JP6079092B2 - Method for producing grain-oriented electrical steel sheet having a thickness of 0.12 to 0.25 mm - Google Patents

Method for producing grain-oriented electrical steel sheet having a thickness of 0.12 to 0.25 mm Download PDF

Info

Publication number
JP6079092B2
JP6079092B2 JP2012209011A JP2012209011A JP6079092B2 JP 6079092 B2 JP6079092 B2 JP 6079092B2 JP 2012209011 A JP2012209011 A JP 2012209011A JP 2012209011 A JP2012209011 A JP 2012209011A JP 6079092 B2 JP6079092 B2 JP 6079092B2
Authority
JP
Japan
Prior art keywords
mass
annealing
thickness
electrical steel
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012209011A
Other languages
Japanese (ja)
Other versions
JP2014062305A (en
Inventor
宮崎 大輔
大輔 宮崎
稔 高島
高島  稔
正憲 上坂
正憲 上坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012209011A priority Critical patent/JP6079092B2/en
Publication of JP2014062305A publication Critical patent/JP2014062305A/en
Application granted granted Critical
Publication of JP6079092B2 publication Critical patent/JP6079092B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、主として変圧器や発電機等の鉄心に用いられる方向性電磁鋼板およびその製造方法に関するものである。   The present invention relates to a grain-oriented electrical steel sheet used mainly for iron cores such as transformers and generators, and a method for manufacturing the same.

Siを含有し、結晶方位が{110}<001>方位(Goss方位)や{100}<001>方位(Cube方位)に高度に配向した方向性電磁鋼板は、優れた軟磁気特性を示すことから、商用周波数領域で用いられる各種電気機器の鉄心材料として広く用いられている。このような用途に用いられる方向性電磁鋼板には、一般に、50Hzの周波数で1.7 T に磁化させた場合の鉄損であるW17/50 (W/kg)が低いことが重要である。すなわち、発電機や変圧器の電力損失はW17/50 の値が低い材料を用いることにより大幅に低減できることから鉄損の低い材料の開発が年々強く求められてきているのである。   A grain-oriented electrical steel sheet containing Si and highly oriented in the {110} <001> orientation (Goss orientation) or {100} <001> orientation (Cube orientation) should exhibit excellent soft magnetic properties. Therefore, it is widely used as a core material for various electric devices used in the commercial frequency range. In general, it is important for grain-oriented electrical steel sheets used in such applications to have a low W17 / 50 (W / kg), which is an iron loss when magnetized to 1.7 T at a frequency of 50 Hz. In other words, the power loss of generators and transformers can be greatly reduced by using materials with low values of W17 / 50, so the development of materials with low iron loss has been strongly demanded year by year.

さらなる低鉄損化としては、板厚の薄い材料で渦電流損を低減する方向に移行しつつあり、従来の板厚0.30mm中心の製品ニーズに対し、板厚0.25mm以下の製品ニーズが高まりつつあるといった方向にある。   As a further reduction in iron loss, the trend is toward reducing eddy current loss with a thin plate material, and the need for products with a plate thickness of 0.25 mm or less is increasing compared to the conventional product centered on a plate thickness of 0.30 mm. It is in the direction of being.

板厚が薄くなると、インヒビタとよばれる析出物の仕上焼鈍中のオストワルド成長や表面への酸化分解反応が二次再結晶に影響しやすくなり、インヒビタの一次再結晶粒の粒成長に対するピン止め力が過剰に失われた場合には、二次再結晶が起こらないPoor Grain Growth(以下PGGと称す)と呼ばれる不良組織が形成され、大幅な鉄損劣化につながることとなる。   When the plate thickness is reduced, the Ostwald growth during finish annealing of precipitates called inhibitors and the oxidative decomposition reaction on the surface are more likely to affect secondary recrystallization, and the pinning force against the grain growth of primary recrystallized grains of the inhibitor. If excessively lost, a defective structure called Poor Grain Growth (hereinafter referred to as PGG) that does not cause secondary recrystallization is formed, leading to significant iron loss deterioration.

このような課題を解決するため、特許文献1では、Niを添加して組織を微細化するとともに、Sbおよび微量のBを添加することで、二次再結晶の発現安定性を増すことが開示されている。   In order to solve such a problem, Patent Document 1 discloses that Ni is added to refine the structure, and Sb and a trace amount of B are added to increase the expression stability of secondary recrystallization. Has been.

特許文献2では、1ppm以下の微量の素材B量に応じて、1回目と2回目の冷間圧延の圧下率比を調整することで二次再結晶粒径を一定に制御し、安定して低鉄損の製品を製造する技術が開示されている。   In Patent Document 2, the secondary recrystallized grain size is controlled to be constant by adjusting the rolling reduction ratio of the first and second cold rolling according to the amount of material B of 1 ppm or less. Techniques for producing low iron loss products are disclosed.

しかしながら、特許文献1のような技術をもってしても仕上焼鈍時のコイルの外巻、内巻のような長手方向端部では、PGG型不良により鉄損が大幅に劣化する、という問題が生じていた。また、特許文献2の技術は、インヒビタとしてAlNを用いない系での技術であるとともに、その効果がPGGとは対極の二次再結晶が過度に発現しやすいことによる方位不良(Unfavorable Grain growth、以下UFGと称す)につながるものであるため、インヒビタとしてAlNを用いる系での検討が十分なされていなかった。   However, even with the technique of Patent Document 1, there is a problem that iron loss is greatly deteriorated due to PGG type defects at the end portions in the longitudinal direction such as the outer winding and inner winding of the coil during finish annealing. It was. In addition, the technique of Patent Document 2 is a technique in a system that does not use AlN as an inhibitor, and the effect thereof is an orientation failure (Unfavorable Grain growth, (Hereinafter referred to as UFG), the system using AlN as an inhibitor has not been sufficiently studied.

特許第3357601号公報Japanese Patent No. 3357601 特開平10−245630号公報Japanese Patent Laid-Open No. 10-245630

そこで、本発明の課題は、板厚が0.12〜0.25mmの方向性電磁鋼板でも二次再結晶を安定して発現させ、製品コイル内の鉄損が低くかつ均一である方向性電磁鋼板およびその製造方法を提案することにある。   Therefore, the problem of the present invention is that a directional electrical steel sheet that stably develops secondary recrystallization even in a directional electrical steel sheet having a thickness of 0.12 to 0.25 mm, and has low and uniform iron loss in a product coil, and its It is to propose a manufacturing method.

本発明は、以下の特徴を備えている。
[1] 成分組成として、C:0.04〜0.12mass%、Si:1.5〜5.0mass%、Mn:0.01〜1.0mass%、SおよびSeのうちから選ばれる1種または2種:合計0.005〜0.05mass%、sol.Al:0.010〜0.027mass%、N:0.0040〜0.0110mass%、sol.Al/N:1.50〜2.50、B:1.2mass ppm以下、
を含有し、残部がFeおよび不可避的不純物からなる鋼スラブを、1250℃以上の温度に加熱した後、熱間圧延し、熱延板焼鈍および、1回または中間焼鈍を挟む2回以上の冷間圧延をして最終板厚の冷延板とし、一次再結晶焼鈍し、仕上焼鈍、さらには、平坦化焼鈍を施すことを特徴とする板厚0.12〜0.25mmの方向性電磁鋼板の製造方法。
[2]前記仕上焼鈍時の加熱過程において750〜875℃で10〜200時間保定し、ついで900〜1150℃の加熱速度を5℃/hr以上とすることを特徴とする前記[1]に記載の板厚0.12〜0.25mmの方向性電磁鋼板の製造方法。
[3] 前記成分組成に加えて、さらに、Sb、Sn、Ni、Cu、Moのうちから選ばれる1種または2種以上を合計で0.002〜1.0mass%含有する前記[1]または[2]に記載の板厚0.12〜0.25mmの方向性電磁鋼板製造方法。
[4]前記[1]〜[3]のいずれか一項に記載の製造方法によって得られる方向性電磁鋼板。
The present invention has the following features.
[1] As component composition, C: 0.04-0.12 mass%, Si: 1.5-5.0 mass%, Mn: 0.01-1.0 mass%, one or two selected from S and Se: total 0.005-0.05 mass %, Sol.Al: 0.010 to 0.027 mass%, N: 0.0040 to 0.0110 mass%, sol.Al/N: 1.50 to 2.50, B: 1.2 mass ppm or less,
A steel slab containing the remainder Fe and inevitable impurities is heated to a temperature of 1250 ° C or higher, and then hot-rolled, hot-rolled sheet annealed, and cooled twice or more sandwiching one or intermediate annealing. A method of producing a grain-oriented electrical steel sheet having a thickness of 0.12 to 0.25 mm, characterized by performing cold rolling to obtain a cold-rolled sheet having a final thickness, primary recrystallization annealing, finish annealing, and further flattening annealing .
[2] The heating process during the finish annealing is maintained at 750 to 875 ° C. for 10 to 200 hours, and then the heating rate of 900 to 1150 ° C. is set to 5 ° C./hr or more. A method for producing grain-oriented electrical steel sheets having a thickness of 0.12 to 0.25 mm.
[3] In addition to the above component composition, the above [1] or [2] further containing 0.002 to 1.0 mass% of one or more selected from Sb, Sn, Ni, Cu, and Mo 2. A method for producing a grain-oriented electrical steel sheet having a thickness of 0.12 to 0.25 mm.
[4] A grain-oriented electrical steel sheet obtained by the production method according to any one of [1] to [3].

かくして、この発明に従い、方向性電磁鋼板を製造する場合において、スラブに残留するB量の低減、sol.Al/N比の限定、さらには、仕上焼鈍途中での温度保定処理およびその後の加熱過程の加熱速度の適正制御により、板厚0.25mm以下の薄手の方向性電磁鋼板においてもコイルの全長で鉄損が低くかつ均一な方向性電磁鋼板を得ることができる。 Thus, in the production of grain-oriented electrical steel sheets according to the present invention, the amount of B remaining in the slab is reduced, the sol.Al/N ratio is limited, and further, the temperature holding treatment during the finish annealing and the subsequent heating process By appropriately controlling the heating rate, a thin grain-oriented electrical steel sheet having a thickness of 0.25 mm or less can obtain a uniform grain-oriented electrical steel sheet with low iron loss over the entire length of the coil.

スラブに残留するB量とsol.Al/N比の製品磁気特性への影響を示した図である。It is the figure which showed the influence on the product magnetic characteristic of the amount of B remaining in a slab, and sol.Al/N ratio.

以下、この発明の基礎となった実験結果について説明する。 Hereinafter, the experimental results that are the basis of the present invention will be described.

(実験1)
供試材には、B含有量およびsol.Al/N比の異なる鋼A〜Tを用いた。それぞれの化学成分は表1に示すとおりである。
(Experiment 1)
As test materials, steels A to T having different B contents and sol.Al/N ratios were used. Each chemical component is as shown in Table 1.

上記した鋼スラブ(厚み230mm)を、それぞれ1400℃に加熱後、熱間圧延によって板厚2.0mmに仕上げ、960℃で熱間圧延を終了したのち、530℃でコイルに巻き取った。次いで、熱延コイルを、1020℃まで加熱する熱延板焼鈍を施し、酸洗後、冷間圧延により1.5mmの中間厚としたのち、1070℃×30秒間の中間焼鈍を施した。これらのコイルは酸洗後、180℃の温度での冷間圧延を施して最終板厚:0.20mmに仕上げた。その後、磁区細分化のための圧延直角方向への線状溝を電解処理により、深さ15μm、幅150μmの条件で付与した。そののち、露点:60℃の(50%N2+50%H2)雰囲気中にて850℃×120秒間の脱炭焼鈍を兼ねる一次再結晶焼鈍を施した。その後、マグネシア系の焼鈍分離剤を鋼板表面に塗布してからコイルに巻き取った。 The steel slabs (thickness 230 mm) described above were each heated to 1400 ° C., finished to a sheet thickness of 2.0 mm by hot rolling, finished hot rolling at 960 ° C., and then wound around a coil at 530 ° C. Next, the hot-rolled coil was subjected to hot-rolled sheet heating to 1020 ° C., pickled, and then made an intermediate thickness of 1.5 mm by cold rolling, and then subjected to intermediate annealing at 1070 ° C. × 30 seconds. These coils were pickled and then cold rolled at a temperature of 180 ° C. to finish to a final thickness of 0.20 mm. Thereafter, linear grooves in the direction perpendicular to the rolling direction for magnetic domain subdivision were applied by electrolytic treatment under conditions of a depth of 15 μm and a width of 150 μm. After that, primary recrystallization annealing was also performed in a dew point: 60 ° C. (50% N 2 + 50% H 2 ) atmosphere which also served as decarburization annealing at 850 ° C. for 120 seconds. Thereafter, a magnesia-based annealing separator was applied to the surface of the steel sheet and then wound around a coil.

その後、仕上焼鈍として、75%H2+25%N2の雰囲気にて加熱途中の800℃から1150℃まで10℃/hrの速度で加熱した。さらに、H2中にて1150℃×5時間の均熱による純化処理を実施した。仕上焼鈍後は、未反応の焼鈍分離剤を除去したのち、コロイダルシリカとリン酸マグネシウムからなるガラス系の張力コートを塗布・焼き付けて製品とした。 Then, as finish annealing, heating was performed at a rate of 10 ° C./hr from 800 ° C. during heating to 1150 ° C. in an atmosphere of 75% H 2 + 25% N 2 . Further, a purification treatment was performed by soaking at 1150 ° C. for 5 hours in H 2 . After the finish annealing, after removing the unreacted annealing separator, a glass-based tension coat made of colloidal silica and magnesium phosphate was applied and baked to obtain a product.

かくして得られた仕上焼鈍コイルのコイル外巻、長手中央分割部(中巻)および内巻の鉄損W17/50を測定した結果を表2および図1に示す。図1中で、○は外巻、中巻、内巻のすべてのW17/50の値が0.80W/kg以下であることを、×は外巻、中巻、内巻のいずれかのW17/50の値が0.80W/kg超であることを示す。ここで、鉄損の測定は、JIS C 2550に記載されている方法に従い評価した。また、コイル外巻、内巻とは、最外または最内の形状不良部の数ターンを除外した部位のことである。   Table 2 and FIG. 1 show the results of measuring the iron loss W17 / 50 of the coil outer winding, the longitudinal central division (middle winding), and the inner winding of the finish annealing coil thus obtained. In Figure 1, ○ indicates that the value of W17 / 50 for all of the outer, middle, and inner volumes is 0.80 W / kg or less, and × indicates W17 / for any of the outer, middle, and inner volumes. Indicates that a value of 50 is greater than 0.80 W / kg. Here, the measurement of the iron loss was evaluated according to the method described in JIS C 2550. The coil outer winding and inner winding are portions excluding several turns of the outermost or innermost defective portion.

図1からわかるように、Bを1.2mass ppm以下に低減するとともにsol.Al/Nを1.50〜2.50に制御することにより仕上焼鈍コイル外巻、長手中央分割部(中巻)、内巻でも良好な磁気特性を得られることが判明した。   As can be seen from Fig. 1, B is reduced to 1.2 mass ppm or less, and sol.Al/N is controlled to 1.50-2.50, so finish annealing coil outer winding, longitudinal center division (middle winding), and inner winding are also good. It has been found that excellent magnetic properties can be obtained.

Figure 0006079092
Figure 0006079092

Figure 0006079092
Figure 0006079092

(実験2)
さらに、表1の鋼Hについて、実験1と同様の方法で、一次再結晶焼鈍まで完了させたのち、仕上焼鈍時の加熱途中での保定温度を700〜880℃、保定時間を0〜250時間まで、さらにその後の900〜1150℃までの加熱速度を2.5℃/hr〜50℃/hrまで変更する実験を表3に示す11条件で実施した。仕上げ焼鈍後は、未反応の焼鈍分離剤を除去したのち、コロイダルシリカとリン酸マグネシウムからなるガラス系の張力コートを塗布・焼き付けて製品とした。
(Experiment 2)
Further, for steel H in Table 1, after completing the primary recrystallization annealing in the same manner as in Experiment 1, the holding temperature during heating during finish annealing is 700 to 880 ° C., and the holding time is 0 to 250 hours. Further, the experiment for changing the subsequent heating rate from 900 to 1150 ° C. to 2.5 ° C./hr to 50 ° C./hr was carried out under 11 conditions shown in Table 3. After the final annealing, the unreacted annealing separator was removed, and then a glass-based tension coat made of colloidal silica and magnesium phosphate was applied and baked to obtain a product.

かくして得られた仕上焼鈍コイルのコイル外巻、長手中央分割部(中巻)および内巻の鉄損W17/50を測定した結果を表3に併記する。表3に示すとおり、750〜875℃の温度域で10〜200時間保定するとともに900〜1150℃の加熱速度を5℃/hr以上とした場合にコイル外巻、長手中央分割部(中巻)および内巻のいずれにおいてもさらに良好な磁気特性が得られることが判明した。   Table 3 shows the results of measuring the iron loss W17 / 50 of the coil outer winding, the longitudinal central division (middle winding), and the inner winding of the finish annealing coil thus obtained. As shown in Table 3, when the temperature is held at 750 to 875 ° C for 10 to 200 hours and the heating rate at 900 to 1150 ° C is set to 5 ° C / hr or more, the coil outer winding and the longitudinal central division (middle winding) It was found that even better magnetic properties can be obtained in both the inner volume and the inner volume.

Figure 0006079092
Figure 0006079092

(実験3)
さらに、表4に示す鋼U〜Yについては、Sb、Sn、Ni、Cu、Moを添加し、実験2の条件3と同じ製造条件にて製造し、同様に仕上焼鈍コイルのコイル外巻、長手中央分割部(中巻)および内巻の鉄損W17/50を測定した。得られた結果を表5に示す。表5に示すように、比較の実験2の条件3に対して、Sb、Sn、Ni、Cu、Moを添加した鋼は、特性がさらに改善されていた。
(Experiment 3)
Further, for steels U to Y shown in Table 4, Sb, Sn, Ni, Cu, and Mo are added and manufactured under the same manufacturing conditions as in condition 3 of Experiment 2, and the coil outer winding of the finish annealing coil is similarly performed. The iron loss W17 / 50 of the longitudinal central division (middle volume) and the inner volume was measured. The results obtained are shown in Table 5. As shown in Table 5, the characteristics of the steel added with Sb, Sn, Ni, Cu, and Mo were further improved with respect to Condition 3 of Comparative Experiment 2.

Figure 0006079092
Figure 0006079092

Figure 0006079092
Figure 0006079092

以上の本発明による磁性改善の原因については、完全には明らかではないが、次のように考えられる。
板厚0.25mm以下のような薄手の方向性電磁鋼板の製造では、仕上げ焼鈍中のインヒビタ成分の分解が起こりやすく、一次再結晶粒の成長をピン止めできず、最終的に良好な二次再結晶組織が得られないPGG不良と、インヒビタ成分を過剰に添加した場合などに、二次再結晶の方位選択性が低下し、製品の鉄損が劣化するUFG不良が起こるため、製品の歩留まりが低下しやすい。
The cause of the above improvement in magnetism according to the present invention is not completely clear, but is considered as follows.
In the manufacture of thin grain-oriented electrical steel sheets with a thickness of 0.25 mm or less, the inhibitor components are easily decomposed during finish annealing, and the growth of primary recrystallized grains cannot be pinned, resulting in a good secondary recycle. PGG defects that do not provide a crystal structure and excessive addition of an inhibitor component cause UFG defects that deteriorate the orientation selectivity of secondary recrystallization and deteriorate the iron loss of the product. It tends to decline.

これに対し本発明では、不純物である微量のBとsol.AlとNの比の影響を見出し規定する。上記のようにBが仕上げ焼鈍のコイルの端部でのPGG不良に影響したのは、Alを含む系での主たるインヒビタ成分であるAlNと、BがNと結合して形成されるBNとが、Nとの結合に関して競合関係になり、AlNとしての析出量・析出形態が変化し、仕上焼鈍の非定常部である最外巻、最内巻のような温度、雰囲気など条件が振れやすいところで、析出状態の急激な変化が発生し、PGG不良を招いたものと考えている。そこで、本発明では、Bを1.2mass ppm以下に低減するとともにsol.Al/Nを1.50〜2.50に制御することとする。このようにBとsol.AlとNの比を規定することにより仕上焼鈍のコイル外巻、内巻といったコイル長手方向端部でのPGGの発生を抑制し、二次再結晶の安定的発現に至らしめることとなり、製品コイル内の鉄損が低くかつ均一である方向性電磁鋼板を製造するが可能となる。   On the other hand, in the present invention, the influence of the ratio of trace amounts of B, sol. As described above, B had an effect on the PGG failure at the end of the annealed coil because AlN, which is the main inhibitor component in the system containing Al, and BN formed by combining B with N , It becomes a competitive relationship with respect to bonding with N, the precipitation amount and precipitation form as AlN changes, and conditions such as temperature and atmosphere such as outermost winding and innermost winding that are unsteady parts of finish annealing are likely to fluctuate It is thought that a sudden change in the precipitation state occurred, leading to PGG failure. Therefore, in the present invention, B is reduced to 1.2 mass ppm or less and sol.Al/N is controlled to 1.50 to 2.50. By regulating the ratio of B, sol.Al, and N in this way, the occurrence of PGG at the end of the coil in the longitudinal direction, such as the outer winding and inner winding of the finish annealing, is suppressed, and stable recrystallization is achieved. Therefore, it becomes possible to manufacture a grain-oriented electrical steel sheet having a low and uniform iron loss in the product coil.

さらに、仕上げ焼鈍の加熱過程で保定することは、二次再結晶核の生成を促進することにより二次再結晶の発現を安定化させる効果があるとともに、コイル全体の温度の均質化を促進し、引き続き行われる加熱過程でのコイル内の温度ばらつきの抑制に寄与するものと考えている。加熱速度の規定は、インヒビタの分解を適度に抑制しながら、二次再結晶の発生に至らしめるものと思われる。   Furthermore, holding in the heating process of finish annealing has the effect of stabilizing the expression of secondary recrystallization by promoting the formation of secondary recrystallization nuclei, and also promotes the homogenization of the temperature of the entire coil. It is believed that this contributes to suppression of temperature variations in the coil during the subsequent heating process. The regulation of the heating rate seems to cause the occurrence of secondary recrystallization while moderately inhibiting the decomposition of the inhibitor.

Sb、Sn、Ni、Cu、Moについては、インヒビタの効果を補助する効果によりPGGを抑制するものと考えている。   About Sb, Sn, Ni, Cu, and Mo, it is thought that PGG is suppressed by the effect which assists the effect of an inhibitor.

本発明において、成分組成範囲を限定した理由は次のとおりである。   In the present invention, the reason for limiting the component composition range is as follows.

C:0.04〜0.12 mass%
Cは、熱間圧延、冷間圧延中の組織の均一微細化ならびにGoss方位の発達のために有用な元素であり、少なくとも0.04mass%以上を含有させる必要がある。しかし、0.12mass%を超えて添加すると、脱炭焼鈍で脱炭不足を起こし、磁気特性が劣化するおそれがあるので0.12mass%以下とする。よって、Cは0.04〜0.12mass%の範囲とする。好ましくは0.05〜0.10mass%の範囲である。
C: 0.04-0.12 mass%
C is an element useful for uniform refinement of the structure during hot rolling and cold rolling and the development of Goss orientation, and it is necessary to contain at least 0.04 mass% or more. However, if added over 0.12 mass%, decarburization annealing may cause a shortage of decarburization, and the magnetic properties may deteriorate, so the content is made 0.12 mass% or less. Therefore, C is in the range of 0.04 to 0.12 mass%. Preferably it is the range of 0.05-0.10 mass%.

Si:1.5〜5.0 mass%
Siは、鋼板の比抵抗を高めて鉄損の低減に有効に寄与する元素であり、良好な磁気特性を確保する観点から、本発明では1.5mass %以上含有させる。一方5.0mass%を超える添加は、冷間加工性が著しく阻害されるようになる。よって、Siは1.5〜5.0mass%の範囲とする。好ましくは、2.0〜4.0mass%の範囲である。
Si: 1.5-5.0 mass%
Si is an element that increases the specific resistance of the steel sheet and contributes effectively to the reduction of iron loss. From the viewpoint of securing good magnetic properties, Si is contained in an amount of 1.5 mass% or more in the present invention. On the other hand, the addition exceeding 5.0 mass% significantly impairs cold workability. Therefore, Si is set to a range of 1.5 to 5.0 mass%. Preferably, it is in the range of 2.0 to 4.0 mass%.

Mn:0.01〜1.0 mass%
Mnは、熱間加工性を改善し、熱間圧延時の表面疵を防止するのに有効な元素であり、かかる効果を得るためには0.01mass%以上含有させる必要がある。しかし、1.0mass%を超えて添加すると、磁束密度が低下するようになる。よってMnは0.01〜1.0mass%の範囲とする。好ましくは0.04〜0.2mass%の範囲である。
Mn: 0.01-1.0 mass%
Mn is an element effective for improving hot workability and preventing surface flaws during hot rolling, and in order to obtain such an effect, it is necessary to contain 0.01 mass% or more. However, if added over 1.0 mass%, the magnetic flux density decreases. Therefore, Mn is set to a range of 0.01 to 1.0 mass%. Preferably it is the range of 0.04-0.2 mass%.

SおよびSe :合計で0.005〜0.05mass%
SおよびSeは、Cu2SやCu2Se等を、AlNと複合して微細析出させるために必要な必須の元素である。かかる目的のため、本発明では単独もしくは合計で0.005mass%以上を含有させる必要がある。しかし、0.05mass%を超えて添加すると、析出物の粗大化を招く。よって、SおよびSeは単独または合計で0.005〜0.05mass%の範囲とする。好ましくは0.01〜0.03mass%の範囲である。
S and Se: 0.005 to 0.05 mass% in total
S and Se are indispensable elements necessary for finely precipitating Cu 2 S, Cu 2 Se and the like in combination with AlN. For this purpose, in the present invention, it is necessary to contain 0.005 mass% or more alone or in total. However, if added over 0.05 mass%, the precipitate becomes coarse. Therefore, S and Se are individually or in total in the range of 0.005 to 0.05 mass%. Preferably it is the range of 0.01-0.03 mass%.

sol.Al :0.010〜0.027mass%
sol.Alは、酸可溶性のAlのことであり、インヒビタであるAlNを構成する必須の元素である。sol.Al として0.010mass%未満では、熱延時や熱延板焼鈍の加熱過程等において析出するAlNの量が不足し、インヒビタの効果を得ることができない。一方、0.027mass%を超えて添加すると、析出するインヒビタが複合粗大化し逆に抑制力が低下してしまう。よって、AlNのインヒビタ効果を十分に得るためには、sol.Alで0.010〜0.027mass%の範囲とする必要がある。
sol.Al: 0.010-0.027mass%
sol.Al is acid-soluble Al and is an essential element constituting AlN that is an inhibitor. If it is less than 0.010 mass% as sol.Al, the amount of AlN deposited during hot rolling or the heating process of hot-rolled sheet annealing is insufficient, and the inhibitor effect cannot be obtained. On the other hand, if added in excess of 0.027 mass%, the inhibitor that precipitates becomes composite coarsened, and conversely the inhibitory power decreases. Therefore, in order to sufficiently obtain the inhibitor effect of AlN, it is necessary to make the range of 0.010 to 0.027 mass% with sol.Al.

N :0.0040〜0.0110mass%
Nは、Alと同様、インヒビタであるAlNを構成する必須の元素であり、Nが0.0040mass%未満ではインヒビタ成分量が不足する。一方、Nを0.0110mass%超えて添加した場合には、熱間圧延においてふくれを生じるおそれがある。よってNは0.0040〜0.0110mass%の範囲とする。
N: 0.0040 to 0.0110 mass%
N, like Al, is an essential element that constitutes the inhibitor AlN. If N is less than 0.0040 mass%, the amount of the inhibitor component is insufficient. On the other hand, when N is added in an amount exceeding 0.0110 mass%, there is a risk of causing blistering in hot rolling. Therefore, N is set to a range of 0.0040 to 0.0110 mass%.

sol.Al/N:1.50〜2.50
sol.Al/Nは、インヒビタであるAlNの量と形態を規定する指標であり、1.50未満では、AlNの析出量が不足し、インヒビタの効果を得ることができない。一方、2.50を超えると仕上焼鈍中のインヒビタの粗大化が進行しやすくなる。よってsol.Al/Nは、1.50〜2.50の範囲とする。
sol.Al/N: 1.50-2.50
sol.Al/N is an index that defines the amount and form of AlN as an inhibitor. If it is less than 1.50, the amount of precipitated AlN is insufficient, and the effect of the inhibitor cannot be obtained. On the other hand, if it exceeds 2.50, the coarsening of the inhibitor during finish annealing tends to proceed. Therefore, sol.Al/N is in the range of 1.50 to 2.50.

B:1.2mass ppm以下
Bは、Nと結びついてBNを構成する可能性のある元素である。先に述べたように、Bは、1.2mass ppmを超えるとコイルの端部での二次再結晶組織が得られないPGG不良が発生するため、1.2mass ppm以下とする。好ましくは0.8mass ppm以下の範囲である。
B: 1.2 mass ppm or less
B is an element that may combine with N to form BN. As described above, B exceeds 1.2 mass ppm, because a PGG defect in which a secondary recrystallized structure cannot be obtained at the end of the coil occurs when it exceeds 1.2 mass ppm. Preferably it is the range of 0.8 mass ppm or less.

残部はFeおよび不可避的不純物である。ただし、これらの成分元素に加えて、以下の合金元素を必要に応じて添加することができる。   The balance is Fe and inevitable impurities. However, in addition to these component elements, the following alloy elements can be added as necessary.

Sb、Sn、Ni、Cu、Moのうちから選ばれる1種または2種以上:合計で0.002〜1.0mass%
これらの元素は、いずれも析出物を形成するか、結晶粒界や析出物の表面に偏析して抑制力を強化する補助的機能を果たす。かかる作用を得るためには、これらの元素を1種または2種類以上の合計で0.002mass%以上含有させる必要がある。しかし、1.0mass%を超える添加は、鋼の脆化や脱炭不良を招くようになるので、1.0mass%以下とする。よって、上記元素は合計で0.002〜1.0mass%の範囲で含有させるのが好ましい。
One or more selected from Sb, Sn, Ni, Cu, and Mo: 0.002 to 1.0 mass% in total
Any of these elements forms a precipitate or segregates on the grain boundary or the surface of the precipitate to perform an auxiliary function of strengthening the suppression force. In order to obtain such an action, it is necessary to contain one or more of these elements in a total of 0.002 mass%. However, addition exceeding 1.0 mass% leads to embrittlement and poor decarburization of steel, so it is set to 1.0 mass% or less. Therefore, it is preferable to contain the above elements in the range of 0.002 to 1.0 mass% in total.

次に、本発明の方向性電磁鋼板の製造方法について説明する。
本発明の方向性電磁鋼板の製造方法は、上述した成分組成に調整した鋼スラブを1250℃以上に加熱した後、熱間圧延し、1回または中間焼鈍を挟む2回以上の冷間圧延し、一次再結晶焼鈍し、仕上焼鈍、さらには、平坦化焼鈍を施す一連の工程からなるものである。なお、上記において必要に応じて熱延板焼鈍を実施することも好ましい。
Next, the manufacturing method of the grain-oriented electrical steel sheet of this invention is demonstrated.
The method for producing a grain-oriented electrical steel sheet according to the present invention is to heat a steel slab adjusted to the above-described composition to 1250 ° C. or higher, then hot-roll and cold-roll one or more times with intermediate annealing. , Primary recrystallization annealing, finish annealing, and further, a series of steps for performing flattening annealing. In the above, it is also preferable to perform hot-rolled sheet annealing as necessary.

仕上焼鈍では、まず加熱過程の750〜875℃の温度域にて10〜200時間保定することが好ましい。保定温度域を750〜875℃としたのは、750℃よりも低温では、ゴス方位核の生成の効果が不十分であり、875℃よりも高温では、インヒビタの分解を過剰に促進してしまう場合があるからである。保定時間は、10時間を下回る範囲ではゴス方位核の生成の効果が不十分であり、200時間を超えるとインヒビタの分解を過剰に促進してしまうため、10〜200時間とする。
さらに、900〜1150℃の加熱速度を5℃/hr以上に制御することが好ましい。5℃/hr以上としたのは、5℃/hr未満では、二次再結晶途中でのインヒビタの分解が過剰となるためである。これに引き続き、不純物を除去するための純化焼鈍を施したのち冷却し、仕上焼鈍を完了する。
In finish annealing, it is preferable to first hold for 10 to 200 hours in the temperature range of 750 to 875 ° C. during the heating process. The holding temperature range was set to 750 to 875 ° C because the effect of generating Goss orientation nuclei was insufficient at a temperature lower than 750 ° C, and the decomposition of the inhibitor was excessively promoted at a temperature higher than 875 ° C. Because there are cases. The retention time is set to 10 to 200 hours because the effect of producing Goss azimuth nuclei is insufficient when the retention time is less than 10 hours, and the decomposition of the inhibitor is excessively promoted when it exceeds 200 hours.
Furthermore, it is preferable to control the heating rate of 900 to 1150 ° C. to 5 ° C./hr or more. The reason why the temperature is set to 5 ° C./hr or more is that if the temperature is less than 5 ° C./hr, the inhibitor is excessively decomposed during the secondary recrystallization. Subsequent to this, a purification annealing for removing impurities is performed, followed by cooling to complete the finish annealing.

仕上焼鈍した鋼板は、その後、鋼板表面の未反応焼鈍分離剤を除去した後、必要に応じて、絶縁コーティングを塗布・焼付けし、平坦化焼鈍を施し製品板とする。上記絶縁コーティングは、鉄損を低減するためには、張力コーティングを用いることが好ましい。また鉄損を低減するため、仕上焼鈍後の鋼板にプラズマジェットやレーザー照射、電子ビーム照射を線状に施したり、突起状ロールで線状の歪を付与したりする公知の磁区細分化処理を施してもよい。また、磁区細分化のために物理的な溝を形成する場合には、最終の冷間圧延後に行うことも有効である。また仕上焼鈍で鋼板表面にフォルステライト被膜を形成しない場合には、鋼板表面をさらに鏡面化したり、NaCl電解などで粒方位選別処理を施したりした後、さらに、張力コーティングを施して製品板としてもよい。   The steel sheet that has been annealed is then stripped of the unreacted annealing separator on the surface of the steel sheet, and if necessary, is coated and baked with an insulating coating, and is subjected to planarization annealing to obtain a product plate. The insulating coating is preferably a tension coating in order to reduce iron loss. In addition, in order to reduce iron loss, a well-known magnetic domain refinement process is performed in which the steel sheet after finish annealing is linearly subjected to plasma jet, laser irradiation, or electron beam irradiation, or linear distortion is imparted by a protruding roll. You may give it. Moreover, when forming a physical groove | channel for magnetic domain subdivision, it is effective to carry out after the last cold rolling. Also, if the forsterite film is not formed on the steel plate surface by finish annealing, the steel plate surface is further mirror-finished or subjected to grain orientation selection treatment with NaCl electrolysis, etc. Good.

表6に示した成分組成を有する1〜7の鋼スラブを熱間圧延して板厚:2.0mmの熱延板とし、950℃×20秒の熱延板焼鈍を施した後、酸洗し、冷間圧延して板厚:1.4mmの中間板厚とし、1050℃×60秒の中間焼鈍を施した後、酸洗し、冷間圧延して最終板厚0.12、0.18、0.23mmの3種類の板厚の冷延板とした。ここで、さらに電気化学的な方法で深さ15μm、幅200μmの磁区細分化のための溝を形成した。その後、上記冷延板を脱脂し、湿水素雰囲気下で820℃×2分の脱炭を兼ねた一次再結晶焼鈍を施し、鋼板表面にMgOを主成分とする焼鈍分離剤を塗布した後、1〜4の鋼については、仕上焼鈍の800℃から1150℃まで10℃/hrで一律に加熱した。一方5〜7については、仕上焼鈍の加熱過程の800℃で30時間保定処理したのち、900℃〜1150℃の間を18℃/hrで加熱した。その後、1200℃×5時間の純化焼鈍を施した。仕上焼鈍後の鋼板は、未反応の焼鈍分離剤を除去し、コロイダルシリカとリン酸マグネシウムからなる張力コートを塗布・焼付けし、製品板とした。   Steel slabs 1-7 having the composition shown in Table 6 are hot-rolled to form a hot-rolled sheet with a thickness of 2.0 mm, subjected to hot-rolled sheet annealing at 950 ° C. for 20 seconds, and then pickled. , Cold rolled to a sheet thickness of 1.4 mm, subjected to an intermediate annealing of 1050 ° C. × 60 seconds, pickled and cold rolled to a final sheet thickness of 0.12, 0.18, 0.23 mm Cold-rolled sheets of various thicknesses were used. Here, a groove for subdividing the magnetic domain having a depth of 15 μm and a width of 200 μm was further formed by an electrochemical method. Then, degreased the cold-rolled sheet, subjected to primary recrystallization annealing that also serves as decarburization 820 ° C. × 2 minutes in a wet hydrogen atmosphere, after applying an annealing separator mainly composed of MgO on the steel sheet surface, Steels 1 to 4 were uniformly heated from 800 ° C. to 1150 ° C. in the finish annealing at 10 ° C./hr. On the other hand, about 5-7, after hold | maintaining processing at 800 degreeC of the heating process of finish annealing for 30 hours, between 900 degreeC-1150 degreeC was heated at 18 degreeC / hr. Thereafter, purification annealing was performed at 1200 ° C. for 5 hours. The steel sheet after the finish annealing was prepared by removing unreacted annealing separator and applying and baking a tension coat composed of colloidal silica and magnesium phosphate.

かくして得たコイルの両端(外巻、内巻)および中央分割点(中巻)での鉄損測定結果を表7に示す。鉄損の測定は、JIS C 2550に記載されている方法に従い磁束密度1.7T、周波数50Hzでの鉄損W17/50を評価した。ここで、コイル両端部とは、最外または最内の形状不良部の数ターンを除外した部位のことである。   Table 7 shows the measurement results of iron loss at both ends (outer winding, inner winding) and the center dividing point (middle winding) of the coil thus obtained. The iron loss was measured by evaluating the iron loss W17 / 50 at a magnetic flux density of 1.7 T and a frequency of 50 Hz according to the method described in JIS C 2550. Here, both ends of the coil are portions excluding several turns of the outermost or innermost defective portion.

Figure 0006079092
Figure 0006079092

Figure 0006079092
Figure 0006079092

表7より、本発明例のコイル5〜7は、比較例の1に比べてコイルの全長で鉄損が低くかつ均一であった。 From Table 7, the coils 5 to 7 of the present invention example had a low and uniform iron loss over the entire length of the coil as compared with the comparative example 1.

Claims (2)

成分組成として、C:0.04〜0.12mass%、Si:1.5〜5.0mass%、Mn:0.01〜1.0mass%、SおよびSeのうちから選ばれる1種または2種:合計0.005〜0.05mass%、sol.Al:0.010〜0.027mass%、N:0.0040〜0.0110mass%、sol.Al/N:1.50〜2.50、B:1.2mass ppm以下、を含有し、残部がFeおよび不可避的不純物からなる鋼スラブを、1250℃以上の温度に加熱した後、熱間圧延し、1回または中間焼鈍を挟む2回以上の冷間圧延をして最終板厚の冷延板とし、一次再結晶焼鈍し、加熱過程において750〜875℃で10〜200時間保定しついで900〜1150℃の加熱速度を5℃/hr以上とする仕上焼鈍、さらには、平坦化焼鈍を施すことを特徴とする板厚0.12〜0.25mmの方向性電磁鋼板の製造方法。 As component composition, C: 0.04-0.12 mass%, Si: 1.5-5.0 mass%, Mn: 0.01-1.0 mass%, one or two selected from S and Se: total 0.005-0.05 mass%, sol A steel slab containing Al: 0.010 to 0.027 mass%, N: 0.0040 to 0.0110 mass%, sol.Al/N: 1.50 to 2.50, B: 1.2 mass ppm or less, with the balance being Fe and inevitable impurities , Heated to a temperature of 1250 ° C or higher, then hot-rolled, cold-rolled twice or more with one or more intermediate annealings to obtain a cold-rolled sheet with the final thickness, primary recrystallization annealing , heating process wherein the seven hundred fifty to eight hundred seventy-five ° C. in 10 to 200 hours retention to above specification and the heating rate of the followed 900~1150 ℃ 5 ℃ / hr or higher annealing, further, be subjected to a flattening annealing at a thickness 0.12 to 0.25 Manufacturing method of mm-oriented electrical steel sheet. 前記成分組成に加えて、さらに、Sb、Sn、Ni、Cu、Moのうちから選ばれる1種または2種以上を合計で0.002〜1.0mass%含有することを特徴とする請求項1に記載の板厚0.12〜0.25mmの方向性電磁鋼板の製造方法。 In addition to the chemical composition further, Sb, Sn, Ni, Cu, according to claim 1, characterized in that it contains 0.002~1.0Mass% in total of one or two or more selected from among Mo A method for producing grain-oriented electrical steel sheets having a thickness of 0.12 to 0.25 mm.
JP2012209011A 2012-09-24 2012-09-24 Method for producing grain-oriented electrical steel sheet having a thickness of 0.12 to 0.25 mm Active JP6079092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012209011A JP6079092B2 (en) 2012-09-24 2012-09-24 Method for producing grain-oriented electrical steel sheet having a thickness of 0.12 to 0.25 mm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012209011A JP6079092B2 (en) 2012-09-24 2012-09-24 Method for producing grain-oriented electrical steel sheet having a thickness of 0.12 to 0.25 mm

Publications (2)

Publication Number Publication Date
JP2014062305A JP2014062305A (en) 2014-04-10
JP6079092B2 true JP6079092B2 (en) 2017-02-15

Family

ID=50617793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012209011A Active JP6079092B2 (en) 2012-09-24 2012-09-24 Method for producing grain-oriented electrical steel sheet having a thickness of 0.12 to 0.25 mm

Country Status (1)

Country Link
JP (1) JP6079092B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104438325B (en) * 2014-10-08 2017-01-11 武汉科技大学 Rolling method of ultra-thin silicon steel sheet
KR102099866B1 (en) * 2017-12-26 2020-04-10 주식회사 포스코 Grain oriented electrical steel sheet method for manufacturing the same
WO2019131853A1 (en) * 2017-12-28 2019-07-04 Jfeスチール株式会社 Low-iron-loss grain-oriented electrical steel sheet and production method for same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797631A (en) * 1993-09-30 1995-04-11 Kawasaki Steel Corp Production of high magnetix flux density grain oriented silicon steel sheet excellent in magnetic property and film property
JP3357601B2 (en) * 1997-03-26 2002-12-16 川崎製鉄株式会社 Grain-oriented electrical steel sheet with extremely low iron loss and its manufacturing method
JP2000017334A (en) * 1998-07-06 2000-01-18 Kawasaki Steel Corp Production of grain-oriented and nonoriented silicon steel sheet having low core loss and high magnetic flux density and continuous annealing equipment
JP3357611B2 (en) * 1998-10-01 2002-12-16 川崎製鉄株式会社 Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with extremely low iron loss
JP4123652B2 (en) * 1999-10-05 2008-07-23 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
JP2002220642A (en) * 2001-01-29 2002-08-09 Kawasaki Steel Corp Grain-oriented electromagnetic steel sheet with low iron loss and manufacturing method therefor
JP4259037B2 (en) * 2002-05-21 2009-04-30 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP2014062305A (en) 2014-04-10

Similar Documents

Publication Publication Date Title
JP6844125B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP5988026B2 (en) Method for producing grain-oriented electrical steel sheet
JP5760504B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5610084B2 (en) Oriented electrical steel sheet and manufacturing method thereof
KR101921401B1 (en) Method for producing grain-oriented electrical steel sheet
KR101683693B1 (en) Method for producing grain-oriented electrical steel sheet
WO2014013615A1 (en) Process for producing grain-oriented electrical steel sheet
JP7174053B2 (en) Bidirectional electrical steel sheet and manufacturing method thereof
JP6020768B1 (en) Oriented electrical steel sheet and manufacturing method thereof
KR20160138253A (en) Method for producing oriented electromagnetic steel sheet
JP6443355B2 (en) Method for producing grain-oriented electrical steel sheet
JP6344263B2 (en) Method for producing grain-oriented electrical steel sheet
JP6079092B2 (en) Method for producing grain-oriented electrical steel sheet having a thickness of 0.12 to 0.25 mm
JP5839172B2 (en) Method for producing grain-oriented electrical steel sheet
WO2016111088A1 (en) Non-oriented electromagnetic steel sheet and method for producing same
JP6504372B2 (en) Method of manufacturing directional magnetic steel sheet excellent in magnetic properties
JP7350069B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP2011195875A (en) Method for producing grain-oriented magnetic steel sheet
JP2017106111A (en) Manufacturing method of oriented electromagnetic steel sheet
JP2023554123A (en) Non-oriented electrical steel sheet and its manufacturing method
JP6572956B2 (en) Method for producing grain-oriented electrical steel sheet
JP5600991B2 (en) Method for producing grain-oriented electrical steel sheet
JP5527094B2 (en) Method for producing grain-oriented electrical steel sheet
JP5310510B2 (en) Method for producing grain-oriented electrical steel sheet
WO2020149333A1 (en) Method for manufacturing grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170102

R150 Certificate of patent or registration of utility model

Ref document number: 6079092

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250