JP4608514B2 - Method for producing grain-oriented electrical steel sheet with extremely high magnetic flux density - Google Patents

Method for producing grain-oriented electrical steel sheet with extremely high magnetic flux density Download PDF

Info

Publication number
JP4608514B2
JP4608514B2 JP2007104950A JP2007104950A JP4608514B2 JP 4608514 B2 JP4608514 B2 JP 4608514B2 JP 2007104950 A JP2007104950 A JP 2007104950A JP 2007104950 A JP2007104950 A JP 2007104950A JP 4608514 B2 JP4608514 B2 JP 4608514B2
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
oriented electrical
rolled
electrical steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007104950A
Other languages
Japanese (ja)
Other versions
JP2008261013A (en
Inventor
宣郷 森重
健一 村上
穂高 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007104950A priority Critical patent/JP4608514B2/en
Publication of JP2008261013A publication Critical patent/JP2008261013A/en
Application granted granted Critical
Publication of JP4608514B2 publication Critical patent/JP4608514B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、著しく磁束密度の高い方向性電磁鋼板を、工業的規模にて、安定的に製造する方法に関するものである。   The present invention relates to a method for stably producing a grain-oriented electrical steel sheet having a remarkably high magnetic flux density on an industrial scale.

方向性電磁鋼板は、Siを2〜4%程度含有し、製品の結晶粒の方位を{110}<001>方位に高度に集積させた鋼板である。主として、変圧器等の静止誘導器の鉄心材料として利用されるものであり、交流で励磁した時のエネルギー損失すなわち鉄損が低いことが求められており、近年の省エネルギー化への要望が高まるにつれて、さらなる低鉄損化が求められている。   The grain-oriented electrical steel sheet is a steel sheet containing about 2 to 4% of Si and highly accumulating the crystal grain orientation of the product in the {110} <001> orientation. It is mainly used as a core material for static inductors such as transformers, and is required to have low energy loss, that is, iron loss when excited by alternating current. As demand for energy saving in recent years increases, Further reduction of iron loss is demanded.

これらの諸特性を満足する方向性電磁鋼板を製造するために、多くの開発がなされてきたが、鋼板の磁束密度(800A/mの磁場を付与した時の磁束密度:B8値で代表)を高くすることが、特に、効果が大きいことが明らかとなっている(例えば、特許文献1、参照)。   Many developments have been made to produce grain-oriented electrical steel sheets that satisfy these various characteristics. The magnetic flux density of the steel sheets (magnetic flux density when a magnetic field of 800 A / m is applied: represented by the B8 value) It is clear that the effect is particularly high when the height is increased (for example, see Patent Document 1).

方向性電磁鋼板の磁束密度の向上には、種々の手法が存在する。例えば、Biを添加することにより磁束密度を向上させる手法が、特許文献2に開示されている。また、Teを添加することにより磁束密度を向上させる手法も、特許文献3や特許文献4に開示されている。   There are various methods for improving the magnetic flux density of grain-oriented electrical steel sheets. For example, Patent Document 2 discloses a technique for improving the magnetic flux density by adding Bi. Further, Patent Document 3 and Patent Document 4 disclose methods for improving the magnetic flux density by adding Te.

しかしながら、これらの手法を用いれば、磁束密度は向上して方向性電磁鋼板の諸特性は向上するものの、世界的な発電量増加に伴う高品質方向性電磁鋼板の需要を満たすには、製造安定性が充分ではない。そこで、高磁束密度と製造安定性を両立する技術を確立する必要に迫られている。   However, although these methods improve the magnetic flux density and improve the properties of grain-oriented electrical steel sheets, in order to meet the demand for high-quality grain-oriented electrical steel sheets as the amount of power generation increases worldwide, production stability Sex is not enough. Therefore, it is necessary to establish a technology that achieves both high magnetic flux density and manufacturing stability.

特公昭40−15644号Japanese Patent Publication No.40-15644 特開平06−89805号JP 06-89805 A 特開平06−184640号JP 06-184640 A 特開平06−207220号JP 06-207220 A

本発明は、著しく磁束密度の高い方向性電磁鋼板を、工業的規模にて、安定的に製造する方法を提供することを課題とする。   An object of the present invention is to provide a method for stably producing a grain-oriented electrical steel sheet having a remarkably high magnetic flux density on an industrial scale.

上記課題を解決する本発明の要旨は、次のとおりである。   The gist of the present invention for solving the above problems is as follows.

(1)質量%で、C:0.02〜0.10%、Si:2.5〜4.5%、Mn:0.01〜0.15%、SおよびSeを単独または複合で:0.001〜0.05%、酸可溶性Al:0.01〜0.05%、N:0.002〜0.015%、Te:0.0005〜0.10%を含有し、残部Feおよび不可避的不純物からなるスラブを、1280℃以上に加熱し、熱間圧延を施した後、熱延板焼鈍を施し、冷間圧延を施して最終製品厚の冷延鋼板とした後、脱炭・一次再結晶焼鈍を施し、鋼板表面にMgOを主成分とする焼鈍分離剤を塗布してから仕上焼鈍を施す一連の工程からなる方向性電磁鋼板の製造法において、仕上焼鈍における950℃以上1150℃以下のコイル昇温平均速度を、3℃/h以上10℃/h以下とすることを特徴とする方向性電磁鋼板の製造方法。 (1) By mass%, C: 0.02 to 0.10%, Si: 2.5 to 4.5%, Mn: 0.01 to 0.15%, S and Se alone or in combination: 0 0.001 to 0.05%, acid-soluble Al: 0.01 to 0.05%, N: 0.002 to 0.015%, Te: 0.0005 to 0.10%, balance Fe and inevitable After heating the slab composed of impurities to 1280 ° C or higher, hot-rolling, hot-rolled sheet annealing, cold-rolling to make a cold-rolled steel sheet with the final product thickness, decarburization and primary In the method for producing a grain-oriented electrical steel sheet comprising a series of steps in which recrystallization annealing is performed and an annealing separator containing MgO as a main component is applied to the steel sheet surface and then finish annealing is performed, 950 ° C. or more and 1150 ° C. or less in finish annealing The coil heating average speed is 3 ° C./h or more and 10 ° C./h or less. Method of manufacturing oriented electrical steel sheet towards you.

(2)質量%で、C:0.02〜0.10%、Si:2.5〜4.5%、Mn:0.01〜0.15%、SおよびSeを単独または複合で:0.001〜0.05%、酸可溶性Al:0.01〜0.05%、N:0.002〜0.015%、Te:0.0005〜0.10%を含有し、残部Feおよび不可避的不純物からなるスラブを、1280℃以上で加熱し、熱間圧延を施した後、熱延板焼鈍を施し、中間焼鈍を挟む二回以上の冷間圧延を施して最終製品厚の冷延鋼板とした後、脱炭・一次再結晶焼鈍を施し、鋼板表面にMgOを主成分とする焼鈍分離剤を塗布してから仕上焼鈍を施す一連の工程からなる方向性電磁鋼板の製造法において、仕上焼鈍における950℃以上1150℃以下のコイル昇温平均速度を、3℃/h以上10℃/h以下とすることを特徴とする方向性電磁鋼板の製造方法。 (2) By mass%, C: 0.02 to 0.10%, Si: 2.5 to 4.5%, Mn: 0.01 to 0.15%, S and Se alone or in combination: 0 0.001 to 0.05%, acid-soluble Al: 0.01 to 0.05%, N: 0.002 to 0.015%, Te: 0.0005 to 0.10%, balance Fe and inevitable A slab made of a typical impurity is heated at 1280 ° C. or higher, hot-rolled, then subjected to hot-rolled sheet annealing, and subjected to cold rolling at least twice with intermediate annealing in between to produce a cold-rolled steel sheet having a final product thickness In the manufacturing method of grain-oriented electrical steel sheets, which consists of a series of steps in which decarburization and primary recrystallization annealing are performed, and an annealing separator containing MgO as a main component is applied to the steel sheet surface and then finish annealing is performed. The average coil heating rate of 950 ° C. or higher and 1150 ° C. or lower during annealing is 3 ° C./h or higher and 10 ° C. / method for producing oriented electrical steel sheets towards you, characterized in that the h or less.

(3)前記仕上焼鈍における850〜950℃のコイル昇温平均速度を、10℃/h以上50℃/h以下とすることを特徴とする前記(1)または(2)に記載の方向性電磁鋼板の製造方法。 (3) tropism towards according to (1) or (2) the coil temperature increase average speed of 850 to 950 ° C. in the final annealing, characterized by the following 10 ° C. / h or higher 50 ° C. / h A method for producing electrical steel sheets.

本発明によれば、著しく磁束密度の高い方向性電磁鋼板を、工業的規模にて、安定的に製造することができる。したがって、本発明は、近年の省エネルギー化への要望に沿うものであり、その効果は甚大である。   According to the present invention, a grain-oriented electrical steel sheet having a remarkably high magnetic flux density can be stably produced on an industrial scale. Therefore, the present invention meets the recent demand for energy saving, and the effect is enormous.

本発明の製造方法について、詳細に説明する。   The production method of the present invention will be described in detail.

本発明者らは、著しく磁束密度の高い方向性電磁鋼板の安定製造技術を発明するため、以下の実験を行った。実験室の真空溶解炉において、質量%で、C:0.08%、Si:3.25%、Mn:0.08%、S:0.027%、酸可溶性Al:0.03%、N:0.009%を含有し、残部Feおよび不可避的不純物からなるスラブAと、これに、Te:0.01%を添加したスラブBを作製し、1300℃および1350℃にて、1時間の焼鈍後、熱間圧延を実施した。   The present inventors conducted the following experiments in order to invent a stable manufacturing technology for grain-oriented electrical steel sheets with extremely high magnetic flux density. In a laboratory vacuum melting furnace, by mass, C: 0.08%, Si: 3.25%, Mn: 0.08%, S: 0.027%, acid-soluble Al: 0.03%, N : Slab A containing 0.009%, balance Fe and unavoidable impurities, and slab B to which Te: 0.01% was added, and at 1300 ° C. and 1350 ° C. for 1 hour After annealing, hot rolling was performed.

本熱延板につき、1100℃にて120秒間の焼鈍を行い、酸洗を施した後に冷間圧延を実施し、板厚0.23mmとした。さらに、本冷延板に、湿水素中850℃で150秒の脱炭焼鈍を施し、MgOを主成分とする焼鈍分離剤を水スラリーにて塗布した後、種々の加熱条件の下で、最高到達温度1150℃で20時間の仕上焼鈍を施した。   The hot-rolled sheet was annealed at 1100 ° C. for 120 seconds, pickled, and then cold-rolled to a sheet thickness of 0.23 mm. Furthermore, this cold-rolled sheet was decarburized and annealed at 850 ° C. in wet hydrogen for 150 seconds, and an annealing separator mainly composed of MgO was applied in a water slurry. Finish annealing was performed at an ultimate temperature of 1150 ° C. for 20 hours.

本鋼板を水洗後、単板磁気測定用サイズに剪断し、リン酸アルミニウムとコロイダルシリカを主成分とした絶縁被膜を塗布、焼付し、磁束密度B8値を評価した。   The steel sheet was washed with water, sheared to a single-plate magnetic measurement size, coated with an insulating film mainly composed of aluminum phosphate and colloidal silica, and baked to evaluate the magnetic flux density B8 value.

仕上焼鈍は、窒素:25%、水素:75%含有雰囲気で、昇温速度は850℃未満まで50℃/h、850℃以上950℃未満まで30℃/h、950℃以上1150℃以下まで、表1に示す53〜50℃/hの範囲で変更した。1150℃に到達後は、水素雰囲気に切り替え、20時間の保定焼鈍を行った。   Finish annealing is in an atmosphere containing nitrogen: 25%, hydrogen: 75%, and the rate of temperature rise is less than 850 ° C., 50 ° C./h, from 850 ° C. to less than 950 ° C., 30 ° C./h, from 950 ° C. to 1150 ° C. It changed in the range of 53-50 degreeC / h shown in Table 1. After reaching 1150 ° C., the atmosphere was switched to a hydrogen atmosphere and a 20-hour holding annealing was performed.

ここで、B8は、50Hzにて800A/mの磁場を付与したときの磁束密度の値であり、高い方が好ましい。評価は、スラブ加熱温度1300℃および1350℃の両方において、B8>1.940Tのものを良好と判定した。   Here, B8 is a magnetic flux density value when a magnetic field of 800 A / m is applied at 50 Hz, and a higher value is preferable. Evaluation was determined to be good when B8> 1.940T at both slab heating temperatures of 1300 ° C and 1350 ° C.

スラブ加熱2条件ともに良好であることを必須とした理由は、実機通板のスラブは、必ず、長手・幅方向に温度偏差を有するので、製品コイル全長全幅にわたり良好な特性を得るためには、実験室規模の実験において、1300℃、1350℃の加熱温度試験材ともに良好であることが必須と考えられるからである。   The reason why the two conditions of slab heating are essential is that the slab of the actual machine plate always has a temperature deviation in the longitudinal and width directions, so in order to obtain good characteristics over the entire length of the product coil, This is because it is considered essential that the heating temperature test materials at 1300 ° C. and 1350 ° C. are good in laboratory-scale experiments.

表1に、結果を示す。スラブ加熱温度が1350℃で、かつ、仕上焼鈍における950〜1150℃までの昇温速度が3〜25℃/hの範囲では、Te添加(0.01質量%)によって、B8>1.940Tとなり、磁束密度は良好となるが、昇温速度が50℃/hでは、磁束密度が1.940Tに達しない。スラブ加熱温度が1300℃の場合、磁束密度B8>1.940Tを満たすのは、Te添加、かつ、仕上焼鈍の昇温速度が3℃/h以上20℃/h以下の条件であり、昇温速度が25℃/h以上では、磁束密度B8が1.940Tに達しなかった。   Table 1 shows the results. When the slab heating temperature is 1350 ° C. and the rate of temperature increase from 950 to 1150 ° C. in the finish annealing is in the range of 3 to 25 ° C./h, B8> 1.940T is obtained by adding Te (0.01 mass%). The magnetic flux density is good, but the magnetic flux density does not reach 1.940 T at a heating rate of 50 ° C./h. When the slab heating temperature is 1300 ° C., the magnetic flux density B 8> 1.940 T is satisfied under the condition that the temperature increase rate of Te addition and finish annealing is 3 ° C./h or more and 20 ° C./h or less. When the speed was 25 ° C./h or more, the magnetic flux density B8 did not reach 1.940T.

これらのことから、Te添加、かつ、仕上焼鈍における950〜1150℃までの昇温速度が3〜20℃/hの条件において、スラブ加熱温度1300℃および1350℃の両方にてB8>1.940Tとなり、良好な特性が得られることがわかる。   From these facts, B8> 1.940T at both the slab heating temperatures of 1300 ° C. and 1350 ° C. under the conditions of Te addition and the rate of temperature increase from 950 to 1150 ° C. in the finish annealing at 3 to 20 ° C./h. Thus, it can be seen that good characteristics can be obtained.

以上より、本発明者らは、Te添加、かつ、仕上焼鈍における950〜1150℃までの昇温速度を制御することにより、著しく高い磁束密度を、全長および全幅で実現する手法を新規に知見し、本発明を完成させた。   From the above, the present inventors have newly found a method for realizing a remarkably high magnetic flux density over the entire length and width by controlling the temperature increase rate up to 950 to 1150 ° C. in Te addition and finish annealing. The present invention has been completed.

Figure 0004608514
Figure 0004608514

続いて、本発明における実施形態について以下に説明する。本発明は、基本的な製造法として、田口、坂倉らによるAlNとMnSを主インヒビターとして用いる製造法(例えば、特公昭40−15644号公報、参照)へ適用するものである。この理由は、本技術は、スラブ加熱から熱間圧延工程にかけての鋼板温度偏差に起因する製品板の全長全幅特性の偏差を解消するものであるため、必然的に、スラブ加熱温度1280℃以上で溶体化したAlNとMnSを、その後微細析出させ、インヒビターとして特性向上に利用する製造法を対象とするからである。   Subsequently, embodiments of the present invention will be described below. The present invention is applied to a production method using AlN and MnS as main inhibitors by Taguchi, Sakakura et al. (See, for example, Japanese Patent Publication No. 40-15644) as a basic production method. The reason for this is that the present technology eliminates the deviation of the full width characteristics of the product plate due to the steel plate temperature deviation from the slab heating to the hot rolling process. This is because a solution method of AlN and MnS in solution is then finely precipitated and used as an inhibitor for improving characteristics.

Cには、種々の役割があるが、質量%で0.02%未満では、スラブ加熱時の結晶粒径が大きくなり過ぎて製品の鉄損が劣化する。一方、質量%で0.10%を超えた場合は、冷延後の脱炭焼鈍において、脱炭時間が長時間必要となり経済的でないばかりでなく、脱炭が不完全となり易く、製品での磁気時効と呼ばれる磁性不良を起こすので、好ましくない。なお、以下、単に%と記載する場合があるが、%は質量%を意味する。   C has various roles, but if it is less than 0.02% by mass, the crystal grain size at the time of slab heating becomes too large and the iron loss of the product deteriorates. On the other hand, if it exceeds 0.10% by mass, decarburization annealing after cold rolling requires not only a long time, but is not economical, and decarburization tends to be incomplete. This is not preferable because it causes a magnetic defect called magnetic aging. In the following description, “%” may be simply referred to as “%”, but “%” means “% by mass”.

このため、Cの含有量の下限は0.02%、上限は0.10%とする。この範囲内でより適正な範囲は、0.05〜0.09%である。   For this reason, the lower limit of the C content is 0.02%, and the upper limit is 0.10%. A more appropriate range within this range is 0.05 to 0.09%.

Siは、鋼の電気抵抗を高めて、鉄損の一部を構成する渦電流損失を低減するのに極めて有効な元素であり、質量%で、2.5%以上4.5%以下の範囲に制御しなければならない。2.5%未満では、製品の渦電流損失を抑制できず、また、4.5%を超えると、加工性が劣化するので、好ましくない。   Si is an extremely effective element for increasing the electrical resistance of steel and reducing the eddy current loss that constitutes a part of the iron loss. The mass% ranges from 2.5% to 4.5%. Must be controlled. If it is less than 2.5%, eddy current loss of the product cannot be suppressed, and if it exceeds 4.5%, workability deteriorates, which is not preferable.

Mnは、二次再結晶を左右するインヒビターであるMnSおよび/またはMnSeを形成する重要な元素であり、質量%で、0.01%以上0.15%以下の範囲に制御する必要がある。0.01%未満では、二次再結晶を生じさせるのに必要なMnS、MnSeの絶対量が不足するので、好ましくない。また、0.15%を超えた場合には、スラブ加熱時の固溶が困難になるばかりでなく、析出サイズが粗大化し易く、インヒビターとしての最適サイズ分布が損なわれて、好ましくない。   Mn is an important element for forming MnS and / or MnSe, which is an inhibitor that influences secondary recrystallization, and it is necessary to control Mn in a range of 0.01% to 0.15%. If it is less than 0.01%, the absolute amount of MnS and MnSe necessary for causing secondary recrystallization is insufficient, which is not preferable. On the other hand, if it exceeds 0.15%, not only the solid solution during slab heating becomes difficult, but also the precipitation size tends to become coarse, and the optimum size distribution as an inhibitor is impaired.

Sおよび/またはSeは、上述したMnとインヒビターを形成する重要な元素であり、単独または合計の質量%で、0.001%以上0.05%以下の範囲に制御する必要がある。上記範囲を逸脱すると、十分なインヒビター効果が得られない。   S and / or Se is an important element that forms an inhibitor with Mn described above, and must be controlled within a range of 0.001% or more and 0.05% or less alone or in total mass%. If it deviates from the above range, a sufficient inhibitor effect cannot be obtained.

酸可溶性Alは、高磁束密度方向性電磁鋼板を製造するための主要インヒビター構成元素であり、質量%で、0.01%以上0.05%以下の範囲に制御する必要がある。0.01%未満では、量的に不足して、インヒビター強度が不足するので、好ましくない。一方、0.05%を超えると、インヒビターとして析出させるAlNが粗大化し、結果として、インヒビター強度を低下させるので、好ましくない。   Acid-soluble Al is a main inhibitor constituting element for producing a high magnetic flux density grain-oriented electrical steel sheet and needs to be controlled in a range of 0.01% to 0.05% by mass. If it is less than 0.01%, the quantity is insufficient, and the inhibitor strength is insufficient. On the other hand, if it exceeds 0.05%, AlN precipitated as an inhibitor becomes coarse, and as a result, the inhibitor strength is lowered, which is not preferable.

Nは、上述した酸可溶性AlとAlNを形成する重要な元素であり、質量%で、0.002%以上0.015%以下の範囲に制御する必要がある。上記範囲を逸脱すると、十分なインヒビター効果が得られない。   N is an important element that forms the above-described acid-soluble Al and AlN, and is required to be controlled in a range of 0.002% to 0.015% by mass. If it deviates from the above range, a sufficient inhibitor effect cannot be obtained.

Teは、インヒビターを強化して鋼板磁束密度を向上させるのに有効な元素であり、例えば、特開平6−184640号公報や特開平6−207220号公報に効果が提示されている。質量%で、0.0005〜0.10%の範囲に制御する必要があり、0.0005%未満では十分な効果が得られず、0.10%を超えると、圧延性が劣化して、好ましくない。   Te is an element effective for enhancing the inhibitor and improving the magnetic flux density of the steel sheet. For example, Te is disclosed in JP-A-6-184640 and JP-A-6-207220. It is necessary to control in the range of 0.0005 to 0.10% by mass%, and if it is less than 0.0005%, a sufficient effect cannot be obtained, and if it exceeds 0.10%, the rollability deteriorates, It is not preferable.

この他、二次再結晶を安定化させる元素として、Sn、Sb、Cu、Ag、As、Mo、Cr、P、Ni、B、Pb、V、Ge、Ti、Biの一種または二種以上を、合計して、質量%で、0.0005〜1.0%含有させることも有用である。これら元素の添加量としては、0.0005%未満では、二次再結晶安定化の効果が十分でなく、また、1.0%を超えると効果が飽和するために、コストの観点から、上限を1.0%に限定する。   In addition, Sn, Sb, Cu, Ag, As, Mo, Cr, P, Ni, B, Pb, V, Ge, Ti, and Bi are used as elements for stabilizing secondary recrystallization. In addition, it is useful to contain 0.0005 to 1.0% by mass in total. If the amount of these elements is less than 0.0005%, the effect of stabilizing the secondary recrystallization is not sufficient, and if it exceeds 1.0%, the effect is saturated. Is limited to 1.0%.

上記のごとく成分を調整した方向性電磁鋼板製造用溶鋼は、通常の方法で鋳造する。特に鋳造方法に限定はない。次いで、スラブ加熱処理するが、加熱温度の下限値は、1280℃とする。1280℃未満では、MnS、MnSe、AlN等のインヒビター成分を充分に溶体化させることができない。上限は、特に定めないが、設備保護の観点から1450℃以下が好ましい。   The molten steel for producing grain-oriented electrical steel sheets with the components adjusted as described above is cast by a normal method. There is no particular limitation on the casting method. Next, slab heat treatment is performed, and the lower limit of the heating temperature is 1280 ° C. If it is less than 1280 degreeC, inhibitor components, such as MnS, MnSe, and AlN, cannot fully be made into solution. The upper limit is not particularly defined, but is preferably 1450 ° C. or less from the viewpoint of equipment protection.

上述のスラブ片は、引き続く熱間圧延により熱延板となる。この熱延板の板厚は、特に規定するものではないが、後述の冷間圧延率と関連するため、通常は、1.8〜3.5mmとする。本熱延板は、直ちに、または、短時間焼鈍を経て冷間圧延される。上記焼鈍は、750〜1200℃の温度域で30秒〜10分間行い、製品の磁気特性を高めるために有効である。   The above-mentioned slab piece becomes a hot-rolled sheet by subsequent hot rolling. The thickness of the hot-rolled sheet is not particularly specified, but is usually 1.8 to 3.5 mm because it is related to the cold rolling rate described later. The hot-rolled sheet is cold-rolled immediately or after being annealed for a short time. The annealing is performed in a temperature range of 750 to 1200 ° C. for 30 seconds to 10 minutes, and is effective for enhancing the magnetic properties of the product.

冷間圧延は、1回、または、中間焼鈍を挟む2回以上に分けて行う。冷間圧延を1回とすると、製品の全長全幅特性が不安定になり易く、冷間圧延を2回以上に分けると、製品特性は安定するが到達磁束密度は低くなる傾向がある。   Cold rolling is performed once or divided into two or more times with intermediate annealing. If the cold rolling is performed once, the full width characteristics of the product are likely to be unstable. If the cold rolling is divided into two or more times, the product characteristics are stabilized but the ultimate magnetic flux density tends to be low.

いずれの場合も、最終冷延圧下率は、80〜95%の範囲とするのが好ましい。冷間圧延を2回以上に分ける場合の中間焼鈍は、750〜1200℃の温度域で30秒〜10分間とするのが好ましい。   In any case, the final cold rolling reduction ratio is preferably in the range of 80 to 95%. In the case where the cold rolling is divided into two or more times, the intermediate annealing is preferably performed in a temperature range of 750 to 1200 ° C. for 30 seconds to 10 minutes.

脱炭焼鈍に関しては、水素窒素含有湿潤雰囲気中にて実施し、Cを20ppm以下に低減することが、製品特性上、必須となる。この後、MgOを主成分とするパウダーを塗布しコイル巻取りを行う。そして、本コイルにバッチ式の仕上焼鈍を実施し、その後、巻き解き、パウダー除去と、リン酸アルミニウムとコロイダルシリカを主成分としたスラリー液を塗布、焼付を行い、方向性電磁鋼板の製品を完成させる。   Regarding decarburization annealing, it is essential in terms of product characteristics to be carried out in a wet atmosphere containing hydrogen nitrogen and to reduce C to 20 ppm or less. Thereafter, a powder mainly composed of MgO is applied and coiled. Then, batch-type finish annealing is performed on this coil, and then unwinding, removing powder, applying a slurry liquid mainly composed of aluminum phosphate and colloidal silica, and baking are performed to obtain a product of grain-oriented electrical steel sheet. Finalize.

前記仕上焼鈍は、{110}<001>方位粒を二次再結晶させる工程であり、鋼板の磁束密度を向上させるために極めて重要である。通常は、窒素水素混合雰囲気にて実施する。850℃までの昇温速度は、生産性の観点から速い方が望ましく、好ましくは、15〜100℃/hの範囲であるが、MgOパウダー中に含まれる水分を減じて、製品におけるグラス被膜の鋼板への密着性を向上させる目的から、昇温途中で保定焼鈍を施しても構わない。   The finish annealing is a step of secondary recrystallization of {110} <001> oriented grains, and is extremely important for improving the magnetic flux density of the steel sheet. Usually, it implements in nitrogen-hydrogen mixed atmosphere. The temperature rising rate up to 850 ° C. is desirable from the viewpoint of productivity, and is preferably in the range of 15 to 100 ° C./h. However, the moisture content in the MgO powder is reduced to reduce the glass coating in the product. For the purpose of improving the adhesion to the steel plate, the holding annealing may be performed during the temperature increase.

引き続く850℃から1150℃までの温度域で、二次再結晶を発現させた後、1150〜1200℃の温度で20時間程度の焼鈍を実施し、N、S、Se等を鋼板外に拡散することにより、製品板の磁気特性を、良好なものとすることができる。   In the subsequent temperature range from 850 ° C. to 1150 ° C., secondary recrystallization is developed, and then annealing is performed at a temperature of 1150 to 1200 ° C. for about 20 hours, and N, S, Se, etc. are diffused outside the steel sheet. As a result, the magnetic properties of the product plate can be improved.

引き続いて、仕上焼鈍昇温過程の850℃から1150℃までの温度域におけるコイル加熱条件について述べる。まず、二次再結晶制御に最重要である950〜1150℃の温度域におけるコイル昇温平均速度を、3℃/h以上10℃/h以下とした理由について述べる。 Subsequently, coil heating conditions in the temperature range from 850 ° C. to 1150 ° C. in the finish annealing temperature raising process will be described. First, the reason why the coil heating average speed in the temperature range of 950 to 1150 ° C., which is most important for secondary recrystallization control, is set to 3 ° C./h or more and 10 ° C./h or less will be described.

Teを添加した鋼板は、かかる温度域で二次再結晶が発現するが、二次再結晶安定性の観点から、コイル昇温速度は、比較的遅くすることが好ましい。   The steel sheet to which Te is added exhibits secondary recrystallization in such a temperature range, but from the viewpoint of secondary recrystallization stability, the coil heating rate is preferably relatively slow.

下限は3℃/hとし、これより遅くすると、生産性を阻害して好ましくない。上限は20℃/hとし、これより速くするとコイル内、特に、スラブ加熱が充分でなかった部位で、二次再結晶不良が生じ易くなり、製造安定性の観点から好ましくない。なお、本発明では、実施例に基づいて、上限を10℃/hとした。 The lower limit is 3 ° C./h, and if it is slower than this, the productivity is hindered. The upper limit is set to 20 ° C./h, and if it is faster than this, secondary recrystallization failure is likely to occur in the coil, particularly at a site where slab heating is not sufficient, which is not preferable from the viewpoint of manufacturing stability. In the present invention, the upper limit was set to 10 ° C./h based on the examples.

磁気特性は、特に、コイル昇温平均速度が15℃/h以下で良好となるが、昇温速度を5℃/h未満としても、磁気特性向上効果は飽和して変化しないことから、この温度域におけるより適正なコイル昇温平均速度範囲は、5℃/h以上である。 The magnetic characteristics are particularly good when the coil heating average speed is 15 ° C./h or less, but even if the temperature rising speed is less than 5 ° C./h, the effect of improving magnetic characteristics is saturated and does not change. proper coil temperature increase average speed range than in-band is the 5 ° C. / h or less.

また、前半部分の850℃から950℃までの温度域におけるコイル昇温平均速度を10℃/h以上50℃/以下とする理由について述べる。   The reason why the average coil heating rate in the temperature range from 850 ° C. to 950 ° C. in the first half is set to 10 ° C./h or more and 50 ° C./less will be described.

かかる温度域は、インヒビターであるAlNやMnS、MnSe等が乖離、固溶、また、拡散を開始する領域である。二次再結晶を制御して製品の磁束密度を向上せしめるために、重要な温度域であり、比較的速くコイル昇温することが好ましい。   This temperature range is a region where the inhibitors AlN, MnS, MnSe, etc. start to dissociate, dissolve, and diffuse. In order to control the secondary recrystallization and improve the magnetic flux density of the product, it is an important temperature range, and it is preferable to heat the coil relatively quickly.

下限を10℃/hとするのは、さらなる鋼板磁束密度向上の観点からで、これより遅いと、磁束密度が向上せず、好ましくない。上限は50℃/hとし、これより速くすると、実機設備への負荷が大きくなり、設備保護の観点から好ましくない。この温度域におけるより適正なコイル昇温平均速度範囲は、15〜35℃/hである。   The lower limit is set to 10 ° C./h from the viewpoint of further improving the magnetic flux density of the steel sheet. The upper limit is 50 ° C./h, and if it is faster than this, the load on the actual equipment increases, which is not preferable from the viewpoint of equipment protection. A more appropriate coil temperature increase average speed range in this temperature range is 15 to 35 ° C./h.

従来技術との比較において、特開平6−184640号公報または特開平6−207220号公報に、Teを含有するスラブを用いた高磁束密度一方向性電磁鋼板を製造方法が開示されている。これらの製造方法は、熱延板または熱延板焼鈍板に予備冷延(冷延を2回するもの)を施す手法に限ったものであり、また、仕上焼鈍のコイル加熱条件は定義されていない。   In comparison with the prior art, Japanese Patent Application Laid-Open No. 6-184640 or Japanese Patent Application Laid-Open No. 6-207220 discloses a method for manufacturing a high magnetic flux density unidirectional electrical steel sheet using a slab containing Te. These manufacturing methods are limited to a method of subjecting a hot-rolled sheet or a hot-rolled sheet annealed sheet to preliminary cold rolling (one that performs cold rolling twice), and coil heating conditions for finish annealing are defined. Absent.

しかしながら、本発明は、Te添加と仕上焼鈍におけるコイル加熱条件を組み合わせ、冷延を1回または2回以上に分けて実施した場合も、コイル全長全幅において、著しく磁束密度の高い方向性電磁鋼板を、工業的規模にて、安定的に製造する方法を提示するものであり、技術の差異は明確である。   However, the present invention combines the coil heating conditions in Te addition and finish annealing, and even when the cold rolling is performed once or twice, the grain-oriented electrical steel sheet having a remarkably high magnetic flux density over the entire length of the coil. It presents a method for stable production on an industrial scale, and the difference in technology is clear.

特開平5−78743号公報に、Teを含有するスラブを用いた磁気特性、被膜特性ともに優れた方向性電磁鋼板の製造方法が開示されている。Te等を極微量添加することで、鋼板の磁束密度を向上せしめる手法が開示されているが、スラブ加熱温度を1280℃未満に限定しており、本発明とは明確に異なるものである。   Japanese Patent Application Laid-Open No. 5-78743 discloses a method for producing a grain-oriented electrical steel sheet that is excellent in both magnetic properties and film properties using a slab containing Te. Although a technique for improving the magnetic flux density of the steel sheet by adding a very small amount of Te or the like is disclosed, the slab heating temperature is limited to less than 1280 ° C., which is clearly different from the present invention.

(実施例1)
表2に示す成分を含み、残部は不可避的不純物とFeよりなる鋼スラブを、実験室の真空溶解炉において作製した。上記スラブを、1300℃および1350℃にて1時間の焼鈍後、熱間圧延を実施した。本熱延板につき、1100℃にて120秒間の焼鈍を行い、酸洗を施した後に、冷間圧延を実施し、板厚0.23mmとした。
Example 1
A steel slab containing the components shown in Table 2 and the balance consisting of inevitable impurities and Fe was produced in a laboratory vacuum melting furnace. The slab was subjected to hot rolling after annealing at 1300 ° C. and 1350 ° C. for 1 hour. The hot-rolled sheet was annealed at 1100 ° C. for 120 seconds, pickled, and then cold-rolled to a thickness of 0.23 mm.

さらに、本冷延板に、湿水素中850℃で150秒の脱炭焼鈍を施し、MgOを主成分とする焼鈍分離剤を水スラリーにて塗布し、種々の加熱条件で、最高到達温度1150℃で20時間の仕上焼鈍を施した。本鋼板を水洗後、単板磁気測定用サイズに剪断し、リン酸アルミニウムとコロイダルシリカを主成分とした絶縁被膜を塗布、焼付し、磁束密度B8を測定した。   Further, this cold-rolled sheet was subjected to decarburization annealing at 850 ° C. in wet hydrogen for 150 seconds, and an annealing separator mainly composed of MgO was applied as a water slurry. Under various heating conditions, the maximum temperature reached 1150 Finish annealing was carried out at 20 ° C. for 20 hours. After washing this steel plate with water, it was sheared to a size for single-plate magnetic measurement, and an insulating coating mainly composed of aluminum phosphate and colloidal silica was applied and baked, and the magnetic flux density B8 was measured.

なお、仕上焼鈍昇温は窒素:25%、水素:75%含有雰囲気で、昇温速度は850℃未満まで50℃/h、850℃以上950℃未満まで30℃/h、950℃以上1150℃以下まで、表3に示す5〜50℃/hの範囲で変更した。   Note that the finish annealing temperature is nitrogen: 25%, hydrogen: 75% atmosphere, and the rate of temperature increase is 50 ° C./h to less than 850 ° C., 30 ° C./h to 850 ° C. to less than 950 ° C., 950 ° C. to 1150 ° C. It changed in the range of 5-50 degrees C / h shown in Table 3 until below.

1150℃に到達後は、水素雰囲気に切り替え、20時間の保定焼鈍を行った。ここで、B8は50Hzにて800A/mの磁場を付与したときの磁束密度であり、高い方が好ましい。評価は、スラブ加熱温度1300℃および1350℃の両方において、B8>1.940Tのものを良好と判定した。   After reaching 1150 ° C., the atmosphere was switched to a hydrogen atmosphere and a 20-hour holding annealing was performed. Here, B8 is the magnetic flux density when a magnetic field of 800 A / m is applied at 50 Hz, and the higher one is preferable. Evaluation was determined to be good when B8> 1.940T at both slab heating temperatures of 1300 ° C and 1350 ° C.

結果を、表3に示す。スラブ加熱温度が1300℃および1350℃のいずれにおいても、B8>1.940Tを満たすのは、Teを含有するスラブBで、かつ、仕上焼鈍における950℃以上1150℃以下のコイル昇温速度が、3℃/h以上20℃/h以下の範囲のものであった。3℃/h〜10℃/hでは、B8≧1.948Tで、さらに良好であった。 The results are shown in Table 3. It is slab B containing Te that satisfies B8> 1.940T at both slab heating temperatures of 1300 ° C. and 1350 ° C., and the coil heating rate from 950 ° C. to 1150 ° C. in the finish annealing is It was in the range of 3 ° C./h or more and 20 ° C./h or less. At 3 ° C./h to 10 ° C./h , B8 ≧ 1.948T, which was even better.

Figure 0004608514
Figure 0004608514

Figure 0004608514
Figure 0004608514

(実施例2)
表4に示す成分を含み、残部は不可避的不純物とFeよりなる鋼スラブを、実験室の真空溶解炉において作製した。上記スラブに、1350℃および1400℃にて1時間の焼鈍後、熱間圧延を施した。本熱延板につき、1000℃にて100秒間の焼鈍を行い、酸洗を施した後、冷間圧延を施して、板厚1.7mmの鋼板とした。本鋼板に、1050℃にて100秒間の中間焼鈍を施した後に、冷間圧延を施し、板厚0.23mmの冷延板とした。
(Example 2)
A steel slab containing the components shown in Table 4 and the balance being inevitable impurities and Fe was produced in a laboratory vacuum melting furnace. The slab was hot-rolled after annealing at 1350 ° C. and 1400 ° C. for 1 hour. The hot-rolled sheet was annealed at 1000 ° C. for 100 seconds, pickled, and then cold-rolled to obtain a steel sheet having a thickness of 1.7 mm. The steel sheet was subjected to an intermediate annealing at 1050 ° C. for 100 seconds, and then cold-rolled to obtain a cold-rolled sheet having a thickness of 0.23 mm.

さらに、本冷延板に、湿水素中850℃で150秒の脱炭焼鈍を施し、MgOを主成分とする焼鈍分離剤を水スラリーにて塗布し、種々の加熱条件で最高到達温度1150℃で20時間の仕上焼鈍を施した。本鋼板を水洗後、単板磁気測定用サイズに剪断し、リン酸アルミニウムとコロイダルシリカを主成分とした絶縁被膜を塗布、焼付し、磁束密度B8を測定した。   Further, this cold-rolled sheet is subjected to decarburization annealing in wet hydrogen at 850 ° C. for 150 seconds, and an annealing separator mainly composed of MgO is applied as a water slurry, and the maximum temperature reached 1150 ° C. under various heating conditions. And finish annealing for 20 hours. After washing this steel plate with water, it was sheared to a size for single-plate magnetic measurement, and an insulating coating mainly composed of aluminum phosphate and colloidal silica was applied and baked, and the magnetic flux density B8 was measured.

なお、仕上焼鈍昇温は、窒素:25%、水素:75%含有雰囲気で、昇温速度は850℃未満まで50℃/h、850℃以上950℃未満まで1030℃/h、950℃以上1150℃以下まで、表5に示す5〜50℃/hの範囲で変更した。1150℃に到達後は、水素雰囲気に切り替え、20時間の保定焼鈍を行った。ここで、B8は50Hzにて800A/mの磁場を付与したときの磁束密度であり、高い方が好ましい。評価は、スラブ加熱温度1350℃および1400℃の両方において、B8>1.940Tのものを良好と判定した。   Note that the finish annealing temperature increase is an atmosphere containing nitrogen: 25% and hydrogen: 75%, and the temperature increase rate is 50 ° C./h to less than 850 ° C., 1030 ° C./h to 850 ° C. to less than 950 ° C., and 950 to 1150 The temperature was changed within the range of 5 to 50 ° C./h shown in Table 5 until the temperature was equal to or below. After reaching 1150 ° C., the atmosphere was switched to a hydrogen atmosphere and a 20-hour holding annealing was performed. Here, B8 is the magnetic flux density when a magnetic field of 800 A / m is applied at 50 Hz, and the higher one is preferable. Evaluation was determined to be good when B8> 1.940T at both slab heating temperatures of 1350 ° C. and 1400 ° C.

結果を、表5に示す。スラブ加熱温度が1350℃および1400℃のいずれにおいてもB8>1.940Tを満たすのは、Teを含有するスラブDで、かつ、仕上焼鈍における950℃以上1150℃以下のコイル昇温速度が、3℃/h以上20℃/h以下の範囲のものであった。3℃/h〜10℃/hでは、B8≧1.948Tで、さらに良好であった。 The results are shown in Table 5. It is slab D containing Te that satisfies B8> 1.940T when the slab heating temperature is 1350 ° C. and 1400 ° C., and the coil heating rate from 950 ° C. to 1150 ° C. in the finish annealing is 3 It was in the range of not less than 20 ° C / h. At 3 ° C./h to 10 ° C./h , B8 ≧ 1.948T, which was even better.

Figure 0004608514
Figure 0004608514

Figure 0004608514
Figure 0004608514

(実施例3)
質量%で、C:0.08%、Si:3.26%、Mn:0.08%、S:0.025%、酸可溶性Al:0.03%、N:0.008%、Te:0.005%を含有し、残部は不可避的不純物とFeよりなる鋼スラブを、実験室の真空溶解炉において作製した。上記スラブを、1300℃および1350℃にて1時間焼鈍した後、熱間圧延を施した。本熱延板につき、1100℃にて120秒間の焼鈍を行い、酸洗を施した後に、冷間圧延を実施し、板厚0.23mmとした。
(Example 3)
In mass%, C: 0.08%, Si: 3.26%, Mn: 0.08%, S: 0.025%, acid-soluble Al: 0.03%, N: 0.008%, Te: A steel slab containing 0.005% and the balance of inevitable impurities and Fe was produced in a laboratory vacuum melting furnace. The slab was annealed at 1300 ° C. and 1350 ° C. for 1 hour, and then hot-rolled. The hot-rolled sheet was annealed at 1100 ° C. for 120 seconds, pickled, and then cold-rolled to a thickness of 0.23 mm.

さらに、本冷延板に、湿水素中850℃で150秒の脱炭焼鈍を施し、MgOを主成分とする焼鈍分離剤を水スラリーにて塗布し、種々の加熱条件で、最高到達温度1150℃で20時間の仕上焼鈍を施した。本鋼板を、水洗後、単板磁気測定用サイズに剪断し、リン酸アルミニウムとコロイダルシリカを主成分とした絶縁被膜を塗布、焼付し、磁束密度B8を測定した。   Further, this cold-rolled sheet was subjected to decarburization annealing at 850 ° C. in wet hydrogen for 150 seconds, and an annealing separator mainly composed of MgO was applied as a water slurry. Under various heating conditions, the maximum temperature reached 1150 Finish annealing was carried out at 20 ° C. for 20 hours. The steel sheet was washed with water, sheared to a single-plate magnetic measurement size, coated with an insulating film mainly composed of aluminum phosphate and colloidal silica, and baked, and the magnetic flux density B8 was measured.

なお、仕上焼鈍昇温は窒素:25%、水素:75%含有雰囲気で、昇温速度は850℃未満まで50℃/h、850℃以上950℃未満まで、表6に示す5〜50℃/hの範囲で変更し、950℃以上1150℃以下まで10℃/hとした。1150℃に到達後は、水素雰囲気に切り替え、20時間の保定焼鈍を行った。   Note that the finish annealing temperature increase is nitrogen: 25%, hydrogen: 75% atmosphere, the temperature increase rate is 50 ° C./h to less than 850 ° C., 850 ° C. to less than 950 ° C. It changed in the range of h, and set it as 10 degreeC / h to 950 degreeC or more and 1150 degrees C or less. After reaching 1150 ° C., the atmosphere was switched to a hydrogen atmosphere and a 20-hour holding annealing was performed.

ここで、B8は、50Hzにて800A/mの磁場を付与したときの磁束密度であり、高い方が好ましい。評価は、スラブ加熱温度1300℃および1350℃の両方において、B8>1.945Tのものを、良好と判定した。   Here, B8 is the magnetic flux density when a magnetic field of 800 A / m is applied at 50 Hz, and the higher one is preferable. Evaluation was determined to be good when B8> 1.945T at both slab heating temperatures of 1300 ° C. and 1350 ° C.

結果を、表6に示す。スラブ加熱温度が1300℃および1350℃のいずれにおいても、B8>1.945Tを満たすのは、仕上焼鈍における850℃以上950℃未満のコイル昇温速度が10℃/h以上50℃/h以下の範囲のものであった。   The results are shown in Table 6. Whether the slab heating temperature is 1300 ° C. or 1350 ° C., B8> 1.945T is satisfied because the coil heating rate of 850 ° C. or more and less than 950 ° C. in finish annealing is 10 ° C./h or more and 50 ° C./h or less. It was in range.

Figure 0004608514
Figure 0004608514

Claims (3)

質量%で、C:0.02〜0.10%、Si:2.5〜4.5%、Mn:0.01〜0.15%、SおよびSeを単独または複合で:0.001〜0.05%、酸可溶性Al:0.01〜0.05%、N:0.002〜0.015%、Te:0.0005〜0.10%を含有し、残部Feおよび不可避的不純物からなるスラブを、1280℃以上に加熱し、熱間圧延を施した後、熱延板焼鈍を施し、冷間圧延を施して最終製品厚の冷延鋼板とした後、脱炭・一次再結晶焼鈍を施し、鋼板表面にMgOを主成分とする焼鈍分離剤を塗布してから仕上焼鈍を施す一連の工程からなる方向性電磁鋼板の製造法において、仕上焼鈍における950℃以上1150℃以下のコイル昇温平均速度を、3℃/h以上10℃/h以下とすることを特徴とする方向性電磁鋼板の製造方法。 By mass%, C: 0.02 to 0.10%, Si: 2.5 to 4.5%, Mn: 0.01 to 0.15%, S and Se alone or in combination: 0.001 0.05%, acid-soluble Al: 0.01 to 0.05%, N: 0.002 to 0.015%, Te: 0.0005 to 0.10%, from the remainder Fe and inevitable impurities The resulting slab is heated to 1280 ° C or higher, hot-rolled, then subjected to hot-rolled sheet annealing, cold-rolled to obtain a cold-rolled steel sheet with the final product thickness, and then decarburized and primary recrystallization annealed. In the method for producing a grain-oriented electrical steel sheet comprising a series of steps in which an annealing separator containing MgO as a main component is applied to the steel sheet surface and then finish annealing is performed, a coil rise of 950 ° C. to 1150 ° C. in the finish annealing is performed. the temperature average speed, towards you, characterized in that the following 3 ° C. / h or higher 10 ° C. / h A method for producing a grain-oriented electrical steel sheet. 質量%で、C:0.02〜0.10%、Si:2.5〜4.5%、Mn:0.01〜0.15%、SおよびSeを単独または複合で:0.001〜0.05%、酸可溶性Al:0.01〜0.05%、N:0.002〜0.015%、Te:0.0005〜0.10%を含有し、残部Feおよび不可避的不純物からなるスラブを、1280℃以上に加熱し、熱間圧延を施した後、熱延板焼鈍を施し、中間焼鈍を挟む二回以上の冷間圧延を施して最終製品厚の冷延鋼板とした後、脱炭・一次再結晶焼鈍を施し、鋼板表面にMgOを主成分とする焼鈍分離剤を塗布してから仕上焼鈍を施す一連の工程からなる方向性電磁鋼板の製造法において、仕上焼鈍における950℃以上1150℃以下のコイル昇温平均速度を、3℃/h以上10℃/h以下とすることを特徴とする方向性電磁鋼板の製造方法。 By mass%, C: 0.02 to 0.10%, Si: 2.5 to 4.5%, Mn: 0.01 to 0.15%, S and Se alone or in combination: 0.001 0.05%, acid-soluble Al: 0.01 to 0.05%, N: 0.002 to 0.015%, Te: 0.0005 to 0.10%, from the remainder Fe and inevitable impurities After the slab to be heated to 1280 ° C. or higher, hot rolled, then subjected to hot rolled sheet annealing, and subjected to cold rolling at least twice sandwiching the intermediate annealing to obtain a cold rolled steel sheet having a final product thickness In the method for producing a grain-oriented electrical steel sheet comprising a series of steps in which decarburization and primary recrystallization annealing are performed, and an annealing separator containing MgO as a main component is applied to the steel sheet surface and then finish annealing is performed, The average temperature rising rate of the coil from 3 ° C to 1150 ° C is 3 ° C / h to 10 ° C / h Method for producing oriented electrical steel sheets towards you, characterized in that a. 前記仕上焼鈍における850〜950℃のコイル昇温平均速度を、10℃/h以上50℃/h以下とすることを特徴とする請求項1または2に記載の方向性電磁鋼板の製造方法。 Method for producing oriented electrical steel sheet towards the claim 1 or 2, characterized in that the coil temperature increase average speed of 850 to 950 ° C. in the final annealing, or less 10 ° C. / h or higher 50 ° C. / h.
JP2007104950A 2007-04-12 2007-04-12 Method for producing grain-oriented electrical steel sheet with extremely high magnetic flux density Active JP4608514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007104950A JP4608514B2 (en) 2007-04-12 2007-04-12 Method for producing grain-oriented electrical steel sheet with extremely high magnetic flux density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007104950A JP4608514B2 (en) 2007-04-12 2007-04-12 Method for producing grain-oriented electrical steel sheet with extremely high magnetic flux density

Publications (2)

Publication Number Publication Date
JP2008261013A JP2008261013A (en) 2008-10-30
JP4608514B2 true JP4608514B2 (en) 2011-01-12

Family

ID=39983708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007104950A Active JP4608514B2 (en) 2007-04-12 2007-04-12 Method for producing grain-oriented electrical steel sheet with extremely high magnetic flux density

Country Status (1)

Country Link
JP (1) JP4608514B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5439866B2 (en) * 2008-03-05 2014-03-12 新日鐵住金株式会社 Method for producing grain-oriented electrical steel sheet with extremely high magnetic flux density
WO2010110217A1 (en) 2009-03-23 2010-09-30 新日本製鐵株式会社 Process for producing grain-oriented magnetic steel sheet, grain-oriented magnetic steel sheet for wound core, and wound core
JP6834506B2 (en) * 2017-01-16 2021-02-24 日本製鉄株式会社 High Young's modulus ultra-thin steel plate and its manufacturing method
KR102305718B1 (en) * 2019-12-18 2021-09-27 주식회사 포스코 Grain oriented electrical steel sheet and method of manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3644130B2 (en) * 1996-05-24 2005-04-27 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP2008261013A (en) 2008-10-30

Similar Documents

Publication Publication Date Title
JP5439866B2 (en) Method for producing grain-oriented electrical steel sheet with extremely high magnetic flux density
KR101558292B1 (en) Method for producing grain-oriented electrical steel sheet
JP5780013B2 (en) Method for producing non-oriented electrical steel sheet
JP6844125B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP5031934B2 (en) Method for producing grain-oriented electrical steel sheet
JP6461798B2 (en) Manufacturing method of high magnetic flux density general-purpose directional silicon steel
KR101498404B1 (en) Method for manufacturing grain oriented electrical steel sheet
JP4746716B2 (en) Method for producing grain-oriented electrical steel sheet, grain-oriented electrical steel sheet for wound iron core, and wound iron core
JP5037728B2 (en) Manufacturing method of unidirectional electrical steel sheet
WO2014013615A1 (en) Process for producing grain-oriented electrical steel sheet
KR101389248B1 (en) Manufacturing method for grain-oriented electromagnetic steel sheet
KR102140991B1 (en) Method of producing grain-oriented electrical steel sheet
KR20130032913A (en) Method for producing non-oriented magnetic steel sheet
JP5757693B2 (en) Low iron loss unidirectional electrical steel sheet manufacturing method
JPWO2011102455A1 (en) Method for producing grain-oriented electrical steel sheet
JP2015086414A (en) Method for manufacturing oriented electromagnetic steel sheet
WO1986007390A1 (en) Process for producing silicon steel sheet having soft magnetic characteristics
JP4608514B2 (en) Method for producing grain-oriented electrical steel sheet with extremely high magnetic flux density
JP5839172B2 (en) Method for producing grain-oriented electrical steel sheet
JP4608562B2 (en) Method for producing grain-oriented electrical steel sheet with extremely high magnetic flux density
JP5600991B2 (en) Method for producing grain-oriented electrical steel sheet
JP2017110304A (en) Method for producing oriented electromagnetic steel sheet
JP5846390B2 (en) Method for producing grain-oriented electrical steel sheet
JP2008156693A (en) Method for manufacturing grain-oriented electromagnetic steel sheet excellent in magnetic characteristic having good film
JP2008261022A (en) Grain oriented electrical decarburized annealed steel sheet, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101008

R151 Written notification of patent or utility model registration

Ref document number: 4608514

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350