、この発明と異なる上、インヒビターが強い条件を前提としており、集合組織を制御する技術ではなく、この発明の技術とは本質的に異なるものである。
【0044】
以上の前、後段の焼鈍が完了後は、鋼板の表面に焼鈍分離剤を塗布してから、最終仕上焼鈍を施す。この最終仕上焼鈍には特に制限はなく、従来から周知の方法に従って行えば良い。
【0045】
さらに、得られた仕上焼鈍板の表面に、絶縁被膜を塗布、焼き付ける。絶縁被膜の種類は特に限定されず、公知の絶縁被膜いずれもが適合する。例えば、特開昭50−79442 号公報や特開昭48−39338 号公報に記載されている、リン酸塩−クロム酸−コロイダルシリカを含有する塗布液を鋼板に塗布し、800 ℃程度で焼き付ける方法が好適である。また、フラットニング焼鈍により、鋼板の形状を整えることも可能であり、さらには絶縁被膜焼き付けを兼ねたフラットニング焼鈍を行うこともできる。
なお、最終冷間圧延後、二次再結晶開始までの間に、必要に応じて窒化処理を施すことも粒成長制御手段の一つとして有効である。
【0046】
【実施例】
実施例1
C:0.05mass%、Si:3.0 mass%、Mn:0.09mass%およびAl:0.005 mass%を含有する鋼スラブ3本(以下、鋼A,BおよびCとして区別する)を、鋼Aは電磁攪拌を施さずに、鋼BおよびCは電磁攪拌を施して鋳造した。これらのスラブを1200℃に加熱後、熱間圧延して板厚2.2mm としたのち、鋼AおよびCは1000℃で30秒間の熱延板焼鈍を施し、残る鋼Bは熱延板焼鈍を施さなかった。その後、鋼A、BおよびCはいずれも、酸洗した後、板厚0.34mmまで1回で冷間圧延した。
【0047】
次いで、冷間圧延後のコイルの長手方向10箇所において、それぞれ幅方向3箇所合計で30箇所から試験片を採取した。各試験片は、脱脂処理を行ってから、一次再結晶および脱炭のための焼鈍を施した。焼鈍条件は、鋼A、Bに対しては下記の1の条件、同Cに対しては、下記の1〜8の8通りの条件を適用した。
【0048】

条件1:
前段(900 ℃×30秒間,水素50 vol%,露点30℃)
後段(850 ℃×120 秒間,水素50 vol%,露点60℃)
条件2:
前段(700 ℃×30秒間, 水素50 vol%,露点30℃)
後段(850 ℃×120 秒間, 水素50 vol%,露点60℃)
条件3:
前段(900 ℃×10秒間, 水素40 vol%,露点20℃)
後段(800 ℃×120 秒間, 水素60 vol%,露点55℃)
条件4:
前段(700 ℃×10秒間, 水素40 vol%,露点20℃)
後段(800 ℃×120 秒間, 水素60 vol%,露点55℃)
条件5:
前段(900 ℃×30秒間, 水素50 vol%,露点10℃)
後段(850 ℃×120 秒間, 水素50 vol%,露点60℃)
条件6:
前段(800 ℃×30秒間, 水素50 vol%,露点55℃)
後段(850 ℃×120 秒間, 水素50 vol%,露点60℃)
条件7:
前段(650 ℃×30秒間, 水素50 vol%,露点55℃)
後段(850 ℃×120 秒間, 水素50 vol%,露点60℃)
条件8:
前段(550 ℃×30秒間, 水素50 vol%,露点35℃)
後段(850 ℃×120 秒間, 水素50 vol%,露点60℃)
【0049】
上記の焼鈍終了後に、鋼板の集合組織をX線回折による鋼板表面の極密度測定にて評価した。次いで、上記の焼鈍つまり一次再結晶と脱炭のための焼鈍後、鋼板表面に焼鈍分離剤を塗布してから、最終仕上焼鈍を施した。焼鈍分離剤としては、MgOを主成分とし、副成分として Sr(OH)2・8H2Oを5重量部添加したものを用いた。
【0050】
最終仕上焼鈍後、未反応の焼鈍分離剤を除去したのち、コロイダルシリカを含有するリン酸マグネシウムを主成分とする絶縁コーティングを塗布し、800 ℃で焼き付け、製品とした。各製品について、磁束密度B8 と鉄損W17/50 を測定するともに、被膜密着性(鋼板を丸棒に巻き付けて被膜が剥離しない最小の曲げ径を測定)も評価した。
かくして得られた結果を、表1に示す。
【0051】
【表1】

Figure 0004258149
【0052】
表1に示したとおり、この発明に従って一次再結晶と脱炭のための焼鈍条件を制御することにより、一次再結晶集合組織のばらつきが軽減され、その結果、磁気特性が良好な方向性電磁鋼板を安定して得ることができた。また、被膜密着性についても、満足する結果が得られた。
【0053】
実施例2
C:0.07mass%、Si:3.30mass%、Mn:0.07mass%、Al:0.005 mass%およびSb:0.025 mass%を含有する鋼スラブ4本(以下、鋼D,E,FおよびGとして区別する)を、鋼Dは電磁攪拌を施さずに、鋼E,FおよびGは電磁攪拌を施して鋳造した。これらのスラブを1250℃に加熱してから、熱間圧延して板厚2.5mmとしたのち、熱延コイルを酸洗し、板厚1.5mm まで1回目の冷間圧延を常温にて行った。次に、これらのコイルを脱脂した後、1000℃で60秒間の中間焼鈍を施した。さらに、酸洗した後、鋼D,Eのコイルには、板厚0.22mmまで常温で冷間圧延を施し、鋼Fのコイルには200 ℃の圧延温度で板厚0.22mmまで圧延を施し、鋼Gのコイルには250 ℃に5時間保持した後、150 ℃の圧延温度で板厚0.22mmまで圧延を施した。
【0054】
次いで、冷間圧延後のコイルの長手方向10箇所において、それぞれ幅方向3箇所合計で30箇所から試験片を採取した。各試験片は、脱脂処理を行ってから、一次再結晶および脱炭のための焼鈍を施した。焼鈍条件は、鋼Dに対しては実施例1で適用した上記の1,3,5,7の4通りの条件、鋼Eに対しては上記の1〜8の8通りの条件、鋼FおよびGに対しては上記の1の条件とした。
【0055】
上記の焼鈍終了後に、鋼板の集合組織をX線回折による鋼板表面の極密度測定にて評価した。次いで、上記の焼鈍つまり一次再結晶と脱炭のための焼鈍後、鋼板表面に焼鈍分離剤を塗布してから、最終仕上焼鈍を施した。焼鈍分離剤としては、MgOを主成分とし、副成分として Sr(OH)2・8H2Oを5重量部添加したものを用いた。
【0056】
最終仕上焼鈍後、未反応の焼鈍分離剤を除去したのち、コロイダルシリカを含有するリン酸マグネシウムを主成分とする絶縁コーティングを塗布し、800 ℃で焼き付け、製品とした。各製品について、磁束密度B8 と鉄損W17/50 を測定するとともに、被膜密着性も評価した。
かくして得られた結果を、表2および3に示す。
【0057】
【表2】
Figure 0004258149
【0058】
【表3】
Figure 0004258149
【0059】
表2および3に示したとおり、この発明に従って一次再結晶と脱炭のための焼鈍条件を制御することにより、一次再結晶集合組織のばらつきが軽減され、その結果、磁気特性が良好な方向性電磁鋼板を安定して得ることができた。また、被膜密着性についても、満足する結果が得られた。
【0060】
実施例3
C:0.05mass%、Si:3.1 mass%、Mn:0.15mass%、Al:0.005 mass%およびSn:0.02mass%を含有する鋼スラブ2本(以下、鋼HおよびIとして区別する)を電磁攪拌を施して鋳造した。これらのスラブを1150℃に加熱後、熱間圧延して板厚2.0mm とした。熱間圧延後のコイルに対して、鋼Hの熱延コイルは酸洗した後、950 ℃で60秒間の熱延板焼鈍を施し、鋼Iは熱延板焼鈍を施さなかった。その後、酸洗した後、鋼HおよびIのコイルともに、0.29mm厚まで常温で冷間圧延を施した。但し、鋼HおよびIともに途中板厚1.2mm の時点において、250 ℃で5時間保持する時効処理を施した。
【0061】
次いで、冷間圧延後のコイルの長手方向10箇所において、それぞれ幅方向3箇所合計で30箇所から試験片を採取した。各試験片は、脱脂処理を行ってから、一次再結晶および脱炭のための焼鈍を施した。焼鈍条件は、鋼Hに対しては実施例1で適用した上記の1〜8の8通りの条件、鋼Iに対しては上記の2,4,6および8の4通りの条件とした。
【0062】
上記の焼鈍終了後に、鋼板の集合組織をX線回折による鋼板表面の極密度測定にて評価した。次いで、上記の焼鈍つまり一次再結晶と脱炭のための焼鈍後、水素、窒素およびアンモニア混合ガス中にて 750℃, 30秒の窒化焼鈍を施したのち、鋼板表面に焼鈍分離剤を塗布してから、最終仕上焼鈍を施した。焼鈍分離剤としては、MgOを主成分とし、副成分としてTiO2を5重量部、SnO2を2重量部添加したものを用いた。
【0063】
最終仕上焼鈍後、未反応の焼鈍分離剤を除去したのち、コロイダルシリカを含有するリン酸マグネシウムを主成分とする絶縁コーティングを塗布し、800 ℃で焼き付け、製品とした。各製品について、磁束密度B8 と鉄損W17/50 を測定するとともに、被膜密着性を評価した。
かくして得られた結果を表4に示す。
【0064】
【表4】
Figure 0004258149
【0065】
同表に示したとおり、本発明に従って一次再結晶と脱炭のための焼鈍条件を制御することにより、一次再結晶集合組織のばらつきが軽減され、良好な磁気特性の方向性電磁鋼板を安定して得ることができた。また、被膜密着性についても、満足する結果が得られた。
【0066】
【発明の効果】
この発明によれば、スラブ加熱温度が普通鋼なみに低い条件下でも、一次再結晶板における粒成長が適正に制御されるから、仕上焼鈍後に磁気特性の優れた方向性電磁鋼板を安定して製造することができる。さらに、この発明によれば、一次再結晶焼鈍時に形成されるサブスケールの緻密性が増すことによって、被膜の密着性を高めることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for stably producing a grain-oriented electrical steel sheet having excellent magnetic properties and coating properties.
[0002]
[Prior art]
Oriented electrical steel sheets are soft magnetic materials and are widely used as iron core materials for transformers and generators.
In recent years, from the viewpoint of energy saving, there is an increasing need to reduce the energy loss of these electrical devices, and the grain-oriented electrical steel sheets used as iron core materials are expected to have better magnetic properties than ever before. It has become.
[0003]
The grain-oriented electrical steel sheet has a crystal structure in which the <001> orientation, which is the easy axis of iron, is highly aligned in the rolling direction of the steel sheet, and such a texture is produced during the manufacturing process of the grain-oriented electrical steel sheet. It is formed through secondary recrystallization that preferentially grows crystal grains with a (110) [001] orientation, so-called Goss orientation, during finish annealing. Therefore, the crystal orientation of the secondary recrystallized grains has a great influence on the magnetic characteristics.
[0004]
In addition, the film characteristics as well as the magnetic characteristics are regarded as important for consumers of grain-oriented electrical steel sheets. This is because the coating of grain-oriented electrical steel sheets not only has the role of maintaining insulation in the iron core of the transformer, but also has the role of improving the building factor and also changing the magnetostriction / distortion sensitivity that affects noise.
[0005]
Now, such a grain-oriented electrical steel sheet is heated once, hot-rolled, and hot-rolled sheet annealed as necessary, after a steel slab containing 4.5 mass% or less of Si is subjected to one time or intermediate annealing. The final sheet thickness is obtained by cold rolling two or more times between sandwiches, followed by continuous annealing in a wet hydrogen atmosphere, and after applying an annealing separator mainly composed of magnesia, finish annealing at 1200 ° C for about 5 hours Has been manufactured. For example, US Pat. No. 1,965,559, Japanese Patent Publication Nos. 40-15644 and 51-13469 disclose such techniques.
[0006]
As a technique for effectively promoting secondary recrystallization accumulated in the {110} <001> orientation, a dispersed phase called an inhibitor that suppresses normal grain growth of primary recrystallized grains has been dispersed to a uniform and appropriate size. Has been said to be important. By the action of this inhibitor, during the final finish annealing, the growth of primary recrystallized grains is suppressed, and only the grains with the {110} <001> orientation, which has the highest grain growth superiority, devour other orientations and grow greatly. To do.
[0007]
Typical examples of such inhibitors are sulfides such as MnS, MnSe, AlN and VN, Se compounds and nitrides, etc., which have extremely low solubility in steel and are used before hot rolling. A method has been used in which the inhibitor is once completely dissolved in the slab heating and then finely precipitated in the subsequent steps. The slab heating temperature for sufficiently dissolving the inhibitor is about 1400 ° C, which is about 200 ° C higher than the slab heating temperature of ordinary steel.
[0008]
For this reason, the following problems have been pointed out for such high-temperature slab heating.
1) The energy intensity is high for high temperature heating.
2) Melt scale is likely to occur and slab sag is likely to occur.
3) Over decarburization of the slab surface occurs.
In order to solve the problems 2) and 3), an induction heating furnace dedicated to directional silicon steel has been devised, but the problem of high energy cost still remains.
[0009]
Therefore, studies have been made to heat directional slabs at low temperature slabs. However, a decrease in the slab heating temperature inevitably causes a decrease in the suppressive power because it leads to a lack of the solid solution amount of the inhibitor component.
[0010]
Therefore, an intermediate nitriding technique has been developed as a technique to compensate for the decrease in the suppression force caused by low-temperature slab heating in a subsequent process. For example, Japanese Patent Laid-Open No. 57-207114 discloses a technique for nitriding during decarburization annealing, and Japanese Patent Laid-Open No. 62-70521 specifies a finish annealing condition, and nitriding halfway during final annealing to perform low-temperature slab heating. Each enabling technique is disclosed. Japanese Patent Application Laid-Open No. 62-40315 discloses a method for controlling an inhibitor to an appropriate state by nitriding during the subsequent process even if Al or N is not dissolved during slab heating.
[0011]
On the other hand, as an important point for the development of secondary recrystallization, in addition to the presence of inhibitors, attention was paid to the misorientation angle in the primary recrystallization structure, and a technology for generating secondary recrystallization without resorting to inhibitors was developed. Yes. That is, it has been reported in Acta Materia 1 volume 45 that the grain boundary (high energy grain boundary) with a misorientation angle of 20 to 45 ° plays an important role in secondary recrystallization development. Research on grain-oriented electrical steel sheets that do not use steel has been actively conducted.
[0012]
However, since the above-mentioned intermediate nitriding technique and the technique based on the high energy grain boundary are both techniques for controlling grain growth during final finish annealing for secondary recrystallization, the primary recrystallization plate in the preceding process However, the grain growth is not well controlled, the grain size is uneven (non-sized), and the magnetic characteristics of the product tend to be unstable depending on the coil part, leaving problems.
[0013]
Further, since it is necessary to completely dissolve sulfides and Se compounds at the time of slab heating, S and S are compared with the conventional technology premised on high-temperature slab heating under conditions where the slab heating temperature is as low as that of ordinary steel. It is necessary to reduce the Se content. When the content of S or Se is small, the subscale denseness formed during the primary recrystallization annealing is deteriorated, and a dendrite-like rough subscale tends to be formed. Such a change in the properties of the subscale also has a problem of adversely affecting the forsterite film formation during the final finish annealing.
[0014]
[Problems to be solved by the invention]
The present invention advantageously solves the above-mentioned problems, and improves the magnetic properties after finish annealing by properly controlling grain growth in the primary recrystallized plate even under conditions where the slab heating temperature is as low as that of ordinary steel. At the same time, the object is to propose a way to improve the coating properties.
[0015]
[Means for Solving the Problems]
Now, the inventors have conducted a detailed study on the reason why the magnetic characteristics vary greatly depending on the coil part when the slab heating temperature is as low as that of ordinary steel.
as a result,
(i) In the decarburized annealed plate, small grains and large grains are mixed,
(ii) Also, the texture varies greatly depending on the measurement site,
It has been found.
The main cause of such variation is considered to be that primary recrystallized grains are likely to grow during decarburization annealing because the inhibitor's inhibitory power is weak.
[0016]
Even if the inhibitory ability of the inhibitor is weak, it is possible to cause secondary recrystallization in the subsequent finish annealing by utilizing the property that high energy grain boundaries have high mobility or by reinforcing the inhibitor by nitriding treatment. .
However, non-uniform structure at the end of decarburization annealing causes non-uniform magnetic properties of the product.
[0017]
Thus, as a result of intensive studies on a method for homogenizing the structure at the end of decarburization annealing, the inventors have come up with a method of separating primary recrystallization and decarburization, which were conventionally performed in parallel.
That is, it has been newly found that a method of suppressing decarburization during the period until primary recrystallization is completed and controlling so as to promote decarburization after completion of primary recrystallization has been found.
The present invention is based on the above findings.
[0018]
That is, the gist configuration of the present invention is as follows.
(1) C: 0.01~0.1 mass% , Si: 2.0 ~4.5 mass% and Mn: 0.03 to 2.5 the mass% of including steel slab was heated to 1300 ° C. or less, and hot-rolled, then optionally After the hot-rolled sheet annealing, the final sheet thickness is obtained by cold rolling at least once or sandwiching the intermediate annealing, followed by annealing for primary recrystallization and decarburization, and then final finishing annealing. the method of manufacturing a grain-oriented electrical steel sheet consisting of a series of steps, is subjected to electromagnetic stirring during casting of steel slabs, with respect to the annealing for primary recrystallization and decarburization, the steel sheet to a temperature range of 600 ° C. or higher 1000 ° C. or less 10 s is staying within 120 seconds, and hydrogen atmosphere of the stay: 30 to 60 vol% and the dew point: controlled at 15 to 40 ° C., after which the steel sheet temperature range temperatures higher than 750 ℃ 900 ° C. or less 60 Let the atmosphere stay for at least 2 seconds, and the atmosphere during this stay is hydrogen: 40-70 vol% and dew point: 40-70 ° C Method for producing oriented electrical steel sheets towards you, characterized in that Gosuru.
[0019]
(2) In the cold rolling step, above, wherein the performing at least one pass at 100 ° C. or higher temperature (1) The method of producing oriented electrical steel sheet towards the description.
[0020]
(3) In the cold rolling step, at least between one pass of the rolling way, above, wherein the holding more than 1 minute at 0.99 ° C. or higher temperature range (1) or (2) who described A method for producing a grain-oriented electrical steel sheet.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be specifically described below.
First, the slab of the present invention is manufactured by steelmaking-continuous casting, and it is necessary to perform electromagnetic stirring in order to suppress the growth of columnar crystals during the continuous casting. Details of this will be described later.
[0022]
Further, the composition of the steel slab needs to be limited to a predetermined range at least for C, Si and Mn, but any other known composition is suitable for other elements.
[0023]
In the composition of steel slabs, Si is 2.0 mass% or more and 4.5 mass% or less. In other words, Si has the effect of increasing the electric resistance and reducing the iron loss, and for that purpose, it needs to contain 2.0 mass% or more, but if it exceeds 4.5 mass%, the cold rolling property deteriorates significantly, 4.5 mass% or less.
[0024]
C was included in the range of 0.01 mass% to 0.1 mass% for the purpose of improving the structure.
[0025]
Mn, like Si, has the effect of increasing electrical resistance and improving iron loss, and is also a useful component for improving hot workability during production. For this purpose, it is necessary to contain 0.03 mass% or more. However, if it exceeds 2.5 mass%, it induces γ transformation and deteriorates the magnetic properties, so Mn is 0.03 mass% or more. The range was 2.5 mass% or less.
[0026]
In addition, in order to control secondary recrystallization, trace amounts of S and Se, which are inhibitors, sulfide-forming elements, selenide-forming elements (Mn, Cu, etc.), and grain boundary segregation elements (Sb, Sn, Bi, etc.) ) Can also be contained.
Appropriate amounts when these inhibitor-forming elements are contained are as follows.
[0027]
Each of S and Se is an element that exhibits an inhibitor function as a sulfide or Se compound, and is preferably contained in the range of 0.005 mass% or more and 0.030 mass% or less in either case of single addition or combined addition. The reason is that if the content is less than 0.005 mass%, the inhibitor function cannot be fully exerted. On the other hand, if the content exceeds 0.030 mass%, it becomes difficult to form a solid solution when heating the slab, and the function as an inhibitor is impaired. Because.
[0028]
Cu forms CuS and CuSe and functions as an inhibitor, and also contributes to the improvement of film properties. For this purpose, it is necessary to contain 0.01 mass% or more, but if it exceeds 0.50 mass%, the surface properties deteriorate, so 0.01 mass% to 0.50 mass% is suitable.
[0029]
Sb, Sn, and Bi are all elements that segregate at the grain boundaries and exhibit an inhibitor function. However, if excessively contained, mechanical properties such as bend characteristics of the product deteriorate. Accordingly, Sb is preferably in the range of 0.001 mass% to 0.1 mass%, Sn is in the range of 0.001 mass% to 0.1 mass%, and Bi is in the range of 0.0005 mass% to 0.05 mass%.
[0030]
Regarding the nitride forming element Al, it is an effective inhibitor under the conditions of high-temperature slab heating, but on the premise of low-temperature slab heating of 1300 ° C. or lower, in this invention, it is difficult to precipitate uniformly, The primary recrystallized structure (and texture) becomes uneven. Therefore, it is preferable to reduce the Al content to less than 0.01 mass%.
[0031]
Recently, a technique for secondary recrystallization without particularly adding these inhibitor elements has been disclosed, but this technique can also be suitably applied to this invention.
[0032]
The slab adjusted to the above component composition is slab heated at a low temperature of 1300 ° C. or lower, and hot-rolled.
Next, the hot-rolled sheet is subjected to hot-rolled sheet annealing as necessary, and then subjected to cold rolling twice or more with one or more intermediate annealings to obtain a final sheet thickness. When performing the cold rolling twice or more sandwiching the intermediate annealing to obtain the final sheet thickness, the hot-rolled sheet annealing may or may not be performed. Cold rolling may be performed at room temperature, but the so-called warm rolling method in which the rolling temperature is raised to 100 ° C or higher and the texture is controlled by dynamic strain aging, and the temperature range of 150 ° C or higher between rolling passes. In the present invention, so-called inter-pass aging treatment in which the texture is controlled by static strain aging and held for 1 minute or longer can be suitably applied.
[0033]
Next, the final cold rolled sheet is subjected to annealing for primary recrystallization and decarburization. In this annealing, it is important to suppress decarburization until completion of primary recrystallization, and to promote decarburization after completion of primary recrystallization, which is the central technique of the present invention.
Specifically, the steel plate is allowed to stay in a temperature range of 600 ° C. to 1000 ° C. within 120 seconds, and the atmosphere during this stay is controlled to hydrogen: 30 to 60 vol% and dew point: 15 to 40 ° C. After annealing, the steel sheet is allowed to stay in a temperature range of 750 ° C to 900 ° C for 60 seconds or longer, and the atmosphere during this stay is controlled to hydrogen: 40 to 70 vol% and dew point: 40 to 70 ° C. And is to combine. In addition, these pre-stage annealing and post-stage annealing may be performed continuously, or both may be performed separately.
[0034]
Here, the reason for suppressing the decarburization until the completion of the primary recrystallization is to reinforce the grain growth suppressing force in the course of the primary recrystallization, and the reason for promoting the decarburization after the primary recrystallization is the product iron loss. This is to prevent deterioration of aging.
[0035]
Furthermore, it is advantageous that the annealing conditions follow the above conditions from the viewpoint of achieving both magnetic properties and film properties. That is, by appropriately controlling the grain growth in the primary recrystallization plate, in addition to improving the magnetic properties after finish annealing, the subscale density formed during the primary recrystallization annealing is increased, The adhesion of the forsterite film after finish annealing can be enhanced.
[0036]
According to the present invention, the reason why the structure and texture are uniformized by causing primary recrystallization in a state where carbon is contained to some extent and completing decarburization after the completion of primary recrystallization has not yet been clearly clarified. Although not necessarily, the inventors think as follows.
That is, if carbon is contained in the period until the completion of primary recrystallization, the grain growth inhibitory force is reinforced by the carbon. In the interval from the initial stage of recrystallization to the completion of recrystallization, the progress of recrystallization locally differs, and grains that nucleate relatively early and grains that nucleate later are mixed. The restraining force at this stage is important. When the restraining force is weak, grains nucleated at an early stage are coarsened, resulting in uneven particle size, which leads to uneven texture. Therefore, it is effective to reinforce the inhibition force with carbon until the primary recrystallization is completed. On the other hand, after primary recrystallization has been completed for the entire steel sheet and the grain growth of primary recrystallized grains has been balanced, the need for restraining power will weaken, so decarburization may be promoted.
[0037]
Here, from the viewpoint of suppressing decarburization during the period until the completion of the primary recrystallization, it is better that the atmosphere oxidizing property of the pre-annealing is lower, but if the oxidizing property is too low, the denseness of the formed subscale deteriorates. However, the problem that it leads to deterioration of the coating film of the product occurred. The inventors conducted further research from the viewpoint of achieving both product magnetic properties and film properties,
(A) Applying magnetic stirring during slab casting to suppress the growth of columnar crystals (b) When making the final sheet thickness by one cold rolling, subject to hot-rolled sheet annealing and cold rolling at least twice (C) Ascertain that it is effective to combine the atmosphere of the previous stage annealing with hydrogen in the range of 30-60 vol% and dew point of 15-40 ° C. It was.
[0038]
That is, when columnar crystals develop in the slab stage, unrecrystallized bands accumulated in <110> // RD tend to develop after hot rolling. This non-recrystallized band is easy to maintain the orientation as it is in the subsequent cold rolling process, and is difficult to recrystallize during annealing. In the present invention, since the inhibitor is weak, this band structure takes various forms such as recrystallization during the annealing process or remains unrecrystallized, and as a result, the primary recrystallized structure (and texture) is unaffected. Uniformity is promoted. Therefore, it is necessary to suppress the growth of columnar crystals by electromagnetic stirring from the viewpoint of uniform primary recrystallization structure (and texture).
[0039]
In addition, hot-rolled sheet annealing in the case of making the final sheet thickness by one cold rolling and intermediate annealing in the case of making the final sheet thickness by two or more cold rollings are also performed before the final cold rolling, This is an essential requirement for the present invention because it homogenizes the structure and leads to the homogenization of the primary recrystallized structure (and texture).
[0040]
Therefore, when the techniques (a) and (b) are used in combination, a grain-oriented electrical steel sheet having good magnetic properties can be produced without causing film deterioration in the atmosphere shown in (c).
Thus, the inventors have completed the invention relating to a method for stably producing a grain-oriented electrical steel sheet having good magnetic properties under conditions where the slab heating temperature is as low as that of ordinary steel.
[0041]
In controlling the texture, the rolling temperature is raised to 100 ° C or higher, the texture is controlled by dynamic strain aging, and the temperature is maintained at 150 ° C or higher for 1 minute or longer between rolling passes. Controlling the texture by static strain aging is advantageous because it leads to securing a suppressive force in the course of primary recrystallization.
[0042]
In addition, as a technique for utilizing carbon as a reinforcing force of the suppression force, it is disclosed in JP-A-58-11738 that the magnetic flux density is improved by containing 30 to 200 ppm of carbon after decarburization annealing. This technique is merely a technique for reinforcing the restraining force during finish annealing, and is essentially different from the present invention.
[0043]
Further, JP-A-6-2040 discloses annealing in an annealing atmosphere having a dew point of 15 ° C. or less containing hydrogen of at least 10 vol% in a temperature range of 750 to 1050 ° C. for 30 seconds to 10 minutes after final rolling. However, this technique is different from the present invention in that the dew point range is different from that of the present invention, and it is premised on the condition that the inhibitor is strong. The technique of the present invention is essentially different.
[0044]
After the above and the subsequent annealing are completed, the final finish annealing is performed after the annealing separator is applied to the surface of the steel sheet. This final finish annealing is not particularly limited, and may be performed according to a conventionally known method.
[0045]
Furthermore, an insulating film is applied and baked on the surface of the obtained finish annealing plate. The kind of insulating coating is not particularly limited, and any known insulating coating is suitable. For example, a coating solution containing phosphate-chromic acid-colloidal silica described in JP-A-50-79442 and JP-A-48-39338 is applied to a steel plate and baked at about 800 ° C. The method is preferred. Further, the shape of the steel sheet can be adjusted by flattening annealing, and further, flattening annealing that also serves as an insulating film baking can be performed.
It is also effective as one of the grain growth control means to perform nitriding treatment as necessary after the final cold rolling and before the start of secondary recrystallization.
[0046]
【Example】
Example 1
Three steel slabs containing C: 0.05 mass%, Si: 3.0 mass%, Mn: 0.09 mass%, and Al: 0.005 mass% (hereinafter referred to as steels A, B, and C), steel A is electromagnetically stirred. Steel B and C were cast with electromagnetic stirring. After heating these slabs to 1200 ° C and hot rolling to a sheet thickness of 2.2 mm, steels A and C were subjected to hot-rolled sheet annealing at 1000 ° C for 30 seconds, and the remaining steel B was subjected to hot-rolled sheet annealing. Not given. Thereafter, all the steels A, B and C were pickled and then cold-rolled once to a sheet thickness of 0.34 mm.
[0047]
Subsequently, in 10 places in the longitudinal direction of the coil after the cold rolling, test pieces were collected from 30 places in total in three places in the width direction. Each test piece was degreased and then annealed for primary recrystallization and decarburization. As the annealing conditions, the following 1 conditions were applied to steels A and B, and the following 8 conditions of 1 to 8 were applied to C.
[0048]
Conditions 1:
First stage (900 ° C x 30 seconds, hydrogen 50 vol%, dew point 30 ° C)
The latter part (850 ℃ × 120 seconds, hydrogen 50 vol%, dew point 60 ℃)
Condition 2:
First stage (700 ° C x 30 seconds, hydrogen 50 vol%, dew point 30 ° C)
The latter part (850 ° C x 120 seconds, hydrogen 50 vol%, dew point 60 ° C)
Condition 3:
First stage (900 ° C x 10 seconds, hydrogen 40 vol%, dew point 20 ° C)
The latter part (800 ° C x 120 seconds, hydrogen 60 vol%, dew point 55 ° C)
Condition 4:
First stage (700 ° C x 10 seconds, hydrogen 40 vol%, dew point 20 ° C)
The latter part (800 ° C x 120 seconds, hydrogen 60 vol%, dew point 55 ° C)
Condition 5:
First stage (900 ° C x 30 seconds, hydrogen 50 vol%, dew point 10 ° C)
The latter part (850 ° C x 120 seconds, hydrogen 50 vol%, dew point 60 ° C)
Condition 6:
First stage (800 ° C x 30 seconds, hydrogen 50 vol%, dew point 55 ° C)
The latter part (850 ° C x 120 seconds, hydrogen 50 vol%, dew point 60 ° C)
Condition 7:
First stage (650 ° C x 30 seconds, hydrogen 50 vol%, dew point 55 ° C)
The latter part (850 ° C x 120 seconds, hydrogen 50 vol%, dew point 60 ° C)
Condition 8:
First stage (550 ° C x 30 seconds, hydrogen 50 vol%, dew point 35 ° C)
The latter part (850 ° C x 120 seconds, hydrogen 50 vol%, dew point 60 ° C)
[0049]
After the above annealing, the texture of the steel sheet was evaluated by measuring the pole density on the steel sheet surface by X-ray diffraction. Subsequently, after annealing for the above-described annealing, that is, primary recrystallization and decarburization, an annealing separator was applied to the surface of the steel sheet, and then final finishing annealing was performed. As the annealing separator, one containing MgO as a main component and 5 parts by weight of Sr (OH) 2 .8H 2 O as an auxiliary component was used.
[0050]
After the final finish annealing, after removing the unreacted annealing separator, an insulating coating mainly composed of magnesium phosphate containing colloidal silica was applied and baked at 800 ° C. to obtain a product. For each product, the magnetic flux density B 8 and the iron loss W 17/50 were measured, and the film adhesion (the minimum bending diameter at which the film was not peeled off by winding the steel sheet around a round bar) was also evaluated.
The results thus obtained are shown in Table 1.
[0051]
[Table 1]
Figure 0004258149
[0052]
As shown in Table 1, by controlling the annealing conditions for primary recrystallization and decarburization according to the present invention, variation in primary recrystallization texture is reduced, and as a result, grain-oriented electrical steel sheet with good magnetic properties. Could be obtained stably. In addition, satisfactory results were obtained with respect to film adhesion.
[0053]
Example 2
Four steel slabs containing C: 0.07 mass%, Si: 3.30 mass%, Mn: 0.07 mass%, Al: 0.005 mass% and Sb: 0.025 mass% (hereinafter referred to as steels D, E, F and G) ), Steel D was cast without electromagnetic stirring, and steels E, F and G were cast with electromagnetic stirring. After heating these slabs to 1250 ° C and hot rolling to a sheet thickness of 2.5 mm, the hot rolled coil was pickled and the first cold rolling to a sheet thickness of 1.5 mm was performed at room temperature. . Next, these coils were degreased and then subjected to intermediate annealing at 1000 ° C. for 60 seconds. Furthermore, after pickling, the steel D and E coils were cold-rolled at room temperature to a sheet thickness of 0.22 mm, and the steel F coil was rolled to a sheet thickness of 0.22 mm at a rolling temperature of 200 ° C. The steel G coil was held at 250 ° C. for 5 hours and then rolled at a rolling temperature of 150 ° C. to a thickness of 0.22 mm.
[0054]
Subsequently, in 10 places in the longitudinal direction of the coil after the cold rolling, test pieces were collected from 30 places in total in three places in the width direction. Each test piece was degreased and then annealed for primary recrystallization and decarburization. The annealing conditions are the above four conditions 1, 3, 5, and 7 applied in Example 1 for Steel D, the above eight conditions 1 to 8 for Steel E, Steel F For G and G, the above condition 1 was adopted.
[0055]
After the above annealing, the texture of the steel sheet was evaluated by measuring the pole density on the steel sheet surface by X-ray diffraction. Subsequently, after annealing for the above-described annealing, that is, primary recrystallization and decarburization, an annealing separator was applied to the surface of the steel sheet, and then final finishing annealing was performed. As the annealing separator, one containing MgO as a main component and 5 parts by weight of Sr (OH) 2 .8H 2 O as an auxiliary component was used.
[0056]
After the final finish annealing, after removing the unreacted annealing separator, an insulating coating mainly composed of magnesium phosphate containing colloidal silica was applied and baked at 800 ° C. to obtain a product. For each product, together with measuring the magnetic flux density B 8 and iron loss W 17/50, it was also evaluated coating adhesion.
The results thus obtained are shown in Tables 2 and 3.
[0057]
[Table 2]
Figure 0004258149
[0058]
[Table 3]
Figure 0004258149
[0059]
As shown in Tables 2 and 3, by controlling the annealing conditions for primary recrystallization and decarburization according to the present invention, the variation in primary recrystallization texture is reduced, and as a result, the magnetic properties have good directionality. A magnetic steel sheet could be obtained stably. In addition, satisfactory results were obtained with respect to film adhesion.
[0060]
Example 3
C: 0.05 mass%, Si: 3.1 mass%, Mn: 0.15 mass%, Al: 0.005 mass% and Sn: 0.02 mass% Two steel slabs (hereinafter referred to as steel H and I) are magnetically stirred. And cast. These slabs were heated to 1150 ° C. and hot-rolled to a thickness of 2.0 mm. The hot-rolled coil of steel H was pickled and then subjected to hot-rolled sheet annealing at 950 ° C. for 60 seconds, and steel I was not subjected to hot-rolled sheet annealing. Then, after pickling, both the steel H and I coils were cold-rolled at room temperature to a thickness of 0.29 mm. However, both steels H and I were subjected to aging treatment at a temperature of 1.2 mm during the course of holding at 250 ° C. for 5 hours.
[0061]
Subsequently, in 10 places in the longitudinal direction of the coil after the cold rolling, test pieces were collected from 30 places in total in three places in the width direction. Each test piece was degreased and then annealed for primary recrystallization and decarburization. The annealing conditions were the above eight conditions 1 to 8 applied in Example 1 for steel H, and the above four conditions 2, 4, 6 and 8 for steel I.
[0062]
After the above annealing, the texture of the steel sheet was evaluated by measuring the pole density on the steel sheet surface by X-ray diffraction. Next, after annealing for the above-mentioned annealing, ie, primary recrystallization and decarburization, nitriding annealing is performed at 750 ° C for 30 seconds in a mixed gas of hydrogen, nitrogen and ammonia, and then an annealing separator is applied to the steel sheet surface. After that, the final finish annealing was performed. As the annealing separator, a material containing MgO as a main component and 5 parts by weight of TiO 2 and 2 parts by weight of SnO 2 as subcomponents was used.
[0063]
After the final finish annealing, after removing the unreacted annealing separator, an insulating coating mainly composed of magnesium phosphate containing colloidal silica was applied and baked at 800 ° C. to obtain a product. For each product, the magnetic flux density B 8 and the iron loss W 17/50 were measured, and the film adhesion was evaluated.
The results thus obtained are shown in Table 4.
[0064]
[Table 4]
Figure 0004258149
[0065]
As shown in the table, by controlling the annealing conditions for primary recrystallization and decarburization according to the present invention, variation in primary recrystallization texture is reduced, and the grain-oriented electrical steel sheet with good magnetic properties is stabilized. I was able to get it. In addition, satisfactory results were obtained with respect to film adhesion.
[0066]
【The invention's effect】
According to the present invention, grain growth in the primary recrystallized plate is appropriately controlled even under conditions where the slab heating temperature is as low as that of ordinary steel. Therefore, the grain-oriented electrical steel sheet having excellent magnetic properties can be stably obtained after finish annealing. Can be manufactured. Furthermore, according to the present invention, the closeness of the subscale formed during the primary recrystallization annealing is increased, whereby the adhesion of the coating can be enhanced.

Claims (3)

C:0.01〜0.1 mass%、Si:2.0 〜4.5 mass%およびMn:0.03〜2.5 mass%を含む鋼スラブを、1300℃以下に加熱後、熱間圧延し、その後必要に応じて熱延板焼鈍を施してから、1回または中間焼鈍を挟む2回以上の冷間圧延により最終板厚とし、次いで一次再結晶および脱炭のための焼鈍を施したのち最終仕上焼鈍を施す、一連の工程からなる方向性電磁鋼板の製造方法において、鋼スラブの鋳造時に電磁攪拌を施すこと、一次再結晶および脱炭のための焼鈍に関して、鋼板を600 ℃以上1000℃以下の温度域に10 秒以上120 秒以内で滞在させ、かつこの滞在期間の雰囲気を水素:30〜60 vol%および露点:15〜40℃に制御し、しかる後、鋼板を750 ℃以上900 ℃以下の温度域に60秒以上滞在させ、この滞在期間の雰囲気を水素:40〜70 vol%および露点:40〜70℃に制御することを特徴とする方向性電磁鋼板の製造方法。C: 0.01~0.1 mass%, Si: 2.0 ~4.5 mass% and Mn: from 0.03 to 2.5 of mass% of including steel slab was heated to 1300 ° C. or less, and hot-rolled, thereafter hot-rolled sheet if necessary A series of steps in which after annealing, the final sheet thickness is obtained by cold rolling at least once with intermediate or intermediate annealing, followed by annealing for primary recrystallization and decarburization, followed by final finishing annealing. In the method for producing a grain-oriented electrical steel sheet, the steel sheet is placed in a temperature range of 600 ° C. or higher and 1000 ° C. or lower for 10 seconds to 120 seconds with respect to performing magnetic stirring during casting of the steel slab, and annealing for primary recrystallization and decarburization. The atmosphere during this stay is controlled to hydrogen: 30-60 vol% and dew point: 15-40 ° C, and then the steel plate stays in a temperature range of 750 ° C to 900 ° C for 60 seconds or longer. And control the atmosphere during this stay to hydrogen: 40-70 vol% and dew point: 40-70 ° C Method for producing oriented electrical steel sheets towards you, characterized in that. 冷間圧延工程において、少なくとも1パスを100 ℃以上の温度で行うことを特徴とする請求項1記載の方向性電磁鋼板の製造方法。In the cold rolling process, the production method of the oriented electrical steel sheet towards the claim 1, wherein the performing at least one pass at a temperature above 100 ° C.. 冷間圧延工程において、該圧延途中の少なくとも1回のパス間おいて、150 ℃以上の温度域で1分以上保持することを特徴とする請求項1または2記載の方向性電磁鋼板の製造方法。In the cold rolling step, at least between one pass of said rolling course, the manufacture of oriented electrical steel sheet towards the claim 1 or 2, wherein the holding more than 1 minute at a temperature range of more than 0.99 ° C. Method.
JP2001399406A 2001-12-28 2001-12-28 Method for producing grain-oriented electrical steel sheet Expired - Fee Related JP4258149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001399406A JP4258149B2 (en) 2001-12-28 2001-12-28 Method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001399406A JP4258149B2 (en) 2001-12-28 2001-12-28 Method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2003193132A JP2003193132A (en) 2003-07-09
JP4258149B2 true JP4258149B2 (en) 2009-04-30

Family

ID=27604449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001399406A Expired - Fee Related JP4258149B2 (en) 2001-12-28 2001-12-28 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP4258149B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101110246B1 (en) * 2003-12-26 2012-02-15 주식회사 포스코 Method for manufacturing glassless electrical steel sheet with the appropriate control of the due point
JP6146262B2 (en) * 2013-10-29 2017-06-14 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
KR102062222B1 (en) 2015-09-28 2020-01-03 닛폰세이테츠 가부시키가이샤 Hot rolled steel sheet for grain oriented steel sheet and grain oriented steel sheet
JP6458813B2 (en) * 2017-01-18 2019-01-30 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
JP7392849B2 (en) * 2021-01-28 2023-12-06 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheets and rolling equipment for producing electrical steel sheets

Also Published As

Publication number Publication date
JP2003193132A (en) 2003-07-09

Similar Documents

Publication Publication Date Title
JP2983128B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2002220642A (en) Grain-oriented electromagnetic steel sheet with low iron loss and manufacturing method therefor
JP2004353036A (en) Method for manufacturing grain-oriented electromagnetic steel sheet superior in magnetic property
JP2022514794A (en) Directional electrical steel sheet and its manufacturing method
JP4653266B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP3359449B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3885432B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP2003253341A (en) Process for manufacturing grain-oriented magnetic steel sheet showing excellent magnetic property
JP4258149B2 (en) Method for producing grain-oriented electrical steel sheet
JP4206664B2 (en) Method for producing grain-oriented electrical steel sheet
JP5857983B2 (en) Manufacturing method of grain-oriented electrical steel sheet and MgO for annealing separator
JP3948284B2 (en) Method for producing grain-oriented electrical steel sheet
JP4258185B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP4239456B2 (en) Method for producing grain-oriented electrical steel sheet
JP4205816B2 (en) Method for producing unidirectional electrical steel sheet with high magnetic flux density
JP3893766B2 (en) Method for producing grain oriented silicon steel sheet having homogeneous forsterite coating
KR950002895B1 (en) Ultrahigh-silicon directional electrical steel sheet and production thereof
JP3716608B2 (en) Method for producing grain-oriented electrical steel sheet
JP3397293B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP7221480B2 (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JPH06212274A (en) Production of grain-oriented silicon steel sheet having extremely low iron loss
JP2005179745A (en) Method for producing bi-directional silicon steel sheet
JP2020509209A (en) Grain-oriented electrical steel sheet and its manufacturing method
JP7338511B2 (en) Manufacturing method of grain-oriented electrical steel sheet
US20230212720A1 (en) Method for the production of high permeability grain oriented electrical steel containing chromium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070409

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4258149

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees