JP2008127635A - Method for coating annealing-separation agent for grain-oriented magnetic steel sheets, and method for manufacturing grain-oriented magnetic steel sheet - Google Patents

Method for coating annealing-separation agent for grain-oriented magnetic steel sheets, and method for manufacturing grain-oriented magnetic steel sheet Download PDF

Info

Publication number
JP2008127635A
JP2008127635A JP2006314455A JP2006314455A JP2008127635A JP 2008127635 A JP2008127635 A JP 2008127635A JP 2006314455 A JP2006314455 A JP 2006314455A JP 2006314455 A JP2006314455 A JP 2006314455A JP 2008127635 A JP2008127635 A JP 2008127635A
Authority
JP
Japan
Prior art keywords
hydration
magnesia
mass
steel sheet
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006314455A
Other languages
Japanese (ja)
Other versions
JP4893259B2 (en
Inventor
Hiroaki Toda
広朗 戸田
Takashi Terajima
寺島  敬
Mineo Muraki
峰男 村木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006314455A priority Critical patent/JP4893259B2/en
Publication of JP2008127635A publication Critical patent/JP2008127635A/en
Application granted granted Critical
Publication of JP4893259B2 publication Critical patent/JP4893259B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for newly evaluating magnesia for annealing-separation agent when a grain-oriented magnetic steel sheet is manufactured, and to stably obtain the grain-oriented magnetic steel shhet excellent in not only a film characteristic, but magnetic characteristic, by using the magnesia satisfying the characteristic value evaluated with the above evaluating method. <P>SOLUTION: As the magnesia in the annealing-separation agent, a powdery material having impurities with the concentrations 0.01-0.04 mass% Cl, 0.25-0.70 mass% CaO, 0.05-0.15 mass% B, 0.05-0.50 mass% SO<SB>3</SB>and satisfying 50-90 sec in 40% of CAA(citiric acid activity), and further, 1.5-2.5 mass% of a hydrate quantity at 20°C for 30 min of a hydrate-test, and 3.0-5.0 mass% of the hydrate quantity at 20°C for 180 min of the hydrate-test, is used. The annealing-separation agent which is hydrated so that the hydrate quantity of the magnesia becomes 1.0-3.5 mass% after coating and drying by making the slurry-state to this powdery material with the adjustment of the hydrate temperature and the average hydrate time of the slurry, is coated and dried on the surface of this steel sheet. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、変圧器その他の電気機器の鉄心材料に用いられる方向性電磁鋼板の製造技術、より具体的には方向性電磁鋼板用焼鈍分離剤の塗布方法および方向性電磁鋼板の製造方法に関し、特にフォルステライト質被膜形成のために用いられる焼鈍分離剤の主剤であるマグネシアとして好適な粉体特性を規定すると共に、塗布後の水和量を一定範囲に調整することにより、方向性電磁鋼板の被膜特性および磁気特性の有利な向上を図ろうとするものである。   The present invention relates to a technology for producing a grain-oriented electrical steel sheet used for a core material of a transformer or other electrical equipment, more specifically, a method for applying an annealing separator for a grain-oriented electrical steel sheet and a method for producing a grain-oriented electrical steel sheet, In particular, by defining powder characteristics suitable as magnesia, the main component of the annealing separator used for forsterite film formation, and adjusting the amount of hydration after coating to a certain range, It is intended to advantageously improve the film properties and magnetic properties.

方向性電磁鋼板は、主として変圧器その他の電気機器の鉄心材料として使用され、磁気特性として磁束密度が高く、鉄損および磁気歪が小さいことが要求される。
磁気特性に優れた方向性電磁鋼板を得るには、{110}<001>方位いわゆるゴス方位に高度に集積させた二次再結晶組織を得ることが肝要である。このような二次再結晶を効果的に発現させるためには、まず、一次再結晶粒の成長を抑制するインヒビターと呼ばれる析出分散相を、均一かつ適切なサイズに分散させることが必要とされている。
The grain-oriented electrical steel sheet is mainly used as an iron core material for transformers and other electric devices, and is required to have high magnetic flux density and small iron loss and magnetostriction as magnetic properties.
In order to obtain a grain-oriented electrical steel sheet having excellent magnetic properties, it is important to obtain a secondary recrystallized structure highly integrated in the {110} <001> orientation, the so-called Goss orientation. In order to effectively develop such secondary recrystallization, it is first necessary to disperse a precipitation dispersed phase called an inhibitor that suppresses the growth of primary recrystallized grains to a uniform and appropriate size. Yes.

このようなインヒビターとしては、MnS,MnSe,AlNおよびBNに代表される硫化物、Se化合物および窒化物などのような鋼中への溶解度が低いものが用いられており、熱間圧延前のスラブ加熱時にインヒビターを完全に固溶させ、その後の工程で微細に析出させる方法が採用されている。   As such an inhibitor, those having low solubility in steel such as sulfides, Se compounds and nitrides represented by MnS, MnSe, AlN and BN are used, and the slab before hot rolling is used. A method in which the inhibitor is completely dissolved during heating and finely precipitated in the subsequent steps is employed.

また、最近では、二次再結晶発現の重要なポイントして、インヒビターの存在の他に、一次再結晶組織において隣り合う結晶粒の方位差角が注目されるようになってきており、方位差角が20〜45°である粒界(高エネルギー粒界)が重要な役割を果たしていることが、非特許文献1に報告されている。これに基づいて、インヒビターを使用しない方向性電磁鋼板の研究が再び盛んに行われるようになってきており、鋼スラブにインヒビター成分が含有されなくても、工業的に方向性電磁鋼板が製造できる技術(インヒビターレス法)が開発されている。
「Acta Material 45巻(1997)1285頁」
Recently, as an important point of secondary recrystallization, in addition to the presence of inhibitors, the misorientation angle of adjacent grains in the primary recrystallization structure has been attracting attention. It is reported in Non-Patent Document 1 that a grain boundary (high energy grain boundary) having an angle of 20 to 45 ° plays an important role. Based on this, research on grain-oriented electrical steel sheets that do not use inhibitors has been actively conducted, and even if steel slabs do not contain inhibitor components, they can be produced industrially. Technology (inhibitorless method) has been developed.
"Acta Material 45 (1997) 1285"

但し、いずれの場合でも、方向性電磁鋼板の製造方法としては、鋼スラブを、熱間圧延後、必要に応じて熱延板焼鈍を施したのち、1回または中間焼鈍を挟む2回以上の冷間圧延によって最終板厚とし、脱炭・一次再結晶焼鈍後、鋼板にマグネシアを主剤とする焼鈍分離剤を塗布してから、二次再結晶および純化を目的とした最終仕上げ焼鈍を行うという工程が一般的である。そして、かくして得られた方向性電磁鋼板の表面には、特殊な場合を除いてフォルステライト(Mg2SiO4)を主体とする絶縁被膜、いわゆるフォルステライト質被膜と呼称される被膜が形成されているのが普通である。 However, in any case, as a method for producing a grain-oriented electrical steel sheet, the steel slab is subjected to hot-rolled sheet annealing as necessary after hot rolling, and then once or two or more times sandwiching the intermediate annealing. It is said that the final sheet thickness is obtained by cold rolling, and after decarburization and primary recrystallization annealing, an annealing separator mainly composed of magnesia is applied to the steel sheet, followed by final finishing annealing for the purpose of secondary recrystallization and purification. The process is common. The surface of the grain-oriented electrical steel sheet thus obtained is formed with an insulating film mainly composed of forsterite (Mg 2 SiO 4 ) except for special cases, a so-called forsterite film. It is normal.

このフォルステライト質被膜は、焼鈍分離剤として塗布されたマグネシアと、脱炭・一次再結晶焼鈍時に鋼板表層に生成したSiO2(シリカ)を主体とする酸化層が反応することにより形成される。この被膜は、表面の電気的絶縁だけでなく、その低熱膨張性に起因した引張応力を鋼板に付与することにより、鉄損さらには磁気歪をも効果的に改善する。 This forsterite film is formed by a reaction between magnesia applied as an annealing separator and an oxide layer mainly composed of SiO 2 (silica) formed on the steel sheet surface layer during decarburization and primary recrystallization annealing. This coating effectively improves iron loss and magnetostriction not only by electrical insulation of the surface but also by applying tensile stress to the steel sheet due to its low thermal expansibility.

さらに、一般に方向性電磁鋼板は、フォルステライト質被膜の上にガラス質の絶縁コーティングが施されるが、フォルステライト質被膜は、絶縁コーティングと地鉄部分とを密着させる一種のバインダーとしての働きもある。なお、この絶縁コーティングは非常に薄く透明であるため、フォルステライト質被膜が製品の最終的な外観を決定する。従って、その外観の良否は製品価値を大きく左右し、例えば地鉄が一部露出したような被膜を持つものは製品として不適当とされるなど、被膜性状が製品歩留りに及ぼす影響は極めて大きい。従って、形成されたフォルステライト質被膜は、外観が均一で欠陥のないこと、またせん断、打ち抜きおよび曲げ加工などにおいて被膜のはく離が生じないように密着性に優れることが要求される。さらに、その表面は平滑で、鉄心として積層したときに高い占積率を有することも必要とされる。   In general, grain-oriented electrical steel sheets are coated with a glassy insulating coating on the forsterite coating, but the forsterite coating also acts as a kind of binder that adheres the insulating coating to the steel part. is there. Note that this insulating coating is very thin and transparent, so the forsterite film determines the final appearance of the product. Therefore, the quality of the appearance greatly affects the product value. For example, a film having a film in which part of the iron is partially exposed is regarded as inappropriate as a product, and the effect of the film properties on the product yield is extremely large. Therefore, the formed forsterite film is required to have a uniform appearance and no defects, and to have excellent adhesion so that the film does not peel off in shearing, punching and bending processes. Furthermore, the surface must be smooth and have a high space factor when laminated as an iron core.

また、マグネシアには、上記した働き以外に、鋼板中の析出物の分解・成長挙動や結晶粒の成長挙動を変化させて、磁気特性に影響を及ぼす働きもある。例えば、マグネシアをスラリー化した際に、持ち込まれる水分が多すぎると、鋼板が酸化されて磁気特性が劣化したり、被膜に点状欠陥が生成したりする。さらに、マグネシア中に含まれる不純物が焼鈍中に鋼中に侵入することにより、一次再結晶挙動が変化することも知られている。従って、焼鈍分離剤の不純物成分や粉体特性の良否は、方向性電磁鋼板の被膜特性と磁気特性を左右する重要な要因となっている。   In addition to the above-described function, magnesia also has a function of affecting the magnetic properties by changing the decomposition / growth behavior of precipitates in the steel sheet and the growth behavior of crystal grains. For example, if too much moisture is brought into the slurry when magnesia is slurried, the steel sheet is oxidized and the magnetic properties are deteriorated, or point-like defects are generated in the coating. Furthermore, it is also known that the primary recrystallization behavior changes when impurities contained in magnesia penetrate into steel during annealing. Therefore, the quality of the impurity components and the powder characteristics of the annealing separator is an important factor that affects the coating characteristics and magnetic characteristics of the grain-oriented electrical steel sheet.

このため、従来から焼鈍分離剤用のマグネシアの品質改善のために、様々な方法が提案されている。
例えば、特許文献1には、マッフル炉で高温焼成されたマグネシアの不純物濃度、水和量およびふるい通過性を特定することによって、良好なフォルステライト被膜を形成する方法が開示されている。
特公昭54−14566号公報
For this reason, various methods have been proposed for improving the quality of magnesia for annealing separators.
For example, Patent Document 1 discloses a method for forming a good forsterite film by specifying the impurity concentration, hydration amount, and sieving ability of magnesia fired at high temperature in a muffle furnace.
Japanese Examined Patent Publication No. 54-14566

特許文献2には、CaO,SO3,B等の不純物濃度や比表面積、粒径、クエン酸活性度の分布を所定の範囲に収めることによって、良好な被膜を形成する技術が開示されている。
特公昭57−45472号公報
Patent Document 2 discloses a technique for forming a good film by keeping the impurity concentration, specific surface area, particle size, and citric acid activity distribution of CaO, SO 3 , B, etc. within a predetermined range. .
Japanese Patent Publication No.57-45472

特許文献3には、BET比表面積が30m2/g以下の水酸化マグネシウムを焼成し、引き続き吸湿させて、表面積:100Å2当たりのOH基の数を15〜30の範囲にした、BET比表面積が15〜30m2/gの酸化マグネシウム:70〜90wt%と、BET比表面積が1〜10m2/gの酸化マグネシウム:10〜30wt%とを成分とするMgOを用いることにより、鋼板との接着力を高めることによって、被膜特性と磁気特性を向上させる方法が開示されている。
特公昭57−8188号公報
Patent Document 3 discloses a BET specific surface area in which magnesium hydroxide having a BET specific surface area of 30 m 2 / g or less is calcined and subsequently moisture-absorbed so that the number of OH groups per surface area: 100 2 is in the range of 15-30. There magnesium oxide 15 to 30 m 2 / g: and 70~90Wt%, magnesium oxide having a BET specific surface area of 1 to 10 m 2 / g: and 10 to 30 wt% by using MgO whose components, adhesion of the steel plate Methods have been disclosed for improving film properties and magnetic properties by increasing force.
Japanese Patent Publication No.57-8188

特許文献4には、X線回折の回折線幅の拡がりから測定したMgO粒径が0.08〜0.18μmであるMgOを用いることによって、磁気特性を改善する方法が開示されている。
特開昭58−193373号公報
Patent Document 4 discloses a method for improving magnetic characteristics by using MgO having a MgO particle diameter of 0.08 to 0.18 μm measured from the expansion of the diffraction line width of X-ray diffraction.
JP 58-193373 A

さらに、前述したように、マグネシアはスラリー状にして鋼板に塗布されるが、マグネシアは水と反応して水酸化マグネシウムが生成され、これが鋼板への持込み水分となり、それが多すぎるとフォルステライト被膜の形成や磁気特性に悪影響を及ぼす。この持込み水分の影響は非常に大きいことが知られており、その影響を低減するための方法も種々提案されている。   Furthermore, as described above, magnesia is applied to the steel sheet in the form of a slurry, but magnesia reacts with water to produce magnesium hydroxide, which becomes moisture brought into the steel sheet, and if it is too much, the forsterite film Adversely affects the formation and magnetic properties. It is known that the influence of this brought-in water is very large, and various methods for reducing the influence have been proposed.

例えば、特許文献5には、水和水分を1〜4%としたMgOに、TiO2とA12S3またはZnSを添加した焼鈍分離剤を用いて、フォルステライト被膜と鉄損を改善する方法が開示されている。
特開昭53−15205号公報
For example, Patent Document 5 discloses a method for improving a forsterite film and iron loss by using an annealing separator obtained by adding TiO 2 and A1 2 S 3 or ZnS to MgO having a hydrated water content of 1 to 4%. Is disclosed.
Japanese Patent Laid-Open No. 53-15205

特許文献6には、MgOを1300℃以上の高温で焼成して不活性化し、これをスラリーとする際は温水中で水和させて450℃以上の温度での灼熱減量率を2.0〜10%とすることで、良好なフォルステライト被膜の形成を図る技術が開示されている。
特公昭60−33896号公報
In Patent Document 6, MgO is fired at a high temperature of 1300 ° C. or higher to be inactivated, and when this is made into a slurry, the ignition loss rate at a temperature of 450 ° C. or higher is set to 2.0 to 10% by hydration in warm water. Thus, a technique for forming a good forsterite film is disclosed.
Japanese Patent Publication No. 60-33896

特許文献7には、マグネシアを塗布後に、昇温速度:80℃/s以上で加熱して乾燥させることによって、水和水分を低減する方法が提案されている。
特許第2634847号公報
Patent Document 7 proposes a method of reducing hydration moisture by applying magnesia and then drying by heating at a heating rate of 80 ° C./s or more.
Japanese Patent No. 2634847

特許文献8には、CaO,SO3,B等の不純物濃度や粒径、水和量、クエン酸活性度(CAA40%)に加え、N2ガス吸着等温線や水蒸気吸着等温線の分布を特定の範囲とすることによって、被膜特性と磁気特性を向上させる技術が開示されている。また、特許文献9には、細孔容積を特定の範囲に制御することによって、被膜特性と磁気特性を向上させる技術が開示されている。
しかしながら、N2ガス吸着等温線と細孔容積は、いずれもマグネシアの水和し易さや水分の放出過程に着目した指標であり、ある程度有効ではあるものの、測定精度や測定の簡便さに問題があった。
特許第3695008号公報 特許第3707144号公報
Patent Document 8 specifies the distribution of N 2 gas adsorption isotherm and water vapor adsorption isotherm in addition to impurity concentration such as CaO, SO 3 , B, particle size, hydration amount, citric acid activity (CAA 40%) A technique for improving the film properties and the magnetic properties by setting the above range is disclosed. Patent Document 9 discloses a technique for improving film properties and magnetic properties by controlling the pore volume within a specific range.
However, the N 2 gas adsorption isotherm and pore volume are both indices that focus on the hydration of magnesia and the release process of water, and although effective to some extent, there are problems with measurement accuracy and ease of measurement. there were.
Japanese Patent No. 3695008 Japanese Patent No. 3707144

さらに、特許文献10には、温度:20℃、水和時間:80分以下での水和量曲線が、該文献中の図1で囲まれる領域を満足するものを用いるという技術が開示されている。しかしながら、鋼板への持込水分量は、「MgOの活性度、スラリー化したときの滞留時間、スラリー水温、スラリー混合時の撹拌速度等によって大きく左右される」との記載はあるものの、実際に鋼板に塗布・乾燥した後の水和量は規定していないため、磁気・被膜特性の改善効果は不十分であった。また、規定されたMgO水和量の範囲も広いため、充分な効果を得ることができないという問題があった。
特開平10−88241号公報
Further, Patent Document 10 discloses a technique in which a hydration amount curve at a temperature of 20 ° C. and a hydration time of 80 minutes or less satisfies a region surrounded by FIG. 1 in the document. Yes. However, although there is a description that the amount of moisture brought into the steel sheet is greatly influenced by the activity of MgO, the residence time when slurryed, the slurry water temperature, the stirring speed during slurry mixing, etc., Since the amount of hydration after coating and drying on a steel sheet is not specified, the effect of improving magnetic and film properties was insufficient. In addition, there is a problem that a sufficient effect cannot be obtained because the range of the prescribed MgO hydration amount is wide.
Japanese Patent Laid-Open No. 10-88241

上記の各技術により、方向性電磁鋼板の特性は向上・安定化してきたものの、未だ十分な効果が得られているとは言い難く、マグネシアの製造ロットの違いで製品不良が発生することも多々あり、マグネシアの各粉体特性の変化が製品特性にどのような影響を及ぼしているかは、まだ完全には解明されていないといえる。
これまでマグネシアを評価する指標として、CaO,Cl,B,SO3などの不純物濃度やクエン酸活性度、BET比表面積および粒度分布、さらにはN2ガス吸着等温線や細孔容積などの粉体特性が用いられてきた。
しかしながら、これらの特性でMgOの適用可否を的確に判断することは難しく、製品特性に及ぼす各粉体特性の影響が、従来言われていた傾向と異なる場合もあった。従って、マグネシアについて、より適切な評価指標を見出すことが強く望まれていた。
Although the characteristics of grain-oriented electrical steel sheets have been improved and stabilized by the above technologies, it is difficult to say that sufficient effects are still being obtained, and product defects often occur due to differences in the production lots of magnesia. Yes, it can be said that the effect of changes in powder properties of magnesia on product properties has not yet been fully elucidated.
So far, as an index for evaluating magnesia, impurities such as CaO, Cl, B, and SO 3 , citric acid activity, BET specific surface area and particle size distribution, and powders such as N 2 gas adsorption isotherm and pore volume Properties have been used.
However, it is difficult to accurately determine the applicability of MgO based on these characteristics, and the influence of each powder characteristic on the product characteristics may be different from the tendency that has been said. Therefore, it has been strongly desired to find a more appropriate evaluation index for magnesia.

本発明は、上記の事情に鑑みて開発されたもので、方向性電磁鋼板製造時における焼鈍分離剤用マグネシアの新しい評価方法を提示すると共に、この評価方法で評価した特性値を満足するマグネシアを適正なスラリー状態で用いることにより、被膜特性ひいては磁気特性に優れた方向性電磁鋼板を安定して得ることにある。
すなわち、本発明は、被膜特性ひいては磁気特性に優れた方向性電磁鋼板を安定して得るために、所定の粉体特性を有するマグネシアを主剤とする方向性電磁鋼板用焼鈍分離剤の有利な塗布方法を、方向性電磁鋼板の製造方法と共に提案することを目的とする。
The present invention was developed in view of the above circumstances, and presents a new evaluation method for annealing separator magnesia during the production of grain-oriented electrical steel sheets, and magnesia satisfying the characteristic values evaluated by this evaluation method. By using it in an appropriate slurry state, the object is to stably obtain a grain-oriented electrical steel sheet having excellent coating properties and consequently magnetic properties.
That is, the present invention provides an advantageous application of an annealing separator for grain-oriented electrical steel sheets mainly composed of magnesia having a predetermined powder property in order to stably obtain a grain-oriented electrical steel sheet having excellent coating properties and magnetic properties. It aims at proposing a method with the manufacturing method of a grain-oriented electrical steel sheet.

以下、本発明の解明経緯について説明する。
さて、発明者らは、上記の目的を達成すべく、被膜形成に最適なマグネシア条件について種々検討を行った。
その結果、不純物のCl濃度が0.01〜0.04mass%、CaO濃度が0.25〜0.70mass%、B濃度が0.05〜0.15mass%、SO3濃度が0.05〜0.50mass%、CAA40%が50〜90秒である粉体を選択し、ついで20℃,30分と20℃,180分の水和試験を行い、前者の水和量が1.5〜2.5mass%でかつ後者の水和量が3.0〜5.0mass%であるマグネシアを用いることで、良好なフォルステライト被膜が得られる頻度が向上するとの知見を得た。
The elucidation process of the present invention will be described below.
Now, in order to achieve the above object, the inventors have conducted various studies on magnesia conditions optimal for film formation.
As a result, Cl concentration impurity 0.01~0.04mass%, CaO concentration 0.25~0.70mass%, B concentration 0.05~0.15mass%, SO 3 concentration 0.05~0.50mass%, at CAA40% 50 to 90 seconds Select a powder, then conduct hydration test at 20 ° C, 30 minutes and 20 ° C, 180 minutes, the former hydration amount is 1.5-2.5mass% and the latter hydration amount is 3.0-5.0mass% It was found that the frequency with which a good forsterite film is obtained is improved by using magnesia.

さらに、実際の生産ラインにおいて焼鈍分離剤スラリーは、一定量を塗布して消費した後、ほぼその消費量に見合う量を新たに調合して、残存スラリーに継ぎ足すことで、使用している。従って、水和温度については一定に制御できるものの、水和時間を一定にすることは困難なため、水和量をコイル全長にわたって一定値にすることは極めて難しい。というのは、マグネシアの水和量は、水和温度が高くなる、あるいは水和時間が長くなるにつれて、高くなるからである。この理由は、水和量の増加は、水和が進行することで、マグネシアの一部が水酸化マグネシウムになることで生じることによる。但し、水和温度と平均水和時間を制御することによって、水和量をある一定範囲、例えば2.5±0.3%程度の範囲になるようにすることは可能である。   Furthermore, in an actual production line, the annealing separator slurry is used by applying a certain amount and consuming a new amount, and adding it to the remaining slurry. Therefore, although the hydration temperature can be controlled to be constant, it is difficult to make the hydration time constant, so it is extremely difficult to make the amount of hydration constant over the entire coil length. This is because the amount of hydration of magnesia increases as the hydration temperature increases or the hydration time increases. The reason for this is that the increase in the amount of hydration is caused by the progress of hydration and part of magnesia becomes magnesium hydroxide. However, by controlling the hydration temperature and the average hydration time, it is possible to make the hydration amount within a certain range, for example, about 2.5 ± 0.3%.

なお、特公昭61−47887号公報では、1100℃以上で焼成した非水和の酸化マグネシウム:50〜99wt%に、水酸化マグネシウムに1〜50wt%とアルミ化合物0.1〜0.5wt%を配合して、上記非水和の酸化マグネシウムに吸着せしめた焼鈍分離剤を用いる技術を提案しているが、この技術では、作業(水和)時間が24Hrと長くても全く水和量が変化しないことが該公報中の第3図から分かる。しかしながら、本発明にいたる検討で、水和量が水和時間に対して全く変化しないマグネシアでは、良好なフォルステライト被膜を得るのは難しいことが判明した。この理由は、水和時間が長くなっても水和量がほとんど変わらないマグネシアでは、仕上げ焼鈍中のフォルステライト被膜形成能(反応性)が低いためと考えられる。   In Japanese Examined Patent Publication No. 61-47887, non-hydrated magnesium oxide calcined at 1100 ° C. or higher: 50 to 99 wt%, magnesium hydroxide 1 to 50 wt% and aluminum compound 0.1 to 0.5 wt% are blended. Has proposed a technique using an annealing separator adsorbed on the above non-hydrated magnesium oxide, but this technique does not change the amount of hydration at all even if the working (hydration) time is as long as 24 hours. It can be seen from FIG. 3 in the publication. However, investigations leading to the present invention have revealed that it is difficult to obtain a good forsterite film with magnesia in which the hydration amount does not change at all with respect to the hydration time. The reason for this is considered that magnesia, in which the hydration amount hardly changes even when the hydration time is increased, has a low forsterite film forming ability (reactivity) during finish annealing.

実生産ラインにおいて、水和量をほぼ一定にする必要性に着目した点においては、本発明は特公昭61−47887号公報と同じである。しかしながら、マグネシアとして、不純物濃度などと共に、20℃,30分と20℃,180分での水和量が異なるマグネシアを用い、マグネシアの消費量と新液スラリーの調合ピッチなどを考慮して、スラリーの水和温度と平均水和時間を制御することによって、該粉体をスラリー状にして塗布・乾燥させた後のマグネシアの水和量を一定範囲にすることが、本発明の新規な点である。   In the actual production line, the present invention is the same as Japanese Patent Publication No. 61-47887 in that attention is paid to the necessity of making the amount of hydration almost constant. However, as magnesia, magnesia with different hydration amounts at 20 ° C, 30 minutes and 20 ° C, 180 minutes, as well as impurity concentration, etc. is used, considering the consumption of magnesia and the mixing pitch of the new slurry, etc. By controlling the hydration temperature and the average hydration time of the powder, it is a novel feature of the present invention that the amount of hydration of magnesia after the powder is applied in a slurry and applied and dried is within a certain range. is there.

すなわち、本発明の要旨構成は次のとおりである。
1.鋼板表層にSiO2を含む酸化膜を有する方向性電磁鋼板用の脱炭焼鈍板に、マグネシアを主剤とする焼鈍分離剤を塗布、乾燥することからなる方向性電磁鋼板用焼鈍分離剤の塗布方法において、
前記焼鈍分離剤中のマグネシアとして、不純物のCl濃度が0.01〜0.04mass%、CaO濃度が0.25〜0.70mass%、B濃度が0.05〜0.15mass%、SO3濃度が0.05〜0.50mass%、CAA40%が50〜90秒を満足し、さらに20℃,30分の水和試験による水和量が1.5〜2.5mass%でかつ20℃,180分の水和試験による水和量が3.0〜5.0mass%である粉体を用い、
スラリーの水和温度と平均水和時間の調整により、該粉体を水でスラリー状にして塗布、乾燥させた後のマグネシアの水和量が1.0mass%以上 3.5mass%以下になるように水和させた焼鈍分離剤を、鋼板表面に塗布、乾燥することを特徴とする方向性電磁鋼板用焼鈍分離剤の塗布方法。
That is, the gist configuration of the present invention is as follows.
1. Application method of annealing separator for grain-oriented electrical steel sheet comprising applying and drying annealing separator mainly composed of magnesia to decarburized annealing sheet for grain-oriented electrical steel sheet having oxide film containing SiO 2 on steel sheet surface layer In
As magnesia in the annealing separator, Cl concentration impurity 0.01~0.04mass%, CaO concentration 0.25~0.70mass%, B concentration 0.05~0.15mass%, SO 3 concentration 0.05~0.50mass%, CAA40% Satisfying 50 to 90 seconds, hydration amount by hydration test at 20 ° C for 30 minutes is 1.5 to 2.5 mass%, and hydration amount by hydration test at 20 ° C for 180 minutes is 3.0 to 5.0 mass% Using the powder that is
By adjusting the hydration temperature and the average hydration time of the slurry, water was applied so that the amount of hydration of magnesia after the slurry was applied in slurry form with water and dried was 1.0 mass% to 3.5 mass%. A method for applying an annealing separator for grain-oriented electrical steel sheets, wherein the annealed separator is applied to the surface of the steel sheet and dried.

2.最終板厚とした鋼板に、脱炭焼鈍を施し、鋼板表層にSiO2を含む酸化膜を形成したのち、マグネシアを主剤とする焼鈍分離剤を塗布、乾燥してから、最終仕上げ焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法において、
前記焼鈍分離剤中のマグネシアとして、不純物のCl濃度が0.01〜0.04mass%、CaO濃度が0.25〜0.70mass%、B濃度が0.05〜0.15mass%、SO3濃度が0.05〜0.50mass%、CAA40%が50〜90秒を満足し、さらに20℃,30分の水和試験による水和量が1.5〜2.5mass%でかつ20℃,180分の水和試験による水和量が3.0〜5.0mass%である粉体を用い、
スラリーの水和温度と平均水和時間の調整により、該粉体を水でスラリー状にして塗布、乾燥させた後のマグネシアの水和量が1.0mass%以上 3.5mass%以下になるように水和させた焼鈍分離剤を、鋼板表面に塗布、乾燥することを特徴とする方向性電磁鋼板の製造方法。
2. A series of steel sheets with the final thickness are decarburized and annealed, an oxide film containing SiO 2 is formed on the surface of the steel sheet, and then an annealing separator containing magnesia is applied and dried, followed by final finish annealing. In the method for producing a grain-oriented electrical steel sheet comprising the steps of:
As magnesia in the annealing separator, Cl concentration impurity 0.01~0.04mass%, CaO concentration 0.25~0.70mass%, B concentration 0.05~0.15mass%, SO 3 concentration 0.05~0.50mass%, CAA40% Satisfying 50 to 90 seconds, hydration amount by hydration test at 20 ° C for 30 minutes is 1.5 to 2.5 mass%, and hydration amount by hydration test at 20 ° C for 180 minutes is 3.0 to 5.0 mass% Using the powder that is
By adjusting the hydration temperature and the average hydration time of the slurry, water was applied so that the amount of hydration of magnesia after the slurry was applied in slurry form with water and dried was 1.0 mass% to 3.5 mass%. A method for producing a grain-oriented electrical steel sheet, characterized in that a annealed annealing separator is applied to a steel sheet surface and dried.

焼鈍分離剤用マグネシアとして、本発明で規定した粉体特性を満足するもの用い、かつ実生産ラインにおいて、スラリーの水和温度と平均水和時間により、該粉体を水でスラリー状にして塗布・乾燥させた後のマグネシアの水和量を一定範囲に制御することにより、被膜特性と磁気特性に優れた方向性電磁鋼板を得ることができる。   Use magnesia for annealing separator that satisfies the powder characteristics specified in the present invention, and in the actual production line, apply the powder in slurry form with water at the hydration temperature and average hydration time of the slurry. -By controlling the hydration amount of magnesia after drying within a certain range, a grain-oriented electrical steel sheet having excellent coating properties and magnetic properties can be obtained.

以下、本発明の基礎となった実験結果ついて説明する。なお、鋼板の成分組成に関する「%」表示は特に断らない限りmass%(質量%)を意味するものとする。
(実験1)
C:0.065%,Si:3.34%,酸可溶性Al:0.026%,N:0.0087%,Mn:0.074%,Se:0.018%,Sb:0.04%およびCu:0.10%を含み、残部はFeおよび不可避的不純物の組成になるけい素鋼スラブ15本を、1400℃で30分加熱後、熱間圧延して2.2mmの板厚にした。ついで、1000℃,45秒間のノルマ焼鈍後、1.5mm厚に冷延し、1100℃,45秒間の中間焼鈍後、2回目の冷間圧延により最終冷延板厚:0.22mmとした。このとき、最終冷間圧延は、少なくとも1パスは圧延ロール出側直後の鋼板温度が180〜250℃になるような圧延とした。その後、H2−H20−N2中、850℃の温度で脱炭・一次再結晶焼鈍を施したのち、マグネシアを主剤とする焼鈍分離剤を塗布、乾燥してから、最終仕上げ焼鈍を行った。
Hereinafter, the experimental results on which the present invention is based will be described. In addition, unless otherwise indicated, "%" display regarding the component composition of a steel plate shall mean mass% (mass%).
(Experiment 1)
C: 0.065%, Si: 3.34%, acid-soluble Al: 0.026%, N: 0.0087%, Mn: 0.074%, Se: 0.018%, Sb: 0.04% and Cu: 0.10%, the balance being Fe and inevitable Fifteen silicon steel slabs with an impurity composition were heated at 1400 ° C. for 30 minutes and hot-rolled to a thickness of 2.2 mm. Then, after normal annealing at 1000 ° C. for 45 seconds, it was cold-rolled to a thickness of 1.5 mm. After intermediate annealing at 1100 ° C. for 45 seconds, the final cold-rolled sheet thickness was 0.22 mm by the second cold rolling. At this time, the final cold rolling was performed such that the steel plate temperature immediately after the rolling roll exit side was 180 to 250 ° C. for at least one pass. Then, after decarburization and primary recrystallization annealing at a temperature of 850 ° C. in H 2 —H 2 0-N 2 , an annealing separator containing magnesia is applied and dried, and then final finish annealing is performed. went.

このとき、マグネシアとしては表1に示される粉体特性を持つ15種類の粉体(No.1〜15)を用いた。表1中、CAA40(s)は、特公昭57−45472号公報に開示の方法を用いて測定した(0.4Nのクエン酸、30℃での測定)。また、各マグネシア100質量部に対してTiO2を8質量部、Sr(OH)2・8H20を2質量部、SnO2を2質量部添加して、焼鈍分離剤とした。
その後、最終仕上げ焼鈍として、850℃から1150℃までを15℃/hの昇温速度で加熱し、引き続き1200℃,5時間の純化焼鈍を施した。その後、未反応分離剤を除去したのち、りん酸マグネシウム、コロイダルシリカおよびクロム酸を主成分とする絶縁コーティングを施して製品板とした。
At this time, 15 kinds of powders (No. 1 to 15) having powder characteristics shown in Table 1 were used as magnesia. In Table 1, CAA40 (s) was measured using the method disclosed in JP-B-57-45472 (measurement at 0.4N citric acid at 30 ° C). Further, 8 parts by mass of TiO 2 , 2 parts by mass of Sr (OH) 2 .8H 2 0, and 2 parts by mass of SnO 2 were added to 100 parts by mass of each magnesia to obtain an annealing separator.
After that, as final finish annealing, heating was performed from 850 ° C. to 1150 ° C. at a rate of temperature increase of 15 ° C./h, followed by purification annealing at 1200 ° C. for 5 hours. Then, after removing the unreacted separating agent, an insulating coating mainly composed of magnesium phosphate, colloidal silica and chromic acid was applied to obtain a product plate.

かくして得られた方向性電磁鋼板の磁気特性(磁束密度B8,鉄損W17/50)、被膜欠陥発生率および被膜密着性について調べた結果を、表1に併記する。
なお、被膜欠陥発生率は、レーザー式の表面検査装置を用いて評価し、被膜密着性は、被膜の曲げ密着性として、5mm間隔の種々の径を有する丸棒に試験片を巻き付け、被膜が剥離しない最小径で評価した。
The results of examining the magnetic properties (magnetic flux density B 8 , iron loss W 17/50 ), film defect occurrence rate, and film adhesion of the grain- oriented electrical steel sheet thus obtained are also shown in Table 1.
The film defect occurrence rate was evaluated using a laser type surface inspection apparatus, and the film adhesion was determined by winding test pieces around round bars having various diameters at intervals of 5 mm as the film bend adhesion. The minimum diameter that does not peel was evaluated.

Figure 2008127635
Figure 2008127635

表1から明らかなように、No.1からNo.13までの比較では、CaOとSO3濃度が高いNo.2を除き、20℃,30分の水和試験による水和量が1.5〜2.5wt%、かつ20℃,180分の水和試験による水和量が3.0〜5.0wt%あるマグネシアを用いた場合(No.7〜13)には、被膜欠陥発生率が低下して、良好な被膜を得ることができた。また、磁気特性も良好な値が得られた。一方、上記水和量範囲を満足しても、CaOとSO3濃度が高いNo.2では被膜欠陥発生率が高くなり、また上記水和量範囲を満足していないNo.1,3〜6ではさらに被膜欠陥発生率が高くなって密着性も劣化していた。
しかし、No.14,15は、水和量が上記の範囲を満足し、Cl,CaO,B,SO3の量やCAA40値がNo.7〜13と同等であったにもかかわらず、被膜特性と磁気特性は良くなかった。
As is clear from Table 1, in the comparison from No. 1 to No. 13, except for No. 2 where CaO and SO 3 concentrations are high, the hydration amount in a hydration test at 20 ° C. for 30 minutes is 1.5 to 2.5. When magnesia with a hydration amount of 3.0 to 5.0 wt% (No. 7 to 13) is used at wt% and 20 ° C for 180 minutes (No. 7 to 13), the occurrence rate of film defects is reduced and good A film could be obtained. Also, good magnetic properties were obtained. On the other hand, even if the above hydration amount range is satisfied, No. 2 with high CaO and SO 3 concentrations increases the film defect occurrence rate, and No. 1, 3 to 6 does not satisfy the above hydration amount range. Then, the film defect occurrence rate was further increased and the adhesion was also deteriorated.
However, Nos. 14 and 15 were coated even though the hydration amount satisfied the above range, and the amounts of Cl, CaO, B and SO 3 and CAA40 values were equivalent to those of Nos. 7 to 13. The properties and magnetic properties were not good.

この原因を調べるために、各ラインの操業条件や通板日を調べたところ、No.14,15の マグネシアは、No.1〜13のマグネシアとは異なる日時に塗布されており、その日はかなり気温が高くて暑い日であったことが分かった。
通常、マグネシアスラリーの水和温度は20℃に設定されているが、暑い日には配管や鋼板の温度が高くなるなどして、マグネシアの水和が進行しやすい状況にあると思われる。従って、No.14,15のマグネシアを塗布した際には、実際に塗布、乾燥された後の水和量が高くなり、その影響で良好な被膜および磁気特性が得られなかったものと推察された。
In order to investigate this cause, the operating conditions of each line and the passage date were examined. As a result, magnesia No.14 and 15 was applied at a date and time different from that of magnesia No.1-13. It turned out that it was a hot day with high temperatures.
Usually, the hydration temperature of magnesia slurry is set to 20 ° C, but it seems that the hydration of magnesia is likely to proceed due to the high temperature of piping and steel sheets on hot days. Therefore, when No. 14 and 15 magnesia were applied, the amount of hydration after the actual application and drying was high, and it was assumed that good film and magnetic properties could not be obtained due to the effect. It was.

そこで、上記の推定を検証するために、ライン速度や鋼板の板幅、焼鈍分離剤の塗布量などによって決まる焼鈍分離剤スラリー消費量を勘案して、新液スラリーの調合ピッチによって決まる平均水和時間とスラリーの水和温度を制御することによって、マグネシア水和量を一定範囲で変化させ、実際の塗布・乾燥後の水和量が方向性電磁鋼板の被膜特性および磁気特性に及ぼす影響について調査した。   Therefore, in order to verify the above estimation, the average hydration determined by the blending pitch of the new liquid slurry in consideration of the annealing separator slurry consumption determined by the line speed, the plate width of the steel sheet, the application amount of the annealing separator, etc. By controlling the time and hydration temperature of the slurry, the amount of magnesia hydration was varied within a certain range, and the effect of the amount of hydration after coating and drying on the coating properties and magnetic properties of grain-oriented electrical steel sheets was investigated. did.

(実験2)
C:0.073%,Si:3.41%,酸可溶性Al:0.023%,N:0.0080%,Mn:0.067%,Se:0.02%,Sb:0.037%およびCu:0.08%を含み、残部はFeおよび不可避的不純物の組成になるけい素鋼スラブ10本を、1430℃で30分加熱後、熱間圧延して2.4mmの板厚にした。ついで、1000℃,60秒間のノルマ焼鈍後、1.6mm厚に冷延し、1100℃,30秒間の中間焼鈍後、2回目の冷間圧延により最終冷延板厚:0.22mmとした。このとき、最終冷間圧延は、少なくとも1パスは圧延ロール出側直後の鋼板温度が180〜250℃になるような圧延とした。その後、H2−H20−N2中、850℃の温度で脱炭・一次再結晶焼鈍を施した後、マグネシアを主剤とする焼鈍分離剤を塗布、乾燥してから、最終仕上げ焼鈍を行った。
(Experiment 2)
C: 0.073%, Si: 3.41%, acid-soluble Al: 0.023%, N: 0.0080%, Mn: 0.067%, Se: 0.02%, Sb: 0.037% and Cu: 0.08%, the balance being Fe and inevitable Ten silicon steel slabs with an impurity composition were heated at 1430 ° C. for 30 minutes and hot-rolled to a thickness of 2.4 mm. Then, after normal annealing at 1000 ° C. for 60 seconds, it was cold-rolled to 1.6 mm thickness, and after intermediate annealing at 1100 ° C. for 30 seconds, the final cold-rolled sheet thickness was 0.22 mm by the second cold rolling. At this time, the final cold rolling was performed such that the steel plate temperature immediately after the rolling roll exit side was 180 to 250 ° C. for at least one pass. Then, after decarburization and primary recrystallization annealing at a temperature of 850 ° C. in H 2 —H 2 0-N 2 , an annealing separator containing magnesia is applied and dried, and then final finish annealing is performed. went.

このとき、マグネシアとしては表2に示される粉体特性をもつ2種類の粉体(記号A,B)を用いた。その際、CAA40(s)は、前記した特公昭57−45472号公報に開示の方法を用いて測定した。また、各マグネシア:100質量部に対してTiO2を10質量部、Sr(OH)2・8H20を3質量部、Sn02を4質量部添加して焼鈍分離剤とした。
さらに、スラリーの水和温度と平均水和時間を制御することによって、焼鈍分離剤スラリーを塗布、乾燥させた後のマグネシアの水和量が表3に示す一定範囲になるようにした。
At this time, two types of powders (symbols A and B) having powder characteristics shown in Table 2 were used as magnesia. At that time, CAA40 (s) was measured using the method disclosed in the above-mentioned JP-B-57-45472. Each magnesia: 10 parts by weight of TiO 2 per 100 parts by mass, Sr (OH) 2 · 8H 2 0 to 3 parts by weight, and the annealing separator is added 4 parts by weight of Sn0 2.
Furthermore, by controlling the hydration temperature and average hydration time of the slurry, the amount of hydration of magnesia after applying and drying the annealing separator slurry was made to be within a certain range shown in Table 3.

その後、最終仕上げ焼鈍として、850℃から1150℃までを15℃/hの昇温速度で加熱し、引き続き1200℃,5時間の純化焼鈍を施した。その後、未反応分離剤を除去したのち、りん酸マグネシウム、コロイダルシリカおよびクロム酸を主成分とする絶縁コーティングを施して製品板とした。   After that, as final finish annealing, heating was performed from 850 ° C. to 1150 ° C. at a rate of temperature increase of 15 ° C./h, followed by purification annealing at 1200 ° C. for 5 hours. Then, after removing the unreacted separating agent, an insulating coating mainly composed of magnesium phosphate, colloidal silica and chromic acid was applied to obtain a product plate.

かくして得られた方向性電磁鋼板の磁気特性(磁束密度B8,鉄損W17/50)、被膜欠陥発生率および被膜密着性について調べた結果を、表3に併記する。
なお、被膜欠陥発生率は、レーザー式の表面検査装置を用いて評価し、被膜密着性は、被膜の曲げ密着性として、5mm間隔の種々の径を有する丸棒に試験片を巻き付け、被膜が剥離しない最小径で評価した。
Table 3 shows the results of examining the magnetic properties (magnetic flux density B 8 , iron loss W 17/50 ), film defect occurrence rate, and film adhesion of the grain- oriented electrical steel sheet thus obtained.
The film defect occurrence rate was evaluated using a laser type surface inspection apparatus, and the film adhesion was determined by winding test pieces around round bars having various diameters at intervals of 5 mm as the film bend adhesion. The minimum diameter that does not peel was evaluated.

Figure 2008127635
Figure 2008127635

Figure 2008127635
Figure 2008127635

表3から明らかなように、スラリーの水和温度と平均水和時間を調整することにより、塗布、乾燥させた後のマグネシアの水和量を1.0mass%以上 3.5mass%以下の範囲に制御した場合に、良好な被膜特性および磁気特性を得ることができた。   As is clear from Table 3, by adjusting the hydration temperature and average hydration time of the slurry, the amount of hydration of magnesia after coating and drying was controlled in the range of 1.0 mass% to 3.5 mass%. In some cases, good film properties and magnetic properties could be obtained.

このような結果が得られた理由について、発明者らは次のように考えている。
焼鈍分離剤用マグネシアの反応性、すなわち被膜形成能の評価法として、従来はクエン酸活性度(CAA)を用いるのが一般的であった。この方法では、CAA40やCAA70,CAA80などの種々の反応段階での値やそれらの比を用いた評価法が提案されている。また、その他にも、BET比表面積やN2ガス吸着等温線、水蒸気吸着等温線などを用いる方法も提案されている。しかしながら、焼鈍分離剤用マグネシアは、水でスラリー化して用いるものであるから、水和試験による水和量の時間変化の程度が、これまでの方法より最も工程条件に近い条件で、反応性を評価できたためであろうと考えられる。
また、マグネシアの粉体持性だけでなく、実際にコイル状の鋼板に持ち込まれる水和・水分量が被膜特性および磁気特性に大きく影響するので、塗布された後のマグネシア水和量を、可能な限り厳密に制御することが、被膜特性および磁気特性の向上ならびに安定化に大きく寄与するものと考えられる。
The inventors consider the reason why such a result is obtained as follows.
Conventionally, citric acid activity (CAA) is generally used as a method for evaluating the reactivity of magnesia for an annealing separator, that is, a film forming ability. In this method, an evaluation method using values at various reaction stages such as CAA40, CAA70, and CAA80 and their ratios has been proposed. In addition, methods using a BET specific surface area, an N 2 gas adsorption isotherm, a water vapor adsorption isotherm, and the like have been proposed. However, since magnesia for annealing separator is slurried with water and used, the degree of time change in the amount of hydration in the hydration test is the closest to the process conditions than the conventional method, and the reactivity is improved. It is thought that it was because of the evaluation.
In addition to the powder holding properties of magnesia, the amount of hydration and moisture actually brought into the coiled steel sheet greatly affects the coating properties and magnetic properties, so the amount of magnesia hydration after coating is possible. Control as strictly as possible is considered to greatly contribute to the improvement and stabilization of the film characteristics and magnetic characteristics.

さて、本発明で対象とする方向性電磁鋼板の成分組成については、従来公知の方向性電磁鋼板であればいずれもが適合する。
例えば、Cは0.01%以上 0.10%以下が好適範囲である。すなわち、C量が0.01%に満たないと良好な一次再結晶組織が得られず、一方0.10%を超えると脱炭焼鈍時の脱炭負荷が増大して生産性が低下する。
また、Siは2.0%以上 4.0%以下が好適範囲である。すなわち、Siは製品の電気抵抗を高めて渦電流損を低減させる上で有用な成分であるが、含有量が2.0%に満たないと最終仕上げ焼鈍中にα−γ変態によって結晶方位が損なわれ、一方4.0%を超えると冷延性に問題が生じるためである。
Now, as for the component composition of the grain-oriented electrical steel sheet targeted in the present invention, any conventionally known grain-oriented electrical steel sheet is suitable.
For example, the preferable range of C is 0.01% or more and 0.10% or less. That is, if the amount of C is less than 0.01%, a good primary recrystallization structure cannot be obtained. On the other hand, if it exceeds 0.10%, the decarburization load during decarburization annealing increases and productivity decreases.
Si is preferably in the range of 2.0% to 4.0%. In other words, Si is a useful component for increasing the electrical resistance of the product and reducing eddy current loss. However, if the content is not less than 2.0%, the crystal orientation is impaired by α-γ transformation during final finish annealing. On the other hand, if it exceeds 4.0%, there is a problem in cold-rollability.

上記したC,Siの他にインヒビター構成元素を添加する。インヒビターとしてはAlN,MnS,MnSe等が良く知られているが、これらのいずれを用いてもよい。例えば、MnSおよび/またはMnSeを用いる場合には、Mn:0.05〜0.20%、Seおよび/またはS:0.01〜0.03%が好適範囲である。すなわち、Mn量が0.05%未満、またはS,Seの単独もしくは合計量が0.01%未満であると、インヒビター機能が不十分となり、一方、Mn量が0.20%を超え、またSeやS量が0.03%を超えると、スラブ加熱の際に必要とする温度が高くなりすぎて実用的でない。また、AlNをインヒビターに用いる場合は、Al:0.01〜0.04%、N:0.0050〜0.012%が好適範囲である。これらの上限を超える量では、AlNの粗大化を招いて抑制力を失い、一方これらの下限に満たない場合にはAlN量が不足する。   In addition to the above C and Si, an inhibitor constituent element is added. As the inhibitor, AlN, MnS, MnSe and the like are well known, and any of these may be used. For example, when MnS and / or MnSe is used, Mn: 0.05 to 0.20% and Se and / or S: 0.01 to 0.03% are preferable ranges. That is, if the Mn amount is less than 0.05%, or the S or Se alone or the total amount is less than 0.01%, the inhibitor function is insufficient, while the Mn amount exceeds 0.20% and the Se and S amounts are 0.03%. If it exceeds 50%, the temperature required for slab heating becomes too high, which is not practical. Moreover, when using AlN for an inhibitor, Al: 0.01-0.04% and N: 0.0050-0.012% are a suitable range. If the amount exceeds these upper limits, the AlN is coarsened and loses its restraining force. On the other hand, if the lower limit is not reached, the AlN amount is insufficient.

また、磁気特性を向上させるための補助インヒビターとして、SbあるいはSnを添加することができる。Sbは、含有量が0.005%に満たないとその添加効果に乏しく、一方0.10%を超えると脱炭性が非常に悪くなるので、0.005〜0.10%が好適範囲である。他方、Snは、含有量が0.03%に満たないとその添加効果に乏しく、一方0.30%を超えると良好な一次再結晶組織が得にくくなるので、0.03〜0.30%が好適範囲である。
さらに、Cuも磁気特性の向上・安定化に有効な元素である。しかし、含有量が0.05%に満たないとその添加効果に乏しく、一方0.20%を超えると酸洗性や熱間圧延時の脆性が劣化するので、0.05〜0.20%が好適範囲である。
Further, Sb or Sn can be added as an auxiliary inhibitor for improving the magnetic properties. If the content of Sb is less than 0.005%, the effect of addition is poor. On the other hand, if it exceeds 0.10%, the decarburization property becomes very poor, so 0.005 to 0.10% is a suitable range. On the other hand, if Sn content is less than 0.03%, the effect of addition is poor. On the other hand, if it exceeds 0.30%, it becomes difficult to obtain a good primary recrystallized structure, so 0.03 to 0.30% is a suitable range.
Furthermore, Cu is an element effective for improving and stabilizing magnetic properties. However, if the content is less than 0.05%, the effect of addition is poor, while if it exceeds 0.20%, pickling and brittleness during hot rolling deteriorate, so 0.05 to 0.20% is a suitable range.

上記した元素の他に、磁気特性あるいは被膜特性の改善成分として、Mo,Cr,Ni,P,Biなどを単独または複合して添加することが可能である。
Moは、含有量が0.005%未満ではその添加効果に乏しく、一方0.10%を超えると脱炭性が悪化するので、0.005〜0.10%が好適範囲である。
Crは、含有費が0.04%未満ではその添加効果に乏しく、一方0.30%を超えると良好な一次再結晶組織が得にくくなるので、0.04〜0.30%が好適範囲である。
Niは、含有量が0.03%未満ではその添加効果に乏しく、一方0.50%を超えると熱間強度が低下するので、0.03〜0.50%が好適範囲である。
Pは、含有量が0.008%未満ではその添加効果に乏しく、一方0.40%を超えると良好な一次再結晶組織が得にくくなるので、0.008〜0.40%が好適範囲である。
Biは、含有量が0.005%未満ではその添加効果に乏しく、一方0.20%を超えると良好な一次再結晶組織が得にくくなるので、0.005〜0.20%が好適範囲である。
In addition to the elements described above, Mo, Cr, Ni, P, Bi, etc. can be added alone or in combination as a component for improving magnetic properties or film properties.
When the content of Mo is less than 0.005%, the effect of addition is poor. On the other hand, when the content exceeds 0.10%, decarburization deteriorates, so 0.005 to 0.10% is a preferable range.
When Cr content is less than 0.04%, the effect of addition is poor. On the other hand, when it exceeds 0.30%, it becomes difficult to obtain a good primary recrystallized structure, so 0.04 to 0.30% is a preferable range.
When Ni content is less than 0.03%, the effect of addition is poor. On the other hand, when Ni content exceeds 0.50%, the hot strength decreases, so 0.03 to 0.50% is a preferable range.
If the P content is less than 0.008%, the effect of addition is poor. On the other hand, if it exceeds 0.40%, it is difficult to obtain a good primary recrystallized structure, so 0.008 to 0.40% is a preferred range.
If the content of Bi is less than 0.005%, the effect of addition is poor. On the other hand, if it exceeds 0.20%, it becomes difficult to obtain a good primary recrystallized structure, so 0.005 to 0.20% is a suitable range.

次に、本発明の方向性電磁鋼板の好適製造条件について説明する。
従来から用いられている製鋼法で、上記成分に調整した溶鋼を、連続鋳造法あるいは造塊法で鋳造し、必要に応じて分塊工程を挟んでスラブを製造する。また、直接鋳造法を用いて100mm以下の厚さの薄鋳片を直接製造してもよい。
ついで、スラブを、通常の方法に従い加熱した後、熱間圧延により熱延コイルとする。
Next, preferred production conditions for the grain-oriented electrical steel sheet of the present invention will be described.
The molten steel adjusted to the above components is cast by a continuous steel casting method or an ingot-making method by a steel making method conventionally used, and a slab is produced with a lump process interposed as necessary. Further, a thin cast piece having a thickness of 100 mm or less may be directly produced using a direct casting method.
Next, the slab is heated according to a normal method, and then hot rolled to form a hot rolled coil.

上記の熱間圧延後、必要に応じて熱延板焼鈍を行ったのち、1回の冷間圧延あるいは中間焼鈍を挟む2回以上の冷間圧延により、最終板厚の冷延板とする。冷間圧延は、常温で行っても良いし、あるいは常温よりも高い温度、例えば150〜300℃程度に上げて圧延する温間圧延としてもよい。また、冷間圧延途中で150〜300℃の範囲での時効処理を1回または複数回行ってもよい。   After the above-described hot rolling, hot-rolled sheet annealing is performed as necessary, and then a cold-rolled sheet having a final thickness is obtained by one or more cold rolling or two or more cold rollings sandwiching intermediate annealing. The cold rolling may be performed at room temperature, or may be performed at a temperature higher than room temperature, for example, about 150 to 300 ° C. for rolling. Moreover, you may perform the aging treatment in the range of 150-300 degreeC in the middle of cold rolling once or several times.

このような最終板厚とした鋼板に、湿水素雰囲気中で脱炭(一次再結晶)焼鈍を施す。この脱炭焼鈍により、残留C量を0.004%以下まで低減することが望ましい。また、その際、鋼板表層にシリカ(SiO2)を含む酸化膜を形成させることが重要である。なお、このような脱炭焼鈍に引き続いて、30〜200ppm程度鋼板を窒化させる処理を行ってもよい。 The steel sheet having such a final thickness is subjected to decarburization (primary recrystallization) annealing in a wet hydrogen atmosphere. It is desirable to reduce the residual C amount to 0.004% or less by this decarburization annealing. At that time, it is important to form an oxide film containing silica (SiO 2 ) on the surface layer of the steel sheet. In addition, you may perform the process which nitrides about 30-200 ppm steel plate following such decarburization annealing.

その後、この脱炭焼鈍を施した鋼板表面に、マグネシアを主剤とする焼鈍分離剤をスラリー状にして塗布した後、乾燥させる。ここで、良好な被膜特性を得るためには、マグネシアの粉体特性として、不純物のCl濃度が0.01〜0.04%、Ca濃度が0.25〜0.70%、B濃度が0.05〜0.15%、SO3濃度が0.05〜0.50%、CAA40%値が50〜90秒である粉体を選択し、さらに20℃,30分の水和試験による水和量が1.5〜2.5mass%でかつ20℃,180分の水和試験による水和量が3.0〜5.0mass%である粉体を使用することが肝要である。 Thereafter, an annealing separator containing magnesia as a main agent is applied in a slurry state on the steel plate surface subjected to the decarburization annealing, and then dried. Here, in order to obtain good film characteristics, the magnesia powder characteristics are as follows: impurity Cl concentration is 0.01 to 0.04%, Ca concentration is 0.25 to 0.70%, B concentration is 0.05 to 0.15%, and SO 3 concentration is Select powder with 0.05-0.50% and CAA40% value of 50-90 seconds, and further hydrated by 1.5-2.5 mass% at 20 ° C for 30 minutes and water at 20 ° C for 180 minutes It is important to use a powder having a hydration amount of 3.0 to 5.0 mass% according to the sum test.

さらに、実際に、該粉体を水でスラリー状にして鋼板に塗布、乾燥させた後のマグネシアの水和量が1.0mass%以上 3.5mass%以下になるように水和させることが必要がある。ここで、実ラインでの水和量は、スラリーの水和温度と平均水和時間によって調整する必要がある。すなわち、生産ラインにおいて焼鈍分離剤スラリーは、一定量を塗布して消費した後、ほぼその消費量に見合う量を新たに調合して、残存スラリーに継ぎ足すことで、使用している。従って、水和温度については一定に制御できるものの、水和時間を一定にすることは困難なため、水和量をコイル全長にわたって一定値にすることは極めて難しい。なぜなら、マグネシアの水和量は、水和温度が高くなるあるいは水和時間が長くなるにつれて、高くなるからである。
但し、水和温度と平均水和時間を制御することによって、水和量をある一定範囲、例えば、2.5±0.3%などの範囲になるよう調整することは可能である。
Furthermore, it is necessary to actually hydrate the powder so that the amount of hydration of magnesia after it is slurryed with water, applied to a steel sheet, and dried is 1.0 mass% to 3.5 mass%. . Here, the amount of hydration in the actual line needs to be adjusted by the hydration temperature and average hydration time of the slurry. That is, in the production line, the annealing separator slurry is used by applying a certain amount and consuming it, and then adding a new amount almost commensurate with the consumption amount and adding it to the remaining slurry. Therefore, although the hydration temperature can be controlled to be constant, it is difficult to make the hydration time constant, so it is extremely difficult to make the amount of hydration constant over the entire coil length. This is because the amount of hydration of magnesia increases as the hydration temperature increases or the hydration time increases.
However, by controlling the hydration temperature and the average hydration time, the amount of hydration can be adjusted to a certain range, for example, a range of 2.5 ± 0.3%.

ここで、平均水和時間は、例えば次のようにして求めることができる。
例として、図1に示すように、スラリーを調合する際、スラリーを貯留するタンク容量の1/3の量を1回に調合する場合を考える。この図において、スラリーの塗布開始までは、前記1/3の量ずつ30分毎に調合する。この塗布開始時(a1)における平均水和時間は、
1=1/3×1.5hr+1/3×1hr+1/3×0.5hr=1hr
となる。そして、鋼板への塗布1時間経過ごとに1/3の量が消費され、その都度1/3の量を調合して継ぎ足すとすると、1回目の継ぎ足し時には、
2=2/3(残り)×(1+1)hr*+1/3×0hr=1.33hr
(* 塗布開始時の平均水和時間:1hr+継ぎ足しまでの1hr)
となる。同様に、2回目の継ぎ足し時には、
3=2/3×(1.33+1)+1/3×0hr=1.56hr
となる。よって、この例でのn回目の継ぎ足し時の平均水和時間an+1は、
n+1=2/3(an+1)
という漸化式で表される。ここで、a1=1であるから、
n+1=2−(2/3)n
という一般式で、この例における平均水和時間を求めることができる。
Here, the average hydration time can be determined, for example, as follows.
As an example, as shown in FIG. 1, when preparing a slurry, let us consider a case where 1/3 of the tank capacity for storing the slurry is prepared at a time. In this figure, the amount of 1/3 is blended every 30 minutes until the start of slurry application. The average hydration time at the start of application (a 1 ) is
a 1 = 1/3 x 1.5hr + 1/3 x 1hr + 1/3 x 0.5hr = 1hr
It becomes. And 1/3 of the amount is consumed every 1 hour of application to the steel plate, and if 1/3 of the amount is added and added each time,
a 2 = 2/3 (remaining) × (1 + 1) hr * + 1/3 × 0hr = 1.33hr
(* Average hydration time at the start of application: 1 hr + 1 hr until addition)
It becomes. Similarly, during the second addition,
a 3 = 2/3 × (1.33 + 1) + 1/3 × 0hr = 1.56hr
It becomes. Therefore, the average hydration time an + 1 at the time of the nth addition in this example is
a n + 1 = 2/3 (a n +1)
It is expressed by the recurrence formula. Here, since a 1 = 1,
a n + 1 = 2− (2/3) n
The average hydration time in this example can be determined by the general formula:

なお、上記粉体特性を有するマグネシアを使用し、該粉体をスラリー状にして塗布・乾燥させた後のマグネシアの水和水分量を1.0mass%以上 3.5mass%以下の範囲に制御するには、スラリーの水和温度を5〜22℃にして、上記した平均水和時間を制御する。平均水和時間は、スラリー1回ごとの調合量、新液スラリーの調合間隔、スラリーの単位時間当たりの消費量によって決まる。従って、これらの要因を勘案して塗布・乾燥させた後のマグネシアの水和量が上記の範囲となるように、平均水和時間を制御すればよく、好適にはこの平均水和時間が20〜90分の範囲になるようにするのが望ましい。   In addition, in order to control the hydration moisture content of magnesia after using the magnesia having the above-mentioned powder characteristics and applying and drying the powder in a slurry state to the range of 1.0 mass% to 3.5 mass% The hydration temperature of the slurry is set to 5 to 22 ° C. to control the above average hydration time. The average hydration time is determined by the blending amount per slurry, the blending interval of the new liquid slurry, and the consumption per unit time of the slurry. Therefore, in consideration of these factors, the average hydration time may be controlled so that the amount of hydration of magnesia after coating and drying is within the above range, and preferably this average hydration time is 20%. It should be in the range of ~ 90 minutes.

また、磁気特性や被膜特性改善のために使用する焼鈍分離剤中の副剤は、従来から公知のものを用いることができるが、一般的にはTiO2,SnO2,MoO3,WO3,CuO,MnOのような酸化物、MgSO4・7H2O,SrSO4,SnSO4のような硫化物、Sr(0H)2・8H20やLiOHのような水酸化物、Na2B407のようなB系化合物、Sb203,Sb2(SO4)3のようなSb系化合物などが知られている。これらの化合物を添加する場合の添加量は、マグネシア100質量部に対して、0.5〜15質量部とすることが望ましく、1種または2種以上をそれぞれ単独または複合して添加することができる。但し、トータルでの添加量は、マグネシア100質量部に対して、20質量部以下とすることが望ましい。 Further, as the auxiliary agent in the annealing separator used for improving the magnetic properties and film properties, conventionally known ones can be used, but in general, TiO 2 , SnO 2 , MoO 3 , WO 3 , CuO, oxides such as MnO, MgSO 4 · 7H 2 O , SrSO 4, sulfides such as SnSO 4, Sr (0H) 2 · 8H 2 0 or hydroxides such as LiOH, Na 2 B 4 0 B-based compounds such as 7 and Sb-based compounds such as Sb 2 0 3 and Sb 2 (SO 4 ) 3 are known. When these compounds are added, the addition amount is preferably 0.5 to 15 parts by mass with respect to 100 parts by mass of magnesia, and one or two or more can be added individually or in combination. However, the total addition amount is desirably 20 parts by mass or less with respect to 100 parts by mass of magnesia.

さらに、焼鈍分離剤は、鋼板片面当たり4〜10 g/m2程度の範囲で塗布するのが好ましい。というのは、塗布量が4g/m2より少ないとフォルステライトの生成が不十分となり、一方10g/m2を超えるとフォルステライト質被膜が過剰に生成し厚くなるため、占積率の低下を招くからである。 Further, the annealing separator is preferably applied in a range of about 4 to 10 g / m 2 per one side of the steel sheet. This is because if the coating amount is less than 4 g / m 2, the formation of forsterite becomes insufficient. On the other hand, if it exceeds 10 g / m 2 , the forsterite film is excessively formed and becomes thick. Because it invites.

ついで、従来から公知の方法で、二次再結晶焼鈍および純化焼鈍からなる最終仕上げ焼鈍を行う。
その後、鋼板表面に、りん酸塩系の絶縁コーティング、好ましくは張力を付与する絶縁コーティングを施して製品とする。絶縁被膜の種類については、特に限定されず、従来公知の絶縁被膜いずれもが適合する。例えば、特開昭50−79442号公報や特開昭48−39338号公報に記載されている、りん酸塩−クロム酸−コロイダルシリカを含有する塗布液を鋼板に塗布し、800℃程度で焼き付ける方法が好適である。
さらに、最終冷延後、最終仕上げ焼鈍後あるいは絶縁コーティングの被成後に、既知の磁区細分化処理を行うことは、さらなる鉄損の低減に有効である。
Subsequently, final finish annealing consisting of secondary recrystallization annealing and purification annealing is performed by a conventionally known method.
Thereafter, a phosphate-based insulating coating, preferably an insulating coating that imparts tension, is applied to the steel sheet surface to obtain a product. The type of insulating coating is not particularly limited, and any conventionally known insulating coating is suitable. For example, a coating solution containing phosphate-chromic acid-colloidal silica described in JP-A-50-79442 and JP-A-48-39338 is applied to a steel plate and baked at about 800 ° C. The method is preferred.
Furthermore, performing a known magnetic domain refinement treatment after the final cold rolling, after the final finish annealing, or after forming the insulating coating is effective in further reducing iron loss.

実施例1
C:0.072%,Si:3.41%,Mn:0.072%,Se:0.019%,酸可溶性Al:0.024%,N:83ppm,Cu:0.10%,Sb:0.041%およびNi:0.2%を含有し、残部はFeおよび不可避的不純物の組成になる複数の方向性電磁鋼板用スラブを、1420℃で30分間加熱後、熱間圧延を施して板厚:2.2mmの熱延板とした。ついで、1000℃,l分間の熱延板焼鈍後、1回目の冷間圧延により板厚:1.6mmとし、1100℃,1分間の中間焼鈍後、2回目の冷間圧延により最終板厚:0.22mmに仕上げた。このとき、2回目の冷間圧延は、少なくとも2パスは圧延ロール出側直後の鋼板温度が150〜250℃になるような圧延とした。
Example 1
Contains C: 0.072%, Si: 3.41%, Mn: 0.072%, Se: 0.019%, acid-soluble Al: 0.024%, N: 83ppm, Cu: 0.10%, Sb: 0.041% and Ni: 0.2%, the balance Slabs for grain-oriented electrical steel sheets having a composition of Fe and unavoidable impurities were heated at 1420 ° C. for 30 minutes, and then hot-rolled to form a hot-rolled sheet having a thickness of 2.2 mm. Then, after hot-rolled sheet annealing at 1000 ° C. for l minute, the sheet thickness is 1.6 mm by the first cold rolling, and after intermediate annealing at 1100 ° C. for 1 minute, the final sheet thickness is 0.22 by the second cold rolling. Finished to mm. At this time, the second cold rolling was performed so that the steel plate temperature immediately after the exit side of the rolling roll was 150 to 250 ° C. for at least two passes.

ついで、冷延板を脱脂して表面を清浄化したのち、H2−H20−N2雰囲気中にて、840℃,2分間の脱炭・一次再結晶焼鈍を行って、鋼板表層にシリカ(SiO2)を含む酸化層を形成した後、マグネシア:100質量部に対して、TiO2を10質量部、Sr(0H)2・8H20を3質量部配合した焼鈍分離剤を水でスラリー状にして塗布した。このとき用いたマグネシアの粉体特性およびスラリーの水和温度と平均水和時間を変更することによって制御した、塗布・乾燥後の水和量を表4に示す。
その後、窒素雰囲気中にて850℃,20hの保定焼鈍に続いて、窒素:25%,水素:75%の雰囲気中、15℃/hの速度で1150℃まで昇温する二次再結晶焼鈍を施した後、水素雰囲気中にて1200℃,5時間の純化焼鈍を行う最終仕上げ焼鈍を行ってから、りん酸マグネシウム、クロム酸およびコロイダルシリカを主成分とする絶縁コーティングを施した。
Next, after degreasing the cold-rolled sheet to clean the surface, decarburization and primary recrystallization annealing at 840 ° C for 2 minutes in an H 2 --H 2 0-N 2 atmosphere was performed on the steel sheet surface layer. After forming an oxide layer containing silica (SiO 2 ), magnesia: An annealing separator containing 10 parts by mass of TiO 2 and 3 parts by mass of Sr (0H) 2 · 8H 2 0 is added to 100 parts by mass of water. The slurry was applied as a slurry. Table 4 shows the hydration amount after coating and drying, which was controlled by changing the powder characteristics of the magnesia used at this time and the hydration temperature and average hydration time of the slurry.
Then, after retentive annealing at 850 ° C for 20 hours in a nitrogen atmosphere, secondary recrystallization annealing was performed to raise the temperature to 1150 ° C at a rate of 15 ° C / h in an atmosphere of nitrogen: 25% and hydrogen: 75%. After the application, final finish annealing was performed in a hydrogen atmosphere at 1200 ° C. for 5 hours, and then an insulating coating containing magnesium phosphate, chromic acid and colloidal silica as the main components was applied.

かくして得られた各製品板について、磁気特性(磁束密度B8,鉄損W17/50)、被膜外観および被膜密着性について調べた結果を、表4に併記する。
なお、被膜外観は被膜欠陥発生率で、また被膜密着性は、被膜の曲げ密着性として、5mm間隔の種々の径を有する丸棒に試験片を巻き付け、被膜が剥離しない最小径で評価した。
Table 4 shows the results of examining the magnetic properties (magnetic flux density B 8 , iron loss W 17/50 ), coating appearance and coating adhesion of each product plate thus obtained.
The appearance of the film was evaluated as the film defect occurrence rate, and the film adhesion was evaluated as the bending adhesion of the film by wrapping a test piece around a round bar having various diameters at intervals of 5 mm and the minimum diameter at which the film did not peel off.

Figure 2008127635
Figure 2008127635

表4から明らかなように、本発明に従う条件で製造した発明例はいずれも、良好な磁気特性および被膜特性が得られている。   As is apparent from Table 4, all of the inventive examples produced under the conditions according to the present invention have good magnetic properties and coating properties.

実施例2
C:0.039%,Si:3.36%,Mn:0.068%,Se:0.020%,Cu:0.12%,Sb:0.025%,Mo:0.012%を含有し、残部はFeおよび不可避的不純物の組成になる複数の方向性電磁鋼板用スラブを、1410℃で30分間加熱後、熱間圧延を施して板厚:2.5mmの熱延板とした。ついで、1000℃,1分間の熱延板焼鈍後、1回目の冷間圧延により板厚:0.6mmとし、1000℃,1分間の中間焼鈍後、2回目の冷間圧延により最終板厚:0.22mmに仕上げた。
Example 2
Contains C: 0.039%, Si: 3.36%, Mn: 0.068%, Se: 0.020%, Cu: 0.12%, Sb: 0.025%, Mo: 0.012%, with the balance being Fe and inevitable impurities The slab for grain-oriented electrical steel sheet was heated at 1410 ° C. for 30 minutes and then hot-rolled to obtain a hot-rolled sheet having a thickness of 2.5 mm. Then, after hot-rolled sheet annealing at 1000 ° C. for 1 minute, the sheet thickness is 0.6 mm by the first cold rolling, and after final annealing at 1000 ° C. for 1 minute, the final sheet thickness is 0.22 by the second cold rolling. Finished to mm.

ついで、冷延板を脱脂して表面を清浄化したのち、H2−H20−N2雰囲気中にて、820℃,2分間の脱炭・一次再結晶焼鈍を行って、鋼板表層にシリカ(SiO2)を含む酸化層を形成した後、マグネシア:100質量部に対して、TiO2を2質量部、SrSO4を2質量部、MgSO4・7H20を0.5質量部配合した焼鈍分離剤を水でスラリー状にして塗布した。このとき用いたマグネシアの粉休特性、およびスラリーの水和温度と平均水和時間を変更することによって制御した塗布・乾燥後の水和量を表5に示す。
その後、窒素雰囲気中にて850℃で50h保定して、二次再結晶焼鈍を施したのち、水素雰囲気中にて25℃/hの速度で1180℃まで昇温後、1180℃,5時間の純化焼鈍を行う最終仕上げ焼鈍を行ってから、りん酸マグネシウム、クロム酸およびコロイダルシリカを主成分とする絶縁コーティングを施した。
Next, after degreasing the cold-rolled sheet to clean the surface, decarburization and primary recrystallization annealing at 820 ° C for 2 minutes in an H 2 --H 2 0-N 2 atmosphere is performed on the steel sheet surface layer. After forming an oxide layer containing silica (SiO 2 ), magnesia: annealing with 100 parts by mass of 2 parts by mass of TiO 2 , 2 parts by mass of SrSO 4 and 0.5 parts by mass of MgSO 4 · 7H 2 0 The separating agent was applied in a slurry form with water. Table 5 shows the powder rest characteristics of magnesia used at this time and the amount of hydration after coating and drying controlled by changing the hydration temperature and average hydration time of the slurry.
Then, after holding for 50 hours at 850 ° C in a nitrogen atmosphere and performing secondary recrystallization annealing, the temperature was raised to 1180 ° C at a rate of 25 ° C / h in a hydrogen atmosphere, then 1180 ° C for 5 hours. After the final finish annealing for purification annealing, an insulating coating mainly composed of magnesium phosphate, chromic acid and colloidal silica was applied.

かくして得られた各製品板について、磁気特性(磁束密度B8,鉄損W17/50)、被膜外観および被膜密着性について調べた結果を、表5に併記する。
なお、被膜外観は被膜欠陥発生率で、また被膜密着性は、被膜の曲げ密着性として、5mm間隔の種々の径を有する丸棒に試験片を巻き付け、被膜が剥離しない最小径で評価した。
Table 5 shows the results of examining the magnetic properties (magnetic flux density B 8 , iron loss W 17/50 ), coating appearance and coating adhesion of each product plate thus obtained.
The appearance of the coating film was evaluated as the film defect occurrence rate, and the coating film adhesion was evaluated as the bending adhesion of the coating film by wrapping a test piece around a round bar having various diameters at intervals of 5 mm, and the minimum diameter at which the coating film was not peeled off.

Figure 2008127635
Figure 2008127635

表5から明らかなように、本発明に従う条件で製造した発明例は、いずれも良好な磁気特性および被膜特性を示している。   As can be seen from Table 5, all of the inventive examples produced under the conditions according to the present invention exhibit good magnetic properties and coating properties.

実施例3
C:0.041%,Si:3.32%,酸可溶性:68ppm,N:44ppm,Sb:0.046%,Mn:0.11%,S+0.405Se:18ppm,Cu:0.12%およびCr:0.05%を含有し、残部はFeおよび不可避的不純物の組成になる複数の方向性電磁鋼板用スラブを、1200℃に加熱後、熱間柾延により板厚:2.2mmの熱延板とした。ついで、1050℃,1分間の熱延板焼鈍を行ってから、冷間圧延により最終板厚:0.29mmの冷延板とした。
Example 3
Contains C: 0.041%, Si: 3.32%, acid solubility: 68ppm, N: 44ppm, Sb: 0.046%, Mn: 0.11%, S + 0.405Se: 18ppm, Cu: 0.12% and Cr: 0.05%, the balance A plurality of slabs for grain-oriented electrical steel sheets having a composition of Fe and inevitable impurities were heated to 1200 ° C. and then hot rolled to form a hot rolled sheet having a thickness of 2.2 mm. Subsequently, after hot-rolled sheet annealing at 1050 ° C. for 1 minute, a cold-rolled sheet having a final sheet thickness of 0.29 mm was formed by cold rolling.

ついで、冷延板を脱脂して表面を清浄化したのち、H2−H20−N2雰囲気中にて、840℃,2分間の脱炭・一次再結晶焼鈍を行って、鋼板表層にシリカ(SiO2)を含む酸化膚を形成した後、マグネシア:100質量部に対して、Ti02を3質量部、SrSO4を2質量部配合した焼鈍分離剤を水でスラリー状にして塗布した。このとき用いたマグネシアの粉体特性、およびスラリーの水和温度と平均水和時間を変更することによって制御した塗布・乾燥後の水和量を表6に示す。
その後、窒素雰囲気中にて850℃で50h保定して、二次再結晶焼鈍を施したのち、水素雰囲気中にて25℃/hの速度で1100℃まで昇温後、アルゴン雰囲気中にて1200℃,5時間の純化焼鈍を行う最終仕上げ焼鈍を行ってから、りん酸マグネシウム、クロム酸およびコロイダルシリカを主成分とする絶縁コーティングを施した。
Next, after degreasing the cold-rolled sheet to clean the surface, decarburization and primary recrystallization annealing at 840 ° C for 2 minutes in an H 2 --H 2 0-N 2 atmosphere was performed on the steel sheet surface layer. After forming an oxidized skin containing silica (SiO 2 ), an annealing separator containing 3 parts by mass of Ti0 2 and 2 parts by mass of SrSO 4 was applied to 100 parts by mass of magnesia as a slurry with water. . Table 6 shows the powder characteristics of magnesia used at this time and the amount of hydration after coating and drying controlled by changing the hydration temperature and average hydration time of the slurry.
Then, after holding for 50 h at 850 ° C. in a nitrogen atmosphere and performing secondary recrystallization annealing, the temperature was raised to 1100 ° C. at a rate of 25 ° C./h in a hydrogen atmosphere, then 1200 in an argon atmosphere. After final finishing annealing for 5 hours at 5 ° C., an insulating coating composed mainly of magnesium phosphate, chromic acid and colloidal silica was applied.

かくして得られた各製品板について、磁気特性(磁束密度B8,鉄損W17/50)、被膜外観および被膜密着性について調べた結果を、表6に併記する。
なお、被膜外観は被膜欠陥発生率で、また被膜密着性は、被膜の曲げ密着性として、5mm間隔の種々の径を有する丸棒に試験片を巻き付け、被膜が剥離しない最小径で評価した。
Table 6 shows the results of examining the magnetic properties (magnetic flux density B 8 , iron loss W 17/50 ), coating appearance and coating adhesion of each product plate thus obtained.
The appearance of the coating film was evaluated as the film defect occurrence rate, and the coating film adhesion was evaluated as the bending adhesion of the coating film by wrapping a test piece around a round bar having various diameters at intervals of 5 mm, and the minimum diameter at which the coating film was not peeled off.

Figure 2008127635
Figure 2008127635

表6から明らかなように、本発明に従う条件で製造した発明例は、いずれも良好な磁気特性および被膜特性を示している。   As is apparent from Table 6, all of the inventive examples produced under the conditions according to the present invention exhibit good magnetic properties and coating properties.

スラリーを調合する際、スラリーを貯留するタンク容量の1/3の量を1回に調合する場合における平均水和時間の算出要領を示した図である。It is the figure which showed the calculation point of the average hydration time in the case of mix | blending the quantity of 1/3 of the tank capacity | capacitance which stores a slurry at once when preparing a slurry.

Claims (2)

鋼板表層にSiO2を含む酸化膜を有する方向性電磁鋼板用の脱炭焼鈍板に、マグネシアを主剤とする焼鈍分離剤を塗布、乾燥することからなる方向性電磁鋼板用焼鈍分離剤の塗布方法において、
前記焼鈍分離剤中のマグネシアとして、不純物のCl濃度が0.01〜0.04mass%、CaO濃度が0.25〜0.70mass%、B濃度が0.05〜0.15mass%、SO3濃度が0.05〜0.50mass%、CAA40%が50〜90秒を満足し、さらに20℃,30分の水和試験による水和量が1.5〜2.5mass%でかつ20℃,180分の水和試験による水和量が3.0〜5.0mass%である粉体を用い、
スラリーの水和温度と平均水和時間の調整により、該粉体を水でスラリー状にして塗布、乾燥させた後のマグネシアの水和量が1.0mass%以上 3.5mass%以下になるように水和させた焼鈍分離剤を、鋼板表面に塗布、乾燥することを特徴とする方向性電磁鋼板用焼鈍分離剤の塗布方法。
Application method of annealing separator for grain-oriented electrical steel sheet comprising applying and drying annealing separator mainly composed of magnesia to decarburized annealing sheet for grain-oriented electrical steel sheet having oxide film containing SiO 2 on steel sheet surface layer In
As magnesia in the annealing separator, Cl concentration impurity 0.01~0.04mass%, CaO concentration 0.25~0.70mass%, B concentration 0.05~0.15mass%, SO 3 concentration 0.05~0.50mass%, CAA40% Satisfying 50 to 90 seconds, hydration amount by hydration test at 20 ° C for 30 minutes is 1.5 to 2.5 mass%, and hydration amount by hydration test at 20 ° C for 180 minutes is 3.0 to 5.0 mass% Using the powder that is
By adjusting the hydration temperature and the average hydration time of the slurry, water was applied so that the amount of hydration of magnesia after the slurry was applied in slurry form with water and dried was 1.0 mass% to 3.5 mass%. A method for applying an annealing separator for grain-oriented electrical steel sheets, wherein the annealed separator is applied to the surface of the steel sheet and dried.
最終板厚とした鋼板に、脱炭焼鈍を施し、鋼板表層にSiO2を含む酸化膜を形成したのち、マグネシアを主剤とする焼鈍分離剤を塗布、乾燥してから、最終仕上げ焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法において、
前記焼鈍分離剤中のマグネシアとして、不純物のCl濃度が0.01〜0.04mass%、CaO濃度が0.25〜0.70mass%、B濃度が0.05〜0.15mass%、SO3濃度が0.05〜0.50mass%、CAA40%が50〜90秒を満足し、さらに20℃,30分の水和試験による水和量が1.5〜2.5mass%でかつ20℃,180分の水和試験による水和量が3.0〜5.0mass%である粉体を用い、
スラリーの水和温度と平均水和時間の調整により、該粉体を水でスラリー状にして塗布、乾燥させた後のマグネシアの水和量が1.0mass%以上 3.5mass%以下になるように水和させた焼鈍分離剤を、鋼板表面に塗布、乾燥することを特徴とする方向性電磁鋼板の製造方法。
A series of steel sheets with the final thickness are decarburized and annealed, an oxide film containing SiO 2 is formed on the surface of the steel sheet, and then an annealing separator containing magnesia is applied and dried, followed by final finish annealing. In the method for producing a grain-oriented electrical steel sheet comprising the steps of:
As magnesia in the annealing separator, Cl concentration impurity 0.01~0.04mass%, CaO concentration 0.25~0.70mass%, B concentration 0.05~0.15mass%, SO 3 concentration 0.05~0.50mass%, CAA40% Satisfying 50 to 90 seconds, hydration amount by hydration test at 20 ° C for 30 minutes is 1.5 to 2.5 mass%, and hydration amount by hydration test at 20 ° C for 180 minutes is 3.0 to 5.0 mass% Using the powder that is
By adjusting the hydration temperature and the average hydration time of the slurry, water was applied so that the amount of hydration of magnesia after the slurry was applied in slurry form with water and dried was 1.0 mass% to 3.5 mass%. A method for producing a grain-oriented electrical steel sheet, characterized in that a annealed annealing separator is applied to a steel sheet surface and dried.
JP2006314455A 2006-11-21 2006-11-21 Method for applying annealing separator for grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet Active JP4893259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006314455A JP4893259B2 (en) 2006-11-21 2006-11-21 Method for applying annealing separator for grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006314455A JP4893259B2 (en) 2006-11-21 2006-11-21 Method for applying annealing separator for grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2008127635A true JP2008127635A (en) 2008-06-05
JP4893259B2 JP4893259B2 (en) 2012-03-07

Family

ID=39553774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006314455A Active JP4893259B2 (en) 2006-11-21 2006-11-21 Method for applying annealing separator for grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP4893259B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2765219A4 (en) * 2011-10-04 2015-07-29 Jfe Steel Corp Annealing separator for grain oriented electromagnetic steel sheet
JP2016513358A (en) * 2012-12-28 2016-05-12 ポスコ Oriented electrical steel sheet and manufacturing method thereof
CN108193032A (en) * 2017-12-30 2018-06-22 新万鑫(福建)精密薄板有限公司 A kind of orientation silicon steel magnesia annealing separating agent and coating processes
JP2019173172A (en) * 2018-03-28 2019-10-10 タテホ化学工業株式会社 Magnesium oxide for annealing separation agent, and manufacturing method of directional electromagnetic steel sheet
JP2019173173A (en) * 2018-03-28 2019-10-10 タテホ化学工業株式会社 Magnesium oxide for annealing separation agent, and manufacturing method of directional electromagnetic steel sheet
JP2020509154A (en) * 2016-10-26 2020-03-26 ポスコPosco Annealing separator composition for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet, and method for producing grain-oriented electrical steel sheet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156227A (en) * 1985-12-27 1987-07-11 Nippon Steel Corp Annealing and separation agent for grain-oriented magnetic steel sheet having superior film characteristic and magnetic characteristic
JPH0971811A (en) * 1995-09-05 1997-03-18 Kawasaki Steel Corp Separation agent for annealing for grain oriented silicon steel sheet
JPH1088241A (en) * 1996-09-11 1998-04-07 Kawasaki Steel Corp Production of grain oriented silicon steel sheet excellent in film characteristic
JPH11229036A (en) * 1998-02-17 1999-08-24 Nippon Steel Corp Production of ultrahigh magnetic flux density grain oriented silicon steel sheet
JP2001107145A (en) * 1999-10-05 2001-04-17 Kawasaki Steel Corp Method for producing grain-oriented silicon steel sheet excellent in magnetic property

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156227A (en) * 1985-12-27 1987-07-11 Nippon Steel Corp Annealing and separation agent for grain-oriented magnetic steel sheet having superior film characteristic and magnetic characteristic
JPH0971811A (en) * 1995-09-05 1997-03-18 Kawasaki Steel Corp Separation agent for annealing for grain oriented silicon steel sheet
JPH1088241A (en) * 1996-09-11 1998-04-07 Kawasaki Steel Corp Production of grain oriented silicon steel sheet excellent in film characteristic
JPH11229036A (en) * 1998-02-17 1999-08-24 Nippon Steel Corp Production of ultrahigh magnetic flux density grain oriented silicon steel sheet
JP2001107145A (en) * 1999-10-05 2001-04-17 Kawasaki Steel Corp Method for producing grain-oriented silicon steel sheet excellent in magnetic property

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2765219A4 (en) * 2011-10-04 2015-07-29 Jfe Steel Corp Annealing separator for grain oriented electromagnetic steel sheet
US9194016B2 (en) 2011-10-04 2015-11-24 Jfe Steel Corporation Annealing separator for grain-oriented electromagnetic steel sheet
JP2016513358A (en) * 2012-12-28 2016-05-12 ポスコ Oriented electrical steel sheet and manufacturing method thereof
US10023932B2 (en) 2012-12-28 2018-07-17 Posco Grain-oriented electrical steel sheet, and method for manufacturing the same
JP2020509154A (en) * 2016-10-26 2020-03-26 ポスコPosco Annealing separator composition for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet, and method for producing grain-oriented electrical steel sheet
US11225700B2 (en) 2016-10-26 2022-01-18 Posco Annealing separating agent composition for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet, and method for manufacturing grain oriented electrical steel sheet
US11946114B2 (en) 2016-10-26 2024-04-02 Posco Co., Ltd Annealing separating agent composition for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet, and method for manufacturing grain oriented electrical steel sheet
CN108193032A (en) * 2017-12-30 2018-06-22 新万鑫(福建)精密薄板有限公司 A kind of orientation silicon steel magnesia annealing separating agent and coating processes
JP2019173172A (en) * 2018-03-28 2019-10-10 タテホ化学工業株式会社 Magnesium oxide for annealing separation agent, and manufacturing method of directional electromagnetic steel sheet
JP2019173173A (en) * 2018-03-28 2019-10-10 タテホ化学工業株式会社 Magnesium oxide for annealing separation agent, and manufacturing method of directional electromagnetic steel sheet
JP7454335B2 (en) 2018-03-28 2024-03-22 タテホ化学工業株式会社 Method for manufacturing magnesium oxide and grain-oriented electrical steel sheet for annealing separator
JP7454334B2 (en) 2018-03-28 2024-03-22 タテホ化学工業株式会社 Method for manufacturing magnesium oxide and grain-oriented electrical steel sheet for annealing separator

Also Published As

Publication number Publication date
JP4893259B2 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
JP5245277B2 (en) Method for producing magnesia and grain-oriented electrical steel sheet for annealing separator
JP5786950B2 (en) Annealing separator for grain-oriented electrical steel sheet
TWI472626B (en) Method of manufacturing directional magnetic steel sheet and recrystallization annealing equipment of directional magnetic steel sheet
US20230045475A1 (en) Method for manufacturing a grain-oriented electrical steel sheet
JP6844125B2 (en) Manufacturing method of grain-oriented electrical steel sheet
US9953752B2 (en) Production method for grain-oriented electrical steel sheet and primary recrystallized steel sheet for production of grain-oriented electrical steel sheet
KR101651797B1 (en) Production method for grain-oriented electrical steel sheet
KR100597772B1 (en) Grain-oriented silicon steel sheet having excellent coating film properties and magnetic properties and method for making the same
KR101683693B1 (en) Method for producing grain-oriented electrical steel sheet
JP7010305B2 (en) Directional electrical steel sheet
KR20130002354A (en) Process for production of unidirectional electromagnetic steel sheet
JP3386751B2 (en) Method for producing grain-oriented silicon steel sheet with excellent coating and magnetic properties
WO2011102456A1 (en) Manufacturing method for grain-oriented electromagnetic steel sheet
JP4893259B2 (en) Method for applying annealing separator for grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
WO2017111547A1 (en) Grain oriented electrical steel sheet and method for manufacturing same
JP5332946B2 (en) Coil winding method after nitriding of nitriding grain-oriented electrical steel sheet
JPWO2020149351A1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP5857983B2 (en) Manufacturing method of grain-oriented electrical steel sheet and MgO for annealing separator
JP7339549B2 (en) Grain-oriented electrical steel sheet with excellent insulation film adhesion without forsterite film
JP2009209428A (en) Method for manufacturing grain-oriented electromagnetic steel sheet with remarkably high magnetic flux density
JP7231888B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPWO2020149326A1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP5600991B2 (en) Method for producing grain-oriented electrical steel sheet
JP2001123229A (en) Method for producing high magnetic flux density grain oriented silicon steel sheet excellent in film characteristic
JP7214974B2 (en) Manufacturing method of grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111205

R150 Certificate of patent or registration of utility model

Ref document number: 4893259

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250