JP5600991B2 - Method for producing grain-oriented electrical steel sheet - Google Patents

Method for producing grain-oriented electrical steel sheet Download PDF

Info

Publication number
JP5600991B2
JP5600991B2 JP2010075340A JP2010075340A JP5600991B2 JP 5600991 B2 JP5600991 B2 JP 5600991B2 JP 2010075340 A JP2010075340 A JP 2010075340A JP 2010075340 A JP2010075340 A JP 2010075340A JP 5600991 B2 JP5600991 B2 JP 5600991B2
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
grain
oriented electrical
electrical steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010075340A
Other languages
Japanese (ja)
Other versions
JP2011208196A (en
Inventor
宣郷 森重
健一 村上
聡 新井
英一 難波
英之 小林
尚人 升光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2010075340A priority Critical patent/JP5600991B2/en
Publication of JP2011208196A publication Critical patent/JP2011208196A/en
Application granted granted Critical
Publication of JP5600991B2 publication Critical patent/JP5600991B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、方向性電磁鋼板を、工業的規模にて安定的に製造する方法に関するものである。
The present invention is a square oriented electrical steel sheet, to a method for producing stably at an industrial scale.

方向性電磁鋼板は、Siを2〜5%程度含有し、製品の結晶粒の方位を{110}<001>方位に高度に集積させた鋼板であり、主として、変圧器等の静止誘導器の鉄心材料として利用される。そのような方向性電磁鋼板の製造における結晶方位の制御は、二次再結晶とよばれるカタストロフィックな粒成長現象を利用して達成される。   The grain-oriented electrical steel sheet is a steel sheet containing about 2 to 5% Si and highly accumulating the crystal grain orientation of the product in the {110} <001> orientation, and is mainly used for stationary inductors such as transformers. Used as iron core material. Control of crystal orientation in the production of such grain-oriented electrical steel sheets is achieved by utilizing a catastrophic grain growth phenomenon called secondary recrystallization.

この二次再結晶を制御するための方法として、インヒビターとよばれる微細析出物を熱間圧延前の鋼片加熱時に完全固溶させた後に、熱間圧延及びその後の焼鈍工程で微細析出させる方法がある。この方法では、特許文献1で例示されるようなMnSとAlNをインヒビターとし、最終冷延工程で80%を超える圧下率の圧延を行う方法や、特許文献2で例示されるようなMnSとMnSeをインヒビターとし、2回の冷延工程を行う方法が工業的に実施されている。この方法では、析出物を完全固溶させるために、熱間圧延前の鋼片は、1280℃以上の高温で加熱される。   As a method for controlling this secondary recrystallization, a fine precipitate called an inhibitor is completely dissolved at the time of heating the steel slab before hot rolling, and then finely precipitated in hot rolling and subsequent annealing steps. There is. In this method, MnS and AlN as exemplified in Patent Document 1 are used as inhibitors, rolling at a rolling reduction exceeding 80% in the final cold rolling step, and MnS and MnSe as exemplified in Patent Document 2 are performed. A method of carrying out the cold rolling step twice using the above as an inhibitor has been practiced industrially. In this method, the steel slab before hot rolling is heated at a high temperature of 1280 ° C. or higher in order to completely dissolve the precipitate.

また、二次再結晶を制御する他の方法として、特許文献3、4に例示されるように、熱間圧延前の鋼片の加熱を1280℃未満の温度で実施し、冷延後の窒化処理により形成したAlNをインヒビターとして用いる方法が工業的に実施されている。   Further, as another method for controlling secondary recrystallization, as exemplified in Patent Documents 3 and 4, heating of the steel slab before hot rolling is performed at a temperature lower than 1280 ° C., and nitriding after cold rolling is performed. A method of using AlN formed by treatment as an inhibitor has been industrially implemented.

以上のような方向性電磁鋼板の製造において、より優れた磁気特性を有する鋼板を得るために、多くの開発がなされてきたが、近年の省エネルギー化への要望が高まるにつれて、さらなる低鉄損化が求められている。
方向性電磁鋼板の低鉄損化を図るには種々の方法があるが、前記の特許文献1にも示されているように磁束密度を高くしてヒステリシス損を下げることが有効である。
In the production of the grain-oriented electrical steel sheet as described above, many developments have been made to obtain a steel sheet having superior magnetic properties. However, as the demand for energy saving increases in recent years, the iron loss has been further reduced. Is required.
There are various methods for reducing the iron loss of the grain-oriented electrical steel sheet, but it is effective to increase the magnetic flux density and reduce the hysteresis loss as shown in Patent Document 1 described above.

方向性電磁鋼板の磁束密度を向上させるには、製品板の結晶粒の方位を{110}<001>方位により高度に集積させることが必要であり、そのためのひとつの方法として、インヒビターの作用を強化すると考えられる補助的な添加元素を利用する方法がある。
そのような添加元素として、Teを利用する方法が、特許文献5〜特許文献7に開示されている。
In order to improve the magnetic flux density of the grain-oriented electrical steel sheet, it is necessary to highly accumulate the crystal grain orientation of the product plate in the {110} <001> orientation. There is a method using an auxiliary additive element that is considered to be strengthened.
Patent Documents 5 to 7 disclose methods using Te as such an additive element.

方向性電磁鋼板の鉄損を低減させるには、製品板に溝付与することやレーザー照射することで磁区細分化することや、マクロ組織を細分化することが有効である。マクロ組織を細分化して鉄損を低減させる方法として、冷延板を再結晶させた後に圧延方向と直角から30°以内に線状の溝を機械加工によって形成した後、湿水素中で脱炭焼鈍を行ってから二次再結晶焼鈍を行う手法が、特許文献8に開示されている。   In order to reduce the iron loss of the grain-oriented electrical steel sheet, it is effective to subdivide the magnetic domain by grooving the product plate or irradiate with a laser, or subdivide the macro structure. As a method of reducing the iron loss by subdividing the macro structure, after recrystallizing the cold-rolled sheet, a linear groove is formed by machining within 30 ° from the direction perpendicular to the rolling direction, and then decarburized in wet hydrogen. Patent Document 8 discloses a method of performing secondary recrystallization annealing after annealing.

本発明者の検討によれば、Teを添加して磁束密度が向上しても、著しく低鉄損な方向性電磁鋼板が得られない場合があることが解った。Teを添加すると、二次再結晶後の鋼板マクロ粒組織が圧延方向に延伸した特異な形状となる。工業的生産条件では、二次再結晶の生じる仕上焼鈍はコイル状で実施されるため、圧延方向にマクロ粒が大きくなり過ぎると、コイルセットに基づいて結晶方位のずれ角が大きくなり、鉄損が劣化するためであることがわかった。   According to the study by the present inventor, it has been found that even if Te is added to improve the magnetic flux density, a grain-oriented electrical steel sheet with extremely low iron loss may not be obtained. When Te is added, the steel plate macro grain structure after secondary recrystallization becomes a unique shape extending in the rolling direction. Under industrial production conditions, finish annealing in which secondary recrystallization occurs is performed in a coil shape, so if the macro grains become too large in the rolling direction, the deviation angle of the crystal orientation becomes large based on the coil set, resulting in iron loss. Was found to be due to deterioration.

また、マクロ組織を細分化させるだけでは、市場で求められている低鉄損を達成するのに十分ではなく、製品板の結晶粒の方位を{110}<001>方位により高度に集積させて磁束密度を高める技術と両立させる必要があることがわかった。   Moreover, simply subdividing the macro structure is not sufficient to achieve the low iron loss required in the market, and the orientation of crystal grains of the product plate is highly accumulated in the {110} <001> orientation. It turned out that it is necessary to make it compatible with the technology which raises magnetic flux density.

特公昭40−15644号公報Japanese Patent Publication No. 40-15644 特公昭51−13469号公報Japanese Patent Publication No. 51-13469 特公昭62−45285号公報Japanese Examined Patent Publication No. 62-45285 特開平2−77525号公報Japanese Patent Laid-Open No. 2-77525 特開平06−184640号公報Japanese Patent Laid-Open No. 06-184640 特開平06−207220号公報Japanese Patent Laid-Open No. 06-207220 特開平10−273727号公報Japanese Patent Laid-Open No. 10-273727 特開2002−294416号公報JP 2002-294416 A

そこで、本発明は、方向性電磁鋼板を、工業的規模にて、安定的に製造する方法を提供することを課題とする。
Accordingly, the present invention is a square oriented electrical steel sheet, at industrial scale, and to provide a method for stably manufacturing.

上記課題を解決する本発明の要旨は、次のとおりである。   The gist of the present invention for solving the above problems is as follows.

(1) 質量%で、C:0.02〜0.10%、Si:2.5〜4.5%、Mn:0.01〜0.15%、S:0.001〜0.050%、酸可溶性Al:0.01〜0.05%、N:0.002〜0.015%、Te:0.0005〜0.10%を含有し、残部Feおよび不可避的不純物からなるスラブを、1280℃以上に加熱し、熱間圧延を施した後、熱延板焼鈍を施し、一回の冷間圧延もしくは中間焼鈍を挟む二回以上の冷間圧延を施して冷延鋼板とした後、脱炭焼鈍を施し、鋼板表面にMgOを主成分とする焼鈍分離剤を塗布してから仕上焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法において、
脱炭焼鈍中に溝付与すること、あるいは脱炭焼鈍後に溝付与した後に再結晶焼鈍することで、二次再結晶粒を溝位置で分断することを特徴とする方向性電磁鋼板の製造方法。
(1) By mass%, C: 0.02 to 0.10%, Si: 2.5 to 4.5%, Mn: 0.01 to 0.15%, S: 0.001 to 0.050% Slab containing acid-soluble Al: 0.01 to 0.05%, N: 0.002 to 0.015%, Te: 0.0005 to 0.10%, the balance Fe and inevitable impurities, After heating to 1280 ° C. or higher and performing hot rolling, it is subjected to hot rolled sheet annealing, and after performing cold rolling of two times or more sandwiching one cold rolling or intermediate annealing to make a cold rolled steel sheet, In the method for producing a grain-oriented electrical steel sheet comprising a series of steps of performing decarburization annealing and applying a finish annealing after applying an annealing separator mainly composed of MgO to the steel sheet surface,
By groove granted during decarburization annealing, or by recrystallization annealing after the grooves applied after decarburization annealing method for producing a grain-oriented electrical steel sheet characterized by dividing the secondary recrystallized grains in the groove position .

(2) 質量%で、C:0.02〜0.10%、Si:2.5〜4.5%、Mn:0.01〜0.15%、SおよびSeを合計で:0.001〜0.050%、酸可溶性Al:0.010〜0.050%、N:0.002〜0.015%、Te:0.0005〜0.10%を含有し、残部Feおよび不可避的不純物からなるスラブを、1280℃以上に加熱し、熱間圧延を施した後、熱延板焼鈍を施し、一回の冷間圧延もしくは中間焼鈍を挟む二回以上の冷間圧延を施して冷延鋼板とした後、脱炭焼鈍を施し、鋼板表面にMgOを主成分とする焼鈍分離剤を塗布してから仕上焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法において、
脱炭焼鈍中に溝付与すること、あるいは脱炭焼鈍後に溝付与した後に再結晶焼鈍することで、二次再結晶粒を溝位置で分断することを特徴とする方向性電磁鋼板の製造方法。
(2) By mass%, C: 0.02 to 0.10%, Si: 2.5 to 4.5%, Mn: 0.01 to 0.15%, S and Se in total: 0.001 -0.050%, acid-soluble Al: 0.010-0.050%, N: 0.002-0.015%, Te: 0.0005-0.10%, the balance Fe and inevitable impurities The slab made of is heated to 1280 ° C. or higher, hot-rolled, then subjected to hot-rolled sheet annealing, and cold-rolled by performing two or more cold rollings with one cold rolling or intermediate annealing. In the method for producing a grain-oriented electrical steel sheet comprising a series of steps in which a steel sheet is subjected to decarburization annealing, and a finish annealing is performed after applying an annealing separator mainly composed of MgO to the steel sheet surface.
By groove granted during decarburization annealing, or by recrystallization annealing after the grooves applied after decarburization annealing method for producing a grain-oriented electrical steel sheet characterized by dividing the secondary recrystallized grains in the groove position .

(3) 質量%で、C:0.02〜0.10%、Si:2.5〜4.5%、Mn:0.05〜0.50%、S単独で、あるいはSおよびSeを合計で:0.02%以下、酸可溶性Al:0.010〜0.050%、N:0.001〜0.015%、Te:0.0005〜0.10%を含有し、残部Feおよび不可避的不純物からなるスラブを、1280℃未満で加熱し、熱間圧延を施した後、熱延板焼鈍を施し、一回の冷間圧延もしくは中間焼鈍を挟む二回以上の冷間圧延を施して冷延鋼板とした後、脱炭焼鈍および窒化焼鈍を施し、鋼板表面にMgOを主成分とする焼鈍分離剤を塗布してから仕上焼鈍を施す一連の工程からなる方向性電磁鋼板の製造法において、
脱炭焼鈍中に溝付与すること、あるいは脱炭焼鈍後に溝付与した後に再結晶焼鈍することで、二次再結晶粒を溝位置で分断することを特徴とする方向性電磁鋼板の製造方法。
(4) 前記(1)〜(3)のいずれかに記載の方向性電磁鋼板の製造方法において、
脱炭焼鈍中に機械的手法にて溝付与することで、あるいは脱炭焼鈍後に機械的手法にて溝付与した後に再結晶焼鈍することで、二次再結晶粒を溝位置で分断することを特徴とする方向性電磁鋼板の製造方法。
(5) 前記(4)に記載の方向性電磁鋼板の製造方法において、
脱炭焼鈍中に歯車型ロールにて溝付与することで、あるいは脱炭焼鈍後に歯車型ロールにて溝付与した後に再結晶焼鈍することで、二次再結晶粒を溝位置で分断することを特徴とする方向性電磁鋼板の製造方法。
(3) By mass%, C: 0.02 to 0.10%, Si: 2.5 to 4.5%, Mn: 0.05 to 0.50%, S alone or S and Se in total In: 0.02% or less, acid-soluble Al: 0.010 to 0.050%, N: 0.001 to 0.015%, Te: 0.0005 to 0.10%, balance Fe and inevitable A slab made of a general impurity is heated below 1280 ° C., hot-rolled, then subjected to hot-rolled sheet annealing, and subjected to one or more cold rolling or two or more cold rolling sandwiching intermediate annealing. In the manufacturing method of grain-oriented electrical steel sheet, which consists of a series of steps in which after cold-rolled steel sheet, decarburization annealing and nitridation annealing are performed, and an annealing separator containing MgO as a main component is applied to the steel sheet surface and then finish annealing is performed. ,
By groove granted during decarburization annealing, or by recrystallization annealing after the grooves applied after decarburization annealing method for producing a grain-oriented electrical steel sheet characterized by dividing the secondary recrystallized grains in the groove position .
(4) In the manufacturing method of the grain-oriented electrical steel sheet according to any one of (1) to (3),
It is possible to divide the secondary recrystallized grains at the groove position by applying grooves by a mechanical method during decarburization annealing or by recrystallization annealing after applying grooves by a mechanical method after decarburization annealing. A method for producing a grain-oriented electrical steel sheet.
(5) In the manufacturing method of the grain-oriented electrical steel sheet according to (4),
It is possible to divide the secondary recrystallized grains at the groove position by applying grooves with a gear-type roll during decarburization annealing or by applying recrystallization annealing after applying grooves with a gear-type roll after decarburization annealing. A method for producing a grain-oriented electrical steel sheet.

)前記スラブが、さらにBi:0.0005〜0.10%を含有することを特徴とする前記(1)〜()のいずれかに記載の方向性電磁鋼板の製造方法。
(6) the slab, further Bi: wherein characterized in that it contains from 0.0005 to 0.10% (1) to the production method of the oriented electrical steel sheet towards according to any one of (5).

)前記(1)〜()のいずれかに記載の方向性電磁鋼板の製造方法において、脱炭焼鈍する直前もしくは脱炭焼鈍の昇温過程において50℃/sec以上の加熱速度で800℃以上の温度へ加熱する処理を行うことを特徴とする方向性電磁鋼板の製造方法。
( 7 ) In the method for producing a grain-oriented electrical steel sheet according to any one of (1) to ( 6 ), a heating rate of 50 ° C./sec or more immediately before decarburization annealing or in a temperature rising process of decarburization annealing is 800. The manufacturing method of the grain-oriented electrical steel sheet characterized by performing the process heated to the temperature more than degreeC.

本発明によれば、著しく鉄損の低い方向性電磁鋼板を、工業的規模にて、安定的に製造することができる。したがって、本発明は、近年の省エネルギー化への要望に沿いつつ、世界的な発電量増加に伴う高品質方向性電磁鋼板の需要増を満たすことができ、その効果は甚大である。   According to the present invention, a grain-oriented electrical steel sheet with extremely low iron loss can be stably produced on an industrial scale. Therefore, the present invention can satisfy the increasing demand for high-quality grain-oriented electrical steel sheets accompanying an increase in the amount of power generation around the world while meeting the recent demand for energy saving, and the effect is enormous.

以下、本発明の実施の形態について、詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

Teを添加した鋼板は、二次再結晶後の鋼板マクロ組織が圧延方向に延伸した特異な形状をしている。工業的生産条件では、二次再結晶の生じる仕上焼鈍はコイル状で実施されるため、圧延方向にマクロ粒が大きくなり過ぎると、コイルセットに基づいて結晶方位のずれ角が大きくなり、鉄損が劣化する。そこで本発明者らは、二次再結晶後のマクロ組織の圧延方向延伸化を抑制して著しく鉄損の低い方向性電磁鋼板の安定製造技術を確立するため、以下の実験を行った。
真空溶解炉において、質量%で、C:0.08%、Si:3.26%、Mn:0.08%、S:0.024%、酸可溶性Al:0.03%、N:0.008%、Te:0.011%を含有した組成のスラブを作製し、1300℃にて1時間の焼鈍後、熱間圧延を実施した。
The steel sheet to which Te is added has a unique shape in which the steel sheet macrostructure after secondary recrystallization is stretched in the rolling direction. Under industrial production conditions, finish annealing in which secondary recrystallization occurs is performed in a coil shape, so if the macro grains become too large in the rolling direction, the deviation angle of the crystal orientation becomes large based on the coil set, resulting in iron loss. Deteriorates. Therefore, the present inventors conducted the following experiment in order to suppress the stretching of the macrostructure after secondary recrystallization in the rolling direction and to establish a stable production technique for a grain-oriented electrical steel sheet with extremely low iron loss.
In a vacuum melting furnace, in mass%, C: 0.08%, Si: 3.26%, Mn: 0.08%, S: 0.024%, acid-soluble Al: 0.03%, N: 0.00. A slab having a composition containing 008% and Te: 0.011% was produced, and after annealing at 1300 ° C. for 1 hour, hot rolling was performed.

得られた熱延板に1100℃にて120秒間の焼鈍を行い、酸洗を施した後に冷間圧延を実施し、板厚0.23mmの冷延板とした。この冷延板を湿水素中で850℃で150秒の脱炭焼鈍を施した後、一部試料の鋼板表面に、歯車型ロールで直線状の溝を、圧延方向の直角から10°の角度で施してから、850℃で20秒の再結晶焼鈍を施した。溝深さは10μmとし、溝ピッチは5mmとした。脱炭焼鈍の昇温速度は25℃/sとした。
脱炭焼鈍後の鋼板にMgOを主成分とする焼鈍分離剤を水スラリーにて塗布し、コイルセット付与を目的として曲率半径500mmの曲率を付与した後、750℃以上を平均昇温速度20℃/hで加熱して最高到達温度1150℃で20時間の仕上焼鈍を施した。
The obtained hot-rolled sheet was annealed at 1100 ° C. for 120 seconds, pickled, and then cold-rolled to obtain a cold-rolled sheet having a thickness of 0.23 mm. This cold-rolled sheet was decarburized and annealed at 850 ° C. for 150 seconds in wet hydrogen, and then a straight groove was formed on a surface of a part of the steel sheet with a gear-type roll at an angle of 10 ° from a right angle in the rolling direction. Then, recrystallization annealing was performed at 850 ° C. for 20 seconds. The groove depth was 10 μm and the groove pitch was 5 mm. The heating rate of decarburization annealing was 25 ° C./s.
An annealing separator containing MgO as a main component is applied to the steel sheet after decarburization annealing with water slurry, and after giving a curvature with a radius of curvature of 500 mm for the purpose of providing a coil set, an average heating rate of 750 ° C or higher is 20 ° C. Heat annealing was performed at a maximum temperature of 1150 ° C. for 20 hours.

仕上焼鈍後の鋼板を水洗した後、単板磁気測定用サイズに剪断し、リン酸アルミニウムとコロイダルシリカを主成分とした絶縁被膜を塗布、焼付して試料を作成した。
得られた試料の磁束密度B8値(50Hzにて800A/mの磁場を付与したときの磁束密度の値)および鉄損W17/50値(50Hzにて1.7Tの磁束密度に鋼板を励磁したときの鉄損の値)を測定した後、試料の被膜を除去し、鋼板マクロ粒の圧延方向最大長さの平均値を測定した。評価は10試料で行った。
The steel plate after the finish annealing was washed with water, then sheared to a single plate magnetic measurement size, and an insulating coating mainly composed of aluminum phosphate and colloidal silica was applied and baked to prepare a sample.
The steel sheet was excited to a magnetic flux density B8 value (magnetic flux density value when a magnetic field of 800 A / m was applied at 50 Hz) and iron loss W17 / 50 value (1.7 T magnetic flux density at 50 Hz) of the obtained sample. After measuring the iron loss value), the coating film of the sample was removed, and the average value of the maximum length in the rolling direction of the steel plate macro grain was measured. Evaluation was performed on 10 samples.

表1に、溝付与有/無に対する磁束密度:B8値、鉄損:W17/50値および鋼板マクロ粒の圧延方向最大長さ:D値の平均値を示す。ここで、B8は50Hzにて800A/mの磁場を付与したときの磁束密度の値である。W17/50は50Hzにて1.7Tに鋼板を励磁したときの鉄損の値である。また、二次再結晶マクロ粒組織の圧延方向長さは、各マクロ粒の圧延方向最大長さと定義した。表に示されるように、溝を付与することで鉄損が低減している。磁束密度が減少しているのは溝部で磁束が妨げられるためであり、方位集積度は向上していることをX線回折により確認した。鋼板マクロ粒は、溝位置で分断されるため、圧延方向最大長さの平均値:Daveは大幅に減少して4.2mmであった。   Table 1 shows the average value of magnetic flux density with and without groove: B8 value, iron loss: W17 / 50 value, and maximum length in the rolling direction of the steel plate macro grain: D value. Here, B8 is a magnetic flux density value when a magnetic field of 800 A / m is applied at 50 Hz. W17 / 50 is a value of iron loss when the steel plate is excited to 1.7 T at 50 Hz. The length in the rolling direction of the secondary recrystallization macro grain structure was defined as the maximum length in the rolling direction of each macro grain. As shown in the table, the iron loss is reduced by providing the grooves. The magnetic flux density is decreased because the magnetic flux is hindered in the groove, and it was confirmed by X-ray diffraction that the degree of orientation integration was improved. Since the steel plate macro grains were divided at the groove position, the average value of the maximum length in the rolling direction: Dave was significantly reduced to 4.2 mm.

Figure 0005600991
Figure 0005600991

これらのことから、Teを添加し、かつ、脱炭焼鈍中に溝付与して、あるいは脱炭焼鈍後に溝付与した後に再結晶焼鈍して二次再結晶後の鋼板マクロ粒組織の圧延方向長さを細分化することで、著しく低い鉄損を工業的に実現可能であることを新規に知見し、この知見をもとに本発明を完成させた。
From these, Te is added and a groove is imparted during decarburization annealing, or a groove is imparted after decarburization annealing, and then recrystallization annealing is performed, and then the length in the rolling direction of the steel plate macro grain structure after secondary recrystallization. By subdividing the thickness, it was newly found out that a remarkably low iron loss can be industrially realized, and the present invention was completed based on this finding.

以下、本発明における実施形態について詳細に説明する。
方向性電磁鋼板の工業的に実施されている製造方法は、前述のように、インヒビターを冷間圧延前に形成するかどうかによって、(1)熱間圧延前のスラブを1280℃以上で加熱する場合と(2)1280℃未満で加熱する場合がある。
本発明では、Teの添加の効果および鋼板マクロ粒組織の圧延方向長さを細分化する効果を、二次再結晶において十分に発現することを主眼としているので、仕上焼鈍までの製造法の違いによって特に左右されることはなく、いずれの製造法を採用してもよい。
そこでまず、それぞれの製造法について説明し、次に脱炭焼鈍の直前あるいは脱炭焼鈍の昇温過程における加熱処理について説明する。
Hereinafter, embodiments of the present invention will be described in detail.
As described above, the manufacturing method of industrially oriented grain-oriented electrical steel sheets is as follows. (1) The slab before hot rolling is heated at 1280 ° C. or higher depending on whether the inhibitor is formed before cold rolling. In some cases, (2) heating may be performed at less than 1280 ° C.
In the present invention, the effect of adding Te and the effect of subdividing the length of the steel plate macro grain structure in the rolling direction are mainly expressed in the secondary recrystallization, so the difference in the manufacturing method until finish annealing. However, any manufacturing method may be adopted.
Therefore, first, each manufacturing method will be described, and then the heat treatment immediately before the decarburization annealing or in the temperature raising process of the decarburization annealing will be described.

前記(1)の製造法について説明する。
この製造法では、質量%で、C:0.02〜0.10%、Si:2.5〜4.5%、Mn:0.01〜0.15%、S単独で、あるいはSとSeを合計で:0.001〜0.050%、酸可溶性Al:0.01〜0.05%、N:0.002〜0.015%、残部Feおよび不可避的不純物よりなる鋼を基本として用いる。本発明では、この鋼に、さらにTe:0.0005〜0.10%を単独で、あるいはTe:0.0005〜0.10%とBi:0.0005〜0.10%を同時に含有させる。
The production method (1) will be described.
In this production method, by mass%, C: 0.02 to 0.10%, Si: 2.5 to 4.5%, Mn: 0.01 to 0.15%, S alone, or S and Se In total: 0.001 to 0.050%, acid-soluble Al: 0.01 to 0.05%, N: 0.002 to 0.015%, the balance Fe and steel consisting of inevitable impurities are used as a basis . In the present invention, the steel further contains Te: 0.0005 to 0.10% alone, or Te: 0.0005 to 0.10% and Bi: 0.0005 to 0.10% simultaneously.

鋼の組成が上記のように選定されるのは次の理由による。なお、以下、元素の含有量を単に%で表記する場合があるが、%は質量%を意味する。   The reason why the steel composition is selected as described above is as follows. Hereinafter, the content of the element may be simply expressed as%, but% means mass%.

Cには、種々の役割があるが、質量%で0.02%未満では、スラブ加熱時の結晶粒径が大きくなり過ぎて製品の鉄損が劣化する。一方、質量%で0.10%を超えた場合は、冷延後の脱炭焼鈍において、脱炭時間が長時間必要となり経済的でないばかりでなく、脱炭が不完全となり易く、製品での磁気時効と呼ばれる磁性不良を起こすので、好ましくない。
このため、Cの含有量の下限は0.02%、上限は0.10%とする。この範囲内でより適正な範囲は、0.05〜0.09%である。
C has various roles, but if it is less than 0.02% by mass, the crystal grain size at the time of slab heating becomes too large and the iron loss of the product deteriorates. On the other hand, if it exceeds 0.10% by mass, decarburization annealing after cold rolling requires not only a long time, but is not economical, and decarburization tends to be incomplete. This is not preferable because it causes a magnetic defect called magnetic aging.
For this reason, the lower limit of the C content is 0.02%, and the upper limit is 0.10%. A more appropriate range within this range is 0.05 to 0.09%.

Siは、鋼の電気抵抗を高めて、鉄損の一部を構成する渦電流損失を低減するのに極めて有効な元素であり、質量%で、2.5%以上4.5%以下の範囲に制御しなければならない。2.5%未満では、製品の渦電流損失を抑制できず、また、4.5%を超えると、加工性が劣化するので、好ましくない。   Si is an extremely effective element for increasing the electrical resistance of steel and reducing the eddy current loss that constitutes a part of the iron loss. The mass% ranges from 2.5% to 4.5%. Must be controlled. If it is less than 2.5%, eddy current loss of the product cannot be suppressed, and if it exceeds 4.5%, workability deteriorates, which is not preferable.

Mnは、二次再結晶を左右するインヒビターであるMnSおよび/またはMnSeを形成する重要な元素であり、質量%で、0.01%以上0.15%以下の範囲に制御する必要がある。0.01%未満では、二次再結晶を生じさせるのに必要なMnS、MnSeの絶対量が不足するので、好ましくない。また、0.15%を超えた場合には、スラブ加熱時の固溶が困難になるばかりでなく、析出サイズが粗大化し易く、インヒビターとしての最適サイズ分布が損なわれて、好ましくない。   Mn is an important element for forming MnS and / or MnSe, which is an inhibitor that influences secondary recrystallization, and it is necessary to control Mn in a range of 0.01% to 0.15%. If it is less than 0.01%, the absolute amount of MnS and MnSe necessary for causing secondary recrystallization is insufficient, which is not preferable. On the other hand, if it exceeds 0.15%, not only the solid solution during slab heating becomes difficult, but also the precipitation size tends to become coarse, and the optimum size distribution as an inhibitor is impaired.

Sは、上述したMnとインヒビターを形成する重要な元素であり、その含有量を0.001%以上0.050%以下の範囲に制御する必要がある。上記範囲を逸脱すると、十分なインヒビター効果が得られない。   S is an important element that forms an inhibitor with Mn as described above, and its content needs to be controlled in the range of 0.001% to 0.050%. If it deviates from the above range, a sufficient inhibitor effect cannot be obtained.

Seは、上述したMnとインヒビターを形成する重要な元素であり、Sとともに含有されてもよい。含有する場合は、Sとの合計量で0.001%以上0.05%以下の範囲に制御する必要がある。上記範囲を逸脱すると、十分なインヒビター効果が得られない。   Se is an important element that forms an inhibitor with Mn as described above, and may be contained together with S. When it contains, it is necessary to control to 0.001% or more and 0.05% or less of the total amount with S. If it deviates from the above range, a sufficient inhibitor effect cannot be obtained.

酸可溶性Alは、高磁束密度方向性電磁鋼板を製造するための主要インヒビター構成元素であり、質量%で、0.01%以上0.05%以下の範囲に制御する必要がある。0.01%未満では、量的に不足して、インヒビター強度が不足するので、好ましくない。一方、0.05%を超えると、インヒビターとして析出させるAlNが粗大化し、結果として、インヒビター強度を低下させるので、好ましくない。   Acid-soluble Al is a main inhibitor constituting element for producing a high magnetic flux density grain-oriented electrical steel sheet and needs to be controlled in a range of 0.01% to 0.05% by mass. If it is less than 0.01%, the quantity is insufficient, and the inhibitor strength is insufficient. On the other hand, if it exceeds 0.05%, AlN precipitated as an inhibitor becomes coarse, and as a result, the inhibitor strength is lowered, which is not preferable.

Nは、上述した酸可溶性AlとAlNを形成する重要な元素であり、質量%で、0.002%以上0.015%以下の範囲に制御する必要がある。上記範囲を逸脱すると、十分なインヒビター効果が得られない。   N is an important element that forms the above-described acid-soluble Al and AlN, and is required to be controlled in a range of 0.002% to 0.015% by mass. If it deviates from the above range, a sufficient inhibitor effect cannot be obtained.

Teは、インヒビターを強化して鋼板磁束密度を向上させるのに有効な元素である。その効果を得るためには、0.0005〜0.10%の範囲に添加量を制御する必要がある。0.0005%未満では十分な効果が得られず、0.10%を超えると、圧延性が劣化して、好ましくない。   Te is an element effective for strengthening the inhibitor and improving the magnetic flux density of the steel sheet. In order to obtain the effect, it is necessary to control the addition amount in the range of 0.0005 to 0.10%. If it is less than 0.0005%, a sufficient effect cannot be obtained, and if it exceeds 0.10%, the rollability deteriorates, which is not preferable.

Biは、Teと複合添加することにより、さらに磁束密度を向上させる。その効果を得るためには、0.0005〜0.10%の範囲に添加量を制御する必要がある。0.0005%未満では十分な効果が得られず、0.10%を超えると圧延性が劣化して好ましくない。   Bi is further added to Te to further improve the magnetic flux density. In order to obtain the effect, it is necessary to control the addition amount in the range of 0.0005 to 0.10%. If it is less than 0.0005%, a sufficient effect cannot be obtained, and if it exceeds 0.10%, the rollability is deteriorated.

この他、二次再結晶を安定化させる元素として、Sn、Sb、Cu、Ag、As、Mo、Cr、P、Ni、B、Pb、V、Ge、Ti、の一種または二種以上を、合計して、質量%で、0.0005〜1.0%含有させることも有用である。これら元素の添加量としては、0.0005%未満では、二次再結晶安定化の効果が十分でなく、また、1.0%を超えると効果が飽和するために、コストの観点から、上限を1.0%に限定する。   In addition, as an element for stabilizing secondary recrystallization, Sn, Sb, Cu, Ag, As, Mo, Cr, P, Ni, B, Pb, V, Ge, Ti, or one or more of It is also useful to contain 0.0005 to 1.0% by mass in total. If the amount of these elements is less than 0.0005%, the effect of stabilizing the secondary recrystallization is not sufficient, and if it exceeds 1.0%, the effect is saturated. Is limited to 1.0%.

上記のごとく成分を調整した方向性電磁鋼板製造用溶鋼は、通常の方法で鋳造する。特に鋳造方法に限定はない。次いで、スラブ加熱処理するが、加熱温度の下限値は、インヒビターを完全固溶するために1280℃とする。1280℃未満では、MnS、MnSe、AlN等のインヒビター成分を充分に溶体化させることができない。上限は、特に定めないが、設備保護の観点から1450℃以下が好ましい。   The molten steel for producing grain-oriented electrical steel sheets with the components adjusted as described above is cast by a normal method. There is no particular limitation on the casting method. Next, slab heat treatment is performed, and the lower limit of the heating temperature is set to 1280 ° C. in order to completely dissolve the inhibitor. If it is less than 1280 degreeC, inhibitor components, such as MnS, MnSe, and AlN, cannot fully be made into solution. The upper limit is not particularly defined, but is preferably 1450 ° C. or less from the viewpoint of equipment protection.

上述のように加熱されたスラブは、引き続く熱間圧延により熱延板となる。この熱延板の板厚は、特に規定するものではないが、後述の冷間圧延率と関連するため、通常は、1.8〜3.5mmとする。この熱延板は、短時間焼鈍を経て冷間圧延される。上記焼鈍は、750〜1200℃の温度域で30秒〜10分間行い、製品の磁気特性を高めるために有効である。   The slab heated as described above becomes a hot-rolled sheet by subsequent hot rolling. The thickness of the hot-rolled sheet is not particularly specified, but is usually 1.8 to 3.5 mm because it is related to the cold rolling rate described later. This hot-rolled sheet is cold-rolled after being annealed for a short time. The annealing is performed in a temperature range of 750 to 1200 ° C. for 30 seconds to 10 minutes, and is effective for enhancing the magnetic properties of the product.

冷間圧延は、1回で行うか、または、中間焼鈍を間に挟んで2回以上に分けて行う。1回の冷間圧延とは、板温が600℃を超える焼鈍を途中に含まずに、一回もしくは複数回の圧延を施すことを意味する。その際、圧延の間に300℃以下程度の焼鈍を施すことは、むしろ磁気特性にとって好ましい。
冷間圧延を2回以上に分ける場合は、冷間圧延の間に中間焼鈍を行う。中間焼鈍は、750〜1200℃の温度域で30秒〜10分間とするのが好ましい。
Cold rolling is performed once or divided into two or more times with intermediate annealing in between. One cold rolling means that one or a plurality of rollings are performed without including an annealing process in which the plate temperature exceeds 600 ° C. At that time, it is preferable for the magnetic properties to perform annealing at about 300 ° C. or less during rolling.
When cold rolling is divided into two or more times, intermediate annealing is performed during cold rolling. The intermediate annealing is preferably performed in a temperature range of 750 to 1200 ° C. for 30 seconds to 10 minutes.

冷間圧延を1回で行うと製品の全長全幅特性が不安定になり易く、冷間圧延を2回以上に分けて行うと製品特性は安定するが到達磁束密度は低くなる傾向がある。このため、冷間圧延の回数は、望む製品の特性レベルとコストとを勘案して適宜選択される。
また、いずれの場合も、最終冷延圧下率を80〜95%の範囲とするのが好ましい。
When the cold rolling is performed once, the full width characteristics of the product are likely to be unstable, and when the cold rolling is performed twice or more, the product characteristics are stabilized but the ultimate magnetic flux density tends to be low. For this reason, the number of cold rolling is appropriately selected in consideration of the desired characteristic level and cost of the product.
In any case, the final cold rolling reduction is preferably in the range of 80 to 95%.

冷間圧延された鋼板は、続いて、水素窒素含有湿潤雰囲気中、900℃以下の温度で脱炭焼鈍され、Cを製品特性上必須となる20ppm以下に低減する。本発明では、後述するように、脱炭焼鈍中に溝付与する、あるいは脱炭焼鈍後に溝付与した後に再結晶焼鈍することで二次再結晶後の鋼板マクロ粒組織の圧延方向長さを制御する。
この後、MgOを主成分とするパウダーを塗布しコイル巻取りを行う。そして、巻取られたコイルにバッチ式の仕上焼鈍を実施し、その後、巻き解き、パウダー除去と、リン酸アルミニウムとコロイダルシリカを主成分としたスラリー液を塗布、焼付を行い、方向性電磁鋼板の製品を完成させる。
Subsequently, the cold-rolled steel sheet is decarburized and annealed at a temperature of 900 ° C. or lower in a wet atmosphere containing hydrogen nitrogen, and C is reduced to 20 ppm or lower, which is essential for product characteristics. In the present invention, as will be described later, the length in the rolling direction of the steel plate macro grain structure after the secondary recrystallization is controlled by applying a groove during decarburization annealing or by applying recrystallization annealing after applying the groove after decarburization annealing. To do.
Thereafter, a powder mainly composed of MgO is applied and coiled. Then, batch-type finish annealing is performed on the wound coil, and then unwinding, removing powder, applying a slurry liquid mainly composed of aluminum phosphate and colloidal silica, baking, and directional electrical steel sheet Complete the product.

前記仕上焼鈍は、{110}<001>方位粒を二次再結晶させる工程であり、鋼板の磁束密度を向上させるために極めて重要である。通常は、窒素水素混合雰囲気にて900〜1200℃の温度に昇温する過程で二次再結晶を発現させた後、水素雰囲気に切り替え、1100〜1200℃の焼鈍温度で20時間程度の焼鈍を実施することにより、N、S、Se等を鋼板外に拡散除去して製品板の磁気特性を良好なものとする。   The finish annealing is a step of secondary recrystallization of {110} <001> oriented grains, and is extremely important for improving the magnetic flux density of the steel sheet. Usually, after secondary recrystallization is developed in the process of raising the temperature to 900 to 1200 ° C. in a nitrogen-hydrogen mixed atmosphere, it is switched to a hydrogen atmosphere and annealed at an annealing temperature of 1100 to 1200 ° C. for about 20 hours. By carrying out the process, N, S, Se, etc. are diffused and removed out of the steel sheet to improve the magnetic properties of the product plate.

仕上焼鈍における焼鈍雰囲気は、前記のように窒素および水素の混合雰囲気とすることが製品特性および生産性の観点から好ましい。窒素分圧を上げると二次再結晶が安定化する傾向があり、窒素分圧を下げると高磁束密度特性が得られるものの、二次再結晶が不安定化する傾向がある。   The annealing atmosphere in the finish annealing is preferably a mixed atmosphere of nitrogen and hydrogen as described above from the viewpoint of product characteristics and productivity. Increasing the nitrogen partial pressure tends to stabilize secondary recrystallization, and decreasing the nitrogen partial pressure provides high magnetic flux density characteristics but tends to destabilize secondary recrystallization.

なお、Teを添加した鋼板は、二次再結晶温度が高くなる傾向があり、昇温過程における高温側の昇温速度を20℃/h以下の遅い速度とすることも、二次再結晶を安定化するために有効である。またMgOパウダー中に含まれる水分を減じて、製品におけるグラス被膜の鋼板への密着性を向上させる目的から、昇温途中で保定焼鈍を施すことも有効である。   In addition, the steel sheet added with Te tends to have a high secondary recrystallization temperature, and the temperature increase rate on the high temperature side in the temperature increasing process may be a slow rate of 20 ° C./h or less. It is effective for stabilization. In addition, it is also effective to perform retention annealing in the middle of the temperature rise for the purpose of reducing the moisture contained in the MgO powder and improving the adhesion of the glass coating in the product to the steel plate.

ついで、(2)の製造法について説明する。
この製造法では、質量%で、C:0.02〜0.10%、Si:2.5〜4.5%、Mn:0.05〜0.50%、S単独、あるいはSおよびSeを合計で:0.02%以下、酸可溶性Al:0.010〜0.050%、N:0.001〜0.015%、残部Feおよび不可避的不純物よりなる鋼を基本とし、この鋼に、同様に、さらにTe:0.0005〜0.10%を含有させた鋼を用いる。
Next, the production method (2) will be described.
In this production method, by mass%, C: 0.02 to 0.10%, Si: 2.5 to 4.5%, Mn: 0.05 to 0.50%, S alone, or S and Se. Total: 0.02% or less, acid-soluble Al: 0.010 to 0.050%, N: 0.001 to 0.015%, based on steel consisting of the balance Fe and unavoidable impurities, Similarly, steel further containing Te: 0.0005 to 0.10% is used.

この製造法では、インヒビターとして(Al,Si)Nを用いるので、インヒビターとしてMnSは特に必要としない。そのため、MnやS及びSeの含有量は次の理由で選定される。その他の成分については、(1)の製造法の場合と同様である。   In this manufacturing method, since (Al, Si) N is used as an inhibitor, MnS is not particularly required as an inhibitor. Therefore, the contents of Mn, S and Se are selected for the following reasons. About other components, it is the same as that of the case of the manufacturing method of (1).

Mnは、比抵抗を高めて鉄損を低減させる目的のために、また、熱間圧延における割れの発生を防止する目的のために0.05%以上0.50%以下の範囲で含有される。添加量が0.05%未満ではこれらの目的を達成することができず、一方、0.5%を超えると製品の磁束密度を低下させるため好ましくない。
S及びSeは磁気特性に悪影響を及ぼすので総量で0.02%以下とする。
Mn is contained in the range of 0.05% or more and 0.50% or less for the purpose of increasing specific resistance and reducing iron loss, and for the purpose of preventing the occurrence of cracks in hot rolling. . If the addition amount is less than 0.05%, these objects cannot be achieved. On the other hand, if it exceeds 0.5%, the magnetic flux density of the product is lowered, which is not preferable.
Since S and Se adversely affect the magnetic properties, the total amount is 0.02% or less.

上記のごとく成分を調整した方向性電磁鋼板製造用溶鋼から、通常の方法で鋳造されてスラブとされ、熱間圧延前に加熱処理される。その際の加熱温度は1280℃未満で十分である。
その後、(1)の製造法と同様にして、熱間圧延され、冷間圧延される。冷間圧延後の鋼板は、鋼中に含まれるCを除去するために湿潤雰囲気中で脱炭焼鈍が施され、その後、仕上焼鈍される。
From the molten steel for producing grain-oriented electrical steel sheets, the components of which are adjusted as described above, the slab is cast by a normal method and heat-treated before hot rolling. The heating temperature at that time is sufficient to be less than 1280 ° C.
Thereafter, in the same manner as the production method (1), hot rolling and cold rolling are performed. The steel sheet after cold rolling is subjected to decarburization annealing in a humid atmosphere in order to remove C contained in the steel, and then finish annealing.

この製造法では、インヒビターとしての(Al,Si)Nを形成するために、冷間圧延から仕上焼鈍の間で鋼板中の窒素を増加させる処理が行われる。窒素を増加させる処理としては、アンモニア等の窒化能のあるガスを含有する雰囲気中で焼鈍する窒化焼鈍によって行われる。
この窒化焼鈍の時期は、冷間圧延から仕上焼鈍の間であればよく、脱炭焼鈍の前あるいは後のどちらで施しても構わない。また、脱炭焼鈍と窒化焼鈍を同時に施しても、同様の効果が得られる。
In this manufacturing method, in order to form (Al, Si) N as an inhibitor, a process of increasing nitrogen in the steel sheet between cold rolling and finish annealing is performed. The treatment for increasing nitrogen is performed by nitridation annealing in an atmosphere containing a gas having nitriding ability such as ammonia.
The time of this nitridation annealing may be between cold rolling and finish annealing, and may be performed either before or after decarburization annealing. Moreover, the same effect is acquired even if it performs decarburization annealing and nitridation annealing simultaneously.

以上のようにそれぞれの製造法に従って冷間圧延された鋼板は、続いて前述のように脱炭焼鈍され、仕上焼鈍されるが、本発明は、Teの添加効果をより発現するために、脱炭焼鈍中に溝付与すること、あるいは脱炭焼鈍後に溝付与した後に再結晶焼鈍することにより、仕上焼鈍後の鋼板マクロ粒組織の圧延方向長さを短くすることで、鉄損を低減する効果を得る。
As described above, the steel sheets cold-rolled in accordance with the respective production methods are subsequently decarburized and finish-annealed as described above. Effect of reducing iron loss by shortening the rolling direction length of the steel grain macro grain structure after finish annealing by applying grooves during carbon annealing or by recrystallization annealing after applying grooves after decarburization annealing. Get.

この溝を付与する処理は、脱炭焼鈍中、あるいは脱炭焼鈍と再結晶焼鈍の間の、いずれで実施してもよい。溝下部の粒組織を粗大化することで、引き続く仕上焼鈍において、溝下部で二次再結晶の進行を抑制し、仕上焼鈍後の鋼板マクロ粒組織の圧延方向長さを短くする。ただし、溝付与後に直ちに仕上焼鈍を行うと、仕上焼鈍中の二次再結晶過程における溝下部の粒組織の粗大化が不十分となり、仕上焼鈍後の鋼板マクロ粒組織の圧延方向長さを短くする効果が十分に得られない。再結晶焼鈍を施す場合の雰囲気や焼鈍時間は特に限定せず、焼鈍により溝下部の粒組織が粗大化すれば、仕上焼鈍後の鋼板マクロ粒組織の圧延方向長さを短くして鉄損を低減するのに十分な効果が得られる。
You may implement the process which provides this groove | channel during either decarburization annealing or between decarburization annealing and recrystallization annealing. By coarsening the grain structure at the bottom of the groove, in the subsequent finish annealing, the progress of secondary recrystallization is suppressed at the bottom of the groove, and the length in the rolling direction of the steel plate macro grain structure after the finish annealing is shortened. However, if finish annealing is performed immediately after the groove is applied, the grain structure at the bottom of the groove is not sufficiently coarsened during the secondary recrystallization process during finish annealing, and the length in the rolling direction of the macro grain structure of the steel sheet after finish annealing is shortened. The effect to do is not fully obtained. The atmosphere and annealing time for recrystallization annealing are not particularly limited, and if the grain structure at the bottom of the groove becomes coarse due to annealing, the length in the rolling direction of the macro grain structure of the steel sheet after finish annealing is shortened to reduce iron loss. An effect sufficient for reduction can be obtained.

溝を付与する手法は特に限定せず、例えば、歯車型ロールや線状刃の押しつけによって機械的に溝を付与する手法がある。溝を付与する角度は特に限定しないが、仕上焼鈍後の鋼板マクロ粒組織の圧延方向長さを短くする観点から、圧延方向と直角から45°以内とすることが好ましく、圧延方向と直角から30°以内とすることがさらに好ましい。   The method for providing the groove is not particularly limited. For example, there is a method for mechanically providing the groove by pressing a gear-type roll or a linear blade. The angle at which the grooves are provided is not particularly limited, but from the viewpoint of shortening the length in the rolling direction of the steel grain macro grain structure after finish annealing, it is preferably within 45 ° from the right angle to the rolling direction, and 30 from the right angle to the rolling direction. More preferably, it is within ±.

溝は、直線状でも曲線状でも構わず、仕上焼鈍後の鋼板マクロ粒組織の圧延方向長さを短くすればよいが、直線上の溝を付与するほうが効率的である。また、溝は連続状が好ましいが、不連続であっても仕上焼鈍後の鋼板マクロ粒組織に影響を与えればよい。溝の形状、幅および深さは、特に限定しないが、幅は10〜300μm、深さは5〜50μm、溝間隔は圧延方向に1〜20mmが好ましい。また、溝は鋼板片面に付与してもよく、両面に付与しても構わない。   The groove may be linear or curved, and the length in the rolling direction of the steel grain macro grain structure after finish annealing may be shortened, but it is more efficient to provide the linear groove. Moreover, although a continuous shape is preferable, even if it is discontinuous, what is necessary is just to affect the steel plate macro grain structure after finishing annealing. The shape, width, and depth of the groove are not particularly limited, but the width is preferably 10 to 300 μm, the depth is 5 to 50 μm, and the groove interval is preferably 1 to 20 mm in the rolling direction. Moreover, a groove | channel may be provided to a steel plate single side | surface, and may be provided to both surfaces.

Te添加材の仕上焼鈍後における鋼板マクロ組織は、圧延方向に延伸した特異な形状となる。このような延伸マクロ組織は、理由は定かではないが、鋼板方位集積度が著しく高く、磁気特性が良好である。しかし、工業的生産条件では、二次再結晶の生じる仕上焼鈍はコイル状で実施されるため、圧延方向に粒径が大きくなり過ぎると、コイルセットに基づいて結晶方位のずれ角が大きくなり、方位集積度が低下して鉄損が劣化する。本発明では、上記のような溝付与処理を行って、仕上焼鈍後の鋼板マクロ粒組織の圧延方向長さを短くする。   The steel sheet macrostructure after the finish annealing of the Te additive has a unique shape extending in the rolling direction. The reason for such a stretched macrostructure is not clear, but the steel sheet orientation integration degree is remarkably high and the magnetic properties are good. However, in industrial production conditions, the finish annealing that causes secondary recrystallization is performed in a coil shape, so if the grain size becomes too large in the rolling direction, the deviation angle of the crystal orientation becomes large based on the coil set, The degree of azimuth accumulation decreases and iron loss deteriorates. In this invention, the above groove | channel grant processing is performed and the rolling direction length of the steel plate macro grain structure | tissue after finish annealing is shortened.

脱炭焼鈍する直前もしくは脱炭焼鈍の昇温過程において50℃/sec以上の加熱速度で800℃以上の温度へ加熱する処理を行うことは、仕上焼鈍後の鋼板マクロ粒組織の方位集積度を向上して、さらに鉄損を低減するのに有効である。加熱速度を制御する温度範囲は、少なくとも800℃である。800℃未満では加熱速度を制御する効果が十分でない。   Immediately before decarburization annealing or in the temperature raising process of decarburization annealing, heating to a temperature of 800 ° C. or higher at a heating rate of 50 ° C./sec or higher is a measure of orientation accumulation of steel plate macro grain structure after finish annealing It is effective to improve and further reduce iron loss. The temperature range that controls the heating rate is at least 800 ° C. If it is less than 800 degreeC, the effect which controls a heating rate is not enough.

加熱速度は、より速いほうが磁束密度の向上効果及び二次再結晶不良部の発生が抑制されてより製造安定性が増すので好ましく、特に250℃/sec以上の加熱速度が好ましい。加熱速度の上限は特に限定されるものではないが、2000℃/sec程度の加熱速度で十分である。   A higher heating rate is preferable because the effect of improving the magnetic flux density and the occurrence of secondary recrystallization failure are suppressed and the production stability is further increased, and a heating rate of 250 ° C./sec or more is particularly preferable. The upper limit of the heating rate is not particularly limited, but a heating rate of about 2000 ° C./sec is sufficient.

上記の加熱速度を制御する方法は特に限定するものではなく、加熱速度に応じて既存の加熱手段が適宜採用される。脱炭焼鈍の昇温過程で例えば100℃/sec以上の速度で加熱処理を行う場合は、従来の通常輻射熱を利用したラジアントチューブやエレマによる脱炭焼鈍設備の前段に、誘導加熱や通電加熱などの電気的加熱装置を組込んで実施することも可能である。   The method for controlling the heating rate is not particularly limited, and an existing heating means is appropriately employed depending on the heating rate. For example, when heat treatment is performed at a rate of 100 ° C / sec or higher in the temperature raising process of decarburization annealing, induction heating, electric heating, etc. are performed before the decarburization annealing equipment using a conventional radiant tube or elema using normal radiant heat. It is also possible to implement by incorporating the electric heating device.

以下、実施例を用いて、本発明の実施可能性及び効果についてさらに説明する。
なお、実施例に用いた条件はその確認のための一条件例であり、本発明は、この条件例に限定されるものではない。
Hereinafter, the feasibility and effects of the present invention will be further described using examples.
The conditions used in the examples are a condition example for the confirmation, and the present invention is not limited to this condition example.

(実施例1)
表2に示す成分を含み、残部は不可避的不純物とFeよりなる鋼スラブを、実験室の真空溶解炉において作製した。このスラブを1300℃にて1時間の焼鈍後、熱間圧延を実施した。得られた熱延板につき1100℃にて120秒間の焼鈍を行い、酸洗を施した後に冷間圧延を実施し板厚0.23mmの冷延板とした。その後、この冷延板を湿水素中850℃で150秒の脱炭焼鈍を施した後、一部の試料において歯車型ロールで直線状の溝を圧延方向の直角から10°の角度で施し、850℃で20秒の再結晶焼鈍を施した。溝深さは10μmとし、溝ピッチは5mmとした。脱炭焼鈍の昇温速度は25℃/sとした。
Example 1
A steel slab containing the components shown in Table 2 and the balance consisting of inevitable impurities and Fe was produced in a laboratory vacuum melting furnace. This slab was annealed at 1300 ° C. for 1 hour and then hot-rolled. The obtained hot-rolled sheet was annealed at 1100 ° C. for 120 seconds, pickled, and then cold-rolled to obtain a cold-rolled sheet having a thickness of 0.23 mm. Then, after subjecting this cold-rolled sheet to decarburization annealing in wet hydrogen at 850 ° C. for 150 seconds, in some samples, a linear groove is applied with a gear-type roll at an angle of 10 ° from the right angle of the rolling direction, Recrystallization annealing was performed at 850 ° C. for 20 seconds. The groove depth was 10 μm and the groove pitch was 5 mm. The heating rate of decarburization annealing was 25 ° C./s.

ついで、脱炭焼鈍後の鋼板にMgOを主成分とする焼鈍分離剤を水スラリーにて塗布し、750℃以上を平均昇温速度20℃/hで加熱して最高到達温度1150℃で20時間の仕上焼鈍を施した。得られた鋼板を水洗した後、単板磁気測定用サイズに剪断し、リン酸アルミニウムとコロイダルシリカを主成分とした絶縁被膜を塗布、焼付し、磁束密度B8値および鉄損W17/50値を測定した。その後、被膜を除去し、二次再結晶マクロ粒組織の圧延方向長さD値を測定した。   Next, an annealing separator mainly composed of MgO is applied to the steel sheet after decarburization annealing with water slurry, and heated at 750 ° C. or higher at an average temperature increase rate of 20 ° C./h for 20 hours at a maximum reached temperature of 1150 ° C. The finish annealing was performed. After washing the obtained steel sheet with water, it was sheared to a size for single-plate magnetic measurement, and an insulating film mainly composed of aluminum phosphate and colloidal silica was applied and baked to obtain a magnetic flux density B8 value and iron loss W17 / 50 value. It was measured. Thereafter, the coating was removed, and the length D value in the rolling direction of the secondary recrystallized macro grain structure was measured.

評価は10試験片について行い、平均B8:B8ave≧1.920Tかつ平均W17/50:W17/50ave≦0.750を満たし、さらに圧延方向長さの平均値:Dave≦5.0mmを満たす条件を良好と判定した。   Evaluation is performed on 10 test pieces, and satisfies the condition of satisfying average B8: B8ave ≧ 1.920T and average W17 / 50: W17 / 50ave ≦ 0.750, and further satisfying the average value in the rolling direction length: Dave ≦ 5.0 mm. It was determined to be good.

結果を表3に示す。良好の判定を満たすものは、Teを含有するスラブBを用い、溝を付与した条件であった。   The results are shown in Table 3. What satisfy | filled favorable determination was the conditions which provided the groove | channel using the slab B containing Te.

Figure 0005600991
Figure 0005600991

Figure 0005600991
Figure 0005600991

(実施例2)
表4に示す成分を含み、残部は不可避的不純物とFeよりなる鋼スラブを、実験室の真空溶解炉において作製した。このスラブを1350℃にて1時間の焼鈍後、熱間圧延を実施した。得られた熱延板につき1000℃にて100秒間の焼鈍を行い、酸洗を施した後に冷間圧延を実施して板厚1.7mmの鋼板を得た。この鋼板に1050℃にて100秒間の中間焼鈍を施した後に冷間圧延を実施し、板厚0.23mmの冷延板を得た。その後、この冷延板を湿水素中850℃で150秒の脱炭焼鈍を施した後、一部の試料において歯車型ロールで直線状の溝を圧延方向の直角から10°の角度で施し、850℃で20秒の再結晶焼鈍を施した。溝深さは10μmとし、溝ピッチは5mmとした。脱炭焼鈍の昇温速度は25℃/sとした。
(Example 2)
A steel slab containing the components shown in Table 4 and the balance being inevitable impurities and Fe was produced in a laboratory vacuum melting furnace. The slab was annealed at 1350 ° C. for 1 hour and then hot-rolled. The obtained hot-rolled sheet was annealed at 1000 ° C. for 100 seconds, pickled, and then cold-rolled to obtain a steel sheet having a thickness of 1.7 mm. The steel sheet was subjected to intermediate annealing at 1050 ° C. for 100 seconds and then cold rolled to obtain a cold rolled sheet having a thickness of 0.23 mm. Then, after subjecting this cold-rolled sheet to decarburization annealing in wet hydrogen at 850 ° C. for 150 seconds, in some samples, a linear groove is applied with a gear-type roll at an angle of 10 ° from the right angle of the rolling direction, Recrystallization annealing was performed at 850 ° C. for 20 seconds. The groove depth was 10 μm and the groove pitch was 5 mm. The heating rate of decarburization annealing was 25 ° C./s.

ついで、脱炭焼鈍後の鋼板にMgOを主成分とする焼鈍分離剤を水スラリーにて塗布し、750℃以上を平均昇温速度20℃/hで加熱して最高到達温度1150℃で20時間の仕上焼鈍を施した。得られた鋼板を水洗した後、単板磁気測定用サイズに剪断し、リン酸アルミニウムとコロイダルシリカを主成分とした絶縁被膜を塗布、焼付し、磁束密度B8値および鉄損W17/50値を測定した。その後、被膜を除去し、二次再結晶マクロ粒組織の圧延方向長さの平均値を測定した。10試験片の測定結果について実施例1と同様に評価した。   Next, an annealing separator mainly composed of MgO is applied to the steel sheet after decarburization annealing with water slurry, and heated at 750 ° C. or higher at an average temperature increase rate of 20 ° C./h for 20 hours at a maximum reached temperature of 1150 ° C. The finish annealing was performed. After washing the obtained steel sheet with water, it was sheared to a size for single-plate magnetic measurement, and an insulating film mainly composed of aluminum phosphate and colloidal silica was applied and baked to obtain a magnetic flux density B8 value and iron loss W17 / 50 value. It was measured. Then, the film was removed, and the average value of the length in the rolling direction of the secondary recrystallized macro grain structure was measured. The measurement results of 10 test pieces were evaluated in the same manner as in Example 1.

結果を表5に示す。良好の判定を満たすものは、Teを含有するスラブDを用い、溝を付与した条件であった。   The results are shown in Table 5. What satisfy | filled favorable determination was the conditions which provided the groove | channel using the slab D containing Te.

Figure 0005600991
Figure 0005600991

Figure 0005600991
Figure 0005600991

(実施例3)
表6に示す成分を含み、残部は不可避的不純物とFeよりなる鋼スラブを、実験室の真空溶解炉において作製した。このスラブを1150℃にて1時間の焼鈍後、熱間圧延を実施した。得られた熱延板につき1100℃にて100秒間の焼鈍を行い、酸洗を施した後に冷間圧延を実施して板厚0.23mmの冷延板を得た。さらに、この冷延板を湿水素中830℃で150秒の脱炭焼鈍を施した。窒化焼鈍は脱炭焼鈍後もしくは脱炭焼鈍と同時に施した。その後、一部の試料において歯車型ロールで直線状の溝を圧延方向の直角から10°の角度で施し、830℃で20秒の再結晶焼鈍を施した。溝深さは10μmとし、溝ピッチは5mmとした。脱炭焼鈍の昇温速度は25℃/sとした。
(Example 3)
A steel slab containing the components shown in Table 6 and the balance being inevitable impurities and Fe was produced in a laboratory vacuum melting furnace. This slab was annealed at 1150 ° C. for 1 hour and then hot-rolled. The obtained hot-rolled sheet was annealed at 1100 ° C. for 100 seconds, pickled, and then cold-rolled to obtain a cold-rolled sheet having a thickness of 0.23 mm. Further, this cold-rolled sheet was subjected to decarburization annealing at 830 ° C. for 150 seconds in wet hydrogen. Nitriding annealing was performed after decarburization annealing or simultaneously with decarburization annealing. Thereafter, in some samples, a linear groove was formed with a gear-type roll at an angle of 10 ° from a right angle in the rolling direction, and recrystallization annealing was performed at 830 ° C. for 20 seconds. The groove depth was 10 μm and the groove pitch was 5 mm. The heating rate of decarburization annealing was 25 ° C./s.

ついで、脱炭焼鈍後の鋼板にMgOを主成分とする焼鈍分離剤を水スラリーにて塗布し、750℃以上を平均昇温速度20℃/hで加熱して最高到達温度1150℃で20時間の仕上焼鈍を施した。得られた鋼板を水洗した後、単板磁気測定用サイズに剪断し、リン酸アルミニウムとコロイダルシリカを主成分とした絶縁被膜を塗布、焼付し、磁束密度B8値および鉄損W17/50値を測定した。その後、被膜を除去し、二次再結晶マクロ粒組織の圧延方向長さの平均値を測定した。10試験片の測定結果について実施例1と同様に評価した。   Next, an annealing separator mainly composed of MgO is applied to the steel sheet after decarburization annealing in a water slurry, and heated at 750 ° C. or higher at an average temperature increase rate of 20 ° C./h for 20 hours at a maximum reached temperature of 1150 ° C. for 20 hours. The finish annealing was performed. After washing the obtained steel sheet with water, it was sheared to a size for single-plate magnetic measurement, and an insulating film mainly composed of aluminum phosphate and colloidal silica was applied and baked to obtain a magnetic flux density B8 value and iron loss W17 / 50 value. It was measured. Then, the film was removed, and the average value of the length in the rolling direction of the secondary recrystallized macro grain structure was measured. The measurement results of 10 test pieces were evaluated in the same manner as in Example 1.

結果を表7に示す。良好の判定を満たすものは、Teを含有するスラブFを用い、溝を付与した条件であった。   The results are shown in Table 7. What satisfy | filled favorable determination was the conditions which provided the groove | channel using the slab F containing Te.

Figure 0005600991
Figure 0005600991

Figure 0005600991
Figure 0005600991

(実施例4)
表8に示す成分を含み、残部は不可避的不純物とFeよりなる鋼スラブを、実験室の真空溶解炉において作製した。このスラブを1300℃にて1時間の焼鈍後、熱間圧延を実施した。得られた熱延板につき1100℃にて120秒間の焼鈍を行い、酸洗を施した後に冷間圧延を実施し板厚0.23mmの冷延板とした。さらに、この冷延板を湿水素中850℃で150秒の脱炭焼鈍を施した。その後、一部の試料において歯車型ロールで直線状の溝を圧延方向の直角から10°の角度で施し、850℃で20秒の再結晶焼鈍を施した。溝深さは10μmとし、溝ピッチは5mmとした。脱炭焼鈍の昇温速度は25℃/sとした。
Example 4
A steel slab containing the components shown in Table 8 with the balance being inevitable impurities and Fe was prepared in a laboratory vacuum melting furnace. This slab was annealed at 1300 ° C. for 1 hour and then hot-rolled. The obtained hot-rolled sheet was annealed at 1100 ° C. for 120 seconds, pickled, and then cold-rolled to obtain a cold-rolled sheet having a thickness of 0.23 mm. Further, this cold-rolled sheet was subjected to decarburization annealing at 850 ° C. in wet hydrogen for 150 seconds. Thereafter, in some samples, a linear groove was applied with a gear-type roll at an angle of 10 ° from a right angle in the rolling direction, and recrystallization annealing was performed at 850 ° C. for 20 seconds. The groove depth was 10 μm and the groove pitch was 5 mm. The heating rate of decarburization annealing was 25 ° C./s.

ついで、脱炭焼鈍後の鋼板にMgOを主成分とする焼鈍分離剤を水スラリーにて塗布し、750℃以上を平均昇温速度20℃/hで加熱して最高到達温度1150℃で20時間の仕上焼鈍を施した。得られた鋼板を水洗した後、単板磁気測定用サイズに剪断し、リン酸アルミニウムとコロイダルシリカを主成分とした絶縁被膜を塗布、焼付し、磁束密度B8値および鉄損W17/50値を測定した。その後、被膜を除去し、二次再結晶マクロ粒組織の圧延方向長さの平均値を測定した。評価は10試験片について行い、平均B8:B8ave≧1.930Tかつ平均W17/50:W17/50ave≦0.720を満たし、さらに圧延方向長さの平均値:Dave≦5.0mmを満たす条件をさらに良好と判定した。   Next, an annealing separator mainly composed of MgO is applied to the steel sheet after decarburization annealing in a water slurry, and heated at 750 ° C. or higher at an average temperature increase rate of 20 ° C./h for 20 hours at a maximum reached temperature of 1150 ° C. for 20 hours. The finish annealing was performed. After washing the obtained steel sheet with water, it was sheared to a size for single-plate magnetic measurement, and an insulating film mainly composed of aluminum phosphate and colloidal silica was applied and baked to obtain a magnetic flux density B8 value and iron loss W17 / 50 value. It was measured. Then, the film was removed, and the average value of the length in the rolling direction of the secondary recrystallized macro grain structure was measured. Evaluation is performed on 10 test pieces, and satisfies the condition of satisfying average B8: B8ave ≧ 1.930T and average W17 / 50: W17 / 50ave ≦ 0.720 and further satisfying the average value in the rolling direction length: Dave ≦ 5.0 mm. Furthermore, it judged with it being favorable.

結果を表9に示す。さらに良好の判定を満たすものは、TeおよびBiを含有するスラブHを用い、溝を付与した条件であった。   The results are shown in Table 9. What satisfy | filled the favorable determination was the conditions which provided the groove | channel using the slab H containing Te and Bi.

Figure 0005600991
Figure 0005600991

Figure 0005600991
Figure 0005600991

(実施例5)
表10に示す成分を含み、残部は不可避的不純物とFeよりなる鋼スラブを、実験室の真空溶解炉において作製した。このスラブを1350℃にて1時間の焼鈍後、熱間圧延を実施した。得られた熱延板につき1100℃にて120秒間の焼鈍を行い、酸洗を施した後に冷間圧延を実施し板厚0.23mmの冷延板とした。その後、この冷延板を湿水素中850℃で150秒の脱炭焼鈍を施した後、一部の試料において歯車型ロールで直線状の溝を圧延方向の直角から10°の角度で施し、850℃で20秒の再結晶焼鈍を施した。溝深さは10μmとし、溝ピッチは5mmとした。その際、脱炭焼鈍の昇温過程における800℃までの加熱速度を、表11に示すように10〜1000℃/secの範囲で変更した。
(Example 5)
A steel slab containing the components shown in Table 10 and the balance being inevitable impurities and Fe was produced in a laboratory vacuum melting furnace. The slab was annealed at 1350 ° C. for 1 hour and then hot-rolled. The obtained hot-rolled sheet was annealed at 1100 ° C. for 120 seconds, pickled, and then cold-rolled to obtain a cold-rolled sheet having a thickness of 0.23 mm. Then, after subjecting this cold-rolled sheet to decarburization annealing in wet hydrogen at 850 ° C. for 150 seconds, in some samples, a linear groove is applied with a gear-type roll at an angle of 10 ° from the right angle of the rolling direction, Recrystallization annealing was performed at 850 ° C. for 20 seconds. The groove depth was 10 μm and the groove pitch was 5 mm. At that time, the heating rate up to 800 ° C. in the temperature raising process of decarburization annealing was changed in the range of 10 to 1000 ° C./sec as shown in Table 11.

ついで、脱炭焼鈍後の鋼板にMgOを主成分とする焼鈍分離剤を水スラリーにて塗布し、コイルセット付与を目的として曲率半径500mmの曲率を付与した後、750℃以上を平均昇温速度20℃/hで加熱して最高到達温度1150℃で20時間の仕上焼鈍を施した。得られた鋼板を水洗した後、単板磁気測定用サイズに剪断し、リン酸アルミニウムとコロイダルシリカを主成分とした絶縁被膜を塗布、焼付し、磁束密度B8値および鉄損W17/50値を測定した。その後、被膜を除去し、二次再結晶マクロ粒組織の圧延方向長さの平均値を測定した。評価は10試験片について行い、平均B8:B8ave≧1.930Tかつ平均W17/50:W17/50ave≦0.720を満たし、さらに圧延方向長さの平均値:Dave≦5.0mmを満たす条件をさらに良好と判定した。   Next, an annealing separator containing MgO as a main component is applied to the steel sheet after decarburization annealing with a water slurry, and a curvature with a radius of curvature of 500 mm is imparted for the purpose of providing a coil set, and then an average heating rate of 750 ° C. or higher. Heat annealing was performed at 20 ° C./h, and a final annealing for 20 hours was performed at a maximum temperature of 1150 ° C. After washing the obtained steel sheet with water, it was sheared to a size for single-plate magnetic measurement, and an insulating film mainly composed of aluminum phosphate and colloidal silica was applied and baked to obtain a magnetic flux density B8 value and iron loss W17 / 50 value. It was measured. Then, the film was removed, and the average value of the length in the rolling direction of the secondary recrystallized macro grain structure was measured. Evaluation is performed on 10 test pieces, and satisfies the condition of satisfying average B8: B8ave ≧ 1.930T and average W17 / 50: W17 / 50ave ≦ 0.720 and further satisfying the average value in the rolling direction length: Dave ≦ 5.0 mm. Furthermore, it judged with it being favorable.

結果を表11に示す。さらに良好の判定を満たすものは、Teを含有するスラブJを用い、かつ脱炭焼鈍の昇温過程における800℃までの加熱速度が50℃/sec以上の範囲であった。特に加熱速度が250℃/sec以上では、B8>1.940Tとなり極めて良好であった。   The results are shown in Table 11. What satisfy | filled the favorable determination used the slab J containing Te, and the heating rate to 800 degreeC in the temperature rising process of decarburization annealing was the range of 50 degreeC / sec or more. In particular, when the heating rate was 250 ° C./sec or more, B8> 1.940T, which was very good.

Figure 0005600991
Figure 0005600991

Figure 0005600991
Figure 0005600991

本発明は、著しく鉄損の低い方向性電磁鋼板を、工業的規模にて安定的に製造することができるので、大きな産業上の利用可能性がある。 INDUSTRIAL APPLICABILITY Since the grain-oriented electrical steel sheet having extremely low iron loss can be stably produced on an industrial scale, the present invention has great industrial applicability.

Claims (7)

質量%で、C:0.02〜0.10%、Si:2.5〜4.5%、Mn:0.01〜0.15%、S:0.001〜0.050%、酸可溶性Al:0.01〜0.05%、N:0.002〜0.015%、Te:0.0005〜0.10%を含有し、残部Feおよび不可避的不純物からなるスラブを、1280℃以上に加熱し、熱間圧延を施した後、熱延板焼鈍を施し、一回の冷間圧延もしくは中間焼鈍を挟む二回以上の冷間圧延を施して冷延鋼板とした後、脱炭焼鈍を施し、鋼板表面にMgOを主成分とする焼鈍分離剤を塗布してから仕上焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法において、
脱炭焼鈍中に溝付与すること、あるいは脱炭焼鈍後に溝付与した後に再結晶焼鈍することで、二次再結晶粒を溝位置で分断することを特徴とする方向性電磁鋼板の製造方法。
In mass%, C: 0.02 to 0.10%, Si: 2.5 to 4.5%, Mn: 0.01 to 0.15%, S: 0.001 to 0.050%, acid-soluble A slab containing Al: 0.01 to 0.05%, N: 0.002 to 0.015%, Te: 0.0005 to 0.10%, and remaining Fe and unavoidable impurities is 1280 ° C or higher. After performing hot rolling, hot-rolled sheet annealing is performed, and cold rolling steel sheet is subjected to cold rolling of two or more times with one cold rolling or intermediate annealing, followed by decarburization annealing. In the method for producing a grain-oriented electrical steel sheet comprising a series of steps of applying a finish annealing after applying an annealing separator mainly composed of MgO to the steel sheet surface,
By groove granted during decarburization annealing, or by recrystallization annealing after the grooves applied after decarburization annealing method for producing a grain-oriented electrical steel sheet characterized by dividing the secondary recrystallized grains in the groove position .
質量%で、C:0.02〜0.10%、Si:2.5〜4.5%、Mn:0.01〜0.15%、SおよびSeを合計で:0.001〜0.050%、酸可溶性Al:0.010〜0.050%、N:0.002〜0.015%、Te:0.0005〜0.10%を含有し、残部Feおよび不可避的不純物からなるスラブを、1280℃以上に加熱し、熱間圧延を施した後、熱延板焼鈍を施し、一回の冷間圧延もしくは中間焼鈍を挟む二回以上の冷間圧延を施して冷延鋼板とした後、脱炭焼鈍を施し、鋼板表面にMgOを主成分とする焼鈍分離剤を塗布してから仕上焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法において、
脱炭焼鈍中に溝付与すること、あるいは脱炭焼鈍後に溝付与した後に再結晶焼鈍することで、二次再結晶粒を溝位置で分断することを特徴とする方向性電磁鋼板の製造方法。
In mass%, C: 0.02-0.10%, Si: 2.5-4.5%, Mn: 0.01-0.15%, S and Se in total: 0.001-0. A slab containing 050%, acid-soluble Al: 0.010 to 0.050%, N: 0.002 to 0.015%, Te: 0.0005 to 0.10%, the balance being Fe and inevitable impurities The steel sheet is heated to 1280 ° C. or higher, hot-rolled, then subjected to hot-rolled sheet annealing, and cold-rolled steel sheet is obtained by performing one or more cold rolling or two or more cold-rolling sandwiches intermediate annealing. Then, in the method for producing a grain-oriented electrical steel sheet comprising a series of steps in which decarburization annealing is performed and finish annealing is performed after applying an annealing separator mainly composed of MgO to the steel sheet surface.
By groove granted during decarburization annealing, or by recrystallization annealing after the grooves applied after decarburization annealing method for producing a grain-oriented electrical steel sheet characterized by dividing the secondary recrystallized grains in the groove position .
質量%で、C:0.02〜0.10%、Si:2.5〜4.5%、Mn:0.05〜0.50%、S単独で、あるいはSおよびSeを合計で:0.02%以下、酸可溶性Al:0.010〜0.050%、N:0.001〜0.015%、Te:0.0005〜0.10%を含有し、残部Feおよび不可避的不純物からなるスラブを、1280℃未満で加熱し、熱間圧延を施した後、熱延板焼鈍を施し、一回の冷間圧延もしくは中間焼鈍を挟む二回以上の冷間圧延を施して冷延鋼板とした後、脱炭焼鈍および窒化焼鈍を施し、鋼板表面にMgOを主成分とする焼鈍分離剤を塗布してから仕上焼鈍を施す一連の工程からなる方向性電磁鋼板の製造法において、
脱炭焼鈍中に溝付与すること、あるいは脱炭焼鈍後に溝付与した後に再結晶焼鈍することで、二次再結晶粒を溝位置で分断することを特徴とする方向性電磁鋼板の製造方法。
In mass%, C: 0.02 to 0.10%, Si: 2.5 to 4.5%, Mn: 0.05 to 0.50%, S alone or S and Se in total: 0 0.02% or less, acid-soluble Al: 0.010 to 0.050%, N: 0.001 to 0.015%, Te: 0.0005 to 0.10%, from the remaining Fe and inevitable impurities The resulting slab is heated at less than 1280 ° C., hot-rolled, then subjected to hot-rolled sheet annealing, and subjected to one or more cold rollings or two or more cold rollings sandwiching the intermediate annealing to cold-rolled steel sheet After the decarburization annealing and nitridation annealing, in the manufacturing method of the grain-oriented electrical steel sheet consisting of a series of steps of applying a finishing annealing after applying an annealing separator mainly composed of MgO to the steel sheet surface,
By groove granted during decarburization annealing, or by recrystallization annealing after the grooves applied after decarburization annealing method for producing a grain-oriented electrical steel sheet characterized by dividing the secondary recrystallized grains in the groove position .
請求項1〜3のいずれか1項に記載の方向性電磁鋼板の製造方法において、In the manufacturing method of the grain-oriented electrical steel sheet according to any one of claims 1 to 3,
脱炭焼鈍中に機械的手法にて溝付与することで、あるいは脱炭焼鈍後に機械的手法にて溝付与した後に再結晶焼鈍することで、二次再結晶粒を溝位置で分断することを特徴とする方向性電磁鋼板の製造方法。It is possible to divide the secondary recrystallized grains at the groove position by applying grooves by a mechanical method during decarburization annealing or by recrystallization annealing after applying grooves by a mechanical method after decarburization annealing. A method for producing a grain-oriented electrical steel sheet.
請求項4に記載の方向性電磁鋼板の製造方法において、In the manufacturing method of the grain-oriented electrical steel sheet according to claim 4,
脱炭焼鈍中に歯車型ロールにて溝付与することで、あるいは脱炭焼鈍後に歯車型ロールにて溝付与した後に再結晶焼鈍することで、二次再結晶粒を溝位置で分断することを特徴とする方向性電磁鋼板の製造方法。It is possible to divide the secondary recrystallized grains at the groove position by applying grooves with a gear-type roll during decarburization annealing or by applying recrystallization annealing after applying grooves with a gear-type roll after decarburization annealing. A method for producing a grain-oriented electrical steel sheet.
前記スラブが、さらにBi:0.0005〜0.10%を含有することを特徴とする請求項1〜のいずれか1項に記載の方向性電磁鋼板の製造方法。 The method for producing a grain-oriented electrical steel sheet according to any one of claims 1 to 5 , wherein the slab further contains Bi: 0.0005 to 0.10%. 請求項1〜のいずれか1項に記載の方向性電磁鋼板の製造方法において、
脱炭焼鈍する直前もしくは脱炭焼鈍の昇温過程において50℃/sec以上の加熱速度で800℃以上の温度へ加熱する処理を行うことを特徴とする方向性電磁鋼板の製造方法。
The method of manufacturing a grain-oriented electrical steel sheet according to any one of claims 1 to 6
A method for producing a grain-oriented electrical steel sheet, characterized by performing a process of heating to a temperature of 800 ° C. or more at a heating rate of 50 ° C./sec or more immediately before decarburization annealing or in a temperature raising process of decarburization annealing.
JP2010075340A 2010-03-29 2010-03-29 Method for producing grain-oriented electrical steel sheet Active JP5600991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010075340A JP5600991B2 (en) 2010-03-29 2010-03-29 Method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010075340A JP5600991B2 (en) 2010-03-29 2010-03-29 Method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2011208196A JP2011208196A (en) 2011-10-20
JP5600991B2 true JP5600991B2 (en) 2014-10-08

Family

ID=44939552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010075340A Active JP5600991B2 (en) 2010-03-29 2010-03-29 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP5600991B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102545563B1 (en) * 2019-01-16 2023-06-21 닛폰세이테츠 가부시키가이샤 Manufacturing method of grain-oriented electrical steel sheet
WO2023191029A1 (en) * 2022-03-31 2023-10-05 日本製鉄株式会社 Grain-oriented electrical steel sheet and method for manufacturing same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5423647B2 (en) * 1974-04-25 1979-08-15
JPS60103120A (en) * 1983-11-10 1985-06-07 Kawasaki Steel Corp Production of grain oriented silicon steel sheet having low iron loss
JPS62179105A (en) * 1986-02-03 1987-08-06 Nippon Steel Corp Manufacture of low iron loss unidirectional electromagnetic steel plate
JPS637333A (en) * 1986-06-27 1988-01-13 Nippon Steel Corp Production of low iron loss grain oriented electrical steel sheet having excellent glass film characteristic
JPH04228600A (en) * 1990-09-21 1992-08-18 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet free from deterioration in characteristic due to stress relief annealing and reduced in iron loss
JPH0610051A (en) * 1992-06-26 1994-01-18 Nippon Steel Corp Silicon steel sheet excellent in iron loss and its production
JP3488333B2 (en) * 1996-04-02 2004-01-19 新日本製鐵株式会社 Low iron loss grain-oriented electrical steel sheet
JP3482833B2 (en) * 1996-10-21 2004-01-06 Jfeスチール株式会社 Grain-oriented electrical steel sheets with excellent iron loss, distortion resistance and magnetic properties in actual machines
JP4331900B2 (en) * 2001-03-30 2009-09-16 新日本製鐵株式会社 Oriented electrical steel sheet and method and apparatus for manufacturing the same
JP5439866B2 (en) * 2008-03-05 2014-03-12 新日鐵住金株式会社 Method for producing grain-oriented electrical steel sheet with extremely high magnetic flux density

Also Published As

Publication number Publication date
JP2011208196A (en) 2011-10-20

Similar Documents

Publication Publication Date Title
JP5439866B2 (en) Method for producing grain-oriented electrical steel sheet with extremely high magnetic flux density
JP6844125B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP5760504B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5754097B2 (en) Oriented electrical steel sheet and manufacturing method thereof
EP3050979B1 (en) Method for producing grain-oriented electromagnetic steel sheet
KR101498404B1 (en) Method for manufacturing grain oriented electrical steel sheet
KR102239708B1 (en) Grain-oriented electrical steel sheet and its manufacturing method
KR101600724B1 (en) Method of producing grain-oriented electrical steel sheet having excellent iron loss properties
RU2580776C1 (en) Method of making sheet of textured electrical steel
EP2025767B2 (en) Process for producing grain-oriented electrical steel sheet with high magnetic flux density
KR101683693B1 (en) Method for producing grain-oriented electrical steel sheet
WO2014013615A1 (en) Process for producing grain-oriented electrical steel sheet
KR101389248B1 (en) Manufacturing method for grain-oriented electromagnetic steel sheet
WO2011115120A1 (en) Method for producing directional electromagnetic steel sheet
KR20130032913A (en) Method for producing non-oriented magnetic steel sheet
WO2012001952A1 (en) Oriented electromagnetic steel plate and production method for same
JP2013047382A (en) Method of producing grain-oriented electromagnetic steel sheet
JP6436316B2 (en) Method for producing grain-oriented electrical steel sheet
JP6020768B1 (en) Oriented electrical steel sheet and manufacturing method thereof
KR20190034622A (en) Hot-rolled steel sheet for directional electric steel sheet, manufacturing method thereof, and manufacturing method of directional electric steel sheet
KR101707451B1 (en) Grain oriented electrical steel sheet and method for manufacturing the same
JP4608562B2 (en) Method for producing grain-oriented electrical steel sheet with extremely high magnetic flux density
JP4608514B2 (en) Method for producing grain-oriented electrical steel sheet with extremely high magnetic flux density
JP6079580B2 (en) Method for producing grain-oriented electrical steel sheet
JP5600991B2 (en) Method for producing grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140722

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140804

R151 Written notification of patent or utility model registration

Ref document number: 5600991

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350