JP2013047382A - Method of producing grain-oriented electromagnetic steel sheet - Google Patents

Method of producing grain-oriented electromagnetic steel sheet Download PDF

Info

Publication number
JP2013047382A
JP2013047382A JP2012166793A JP2012166793A JP2013047382A JP 2013047382 A JP2013047382 A JP 2013047382A JP 2012166793 A JP2012166793 A JP 2012166793A JP 2012166793 A JP2012166793 A JP 2012166793A JP 2013047382 A JP2013047382 A JP 2013047382A
Authority
JP
Japan
Prior art keywords
mass
steel sheet
grain
annealing
sol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012166793A
Other languages
Japanese (ja)
Other versions
JP5988026B2 (en
Inventor
Masanori Kamisaka
正憲 上坂
Minoru Takashima
高島  稔
Takeshi Imamura
今村  猛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012166793A priority Critical patent/JP5988026B2/en
Publication of JP2013047382A publication Critical patent/JP2013047382A/en
Application granted granted Critical
Publication of JP5988026B2 publication Critical patent/JP5988026B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing an ultrathin grain-oriented electromagnetic steel sheet exhibiting uniform and extremely low iron loss in a product coil thereof.SOLUTION: The method of producing a grain-oriented electromagnetic steel sheet comprises carrying out processes of hot rolling, cold rolling, primary recrystallization annealing, and finish annealing of a steel slab containing, in mass%, C: 0.04 to 0.12%, Si: 1.5 to 5.0%, Mn: 0.01 to 1.0%, sol. Al: 0.010 to 0.040%, N: 0.004 to 0.02% and, S and Se: 0.005 to 0.05% in total. In the steel slab, the ratio of the amount of the sol. Al and N (sol. Al/N) and the thickness d (mm) of the steel sheet at the time of the secondary recrystallization annealing satisfies the relation: 4d+1.52≤sol. Al/N≤4d+2.32. In the heating process of the finish annealing, the steel sheet before the secondary recrystallization is kept at a temperature of 775 to 875°C for 40 to 200 hours and subsequently heated at a temperature raising rate of 10 to 60°C/hour through a temperature range of 875 to 1,050°C to carry out the secondary recrystallization and the purification treatment.

Description

本発明は、主として変圧器や発電機等の鉄心に用いられる方向性電磁鋼板の製造方法に関し、具体的には、板厚が0.15〜0.23mmの極薄かつ低鉄損の方向性電磁鋼板の製造方法に関するものである。   The present invention relates to a method of manufacturing a grain-oriented electrical steel sheet mainly used for iron cores such as transformers and generators. Specifically, the directionality of ultrathin and low iron loss with a thickness of 0.15 to 0.23 mm. The present invention relates to a method for manufacturing an electromagnetic steel sheet.

Siを含有し、結晶方位が{110}<001>方位(Goss方位)や{100}<001>方位(Cube方位)に高度に配向した方向性電磁鋼板は、優れた軟磁気特性を示すことから、商用周波数領域で用いられる各種電気機器の鉄心材料として広く用いられている。このような用途に用いられる方向性電磁鋼板には、一般に、50Hzの周波数で1.7Tに磁化させたときの磁気損失を表す鉄損W17/50(W/kg)が低いことが求められる。その理由は、発電機や変圧器の効率は、W17/50の値が低い鉄心材料を用いることで、大幅に向上することができるからである。そのため、鉄損の低い材料の開発が益々強く求められるようになってきている。 A grain-oriented electrical steel sheet containing Si and highly oriented in the {110} <001> orientation (Goss orientation) or {100} <001> orientation (Cube orientation) has excellent soft magnetic properties. Therefore, it is widely used as a core material for various electric devices used in the commercial frequency range. The grain-oriented electrical steel sheet used for such applications is generally required to have a low iron loss W 17/50 (W / kg) representing magnetic loss when magnetized to 1.7 T at a frequency of 50 Hz. . The reason is that the efficiency of the generator and the transformer can be greatly improved by using an iron core material having a low W 17/50 value. Therefore, development of materials with low iron loss has been increasingly demanded.

電磁鋼板の鉄損は、結晶方位や純度等に依存するヒステリシス損と、板厚や比抵抗、磁区の大きさ等に依存する渦電流損との和で表される。したがって、鉄損を低減する方法としては、結晶方位の集積度を高めて磁束密度を向上し、ヒステリシス損を低減する方法や、電気抵抗を高めるSiの含有量を増加させたり、鋼板の板厚を低減したり、磁区を細分化したりすることで渦電流損を低減する方法等が知られている。   The iron loss of an electrical steel sheet is represented by the sum of hysteresis loss that depends on crystal orientation and purity, and eddy current loss that depends on sheet thickness, specific resistance, magnetic domain size, and the like. Therefore, as a method of reducing the iron loss, the degree of integration of the crystal orientation is increased to improve the magnetic flux density, the hysteresis loss is reduced, the Si content is increased to increase the electric resistance, or the thickness of the steel plate is increased. There are known methods for reducing the eddy current loss by reducing the eddy current or by subdividing the magnetic domain.

これらの鉄損低減方法のうち、磁束密度を向上させる方法に関しては、例えば、特許文献1および特許文献2には、AlNをインヒビタとする方向性電磁鋼板の製造方法において、Niを添加しかつNi添加量に応じてSbを所定の範囲で添加することで、一次再結晶粒の成長に対し極めて強い抑制力効果が得られ、一次再結晶粒集合組織の改善と二次再結晶粒の微細化が図れるだけでなく、{110}<001>方位から圧延方向の平均面内ずれ角を小さくすることができ、鉄損を大きく低減できることが開示されている。   Among these iron loss reduction methods, with respect to the method of improving the magnetic flux density, for example, in Patent Document 1 and Patent Document 2, Ni is added in a method of manufacturing a grain-oriented electrical steel sheet using AlN as an inhibitor and Ni By adding Sb within a predetermined range according to the amount added, an extremely strong inhibitory effect on the growth of primary recrystallized grains can be obtained, improving the primary recrystallized grain texture and making secondary recrystallized grains finer It is disclosed that the average in-plane deviation angle in the rolling direction from the {110} <001> orientation can be reduced and the iron loss can be greatly reduced.

また、板厚を低減する方法に関しては、圧延による方法と、化学研磨する方法とが知られているが、化学研磨で薄くする方法は、歩留まりの低下が大きく、工業的規模での生産には適さない。そのため、板厚を薄くする方法には、専ら圧延による方法が用いられている。しかし、圧延して板厚を薄くすると、仕上焼鈍における二次再結晶が不安定となり、磁気特性の優れた製品を安定して製造することが難しくなるという問題がある。   In addition, as a method for reducing the plate thickness, a rolling method and a chemical polishing method are known, but the method of thinning by chemical polishing has a large decrease in yield, and for production on an industrial scale. Not suitable. For this reason, a rolling method is exclusively used as a method for reducing the plate thickness. However, when the sheet thickness is reduced by rolling, there is a problem that secondary recrystallization in finish annealing becomes unstable and it is difficult to stably manufacture a product having excellent magnetic properties.

この問題に対しては、例えば、特許文献3には、AlNを主インヒビタとし、強圧下最終冷延を特徴とする薄手一方向性電磁鋼板の製造において、SnとSeの複合添加に加えてさらにCuおよび/またはSbを添加することにより優れた鉄損値が得られることが、特許文献4には、板厚0.20mm以下の薄手一方向性電磁鋼板の製造方法において、Nbを添加することによって炭窒化物の微細分散が促進されてインヒビタが強化され、磁気特性が向上することが提案されている。また、特許文献5には、熱延板の板厚を薄くし、コイルの巻取温度を下げ、仕上焼鈍パターンを適性に制御することで、1回の冷延で磁気特性の優れた薄手一方向性電磁鋼板を製造する方法が、特許文献6には、熱延コイルの板厚を1.9mm以下とすることで、0.23mm以下の方向性電磁鋼板を一回冷延法で製造する方法が提案されている。   To deal with this problem, for example, in Patent Document 3, in addition to the combined addition of Sn and Se, in the manufacture of a thin unidirectional electrical steel sheet characterized by AlN as the main inhibitor and the final cold rolling under strong pressure, According to Patent Document 4, Nb is added in the method of manufacturing a thin unidirectional electrical steel sheet having a thickness of 0.20 mm or less, because an excellent iron loss value can be obtained by adding Cu and / or Sb. It has been proposed that fine dispersion of carbonitrides is promoted by this to strengthen the inhibitor and improve the magnetic properties. Patent Document 5 discloses that the thickness of the hot-rolled sheet is reduced, the coil winding temperature is lowered, and the finish annealing pattern is controlled appropriately, so that the thin film having excellent magnetic properties can be obtained by one cold rolling. Patent Document 6 discloses a method of manufacturing a grain-oriented electrical steel sheet, in which a sheet thickness of a hot-rolled coil is set to 1.9 mm or less to produce a grain-oriented electrical steel sheet of 0.23 mm or less by a single cold rolling method. A method has been proposed.

特許3357601号公報Japanese Patent No. 3357601 特許3357578号公報Japanese Patent No. 3357578 特公平07−017956号公報Japanese Patent Publication No. 07-017956 特開平06−025747号公報Japanese Patent Laid-Open No. 06-025747 特公平07−042507号公報Japanese Patent Publication No. 07-042507 特開平04−341518号公報Japanese Patent Laid-Open No. 04-341518

方向性電磁鋼板の鉄損を低減する方法としては、上述した従来技術を適用し、圧延で板厚を薄くし、渦電流損を低下させることが有効である。しかし、最終冷延後の板厚が0.15〜0.23mmという極薄の方向性電磁鋼板では、上記従来技術に開示された技術を適用しても、依然としてコイルの一部で二次再結晶不良が発生し、歩留りが低下するという問題が発生している。   As a method of reducing the iron loss of the grain-oriented electrical steel sheet, it is effective to apply the above-described conventional technique, reduce the sheet thickness by rolling, and reduce the eddy current loss. However, in the ultrathin grain-oriented electrical steel sheet having a thickness of 0.15 to 0.23 mm after the final cold rolling, even if the technique disclosed in the above prior art is applied, the secondary re-rolling is still performed in a part of the coil. There is a problem that crystal defects occur and the yield decreases.

そこで、本発明の目的は、従来技術が抱える上記問題点を解決し、板厚が0.15〜0.23mmの極薄の方向性電磁鋼板でも二次再結晶を安定して起こさせ、製品コイル内の鉄損が均一かつ極めて鉄損が低い方向性電磁鋼板を製造する有利な方法を提案することにある。   Therefore, the object of the present invention is to solve the above-mentioned problems of the prior art, stably cause secondary recrystallization even in an ultrathin grained electrical steel sheet having a thickness of 0.15 to 0.23 mm, The object is to propose an advantageous method for producing a grain-oriented electrical steel sheet having uniform iron loss in the coil and extremely low iron loss.

発明者らは、板厚が薄い方向性電磁鋼板における二次再結晶挙動が不安定となる原因を解明するため、一次再結晶焼鈍後の鋼板を仕上焼鈍する際、二次再結晶焼鈍途中の鋼板を取り出して、インヒビタの析出状態および結晶粒の成長状態を調査した。その結果、仕上焼鈍の加熱過程においては、インヒビタが粗大化し、結晶粒成長を抑制する力が低下すること、875℃以上の温度領域では、鋼板の表面酸化によりインヒビタ成分が酸化、消失し、表層粒の粗大化が起きていること、特に、その傾向は975℃以上で著しくなること、そして、板厚が0.15〜0.23mの極薄の方向性電磁鋼板では、上記したインヒビタの粗大化による結晶粒成長抑制力の低下、および、表層粒の粗大化の進行が二次再結晶不良の主原因であることが明らかとなった。   In order to elucidate the cause of unstable secondary recrystallization behavior in a directional electrical steel sheet with a thin plate thickness, the inventors are in the middle of secondary recrystallization annealing when finishing annealing the steel sheet after primary recrystallization annealing. The steel sheet was taken out and the precipitation state of the inhibitor and the growth state of the crystal grains were investigated. As a result, in the heating process of finish annealing, the inhibitor is coarsened and the ability to suppress crystal grain growth is reduced. In the temperature region of 875 ° C. or higher, the inhibitor component is oxidized and disappeared due to the surface oxidation of the steel sheet, and the surface layer The coarsening of the grains occurs, in particular, the tendency becomes remarkable at 975 ° C. or more, and in the ultrathin grain-oriented electrical steel sheet having a thickness of 0.15 to 0.23 m, the above-described inhibitor is coarse. It has been clarified that the decrease in the ability to suppress crystal grain growth due to crystallization and the progress of coarsening of surface grains are the main causes of secondary recrystallization failure.

そこで、発明者らは、二次再結晶に必要な駆動力を十分に確保する方法について、一次再結晶粒の成長を抑制してやることで、二次再結晶をコイル全長に亘って安定的に起こさせることができるのではないかとの考えの下、さらに検討を重ねた。その結果、製品板厚、即ち、冷間圧延後の最終板厚dに応じて、素材となる鋼スラブ中のsol.AlとNの含有量の比(sol.Al/N)を適正範囲に制御して鋼板板厚の中心層の粒径を二次再結晶に適した大きさとするとともに、仕上焼鈍の加熱過程において、二次再結晶前の鋼板を所定の保定温度に所定時間保持してコイル内の温度を均一化した後、昇温速度を10〜60℃/hrとして急速加熱して鋼板表層の粒径を適正範囲に制御することによって、二次再結晶がコイルの全長に亘って安定的に発現するようになり、コイル全長の鉄損が均一かつ極めて低い方向性電磁鋼板を得ることができることを見出した。   In view of this, the inventors have established a method for ensuring sufficient driving force required for secondary recrystallization by suppressing the growth of primary recrystallized grains and stably causing secondary recrystallization over the entire coil length. We further examined it with the idea that it might be possible. As a result, depending on the product sheet thickness, that is, the final sheet thickness d after cold rolling, the sol. In the heating process of finish annealing, the ratio of the content of Al and N (sol.Al/N) is controlled to an appropriate range so that the grain size of the central layer of the steel plate thickness is suitable for secondary recrystallization. The steel sheet before secondary recrystallization is kept at a predetermined holding temperature for a predetermined time to equalize the temperature in the coil, and then rapidly heated at a temperature rising rate of 10 to 60 ° C./hr to reduce the grain size of the steel sheet surface layer. It has been found that by controlling to an appropriate range, secondary recrystallization can be stably expressed over the entire length of the coil, and a grain-oriented electrical steel sheet having a uniform and extremely low iron loss over the entire length of the coil can be obtained. .

上記知見に基づき開発した本発明は、C:0.04〜0.12mass%、Si:1.5〜5.0mass%、Mn:0.01〜1.0mass%、sol.Al:0.010〜0.040mass%、N:0.004〜0.02mass%、SおよびSeから選ばれる1種または2種:合計0.005〜0.05mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼スラブを1250℃以上に加熱後、熱間圧延して板厚1.8mm以上の熱延板とし、1回または中間焼鈍を挟む2回以上の冷間圧延により最終板厚0.15〜0.23mmの冷延板とし、一次再結晶焼鈍した後、仕上焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法において、上記鋼スラブのsol.AlとNの含有量の比(sol.Al/N)と、最終板厚d(mm)とが下記(1)式;
4d+1.52≦sol.Al/N≦4d+2.32 ・・・(1)
を満たし、かつ、上記仕上焼鈍の加熱過程で鋼板を775〜875℃の温度に40〜200時間保持した後、875〜1050℃の温度域を昇温速度10〜60℃/hrで加熱することを特徴とする方向性電磁鋼板の製造方法である。
The present invention developed on the basis of the above findings includes C: 0.04 to 0.12 mass%, Si: 1.5 to 5.0 mass%, Mn: 0.01 to 1.0 mass%, sol. Al: 0.010-0.040 mass%, N: 0.004-0.02 mass%, one or two selected from S and Se: a total of 0.005-0.05 mass%, with the balance being Fe And a steel slab having a component composition consisting of inevitable impurities is heated to 1250 ° C. or higher, and then hot-rolled to form a hot-rolled sheet having a thickness of 1.8 mm or more. In a method for producing a grain-oriented electrical steel sheet comprising a series of steps of forming a cold-rolled sheet having a final thickness of 0.15 to 0.23 mm by rolling, performing primary recrystallization annealing, and then finishing annealing, the sol. The ratio of the content of Al and N (sol. Al / N) and the final thickness d (mm) are the following formula (1):
4d + 1.52 ≦ sol. Al / N ≦ 4d + 2.32 (1)
And the steel sheet is kept at a temperature of 775 to 875 ° C. for 40 to 200 hours in the heating process of the finish annealing, and then a temperature range of 875 to 1050 ° C. is heated at a heating rate of 10 to 60 ° C./hr. This is a method for producing a grain-oriented electrical steel sheet characterized by the following.

本発明の方向性電磁鋼板の製造方法における上記鋼スラブは、上記成分組成に加えてさらに、Ni:0.1〜1.0mass%、Cu:0.02〜1.0mass%およびSb:0.01〜0.10mass%のうちから選ばれる1種または2種以上を含有することを特徴とする。   The steel slab in the method for producing a grain-oriented electrical steel sheet according to the present invention further includes Ni: 0.1 to 1.0 mass%, Cu: 0.02 to 1.0 mass%, and Sb: 0.0. 1 type or 2 types or more chosen from 01-0.10 mass% are contained, It is characterized by the above-mentioned.

また、本発明の方向性電磁鋼板の製造方法における上記鋼スラブは、上記成分組成に加えてさらに、Ge,Bi,V,Nb,Te,Cr,SnおよびMoのうちから選らばれる1種または2種以上を合計で0.002〜1.0mass%含有することを特徴とする。   Further, the steel slab in the method for producing a grain-oriented electrical steel sheet of the present invention is one or two selected from Ge, Bi, V, Nb, Te, Cr, Sn and Mo in addition to the above component composition. It contains 0.002 to 1.0 mass% of seeds or more in total.

また、本発明の方向性電磁鋼板の製造方法は、上記一次再結晶焼鈍の加熱過程における200〜700℃間を昇温速度50℃/s以上で加熱するとともに、250〜600℃間のいずれかの温度において、1〜10秒間、等温に保持することを特徴とする。   Moreover, the manufacturing method of the grain-oriented electrical steel sheet according to the present invention heats between 200 and 700 ° C. in the heating process of the primary recrystallization annealing at a temperature rising rate of 50 ° C./s or more, and between 250 and 600 ° C. The temperature is kept isothermal for 1 to 10 seconds.

また、本発明の方向性電磁鋼板の製造方法は、冷間圧延後のいずれかの段階で、鋼板表面に圧延方向と交差する方向に溝を形成して磁区細分化処理を施すことを特徴とする。   The grain-oriented electrical steel sheet manufacturing method of the present invention is characterized in that, at any stage after cold rolling, a groove is formed on the steel sheet surface in a direction crossing the rolling direction and subjected to magnetic domain refinement treatment. To do.

また、本発明の方向性電磁鋼板の製造方法は、絶縁被膜を被成した鋼板表面に、圧延方向と交差する方向に連続的または断続的に電子ビームあるいはレーザを照射して磁区細分化処理を施すことを特徴とする。   Further, the grain-oriented electrical steel sheet manufacturing method of the present invention performs the magnetic domain fragmentation treatment by irradiating the surface of the steel sheet with the insulating coating continuously or intermittently in the direction intersecting the rolling direction. It is characterized by giving.

本発明によれば、鋼素材(スラブ)中の(sol.Al/N)の値を製品板厚(最終板厚)に応じで適正範囲に制御することによって、二次再結晶焼鈍時におけるインヒビタの抑制力低下を抑止して板厚中心層の粒径を適正化し、さらに、仕上焼鈍の加熱時に二次再結晶前の鋼板を所定温度に所定時間保持してコイル内の温度を均一化した後、急激に二次再結晶温度まで昇温して鋼板表層粒の粗大化を抑制するので、コイル全長に亘って二次再結晶を安定的に発現させることができ、鉄損特性に優れた方向性電磁鋼板を高い歩留りで製造することが可能となる。   According to the present invention, by controlling the value of (sol.Al/N) in the steel material (slab) to an appropriate range according to the product plate thickness (final plate thickness), the inhibitor during secondary recrystallization annealing is performed. The steel sheet before the secondary recrystallization was kept at a predetermined temperature for a predetermined time during heating in the finish annealing to make the temperature in the coil uniform. After that, the temperature is rapidly raised to the secondary recrystallization temperature to suppress the coarsening of the steel sheet surface layer grains, so that secondary recrystallization can be stably expressed over the entire length of the coil, and the iron loss characteristics are excellent. It becomes possible to manufacture a grain-oriented electrical steel sheet with a high yield.

磁束密度B:1.90T以上が得られる最終板厚dと(sol.Al/N)の範囲を示すグラフである。Magnetic flux density B 8: is a graph showing the range of 1.90T or higher final thickness d and the resulting (sol.Al/N). 仕上焼鈍における850〜1050℃間の昇温速度と鉄損W17/50のコイル内保証値との関係を示すグラフである。It is a graph which shows the relationship between the temperature increase rate between 850-1050 degreeC in finish annealing, and the guaranteed value in a coil of iron loss W17 / 50 .

まず、本発明を開発するに至った実験について説明する。
<実験1>
表1に示したように、C:0.07mass%、Si:3.4mass%、Mn:0.07mass%、Se:0.015mass%、Ni:0.3mass%、Cu:0.03mass%およびSb:0.04mass%を含有し、かつ、sol.AlとNの含有量の比(sol.Al/N)を2.10〜3.56の範囲で種々に変化させた成分組成を有する7種の鋼スラブを熱間圧延して板厚2.4mmの熱延コイルとし、900℃×40秒の熱延板焼鈍し、酸洗し、一次冷間圧延して板厚1.5mmとし、1150℃×80秒の中間焼鈍し、170℃の温度で温間圧延して0.12〜0.25mmの範囲の種々の板厚の冷延コイルとし、脱脂した後、60vol%H−40vol%Nの湿水素雰囲気下で850℃×2分の脱炭を兼ねた一次再結晶焼鈍を施した。
First, the experiment that led to the development of the present invention will be described.
<Experiment 1>
As shown in Table 1, C: 0.07 mass%, Si: 3.4 mass%, Mn: 0.07 mass%, Se: 0.015 mass%, Ni: 0.3 mass%, Cu: 0.03 mass% and Sb: 0.04 mass%, and sol. Seven types of steel slabs having component compositions in which the ratio of the content of Al and N (sol. Al / N) was changed in a range of 2.10 to 3.56 were hot-rolled to obtain a sheet thickness of 2. A hot rolled coil of 4 mm, annealed at 900 ° C. for 40 seconds, pickled, first cold rolled to a thickness of 1.5 mm, intermediate annealed at 1150 ° C. for 80 seconds, and a temperature of 170 ° C. After cold-rolling into cold-rolled coils with various plate thicknesses in the range of 0.12 to 0.25 mm, degreased, and 850 ° C. × 2 minutes in a wet hydrogen atmosphere of 60 vol% H 2 -40 vol% N 2 A primary recrystallization annealing was also applied to decarburize the steel.

次いで、一次再結晶後の上記鋼板表面に、MgOを主成分とする焼鈍分離剤を塗布、乾燥した後、850℃までをN雰囲気下で昇温速度20℃/hrで加熱し、850℃で50時間保定処理を施した後、昇温速度20℃/hrで、850〜1150℃間を25vol%N−75vol%のHの混合雰囲気下、1150〜1200℃間をH雰囲気下で加熱昇温し、さらに、H雰囲気下で1200℃×10時間の均熱処理した後、800℃以下をN雰囲気下で冷却する二次再結晶焼鈍と純化処理を兼ねた仕上焼鈍を施した。次いで、上記仕上焼鈍後の鋼板表面から未反応の焼鈍分離剤を除去した後、リン酸アルミニウムとコロイダルシリカを主成分とする絶縁被膜を被成し、製品コイルとした。 Next, after applying and drying an annealing separator mainly composed of MgO on the surface of the steel sheet after the primary recrystallization, the steel plate is heated up to 850 ° C. in a N 2 atmosphere at a heating rate of 20 ° C./hr, and 850 ° C. And then at a temperature rising rate of 20 ° C./hr, between 850 and 1150 ° C. in a mixed atmosphere of 25 vol% N 2 -75 vol% H 2 and between 1150 and 1200 ° C. in an H 2 atmosphere. After heating and heating at 1200 ° C for 10 hours in an H 2 atmosphere, secondary recrystallization annealing for cooling below 800 ° C in an N 2 atmosphere and finish annealing that combines purification treatment are performed. did. Next, after removing the unreacted annealing separator from the surface of the steel sheet after the above-mentioned finish annealing, an insulating coating mainly composed of aluminum phosphate and colloidal silica was formed to obtain a product coil.

Figure 2013047382
Figure 2013047382

斯くして得た全長約4000mの製品コイルの長手方向0m、1000m、2000m、3000および4000mの5箇所から、磁気測定用の試験片を採取し、磁化力800A/mにおける磁束密度Bを測定し、コイル内で磁束密度が最も低い値をコイル内保証値、最も高い値をコイル内良好値とし、その結果を表1に併記した。また、図1には、磁束密度B:1.90T以上が得られる板厚dと(sol.Al/N)の範囲を示した。ここで、磁束密度Bは、二次再結晶が適正に起こったことを判断するのに有効な指標であり、Bのコイル内保証値が高いことは、コイル内で均一に二次再結晶が起こっていることを示している。 Samples for magnetic measurement were taken from five locations of 0 m, 1000 m, 2000 m, 3000 and 4000 m in the longitudinal direction of the product coil having a total length of about 4000 m thus obtained, and the magnetic flux density B 8 at a magnetizing force of 800 A / m was measured. The value with the lowest magnetic flux density in the coil is the guaranteed value in the coil, and the highest value is the good value in the coil. The results are also shown in Table 1. Further, FIG. 1 shows the range of the plate thickness d and (sol.Al/N) at which the magnetic flux density B 8 is 1.90 T or more. Here, the magnetic flux density B 8 is an effective index for determining that secondary recrystallization has occurred properly. The high guaranteed value of B 8 in the coil indicates that the secondary recrystallization is uniformly performed in the coil. It indicates that crystals are occurring.

これらの結果から、鋼素材(スラブ)中の(sol.Al/N)の値を、二次再結晶焼鈍時の板厚(最終板厚)に応じて適正範囲に制御する、具体的には、下記(1)式;
4d+1.52≦sol.Al/N≦4d+2.32 ・・・(1)
を満たすよう制御することで、コイル全長に亘って二次再結晶が発現し、磁気特性が向上することがわかる。
From these results, the value of (sol.Al/N) in the steel material (slab) is controlled within an appropriate range according to the thickness (final thickness) at the time of secondary recrystallization annealing. , The following formula (1);
4d + 1.52 ≦ sol. Al / N ≦ 4d + 2.32 (1)
It can be seen that by controlling so as to satisfy the above, secondary recrystallization occurs over the entire length of the coil and the magnetic characteristics are improved.

<実験2>
C:0.07mass%、Si:3.4mass%、Mn:0.07mass%、sol.Al:0.020mass%、N:0.007mass%、Se:0.015mass%、Ni:0.3mass%、Cu:0.03mass%およびSb:0.04mass%を含有する鋼スラブを熱間圧延して板厚2.4mmの熱延コイルとし、900℃×40秒の熱延板焼鈍し、酸洗し、一次冷間圧延して板厚1.5mmとし、1150℃×80秒の中間焼鈍し、170℃の温度で温間圧延して最終板厚0.20mmの冷延コイルとし、脱脂し、その後、60vol%H−40vol%Nの湿水素雰囲気下で850℃×2分の脱炭を兼ねた一次再結晶焼鈍を施した。
<Experiment 2>
C: 0.07 mass%, Si: 3.4 mass%, Mn: 0.07 mass%, sol. Hot rolling a steel slab containing Al: 0.020 mass%, N: 0.007 mass%, Se: 0.015 mass%, Ni: 0.3 mass%, Cu: 0.03 mass% and Sb: 0.04 mass% And a hot rolled coil having a thickness of 2.4 mm, annealed by hot rolling at 900 ° C. for 40 seconds, pickled, and first cold-rolled to a thickness of 1.5 mm, and intermediate annealing at 1150 ° C. for 80 seconds. Then, it was warm-rolled at a temperature of 170 ° C. to obtain a cold rolled coil having a final sheet thickness of 0.20 mm, degreased, and then 850 ° C. × 2 minutes in a wet hydrogen atmosphere of 60 vol% H 2 -40 vol% N 2 A primary recrystallization annealing was also applied to decarburize.

次いで、一次再結晶後の上記鋼板表面に、MgOを主成分とする焼鈍分離剤を塗布、乾燥した後、850℃までをN雰囲気下で昇温速度20℃/hrで加熱し、その後、表2に示したように、850℃での保定処理の有無および850〜1050℃間の昇温速度を変えたA〜Gの加熱パターンで1200℃まで、850〜1150℃間は25vol%N−75vol%Hの混合雰囲気下、1150〜1200℃間はH雰囲気下で加熱し、さらに、H雰囲気下で1200℃×10時間の均熱処理した後、800℃以下をN雰囲気下で冷却する二次再結晶焼鈍と純化処理を兼ねた仕上焼鈍を施した。次いで、上記仕上焼鈍後の鋼板表面から未反応の焼鈍分離剤を除去した後、リン酸アルミニウムとコロイダルシリカを主成分とする絶縁被膜を被成し、製品コイルとした。 Next, after applying and drying an annealing separator mainly composed of MgO on the steel sheet surface after the primary recrystallization, heating up to 850 ° C. in a N 2 atmosphere at a heating rate of 20 ° C./hr, As shown in Table 2, up to 1200 ° C. and 25 vol% N 2 between 850 ° C. and 1150 ° C. in the heating pattern of A to G with the presence or absence of the retention treatment at 850 ° C. and the heating rate between 850 and 1050 ° C. mixed atmosphere of -75vol% H 2, between 1150 to 1200 ° C. is heated under an atmosphere of H 2 addition, after the soaking treatment of 1200 ° C. × 10 hours under an atmosphere of H 2 N 2 atmosphere a 800 ° C. or less The secondary recrystallization annealing that is cooled at the bottom and the finish annealing that combines the purification treatment were performed. Next, after removing the unreacted annealing separator from the surface of the steel sheet after the above-mentioned finish annealing, an insulating coating mainly composed of aluminum phosphate and colloidal silica was formed to obtain a product coil.

Figure 2013047382
Figure 2013047382

斯くして得た全長約4000mの製品コイルの長手方向0m、1000m、2000m、3000mおよび4000mの5箇所から磁気測定用の試験片を採取し、磁化力800A/mにおける磁束密度Bおよび磁束密度の振幅1.7T、50Hzにおける質量あたりの鉄損値W17/50を測定し、コイル内で最も悪いBおよびW17/50の値をコイル内保証値、コイル内で最も良好なBおよびW17/50の値をコイル内良好値とし、それらの結果を表2に併記した。また、850〜1050℃間の昇温速度と、磁束密度Bおよび鉄損W17/50のコイル内保証値とコイル内良好値の関係を図2に示した。 The test pieces for magnetic measurement were taken from five places in the longitudinal direction of 0 m, 1000 m, 2000 m, 3000 m and 4000 m of the product coil having a total length of about 4000 m thus obtained, and the magnetic flux density B 8 and the magnetic flux density at a magnetizing force of 800 A / m. The iron loss value W 17/50 per mass at an amplitude of 1.7 T and 50 Hz was measured, and the worst B 8 and W 17/50 values in the coil were measured as guaranteed values in the coil and the best B 8 in the coil. And the value of W 17/50 was regarded as a good value in the coil, and the results are also shown in Table 2. Further, FIG. 2 shows the relationship between the heating rate between 850 and 1050 ° C., the guaranteed value in the coil of the magnetic flux density B 8 and the iron loss W 17/50 , and the good value in the coil.

これらの結果から、仕上焼鈍の加熱途中の850℃において50時間の保定処理を行わなかった加熱パターンAおよび850〜1050℃間の昇温速度が5℃/hrと低い加熱パターンBは、コイル内で均一に二次再結晶していないためコイル内保証値が悪いが、上記保定処理後、昇温速度を10℃/hr以上として急速加熱した加熱パターンC〜Gでは、二次再結晶が安定して発現し、コイル内全長に亘って磁気特性が向上していることがわかる。ただし、昇温速度が100℃/hr(加熱パターンG)では、磁気特性が若干低下している。
本発明は、上記知見に基づいてなされたものである。
From these results, the heating pattern A in which the holding treatment for 50 hours was not performed at 850 ° C. during the heating of the finish annealing and the heating pattern B having a low heating rate of 5 ° C./hr between 850 to 1050 ° C. Because the secondary recrystallization is not uniform, the guaranteed value in the coil is poor. However, after the above retention treatment, the secondary recrystallization is stable in the heating patterns C to G that are rapidly heated at a heating rate of 10 ° C./hr or more. It can be seen that the magnetic properties are improved over the entire length in the coil. However, the magnetic properties are slightly deteriorated at a temperature rising rate of 100 ° C./hr (heating pattern G).
The present invention has been made based on the above findings.

次に、本発明の方向性電磁鋼板の鋼素材の成分組成について説明する。
C:0.04〜0.12mass%
Cは、熱間圧延、冷間圧延中の組織の均一微細化ならびにGoss方位の発達のために有用な元素であり、少なくとも0.04mass%を含有させる必要がある。しかし、0.12mass%を超えて添加すると、脱炭焼鈍で脱炭不足を起こし、磁気特性が劣化するおそれがある。よって、Cは0.04〜0.12mass%の範囲とする。好ましくは0.05〜0.10mass%の範囲である。
Next, the component composition of the steel material of the grain-oriented electrical steel sheet according to the present invention will be described.
C: 0.04 to 0.12 mass%
C is an element useful for uniform refinement of the structure during hot rolling and cold rolling and development of Goss orientation, and it is necessary to contain at least 0.04 mass%. However, if added over 0.12 mass%, decarburization annealing may cause insufficient decarburization, and the magnetic properties may deteriorate. Therefore, C is set to a range of 0.04 to 0.12 mass%. Preferably it is the range of 0.05-0.10 mass%.

Si:1.5〜5.0mass%
Siは、鋼板の比抵抗を高めて鉄損の低減に有効に寄与する元素であり、良好な磁気特性を確保する観点から、本発明では1.5mass%以上含有させる。一方、5.0mass%を超える添加は、冷間加工性を著しく害するようになる。よって、Siは1.5〜5.0mass%の範囲とする。好ましくは2.0〜4.0mass%の範囲である。
Si: 1.5-5.0 mass%
Si is an element that increases the specific resistance of the steel sheet and contributes effectively to the reduction of iron loss. From the viewpoint of securing good magnetic properties, Si is contained in an amount of 1.5 mass% or more in the present invention. On the other hand, addition exceeding 5.0 mass% significantly impairs cold workability. Therefore, Si is set to a range of 1.5 to 5.0 mass%. Preferably it is the range of 2.0-4.0 mass%.

Mn:0.01〜1.0mass%
Mnは、熱間加工性を改善し、熱間圧延時の表面疵を防止するのに有効な元素であり、斯かる効果を得るためには0.01mass%以上含有させる必要がある。しかし、1.0mass%を超えて添加すると、磁束密度が低下するようになる。よって、Mnは0.01〜1.0mass%の範囲とする。好ましくは0.04〜0.2mass%の範囲である。
Mn: 0.01 to 1.0 mass%
Mn is an element effective for improving hot workability and preventing surface flaws during hot rolling, and in order to obtain such an effect, it is necessary to contain 0.01 mass% or more. However, when it is added exceeding 1.0 mass%, the magnetic flux density is lowered. Therefore, Mn is set to a range of 0.01 to 1.0 mass%. Preferably it is the range of 0.04-0.2 mass%.

sol.Al:0.010〜0.040mass%
Alは、インヒビタであるAlNを構成する必須の元素であり、sol.Alとして0.010mass%未満では、熱延時や熱延板焼鈍の昇温過程等において析出するAlNの量が不足し、インヒビタの効果を得ることができない。一方、0.040mass%を超えて添加すると、析出するインヒビタが複合粗大化し、逆に抑制力が低下してしまう。よって、AlNのインヒビタ効果を十分に得るためには、Alはsol.Alで0.010〜0.040mass%の範囲とする必要がある。好ましくは0.02〜0.03mass%の範囲である。
sol. Al: 0.010-0.040 mass%
Al is an essential element constituting AlN which is an inhibitor. If the Al content is less than 0.010 mass%, the amount of AlN precipitated during hot rolling or during the temperature rising process of hot-rolled sheet annealing is insufficient, and the inhibitor effect cannot be obtained. On the other hand, if added in excess of 0.040 mass%, the precipitated inhibitor becomes complex and coarse, and conversely, the suppressive power decreases. Therefore, in order to sufficiently obtain the inhibitor effect of AlN, Al is sol. It is necessary to make it into the range of 0.010-0.040 mass% with Al. Preferably it is the range of 0.02-0.03 mass%.

N:0.004〜0.02mass%
Nは、Alと同様、インヒビタであるAlNを構成する必須の元素である。ただし、このNは、冷延工程において窒化処理を施し、添加することが可能であるので、スラブ段階では、0.004mass%以上含有していればよい。ただし、冷延工程において窒化処理を施さない場合には0.005mass%以上含有させる必要がある。一方、Nを0.02mass%超え添加した場合には、熱間圧延においてふくれを生じるおそれがある。よって、Nは0.004〜0.02mass%の範囲とする。好ましくは0.005〜0.01mass%の範囲である。
N: 0.004 to 0.02 mass%
N, like Al, is an essential element constituting AlN, which is an inhibitor. However, since this N can be added after performing a nitriding treatment in the cold rolling process, it may be contained at 0.004 mass% or more in the slab stage. However, when nitriding is not performed in the cold rolling process, it is necessary to contain 0.005 mass% or more. On the other hand, when N is added in excess of 0.02 mass%, blistering may occur in hot rolling. Therefore, N is set to a range of 0.004 to 0.02 mass%. Preferably it is the range of 0.005-0.01 mass%.

sol.Al/N
本発明では、冷間圧延の最終板厚(製品板厚)d(mm)に応じて、鋼素材中のsol.AlおよびNの含有量(mass%)の比を適正化する、具体的には下記(1)式;
の 4d+1.52≦sol.Al/N≦4d+2.32 ・・・(1)
関係を満たすよう含有させることが重要である。
図1に示したように、(sol.Al/N)の値が大きい場合は、AlNのインヒビタとしての抑制力が十分ではないため、鋼板の表層と中心層の結晶粒の粗大化を招いてしまう。一方、(sol.Al/N)が小さい場合には、Goss方位からの角度差が大きい粒も二次再結晶するようになるため、二次再結晶後の磁束密度が低下したり、鉄損が増大したりするからである。
なお、(sol.Al/N)の値を、最終板厚d(mm)および鋼素材中のsol.Alの含有量に応じて適正化するため、二次再結晶させる前に、窒化処理を施してNの含有量を調整してもよい。
sol. Al / N
In the present invention, depending on the final thickness (product thickness) d (mm) of cold rolling, the sol. To optimize the ratio of Al and N content (mass%), specifically, the following formula (1);
4d + 1.52 ≦ sol. Al / N ≦ 4d + 2.32 (1)
It is important to make it contain so that a relationship may be satisfy | filled.
As shown in FIG. 1, when the value of (sol.Al/N) is large, the inhibitory force of AlN as an inhibitor is not sufficient, leading to the coarsening of crystal grains in the surface layer and the central layer of the steel sheet. End up. On the other hand, when (sol.Al/N) is small, grains having a large angular difference from the Goss orientation also secondary recrystallize, so that the magnetic flux density after secondary recrystallization decreases, iron loss This is because it increases.
In addition, the value of (sol.Al/N) is set to the final plate thickness d (mm) and the sol. In order to optimize in accordance with the Al content, the N content may be adjusted by performing nitriding before the secondary recrystallization.

SおよびSe:合計で0.005〜0.05mass%
SおよびSeは、CuSやCuSe等を、AlNと複合して微細析出させるために必要な必須の元素である。斯かる目的のため、本発明では単独もしくは合計で0.005mass%以上を含有させる必要がある。しかし、0.05mass%を超えて添加すると、析出物の粗大化を招く。よって、SおよびSeは単独または合計で0.005〜0.05mass%の範囲とする。好ましくは0.01〜0.03mass%の範囲である。
S and Se: 0.005-0.05 mass% in total
S and Se are indispensable elements that are required for fine precipitation of Cu 2 S, Cu 2 Se, and the like in combination with AlN. For this purpose, in the present invention, it is necessary to contain 0.005 mass% or more alone or in total. However, if added over 0.05 mass%, the precipitates become coarse. Therefore, S and Se are made into the range of 0.005-0.05 mass% individually or in total. Preferably it is the range of 0.01-0.03 mass%.

本発明の方向性電磁鋼板は、上記成分に加えてさらに、Ni,CuおよびSbのうちから選ばれる1種または2種以上を添加してもよい。
Ni:0.10〜1.0mass%
Niは、粒界にSbと共偏析し、Sbの偏析効果を促進し、インヒビタの粗大化を抑止する元素であるので、0.10mass%以上含有させる。しかし、1.0mass%を超えて添加すると、一次再結晶焼鈍後の集合組織が劣化し、磁気特性が低下する原因となる。よって、Niは0.10〜1.0mass%の範囲とする。好ましくは0.10〜0.50mass%の範囲である。
In addition to the above components, the grain-oriented electrical steel sheet of the present invention may further contain one or more selected from Ni, Cu and Sb.
Ni: 0.10 to 1.0 mass%
Ni is an element that co-segregates with Sb at the grain boundary, promotes the segregation effect of Sb, and inhibits the coarsening of the inhibitor, so it is contained in an amount of 0.10 mass% or more. However, if added over 1.0 mass%, the texture after the primary recrystallization annealing deteriorates, which causes the magnetic properties to deteriorate. Therefore, Ni is set in the range of 0.10 to 1.0 mass%. Preferably it is the range of 0.10-0.50 mass%.

Cu:0.02〜1.0mass%
Cuは、CuSやCuSeを構成する必須の元素である。極薄方向性電磁鋼板においては、インヒビタがMnSやMnSeであると、仕上焼鈍中に抑制力が低下し、二次再結晶が不安定となる。一方、インヒビタがCuS、CuSeであり、かつ、Ni,Sbと共に複合添加されている場合には、インヒビタの抑制力は低下し難い。そのため、本発明では、Cuを0.02mass%以上添加することを必須とする。しかし、1.0mass%を超えて含有させると、インヒビタの粗大化を招く。よって、Cuは0.02〜1.0mass%の範囲とする。好ましくは0.04〜0.5mass%の範囲である。
Cu: 0.02-1.0 mass%
Cu is an essential element constituting Cu 2 S and Cu 2 Se. In an ultrathin grain-oriented electrical steel sheet, when the inhibitor is MnS or MnSe, the suppressive force decreases during finish annealing, and secondary recrystallization becomes unstable. On the other hand, when the inhibitor is Cu 2 S, Cu 2 Se and is added together with Ni and Sb, the inhibitor's inhibitory power is unlikely to decrease. Therefore, in this invention, it is essential to add 0.02 mass% or more of Cu. However, if the content exceeds 1.0 mass%, the inhibitor becomes coarse. Therefore, Cu is set to a range of 0.02 to 1.0 mass%. Preferably it is the range of 0.04-0.5 mass%.

Sb:0.01〜0.10mass%
Sbは、析出したインヒビタであるAlNやCuS,CuSe,MnS,MnSeの表面に偏析し、インヒビタの粗大化を抑止するために必要な元素である。斯かる効果は0.01mass%以上の添加で得られる。しかし、0.10mass%を超えて添加すると、脱炭反応を阻害し、磁気特性の劣化を招くようになる。よって、Sbは0.01〜0.10mass%の範囲とする。好ましくは0.02〜0.05mass%の範囲である。
Sb: 0.01-0.10 mass%
Sb is an element necessary for segregating on the surface of the precipitated inhibitors AlN, Cu 2 S, Cu 2 Se, MnS, and MnSe, and suppressing the coarsening of the inhibitors. Such an effect can be obtained by addition of 0.01 mass% or more. However, if it is added in excess of 0.10 mass%, the decarburization reaction is hindered and the magnetic properties are deteriorated. Therefore, Sb is set to a range of 0.01 to 0.10 mass%. Preferably it is the range of 0.02-0.05 mass%.

また、本発明の方向性電磁鋼板は、上記成分に加えてさらに、インヒビタ補助成分として、Ge,Bi,V,Nb,Te,Cr,SnおよびMoのうちから選ばれる1種または2種以上を、合計で0.002〜1.0mass%の範囲で含有させることができる。
これらの元素は、いずれも析出物を形成し、結晶粒界や析出物の表面に偏析して抑制力を強化する補助的機能を果たす。斯かる作用を得るためには、これらの元素を1種または2種類以上の合計で0.002mass%以上含有させる必要がある。しかし、1.0mass%を超える添加は、鋼の脆化や脱炭不良を招くようになるからである。よって、上記元素は合計で0.002〜1.0mass%の範囲で含有させるのが好ましい。
In addition to the above components, the grain-oriented electrical steel sheet according to the present invention further includes one or more selected from Ge, Bi, V, Nb, Te, Cr, Sn and Mo as an inhibitor auxiliary component. , And can be contained in the range of 0.002 to 1.0 mass% in total.
All of these elements form precipitates and segregate on the grain boundaries and the surface of the precipitates to perform an auxiliary function of strengthening the suppression force. In order to obtain such an action, it is necessary to contain one or more of these elements in a total of 0.002 mass%. However, it is because the addition exceeding 1.0 mass% leads to embrittlement and poor decarburization of steel. Therefore, it is preferable to contain the said element in the range of 0.002-1.0 mass% in total.

次に、本発明の方向性電磁鋼板の製造方法ついて説明する。
本発明の方向性電磁鋼板の製造方法は、上述した成分組成に調整した鋼スラブを再加熱した後、熱間圧延し、必要に応じて熱延板焼鈍し、1回または中間焼鈍を挟む2回以上の冷間圧延し、一次再結晶焼鈍し、二次再結晶焼鈍と純化処理を兼ねた仕上焼鈍を施す一連の工程からなるものである。
上記鋼スラブは、上述した本発明の成分組成を満たして含有する限り、特に製造方法に制限はなく、通常公知の製造条件で製造することができる。
上記鋼スラブは、その後、1250℃以上の温度に再加熱した後、熱間圧延に供する。再加熱温度が1250℃未満では、添加した元素が鋼中に固溶しないからである。なお、再加熱する方法は、ガス炉、誘導加熱炉、通電炉などの公知の方法を用いることができる。また、熱間圧延の条件は、従来公知の条件であればよく、特に制限はない。
Next, the manufacturing method of the grain-oriented electrical steel sheet of this invention is demonstrated.
In the method for producing a grain-oriented electrical steel sheet according to the present invention, after reheating the steel slab adjusted to the above-described component composition, hot rolling is performed, and hot-rolled sheet annealing is performed as necessary. It consists of a series of processes in which cold rolling is performed more than once, primary recrystallization annealing is performed, and finish annealing is performed that combines secondary recrystallization annealing and purification treatment.
As long as the steel slab contains the above-described component composition of the present invention, the production method is not particularly limited and can be produced under generally known production conditions.
The steel slab is then reheated to a temperature of 1250 ° C. or higher and then subjected to hot rolling. This is because when the reheating temperature is less than 1250 ° C., the added element does not dissolve in the steel. In addition, the method of reheating can use well-known methods, such as a gas furnace, an induction heating furnace, and an electric furnace. Moreover, the conditions of hot rolling should just be conventionally well-known conditions, and there is no restriction | limiting in particular.

上記スラブ再加熱後、熱間圧延して板厚1.8mm以上の熱延板(コイルとする。ここで、熱延板厚を1.8mm以上に限定する理由は、圧延時間を短縮し、熱延鋼板の圧延方向の温度差を低減させるためである。なお、熱間圧延の条件は、常法に準じて行えばよく、特に制限はない。   After the above slab reheating, hot rolling and hot rolled sheet with a thickness of 1.8 mm or more (coil. Here, the reason for limiting the hot rolled sheet thickness to 1.8 mm or more is to shorten the rolling time, This is to reduce the temperature difference in the rolling direction of the hot-rolled steel sheet, and the hot rolling conditions are not particularly limited as long as they are performed according to a conventional method.

熱間圧延して得た熱延板(熱延コイル)は、その後、必要に応じて熱延板焼鈍を施した後、酸洗し、1回または中間焼鈍を挟む2回以上の冷間圧延して最終板厚の冷延板(冷延コイル)とする。
上記熱延板焼鈍および中間焼鈍は、熱間圧延や冷間圧延で導入された歪を利用して再結晶せるため、800℃以上の温度で行うことが好ましい。また、上記焼鈍における冷却を、所定の冷却速度で急冷し、鋼中の固溶C量を高めることは、二次再結晶の核生成頻度を高める効果があるので好ましい。また、急速冷却した後、所定の温度範囲で保定することは、微細カーバイドを鋼中に析出させ上記効果を高めるのでより好ましい。上記の冷間圧延では、パス間時効や温間圧延を適用してもよいことは勿論である。
The hot-rolled sheet (hot-rolled coil) obtained by hot rolling is then subjected to hot-rolled sheet annealing as necessary, and then pickled and cold-rolled twice or more with one or intermediate annealing in between. Thus, a cold-rolled sheet (cold-rolled coil) having a final thickness is obtained.
The hot-rolled sheet annealing and intermediate annealing are preferably performed at a temperature of 800 ° C. or higher in order to recrystallize using strain introduced by hot rolling or cold rolling. In addition, it is preferable to quench the cooling in the annealing at a predetermined cooling rate to increase the amount of solute C in the steel because it has an effect of increasing the nucleation frequency of secondary recrystallization. Moreover, it is more preferable to hold | maintain in a predetermined temperature range after rapid cooling, since a fine carbide precipitates in steel and the said effect is heightened. Of course, in the cold rolling described above, aging between passes or warm rolling may be applied.

なお、本発明の方向性電磁鋼板の最終板厚(製品板厚)は、0.15〜0.23mmの範囲とする。板厚が0.23mmを超えると、二次再結晶の駆動力が過剰となり、二次再結晶粒のGoss方位からの分散が増大する。一方、0.15mm未満となると、二次再結晶が不安定化したり、相対的に絶縁被膜の比率が増加して磁束密度が低下したりするだけでなく、圧延して製造することが困難となるからである。   The final thickness (product thickness) of the grain-oriented electrical steel sheet of the present invention is in the range of 0.15 to 0.23 mm. If the plate thickness exceeds 0.23 mm, the driving force of secondary recrystallization becomes excessive, and the dispersion of secondary recrystallized grains from the Goss orientation increases. On the other hand, when the thickness is less than 0.15 mm, secondary recrystallization becomes unstable or the ratio of the insulating film relatively increases and the magnetic flux density decreases, and it is difficult to roll and manufacture. Because it becomes.

最終板厚とした冷延板は、その後、脱脂し、脱炭焼鈍を兼ねた一次再結晶焼鈍を施した後、鋼板表面に焼鈍分離剤を塗布し、コイルに巻き取った後、二次再結晶を起こさせるとともに純化処理する仕上焼鈍を施す。
ここで、上記一次再結晶焼鈍は、加熱過程における200〜700℃間を昇温速度50℃/s以上で加熱するとともに、250〜600℃間のいずれかの温度において、1〜10秒間、等温に保持することが好ましい。この急速加熱と保定処理を施すことで、二次再結晶後の再結晶がより細粒化されるので、低鉄損でかつ鉄損値のばらつきが小さい方向性電磁鋼板を得ることができるからである。
The cold-rolled sheet with the final thickness is then degreased and subjected to primary recrystallization annealing that also serves as decarburization annealing, and then an annealing separator is applied to the surface of the steel sheet, wound around a coil, Finish annealing is performed to raise the crystal and purify it.
Here, the primary recrystallization annealing is performed at a temperature increase rate of 50 ° C./s or more at 200 to 700 ° C. in the heating process, and is isothermal for 1 to 10 seconds at any temperature between 250 to 600 ° C. It is preferable to hold it. By applying this rapid heating and holding treatment, the recrystallization after the secondary recrystallization is made finer, so that it is possible to obtain a grain-oriented electrical steel sheet with low iron loss and small variations in iron loss values. It is.

なお、上記一次再結晶焼鈍では、(sol.Al/N)の値を適正範囲に調整するため、必要に応じて窒化処理を兼ねて行ってもよく、また、一次再結晶焼鈍とは別に、冷間圧延後から仕上焼鈍前までの間に、窒化処理工程を付加してもよい。   In the primary recrystallization annealing, in order to adjust the value of (sol.Al/N) to an appropriate range, the nitriding treatment may be performed as necessary. Apart from the primary recrystallization annealing, A nitriding treatment step may be added between after cold rolling and before finish annealing.

上記冷延板は、一次再結晶焼鈍する前に、製品板の鉄損を低減するため、鋼板表面にエッチングで溝を形成する磁区細分化処理を施してもよい。また、上記冷延板は、二次再結晶させる前までに、公知の磁区細分化処理、たとえば、微細結晶粒を生成させる点状の局所的熱処理や化学的処理を施してもよい。   Before the primary recrystallization annealing, the cold-rolled sheet may be subjected to a magnetic domain refinement process in which grooves are formed by etching on the steel sheet surface in order to reduce iron loss of the product sheet. Further, the cold-rolled plate may be subjected to a known magnetic domain refinement process, for example, a spot-like local heat treatment or chemical process for generating fine crystal grains, before secondary recrystallization.

また、鋼板表面に塗布する焼鈍分離剤は、公知のものを用いることができるが、鋼板表面にフォルステライト質の被膜を形成するか否かによって使い分けるのが好ましく、例えば、上記の被膜を形成させる場合にはMgOを主成分とする焼鈍分離剤を、一方、鋼板表面を鏡面化したい場合には、被膜を形成しないAl系等の焼鈍分離剤を用いることが好ましい。 Further, as the annealing separator applied to the steel sheet surface, a known one can be used, but it is preferable to use properly depending on whether or not a forsterite film is formed on the steel sheet surface. For example, the above-mentioned film is formed. In some cases, it is preferable to use an annealing separator having MgO as a main component. On the other hand, if it is desired to mirror the surface of the steel sheet, an annealing separator such as an Al 2 O 3 system that does not form a film is preferably used.

また、上記仕上焼鈍は、本発明の製造方法において、最も重要な工程である。通常、仕上焼鈍は、二次再結晶焼鈍と純化焼鈍を兼ねて、最高1200℃程度の温度で行われるが、本発明の方向性電磁鋼板の製造方法においては、上記仕上焼鈍の昇温過程において、二次再結晶前の775〜875℃の温度域で40〜200時間保定する必要がある。その理由は、以下のとおりである。   The finish annealing is the most important step in the production method of the present invention. Usually, the finish annealing is performed at a temperature of about 1200 ° C. at the maximum, which combines the secondary recrystallization annealing and the purification annealing, but in the method of manufacturing the grain-oriented electrical steel sheet of the present invention, in the temperature raising process of the finish annealing. It is necessary to hold for 40 to 200 hours in a temperature range of 775 to 875 ° C. before secondary recrystallization. The reason is as follows.

通常、二次再結晶は1000℃付近の温度で起こるが、875℃を超える温度域では、インヒビタ成分の酸化がおこり、鋼板表層の一次再結晶粒が粗大化する。そして、この表層一次再結晶粒の粗大化は、板厚が薄い方向性電磁鋼板においては、二次再結晶不良を引き起こす原因となる。   Usually, the secondary recrystallization occurs at a temperature around 1000 ° C., but in the temperature range exceeding 875 ° C., the inhibitor component is oxidized and the primary recrystallized grains of the steel sheet surface layer become coarse. And this coarsening of the surface primary recrystallized grains causes a secondary recrystallization failure in the grain-oriented electrical steel sheet having a thin plate thickness.

発明者らは、この問題点の解決策について研究を重ねた結果、二次再結晶を起こす前の鋼板を、775〜875℃の温度域で40〜200時間保定してやることによって、表層一次再結晶粒の粗大化が抑制されることを見出した。上記保定時間が40時間未満では、表層一次再結晶粒が粗大化し、二次再結晶不良となり、磁気特性が劣化する。一方、保定時間が200時間を超えると、一次再結晶粒が全体的に粗大化して、Goss方位以外の粒も粗大化するため二次再結晶が起こり難くなり、やはり、磁気特性が劣化する。
なお、上記二次再結晶前の保定処理は、775〜875℃間の特定温度で40〜200時間保定してもよいし、775〜875℃の間を40〜200時間かけて昇温するようにしてもよい。
As a result of repeated research on a solution to this problem, the inventors have retained the steel sheet before secondary recrystallization in a temperature range of 775 to 875 ° C. for 40 to 200 hours, whereby primary recrystallization of the surface layer is performed. It has been found that grain coarsening is suppressed. If the holding time is less than 40 hours, the primary recrystallized grains in the surface layer become coarse, secondary recrystallization failure occurs, and the magnetic properties deteriorate. On the other hand, when the holding time exceeds 200 hours, the primary recrystallized grains are coarsened as a whole, and grains other than the Goss orientation are also coarsened, so that secondary recrystallization hardly occurs and the magnetic properties are deteriorated.
The holding treatment before the secondary recrystallization may be held at a specific temperature between 775 and 875 ° C. for 40 to 200 hours, or between 775 and 875 ° C. over 40 to 200 hours. It may be.

775〜875℃の温度域で40〜200時間保持することで、表層一次再結晶粒の粗大化が抑制される理由については、以下のように考えている。
インヒビタとしてAlNを用いる方向性電磁鋼板の製造では、およそ920℃以上の温度でAlNが分解し、表層の一次再結晶粒の粗大化が生じる。ここで、二次再結晶を開始する前にAlNが分解するのを抑制するためには、二次再結晶温度域に速やかに昇温してやる必要があるが、コイル焼鈍では、加熱初期段階での昇温速度が緩やかとなるため、AlNの分解を抑制することができず、表層の一次再結晶粒の粗大化を招いていた。そこで、再結晶する温度まで加熱する前に、所定温度で所定時間の保定処理を行うことで、コイル内の温度分布が均一となり、AlNが分解する温度域での昇温速度が速くなり、二次再結晶前の一次再結晶粒の粗大化を抑制することができる。
The reason why the coarsening of the primary recrystallized grains in the surface layer is suppressed by holding in the temperature range of 775 to 875 ° C. for 40 to 200 hours is considered as follows.
In the manufacture of grain-oriented electrical steel sheets using AlN as an inhibitor, AlN decomposes at a temperature of about 920 ° C. or higher, resulting in coarsening of primary recrystallized grains in the surface layer. Here, in order to suppress the decomposition of AlN before starting secondary recrystallization, it is necessary to quickly raise the temperature to the secondary recrystallization temperature range, but in coil annealing, in the initial heating stage Since the rate of temperature increase is slow, the decomposition of AlN cannot be suppressed, leading to the coarsening of primary recrystallized grains in the surface layer. Therefore, by performing a retention treatment at a predetermined temperature for a predetermined time before heating to the recrystallization temperature, the temperature distribution in the coil becomes uniform, and the rate of temperature increase in the temperature range where AlN decomposes increases. The coarsening of the primary recrystallized grains before the next recrystallization can be suppressed.

保定処理に続く1050℃までの昇温速度は、10℃/hr以上とするのが好ましく、20℃/hr以上がより好ましい。しかし、昇温速度を大きくし過ぎると、二次再結晶粒のGoss方位への先鋭度が低下して、磁気特性が劣化するおそれがあるので、上限は60℃/hrとする。また、1050℃から最高温度までの昇温速度は、経済性の観点から5℃/hr以上とするのが好ましく、一方、コイル内温度を均一化する観点から100℃/hr以下とするのが好ましい。   The rate of temperature increase up to 1050 ° C. following the retention treatment is preferably 10 ° C./hr or more, and more preferably 20 ° C./hr or more. However, if the rate of temperature increase is excessively high, the sharpness of the secondary recrystallized grains in the Goss orientation decreases and the magnetic properties may deteriorate, so the upper limit is set to 60 ° C./hr. Further, the rate of temperature increase from 1050 ° C. to the maximum temperature is preferably 5 ° C./hr or more from the viewpoint of economy, while it is preferably 100 ° C./hr or less from the viewpoint of uniformizing the temperature in the coil. preferable.

なお、上記の保定処理を十分に行おうとすると、AlN以外のインヒビタであるMnSやMnSeが粗大化して抑制力が低下するおそれがある。そこで、本発明では、インヒビタとして抑制力が低下し難いCuSやCuSeを用いると共に、Sbを添加し、析出したCuSやCuSeのインヒビタ表面にSbを偏析させて、インヒビタの粗大化を抑制するのが好ましい。さらに、Niを添加すると、Sbの偏析が促進されるので、CuSやCuSeの抑制力がより補強され、インヒビタの抑制力を高く保持することが可能となる。 In addition, if it is going to fully perform said holding | maintenance process, there exists a possibility that MnS and MnSe which are inhibitors other than AlN may coarsen, and suppression power may fall. Therefore, in the present invention, Cu 2 S or Cu 2 Se whose inhibitory power is hardly reduced is used as an inhibitor, and Sb is added, and Sb is segregated on the surface of the precipitated Cu 2 S or Cu 2 Se inhibitor. It is preferable to suppress the coarsening of the film. Further, when Ni is added, segregation of Sb is promoted, so that the suppressive force of Cu 2 S and Cu 2 Se is further reinforced, and the inhibitory force of the inhibitor can be kept high.

また、上記仕上焼鈍における雰囲気ガスとしては、N、H,Arあるいはこれらの混合ガスを用いるが、一般に、温度が850℃以下の加熱過程および冷却過程では、Nが、それ以上の温度では、HまたはHとNあるいはHとArの混合ガスが用いられる。 As the atmosphere gas in the final annealing, it is used N 2, H 2, Ar or a mixed gas thereof, generally at the temperature of 850 ° C. or less of the heating process and cooling process, N 2 is, higher temperatures Then, H 2 or a mixed gas of H 2 and N 2 or H 2 and Ar is used.

仕上焼鈍した鋼板は、その後、鋼板表面の未反応の焼鈍分離剤を除去した後、必要に応じて、絶縁被膜液を塗布・焼付けたり、平坦化焼鈍を施したりして製品板とする。上記絶縁被膜は、鉄損を低減するためには、張力被膜を用いることが好ましい。また、仕上焼鈍後の鋼板に、鉄損を低減するため、連続的または断続的に電子ビームあるいはレーザを照射したり、突起状ロールで線状の歪を付与したりする公知の磁区細分化処理を施してもよい。また、仕上焼鈍で鋼板表面にフォルステライト被膜を形成しない場合には、鋼板表面をさらに鏡面化処理したり、NaCl電解などで粒方位選別処理等を施したりした後、さらに、張力被膜を被成して製品板としてもよい。   The steel sheet that has been subjected to finish annealing is used as a product plate after removing the unreacted annealing separator on the surface of the steel sheet, and then applying and baking an insulating coating solution or performing flattening annealing as necessary. In order to reduce the iron loss, it is preferable to use a tension coating as the insulating coating. In addition, in order to reduce iron loss to the steel plate after finish annealing, a known magnetic domain subdivision treatment is performed in which a continuous or intermittent irradiation with an electron beam or a laser, or linear distortion is imparted with a protruding roll. May be applied. In addition, when a forsterite film is not formed on the steel sheet surface by finish annealing, the steel sheet surface is further mirror-finished or subjected to grain orientation selection process by NaCl electrolysis, etc., and then a tension film is further formed. And it is good also as a product board.

表3に示したA〜Nの成分組成を有する鋼スラブを常法に準じて熱間圧延し、板厚2.4mmの熱延コイルとし、900℃×40秒の熱延板焼鈍を施し、酸洗し、一次冷間圧延して板厚1.5mmとし、1150℃×80秒の中間焼鈍を施した後、170℃の温度で温間圧延して最終板厚0.17mmの冷延コイルとした。次いで、上記冷延コイルを脱脂した後、60vol%H−40vol%Nの湿水素雰囲気下で、850℃×2分の脱炭処理を兼ねた一次再結晶焼鈍を施した。次いで、上記鋼板表面にMgOを主体とする焼鈍分離剤を塗布、乾燥した後、N雰囲気下で850℃までを昇温速度40℃/hrで加熱し、850℃で50時間保定処理した後、引き続き、昇温速度20℃/hrで、850〜1150℃までを100vol%N雰囲気下で、1150〜1200℃までをH雰囲気下で加熱し、さらに、H雰囲気下で1200℃×10時間の均熱処理し、その後、800℃以下をN雰囲気下で冷却する仕上焼鈍を施した。次いで、上記仕上焼鈍を施した鋼板表面から未反応の焼鈍分離剤を除去した後、リン酸マグネシウムとコロイダルシリカを主成分とする絶縁被膜を被成し、製品コイルとした。 A steel slab having the composition of components A to N shown in Table 3 was hot-rolled according to a conventional method to form a hot-rolled coil having a thickness of 2.4 mm, and subjected to hot-rolled sheet annealing at 900 ° C. for 40 seconds, Pickling, primary cold rolling to a sheet thickness of 1.5 mm, intermediate annealing at 1150 ° C. for 80 seconds, followed by warm rolling at a temperature of 170 ° C. and a cold rolled coil with a final sheet thickness of 0.17 mm It was. Subsequently, after degreasing the cold-rolled coil, primary recrystallization annealing was performed which also served as a decarburization process at 850 ° C. for 2 minutes in a wet hydrogen atmosphere of 60 vol% H 2 -40 vol% N 2 . Next, after applying and drying an annealing separator mainly composed of MgO on the surface of the steel sheet, after heating to 850 ° C. at a heating rate of 40 ° C./hr in an N 2 atmosphere, and holding at 850 ° C. for 50 hours. , subsequently, at a heating rate of 20 ° C. / hr, up from 850 to 1,150 ° C. under 100 vol% N 2 atmosphere, to 1150 to 1200 ° C. was heated under an atmosphere of H 2 addition, 1200 ° C. × under a H 2 atmosphere The soaking was performed for 10 hours, and then finish annealing was performed to cool 800 ° C. or lower in an N 2 atmosphere. Next, after removing the unreacted annealing separator from the surface of the steel plate subjected to the above-mentioned finish annealing, an insulating film mainly composed of magnesium phosphate and colloidal silica was formed to obtain a product coil.

Figure 2013047382
Figure 2013047382

斯くして得た全長約4000mの製品コイルの長手方向0m、1000m、2000m、3000mおよび4000mの計5箇所から、磁気測定用の試験片を採取し、1.7Tの磁束密度における鉄損値W17/50を測定し、上記5箇所の鉄損の中で最も悪い値をコイル内保証値、最も良好な値をコイル内良好値とし、その結果を表3に併記した。
表3から、Ni,CuおよびSbのうちから選ばれる1種以上、あるいはさらに、Ge,Bi,V,Nb,Tb,Cr,SnおよびMoのうちから選ばれる1種以上を添加することによって鉄損特性がより改善されていること、また、(sol.Al/N)が外れると、鉄損特性が大きく劣化することがわかる。
The test pieces for magnetic measurement were collected from a total of five locations in the longitudinal direction of 0 m, 1000 m, 2000 m, 3000 m and 4000 m of the product coil having a total length of about 4000 m thus obtained, and the iron loss value W at a magnetic flux density of 1.7 T was obtained. 17/50 was measured, and among the above five iron losses, the worst value was the guaranteed value in the coil, and the best value was the good value in the coil. The results are also shown in Table 3.
From Table 3, one or more selected from Ni, Cu and Sb, or, in addition, one or more selected from Ge, Bi, V, Nb, Tb, Cr, Sn and Mo can be added to add iron. It can be seen that the loss characteristics are further improved, and that if the (sol.Al/N) is removed, the iron loss characteristics are greatly deteriorated.

C:0.07mass%、Si:3.4mass%、Mn:0.07mass%、sol.Al:0.018mass%、N:0.007mass%、Se:0.015mass%、Ni:0.3mass%、Cu:0.03mass%およびSb:0.04mass%を含有する成分組成の鋼スラブを、熱間圧延して板厚2.4mmの熱延コイルとし、900℃×40秒の熱延板焼鈍し、酸洗し、一次冷間圧延して板厚1.5mmとし、1150℃で80秒の中間焼鈍した後、170℃の温度で温間圧延して最終板厚0.17mmの冷延コイルとした。次いで、上記冷延コイルを2つに分け、一方には鋼板表面に幅180μmで圧延方向に対して直角方向に延びる溝を圧延方向に5mm間隔で形成する磁区細分化処理を施した後、他方には上記磁区細分化処理を施すことなく、50vol%H−50vol%Nの湿潤雰囲気下で、脱炭焼鈍を兼ねた一次再結晶焼鈍を施した。なお、上記一次再結晶焼鈍における840℃に達するまでの加熱は、200℃から700℃までの昇温速度を、表4に示したように、20〜200℃/sの範囲で種々に変化させた。なお、上記200〜700℃間の昇温速度は一定とし、かつ、その加熱途中の450℃で0.5〜3秒間、保定を行う条件とし、また、一部のコイルには保定を実施しなかった。 C: 0.07 mass%, Si: 3.4 mass%, Mn: 0.07 mass%, sol. A steel slab having a composition containing Al: 0.018 mass%, N: 0.007 mass%, Se: 0.015 mass%, Ni: 0.3 mass%, Cu: 0.03 mass%, and Sb: 0.04 mass%. , Hot rolled into a 2.4 mm thick hot rolled coil, annealed at 900 ° C. for 40 seconds, pickled, and first cold rolled to a thickness of 1.5 mm at 80 ° C. at 1150 ° C. After intermediate annealing for 2 seconds, the steel sheet was warm-rolled at a temperature of 170 ° C. to obtain a cold-rolled coil having a final thickness of 0.17 mm. Next, the cold-rolled coil is divided into two, and after one is subjected to a magnetic domain refinement treatment in which a groove having a width of 180 μm and extending in a direction perpendicular to the rolling direction is formed on the steel sheet surface at intervals of 5 mm in the rolling direction. without applying the domain refining treatment, in a humidified atmosphere of 50vol% H 2 -50vol% N 2 , it was subjected to primary recrystallization annealing, which also serves as a decarburization annealing. In addition, the heating until reaching 840 ° C. in the primary recrystallization annealing is performed by changing the rate of temperature increase from 200 ° C. to 700 ° C. in a range of 20 to 200 ° C./s as shown in Table 4. It was. The heating rate between 200-700 ° C is constant, and the temperature is maintained at 450 ° C during the heating for 0.5-3 seconds. In addition, some coils are retained. There wasn't.

Figure 2013047382
Figure 2013047382

その後、鋼板表面にMgOを主体とする焼鈍分離剤を塗布した後、N雰囲気下で850℃までを昇温速度20℃/hrで加熱し、850℃で50時間の保定処理を施し、引き続き、850〜1150℃までを50vol%N−50vol%Hの混合雰囲気、1150〜1200℃までをH雰囲気として昇温速度40℃/hrで1200℃まで加熱し、さらに、H雰囲気下で1200℃×10時間の均熱を施し、その後、800℃以下をN雰囲気下で冷却する仕上焼鈍を施した。次いで、上記仕上焼鈍後の鋼板表面から未反応の焼鈍分離剤を除去した後、50mass%のコロイダルシリカとリン酸マグネシウムからなる張力被膜液を塗布し、焼付けて絶縁被膜を被成し、製品コイルとした。 Then, after applying an annealing separator mainly composed of MgO to the steel sheet surface, the steel was heated to 850 ° C. at a heating rate of 20 ° C./hr in an N 2 atmosphere and subjected to a holding treatment at 850 ° C. for 50 hours. The mixture is heated to 1200 ° C. at a heating rate of 40 ° C./hr with a mixed atmosphere of 50 vol% N 2 -50 vol% H 2 up to 850-1150 ° C. and an H 2 atmosphere up to 1150-1200 ° C., and further under an H 2 atmosphere Was subjected to soaking at 1200 ° C. for 10 hours, followed by finish annealing in which 800 ° C. or lower was cooled in an N 2 atmosphere. Next, after removing the unreacted annealing separator from the surface of the steel plate after the above-mentioned finish annealing, a tension coating solution composed of 50 mass% colloidal silica and magnesium phosphate is applied and baked to form an insulating coating, and a product coil It was.

斯くして得た全長約4000mの製品コイルの長手方向0m、1000m、2000m、3000mおよび4000mの計5箇所から磁気測定用の試験片を採取し、1.7Tの磁束密度における鉄損値W17/50を測定し、その平均値を求めた。
上記測定の結果を、磁区細分化処理の有無に区分して表4に併記した。表4から、仕上焼鈍の加熱条件の適正化に加えて、一次再結晶焼鈍における加熱過程において保定処理を施すことによって、鉄損特性がさらに改善されること、特に、磁区細分化処理を施した場合における鉄損改善効果が著しいことがわかる。
Test pieces for magnetic measurement were collected from a total of five locations in the longitudinal direction of 0 m, 1000 m, 2000 m, 3000 m and 4000 m of the product coil having a total length of about 4000 m thus obtained, and the iron loss value W 17 at a magnetic flux density of 1.7 T was obtained. / 50 was measured and the average value was determined.
The results of the above measurement are shown in Table 4 with classification according to whether or not the magnetic domain fragmentation treatment was performed. From Table 4, in addition to optimizing the heating conditions for the finish annealing, the iron loss characteristics are further improved by performing the holding treatment in the heating process in the primary recrystallization annealing, in particular, the magnetic domain refinement treatment was performed. It can be seen that the iron loss improvement effect in the case is remarkable.

Claims (6)

C:0.04〜0.12mass%、Si:1.5〜5.0mass%、Mn:0.01〜1.0mass%、sol.Al:0.010〜0.040mass%、N:0.004〜0.02mass%、SおよびSeから選ばれる1種または2種:合計0.005〜0.05mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼スラブを1250℃以上に加熱後、熱間圧延して板厚1.8mm以上の熱延板とし、1回または中間焼鈍を挟む2回以上の冷間圧延により最終板厚0.15〜0.23mmの冷延板とし、一次再結晶焼鈍した後、仕上焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法において、
前記鋼スラブのsol.AlとNの含有量の比(sol.Al/N)と、最終板厚d(mm)とが下記(1)式を満たし、かつ、
前記仕上焼鈍の加熱過程で鋼板を775〜875℃の温度に40〜200時間保持した後、875〜1050℃の温度域を昇温速度10〜60℃/hrで加熱することを特徴とする方向性電磁鋼板の製造方法。

4d+1.52≦sol.Al/N≦4d+2.32 ・・・(1)
C: 0.04-0.12 mass%, Si: 1.5-5.0 mass%, Mn: 0.01-1.0 mass%, sol. Al: 0.010-0.040 mass%, N: 0.004-0.02 mass%, one or two selected from S and Se: a total of 0.005-0.05 mass%, with the balance being Fe And a steel slab having a component composition consisting of inevitable impurities is heated to 1250 ° C. or higher, and then hot-rolled to form a hot-rolled sheet having a thickness of 1.8 mm or more. In the manufacturing method of the grain-oriented electrical steel sheet comprising a series of steps of performing a final annealing after a primary recrystallization annealing after forming a cold rolled sheet having a final thickness of 0.15 to 0.23 mm by rolling,
The sol. The ratio of the content of Al and N (sol.Al/N) and the final thickness d (mm) satisfy the following formula (1), and
A direction in which the steel sheet is held at a temperature of 775 to 875 ° C. for 40 to 200 hours in the heating process of the finish annealing, and then a temperature range of 875 to 1050 ° C. is heated at a temperature rising rate of 10 to 60 ° C./hr. Method for producing an electrical steel sheet.
4d + 1.52 ≦ sol. Al / N ≦ 4d + 2.32 (1)
前記鋼スラブは、前記成分組成に加えてさらに、Ni:0.1〜1.0mass%、Cu:0.02〜1.0mass%およびSb:0.01〜0.10mass%のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。 The steel slab is selected from Ni: 0.1 to 1.0 mass%, Cu: 0.02 to 1.0 mass%, and Sb: 0.01 to 0.10 mass% in addition to the component composition. It contains 1 type (s) or 2 or more types, The manufacturing method of the grain-oriented electrical steel sheet of Claim 1 characterized by the above-mentioned. 前記鋼スラブは、前記成分組成に加えてさらに、Ge,Bi,V,Nb,Te,Cr,SnおよびMoのうちから選らばれる1種または2種以上を合計で0.002〜1.0mass%含有することを特徴とする請求項1または2に記載の方向性電磁鋼板の製造方法。 In the steel slab, in addition to the component composition, one or more selected from Ge, Bi, V, Nb, Te, Cr, Sn, and Mo are added in a total amount of 0.002 to 1.0 mass%. It contains, The manufacturing method of the grain-oriented electrical steel sheet of Claim 1 or 2 characterized by the above-mentioned. 前記一次再結晶焼鈍の加熱過程における200〜700℃間を昇温速度50℃/s以上で加熱するとともに、250〜600℃間のいずれかの温度において、1〜10秒間、等温に保持することを特徴とする請求項1〜3のいずれか1項に記載の方向性電磁鋼板の製造方法。 Heating at 200 to 700 ° C. in the heating process of the primary recrystallization annealing at a temperature rising rate of 50 ° C./s or more and maintaining isothermal at any temperature between 250 to 600 ° C. for 1 to 10 seconds. The method for producing a grain-oriented electrical steel sheet according to any one of claims 1 to 3. 冷間圧延後のいずれかの段階で、鋼板表面に圧延方向と交差する方向に溝を形成して磁区細分化処理を施すことを特徴とする請求項1〜4のいずれか1項に記載の方向性電磁鋼板の製造方法。 5. The magnetic domain refinement process according to claim 1, wherein a groove is formed in a direction crossing the rolling direction on the steel sheet surface at any stage after the cold rolling to perform a magnetic domain refinement process. A method for producing grain-oriented electrical steel sheets. 絶縁被膜を被成した鋼板表面に、圧延方向と交差する方向に連続的または断続的に電子ビームあるいはレーザを照射して磁区細分化処理を施すことを特徴とする請求項1〜4のいずれか1項に記載の方向性電磁鋼板の製造方法。 5. The magnetic domain fragmentation treatment is performed by irradiating an electron beam or a laser continuously or intermittently in a direction intersecting the rolling direction on the surface of the steel sheet on which the insulating coating is formed. A method for producing a grain-oriented electrical steel sheet according to item 1.
JP2012166793A 2011-07-28 2012-07-27 Method for producing grain-oriented electrical steel sheet Active JP5988026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012166793A JP5988026B2 (en) 2011-07-28 2012-07-27 Method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011165127 2011-07-28
JP2011165127 2011-07-28
JP2012166793A JP5988026B2 (en) 2011-07-28 2012-07-27 Method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2013047382A true JP2013047382A (en) 2013-03-07
JP5988026B2 JP5988026B2 (en) 2016-09-07

Family

ID=48010517

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012166798A Active JP5988027B2 (en) 2011-07-28 2012-07-27 Method for producing ultrathin grain-oriented electrical steel sheet
JP2012166793A Active JP5988026B2 (en) 2011-07-28 2012-07-27 Method for producing grain-oriented electrical steel sheet

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2012166798A Active JP5988027B2 (en) 2011-07-28 2012-07-27 Method for producing ultrathin grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (2) JP5988027B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014092102A1 (en) * 2012-12-12 2014-06-19 Jfeスチール株式会社 Oriented electromagnetic steel sheet
WO2014132354A1 (en) * 2013-02-27 2014-09-04 Jfeスチール株式会社 Production method for grain-oriented electrical steel sheets
JP2018184654A (en) * 2017-04-27 2018-11-22 Jfeスチール株式会社 Method for producing grain-oriented magnetic steel sheet
WO2019131853A1 (en) 2017-12-28 2019-07-04 Jfeスチール株式会社 Low-iron-loss grain-oriented electrical steel sheet and production method for same
JP2019119933A (en) * 2017-12-28 2019-07-22 Jfeスチール株式会社 Low iron loss directional electromagnetic steel sheet and manufacturing method therefor
JP2019210544A (en) * 2018-05-31 2019-12-12 Jfeスチール株式会社 Manufacturing method of grain-oriented electromagnetic steel sheet

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5672273B2 (en) * 2012-07-26 2015-02-18 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
KR101707539B1 (en) 2012-07-26 2017-02-16 제이에프이 스틸 가부시키가이샤 Method of producing grain-oriented electrical steel sheet
JP5716870B2 (en) 2012-07-26 2015-05-13 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
JP6143010B2 (en) * 2014-04-04 2017-06-07 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet with excellent iron loss characteristics
CN104438325B (en) * 2014-10-08 2017-01-11 武汉科技大学 Rolling method of ultra-thin silicon steel sheet
JP6260513B2 (en) * 2014-10-30 2018-01-17 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
CN113710822B (en) * 2019-04-23 2023-05-16 杰富意钢铁株式会社 Method for producing oriented electrical steel sheet
EP3960888A4 (en) * 2019-04-23 2022-06-08 JFE Steel Corporation Method for producing grain-oriented electromagnetic steel sheet
JP7338511B2 (en) * 2020-03-03 2023-09-05 Jfeスチール株式会社 Manufacturing method of grain-oriented electrical steel sheet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02115319A (en) * 1988-10-21 1990-04-27 Kawasaki Steel Corp Production of high magnetic flux density grain-oriented silicon steel sheet
JPH07188773A (en) * 1993-12-27 1995-07-25 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH07188758A (en) * 1993-12-28 1995-07-25 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet having high magnetic flux density
JPH09316537A (en) * 1996-05-24 1997-12-09 Kawasaki Steel Corp Production of grain oriented silicon steel sheet excellent in magnetic property
JPH11199939A (en) * 1998-01-14 1999-07-27 Kawasaki Steel Corp Production of grin oriented magnetic steel sheet having high magnetic flux density and excellent film characteristic

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0742507B2 (en) * 1990-04-20 1995-05-10 川崎製鉄株式会社 Method for manufacturing thin unidirectional electrical steel sheet with excellent magnetic properties
JP2002194445A (en) * 2000-12-27 2002-07-10 Kawasaki Steel Corp Method for manufacturing grain-oriented electrical steel sheet having high magnetic flux density and excellent film characteristic
JP5011711B2 (en) * 2005-11-15 2012-08-29 Jfeスチール株式会社 Manufacturing method of unidirectional electrical steel sheet
JP4905374B2 (en) * 2007-12-10 2012-03-28 Jfeスチール株式会社 Unidirectional electrical steel sheet and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02115319A (en) * 1988-10-21 1990-04-27 Kawasaki Steel Corp Production of high magnetic flux density grain-oriented silicon steel sheet
JPH07188773A (en) * 1993-12-27 1995-07-25 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH07188758A (en) * 1993-12-28 1995-07-25 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet having high magnetic flux density
JPH09316537A (en) * 1996-05-24 1997-12-09 Kawasaki Steel Corp Production of grain oriented silicon steel sheet excellent in magnetic property
JPH11199939A (en) * 1998-01-14 1999-07-27 Kawasaki Steel Corp Production of grin oriented magnetic steel sheet having high magnetic flux density and excellent film characteristic

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014092102A1 (en) * 2012-12-12 2014-06-19 Jfeスチール株式会社 Oriented electromagnetic steel sheet
CN104838028A (en) * 2012-12-12 2015-08-12 杰富意钢铁株式会社 Oriented electromagnetic steel sheet
US10643770B2 (en) 2012-12-12 2020-05-05 Jfe Steel Corporation Grain-oriented electrical steel sheet
CN112195399A (en) * 2012-12-12 2021-01-08 杰富意钢铁株式会社 Grain-oriented electromagnetic steel sheet
WO2014132354A1 (en) * 2013-02-27 2014-09-04 Jfeスチール株式会社 Production method for grain-oriented electrical steel sheets
US10431359B2 (en) 2013-02-27 2019-10-01 Jfe Steel Corporation Method for producing grain-oriented electrical steel sheet
JP2018184654A (en) * 2017-04-27 2018-11-22 Jfeスチール株式会社 Method for producing grain-oriented magnetic steel sheet
WO2019131853A1 (en) 2017-12-28 2019-07-04 Jfeスチール株式会社 Low-iron-loss grain-oriented electrical steel sheet and production method for same
JP2019119933A (en) * 2017-12-28 2019-07-22 Jfeスチール株式会社 Low iron loss directional electromagnetic steel sheet and manufacturing method therefor
KR20200089321A (en) 2017-12-28 2020-07-24 제이에프이 스틸 가부시키가이샤 Low iron loss grain-oriented electrical steel sheet and its manufacturing method
US11459633B2 (en) 2017-12-28 2022-10-04 Jfe Steel Corporation Low-iron-loss grain-oriented electrical steel sheet and production method for same
JP2019210544A (en) * 2018-05-31 2019-12-12 Jfeスチール株式会社 Manufacturing method of grain-oriented electromagnetic steel sheet

Also Published As

Publication number Publication date
JP5988026B2 (en) 2016-09-07
JP5988027B2 (en) 2016-09-07
JP2013047383A (en) 2013-03-07

Similar Documents

Publication Publication Date Title
JP5988026B2 (en) Method for producing grain-oriented electrical steel sheet
JP4840518B2 (en) Method for producing grain-oriented electrical steel sheet
WO2014132354A1 (en) Production method for grain-oriented electrical steel sheets
JP6132103B2 (en) Method for producing grain-oriented electrical steel sheet
JP6191826B2 (en) Method for producing grain-oriented electrical steel sheet with excellent magnetic properties
JP6838601B2 (en) Low iron loss directional electromagnetic steel sheet and its manufacturing method
KR20240035911A (en) Method for producing grain-oriented electrical steel sheet
JP6947147B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2017106111A (en) Manufacturing method of oriented electromagnetic steel sheet
JP6079092B2 (en) Method for producing grain-oriented electrical steel sheet having a thickness of 0.12 to 0.25 mm
JP6601649B1 (en) Low iron loss grain-oriented electrical steel sheet and manufacturing method thereof
JP6572956B2 (en) Method for producing grain-oriented electrical steel sheet
JP5712652B2 (en) Method for producing grain-oriented electrical steel sheet
JP2014173103A (en) Method of producing grain-oriented magnetic steel sheet
JP7338511B2 (en) Manufacturing method of grain-oriented electrical steel sheet
WO2022255259A1 (en) Method for manufacturing oriented electrical steel sheet
JP7221480B6 (en) Grain-oriented electrical steel sheet and manufacturing method thereof
WO2022255258A1 (en) Method for producing grain-oriented electromagnetic steel sheet
JP5712626B2 (en) Method for producing grain-oriented electrical steel sheet
KR20230159874A (en) Manufacturing method of grain-oriented electrical steel sheet
WO2022210504A1 (en) Method for manufacturing grain-oriented electromagnetic steel sheet
CN116940695A (en) Method for producing oriented electrical steel sheet, and hot-rolled steel sheet for oriented electrical steel sheet
JP2018087366A (en) Production method of grain-oriented electromagnetic steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160217

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160726

R150 Certificate of patent or registration of utility model

Ref document number: 5988026

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250