JP6504372B2 - Method of manufacturing directional magnetic steel sheet excellent in magnetic properties - Google Patents

Method of manufacturing directional magnetic steel sheet excellent in magnetic properties Download PDF

Info

Publication number
JP6504372B2
JP6504372B2 JP2017002657A JP2017002657A JP6504372B2 JP 6504372 B2 JP6504372 B2 JP 6504372B2 JP 2017002657 A JP2017002657 A JP 2017002657A JP 2017002657 A JP2017002657 A JP 2017002657A JP 6504372 B2 JP6504372 B2 JP 6504372B2
Authority
JP
Japan
Prior art keywords
mass
annealing
less
steel sheet
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017002657A
Other languages
Japanese (ja)
Other versions
JP2017125260A (en
Inventor
聡一郎 吉▲崎▼
聡一郎 吉▲崎▼
渡辺 誠
渡辺  誠
敬 寺島
寺島  敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2017125260A publication Critical patent/JP2017125260A/en
Application granted granted Critical
Publication of JP6504372B2 publication Critical patent/JP6504372B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

本発明は、磁気特性に優れる方向性電磁鋼板を、安定的かつ安価に製造する方向性電磁鋼板の製造方法に関するものである。   The present invention relates to a method for producing a grain-oriented electrical steel sheet for stably and inexpensively producing a grain-oriented electrical steel sheet excellent in magnetic properties.

電磁鋼板は、変圧器やモーターの鉄心材料等として広く用いられている軟磁性材料であり、中でも方向性電磁鋼板は、結晶方位がGoss方位と呼ばれる{110}<001>方位に高度に集積していることで、優れた磁気特性を示すため、主として大型変圧器の鉄心材料等として使用されている。上記Goss方位への集積度を高める方法としては、二次再結晶現象を利用するのが一般的である。したがって、磁気特性に優れる方向性電磁鋼板を安定的に製造するためには、上記二次再結晶を制御することが重要となる。   The electromagnetic steel sheet is a soft magnetic material widely used as a core material for transformers and motors, etc. Among them, the grain-oriented electrical steel sheet is highly integrated in the {110} <001> orientation whose crystal orientation is called Goss orientation. In order to exhibit excellent magnetic properties, it is mainly used as a core material for large transformers. As a method of increasing the degree of integration in the Goss orientation, it is general to use a secondary recrystallization phenomenon. Therefore, it is important to control the secondary recrystallization in order to stably manufacture the grain-oriented electrical steel sheet excellent in magnetic properties.

ところで、方向性電磁鋼板を安定かつ安価に製造する技術の一つとして、特許文献1には、鋼素材(スラブ)中にインヒビタ形成成分を含有させずに、脱炭焼鈍後、二次再結晶完了前に、地鉄中のS量を増加することによって、二次再結晶を発現させる技術(「増硫法」)が提案されている。この増硫法では、地鉄中のS量を増加することによって、粒界に偏析するS量が増加し、Goss方位以外の方位を囲む粒界の移動が大きく抑制されるため、二次再結晶が安定的に発現し、磁気特性が向上するとされている。   By the way, as one of the techniques for stably and inexpensively producing a grain-oriented electrical steel sheet, Patent Document 1 discloses secondary recrystallization after decarburization annealing without containing an inhibitor forming component in a steel material (slab). Prior to completion, techniques have been proposed to develop secondary recrystallization by increasing the amount of S in the base iron ("the method of vulcanization"). In this method, the amount of sulfur segregated in grain boundaries is increased by increasing the amount of sulfur in the base iron, and the movement of grain boundaries surrounding orientations other than the Goss orientation is greatly suppressed. It is said that crystals appear stably and magnetic properties are improved.

しかし、上記特許文献1に開示の技術は、仕上焼鈍後のコイル内における磁気特性の偏差(バラツキ)が大きいという問題がある。そこで、この問題を改善する技術として、特許文献2には、焼鈍分離剤中に、硫化物および/または硫酸塩を含有させることにより、仕上焼鈍工程の昇温過程において鋼板に対して増硫処理を施し、その際、コイル最内巻部からコイル径がコイル外径の90%となる位置に塗布される焼鈍分離剤中の硫化物および/または硫酸塩の濃度を、コイル径がコイル外径の90%を超えたところから最外巻部までの位置に塗布される焼鈍分離剤中の硫化物および/または硫酸塩の濃度の50%以上400%以下の範囲で増加させ、昇温過程の800℃でのコイル内における増硫量の最大値と最小値の差を30ppm以下に抑制することによって、鋼板内における磁気特性の偏差を低減する技術が提案されている。   However, the technique disclosed in Patent Document 1 has a problem that the deviation (variation) of the magnetic characteristics in the coil after finish annealing is large. Therefore, as a technique for solving this problem, Patent Document 2 discloses that a steel sheet is subjected to a sulfurizing treatment in the temperature rising process of the finish annealing process by containing a sulfide and / or a sulfate in the annealing separator. In this case, the concentration of sulfide and / or sulfate in the annealing separator applied from the innermost coil portion to a position where the coil diameter is 90% of the coil outer diameter, the coil diameter is the coil outer diameter Increase by 50% or more and 400% or less of the concentration of sulfide and / or sulfate in the annealing separator applied to a position from more than 90% of the A technique has been proposed for reducing the deviation of the magnetic properties in the steel sheet by suppressing the difference between the maximum value and the minimum value of the amount of vulcanization in the coil at 800 ° C. to 30 ppm or less.

特開2004−353036号公報JP, 2004-353036, A 特開2006−152364号公報JP, 2006-152364, A

上記特許文献2に開示の技術を用いることで、コイル内の磁気特性の偏差をある程度は小さくすることができる。しかし、発明者らの知見では、上記改善効果は、コイルによってバラツキが大きく、特に、製品板厚が0.23mm以下の場合には、安定して磁気特性に優れる製品を製造することが難しいという問題があった。   By using the technology disclosed in Patent Document 2, the deviation of the magnetic characteristics in the coil can be reduced to a certain extent. However, according to the findings of the inventors, the improvement effect has a large variation depending on the coil, and in particular, it is difficult to stably produce a product having excellent magnetic characteristics when the product thickness is 0.23 mm or less. There was a problem.

本発明は、従来技術が抱える上記問題点に鑑みてなされたものであり、その目的は、特許文献1や特許文献2に開示された増硫法を適用した方向性電磁鋼板の製造方法において、コイル内の磁気特性の偏差を安定して低減することができる方向性電磁鋼板の製造方法を提案することにある。   The present invention has been made in view of the above problems of the prior art, and an object thereof is a method of manufacturing a grain-oriented electrical steel sheet to which the vulcanization method disclosed in Patent Document 1 or Patent Document 2 is applied, An object of the present invention is to propose a method of manufacturing a grain-oriented electrical steel sheet capable of stably reducing the deviation of the magnetic characteristics in the coil.

発明者らは、上記課題の解決に向けて、一次再結晶焼鈍後の鋼板と、焼鈍分離剤中に含まれるS含有量に着目して鋭意検討を重ねた。その結果、一次再結晶焼鈍後の鋼板の平均結晶粒径と焼鈍分離剤中に含まれるS含有量との関係を適正化することで、増硫効果が安定化し、ひいては、磁気特性に優れる方向性電磁鋼板を安定して得ることができることを見出し、本発明を開発するに至った。   In order to solve the above-mentioned subject, the inventors repeated earnestly examination paying attention to the steel plate after primary recrystallization annealing, and S content contained in an annealing separator. As a result, by optimizing the relationship between the average grain size of the steel sheet after primary recrystallization annealing and the S content contained in the annealing separator, the effect of vulcanization is stabilized and, consequently, the direction in which the magnetic characteristics are excellent It has been found that stable magnetic steel sheets can be obtained stably, and the present invention has been developed.

すなわち、本発明は、C:0.08mass%以下、Si:4.5mass%以下、Mn:0.5mass%以下、sol.Al:0.0100mass%未満、N:0.0100mass%未満、S:0.0100mass%以下、Se:0.0100mass%以下およびO:0.0050mass%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼スラブを熱間圧延して熱延板とし、1回または中間焼鈍を挟む2回以上の冷間圧延して最終板厚の冷延板とし、脱炭焼鈍を兼ねた一次再結晶焼鈍し、MgOを主体とする焼鈍分離剤を塗布し、仕上焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法において、上記一次再結晶焼鈍後の結晶粒の平均粒径dを10〜25μmとし、上記焼鈍分離剤として、Sr,Mg,Ca,Ba,Ti,SbおよびSnの硫酸塩ならびに硫化物のうちから選ばれる1種または2種以上を、S含有量sで0.2〜2mass%の範囲で含有し、かつ、上記S含有量sと上記dが下記式;
2.0≦(s/d)×100≦12.0
を満たして含有するものを用いることを特徴とする方向性電磁鋼板の製造方法を提案する。
That is, in the present invention, C: 0.08 mass% or less, Si: 4.5 mass% or less, Mn: 0.5 mass% or less, sol. Al: less than 0.0100 mass%, N: less than 0.0100 mass%, S: not more than 0.0100 mass%, Se: not more than 0.0100 mass% and O: not more than 0.0050 mass%, the balance being Fe and unavoidable impurities The steel slab having the component composition comprising the following composition was hot-rolled to form a hot-rolled sheet, and cold-rolled to a final thickness by cold-rolling once or twice or more with intermediate In the method of manufacturing a grain-oriented electrical steel sheet comprising a series of steps of applying primary annealing and annealing separation agent mainly comprising MgO and applying finish annealing, average grain diameter d of crystal grains after primary recrystallization annealing Is 10 to 25 μm, and one or more selected from sulfates and sulfides of Sr, Mg, Ca, Ba, Ti, Sb and Sn as the above-mentioned annealing separator, contains S, Contained in a range of 0.2~2Mass% in s, and the S content s and the d satisfies the following formula;
2.0 ≦ (s / d) × 100 ≦ 12.0
We propose a method of manufacturing a grain-oriented electrical steel sheet characterized by using a material that satisfies

本発明の上記方向性電磁鋼板の製造方法に用いる上記鋼スラブは、上記成分組成に加えてさらに、Ni:0.05〜0.5mass%、Sn:0.01〜0.5mass%、Sb:0.01〜0.5mass%、P:0.01〜0.2mass%、Cr:0.01〜0.5mass%、Cu:0.01〜0.5mass%、Nb:0.002〜0.01mass%およびMo:0.01〜0.2mass%のうちから選ばれる1種または2種以上を含有することを特徴とする。   In addition to the above component compositions, the above-described steel slab used in the method of the present invention for producing a grain-oriented electrical steel sheet further includes Ni: 0.05 to 0.5 mass%, Sn: 0.01 to 0.5 mass%, Sb: 0.01 to 0.5 mass%, P: 0.01 to 0.2 mass%, Cr: 0.01 to 0.5 mass%, Cu: 0.01 to 0.5 mass%, Nb: 0.002 to 0.. It is characterized in that it contains one or more selected from 01 mass% and Mo: 0.01 to 0.2 mass%.

また、本発明の上記方向性電磁鋼板の製造方法は、上記冷延板の最終板厚を0.23mm以下とすることを特徴とする。   In the method of manufacturing a grain-oriented electrical steel sheet according to the present invention, the final thickness of the cold-rolled sheet is 0.23 mm or less.

本発明によれば、磁気特性に優れる方向性電磁鋼板を、工業的に安定してかつ安価に製造することが可能になる。   According to the present invention, it is possible to industrially stably and inexpensively manufacture a grain-oriented electrical steel sheet having excellent magnetic properties.

板厚0.18mm、0.23mmの鋼板における一次再結晶焼鈍後の結晶粒の平均粒径dと焼鈍分離剤中のS含有量sが磁気特性に及ぼす影響を示すグラフである。It is a graph which shows the influence of the average particle diameter d of the crystal grain after primary recrystallization annealing and the S content s in an annealing separating agent on a magnetic property in a steel plate with a plate thickness of 0.18 mm and 0.23 mm. 板厚0.27mmの鋼板における一次再結晶焼鈍後の結晶粒の平均粒径dと焼鈍分離剤中のS含有量sが磁気特性に及ぼす影響を示すグラフである。It is a graph which shows the influence of the average particle diameter d of the crystal grain after primary recrystallization annealing and the S content s in an annealing separator in a 0.27-mm-thick steel plate on a magnetic characteristic.

まず、本発明を開発するに至った実験について説明する。
C:0.03mass%、Si:3.5mass%、Mn:0.05mass%、sol.Al:0.0075mass%、N:0.0050mass%、S:0.0020mass%、Se:0.0010mass%およびO:0.0010mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する連続鋳造製のスラブを、1200℃に再加熱した後、熱間圧延して板厚2.2mmの熱延板とし、その後、1050℃×30秒の熱延板焼鈍を施した。
次いで、1回目の冷間圧延で中間板厚1.5mmとし、1050℃×120秒の中間焼鈍を施した後、2回目の冷間圧延で最終板厚0.18、0.23mmまたは0.27mm厚の冷延板とし、その後、780〜900℃の温度範囲で120秒間均熱保持する脱炭を兼ねた一次再結晶焼鈍を、vol%比でH:N=50:50、露点60℃の雰囲気下で施し、一次再結晶焼鈍後の結晶粒の平均粒径dを8〜26μmの範囲で種々に変化させた。ここで、上記平均粒径は、JIS G0551に規定された計数法によって得た平均粒径である。
次いで、上記一次再結晶焼鈍後の鋼板表面に、MgOを主体とし、硫酸Mg(硫酸塩)を、焼鈍分離剤中に含まれるS含有量sで0.1〜1.5mass%の範囲で種々に変化させて添加した焼鈍分離剤を、一次再結晶焼鈍後の鋼板表面に12.5g/m(両面)塗布し、乾燥した。
次いで、Nガス雰囲気下で、昇温速度15℃/hrで昇温し、1160℃×5hrの均熱処理する仕上焼鈍を施した。
First, the experiments that led to the development of the present invention will be described.
C: 0.03 mass%, Si: 3.5 mass%, Mn: 0.05 mass%, sol. Al: 0.0075 mass%, N: 0.0050 mass%, S: 0.0020 mass%, Se: 0.0010 mass% and O: 0.0010 mass%, with the balance containing Fe and unavoidable impurities The continuous casting slab was reheated to 1200 ° C., and then hot rolled to a hot-rolled sheet having a thickness of 2.2 mm, and then subjected to hot-rolled sheet annealing at 1050 ° C. for 30 seconds.
Next, after making the intermediate plate thickness 1.5 mm in the first cold rolling and subjecting to intermediate annealing at 1050 ° C. × 120 seconds, the final thickness 0.18, 0.23 mm or 0. 27% thick cold rolled sheet, then, primary recrystallization annealing combined with decarburization holding soaking at 120 ° C. for 120 seconds at temperature range of 780 to 900 ° C. H 2 : N 2 = 50: 50 by vol% ratio, dew point C. to 60.degree. C. The average grain diameter d of the crystal grains after primary recrystallization annealing was variously changed in the range of 8 to 26 .mu.m. Here, the average particle size is an average particle size obtained by the counting method defined in JIS G0551.
Next, on the steel sheet surface after the above primary recrystallization annealing, MgO is mainly contained, and Mg sulfate (sulfate) is variously in the range of 0.1 to 1.5 mass% with S content s contained in the annealing separating agent The annealing separator added to the above was applied to the surface of the steel sheet after primary recrystallization annealing at 12.5 g / m 2 (both sides) and dried.
Then, the temperature was raised at a temperature rising rate of 15 ° C./hr under a N 2 gas atmosphere, and a finish annealing for soaking at 1160 ° C. × 5 hr was performed.

斯くして得た製品板の磁気特性(磁束密度B)をJIS C2556に規定された方法で測定した。
図1は、板厚が0.23mmおよび0.18mmにおける一次再結晶焼鈍後の結晶粒の平均粒径dと焼鈍分離剤中に含まれるS含有量sが磁気特性に及ぼす影響を示したグラフである。この図から、一次再結晶焼鈍後の結晶粒の平均粒径dと焼鈍分離剤中に含まれるS含有量sには適正範囲が存在し、一次再結晶粒の平均粒径dが大きくなるほど、適正な焼鈍分離剤中のS含有量sが大きくなることがわかる。
The magnetic properties (magnetic flux density B 8 ) of the product plate thus obtained were measured by the method defined in JIS C2556.
FIG. 1 is a graph showing the influence of the average grain diameter d of the crystal grains after primary recrystallization annealing at a plate thickness of 0.23 mm and 0.18 mm and the S content s contained in the annealing separator on the magnetic characteristics. It is. From this figure, an appropriate range exists for the average grain size d of the crystal grains after primary recrystallization annealing and the S content s contained in the annealing separator, and the larger the average grain size d of the primary recrystallized grains, It can be seen that the S content s in the proper annealing separator increases.

上記のように、一次再結晶後の結晶粒の平均粒径dと焼鈍分離剤中S含有量sとが関係する理由は、まだ十分に明らかとなっていないが、発明者らは以下のように考えている。
仕上焼鈍時に、焼鈍分離剤中に添加した硫酸塩や硫化物から分解したSが鋼板内部へ侵入するときは、体拡散よりも粒界拡散が支配的となると考えられ、粒界が多いほど、つまり、一次再結晶粒が小さいほど、焼鈍分離剤に添加したSの鋼中への侵入が促進され、逆に、一次再結晶粒が大きいほど、上記Sの鋼中への侵入は進み難くなる。
そのため、一次再結晶粒が小さく、鋼中へのS侵入が進みやすい場合でかつ焼鈍分離剤中へのS添加量が多い場合には、鋼中へのSの侵入が過剰となり、磁気特性に悪影響が出る。一方、一次再結晶粒が大きく、鋼中へのS侵入が進み難い場合には、S添加量を多くしないと、増硫の効果が得られ難くなる、と考えられる。
As described above, the reason why the average grain size d of the crystal grains after primary recrystallization and the S content s in the annealing separator are not yet sufficiently clarified, but the inventors have as follows: I am thinking about it.
At the time of finish annealing, when S decomposed from sulfates and sulfides added to the annealing separating agent penetrates into the inside of the steel sheet, it is thought that grain boundary diffusion becomes dominant rather than body diffusion, and the more grain boundaries there are, That is, the smaller the primary recrystallized grains, the more the penetration of S added to the annealing separator into the steel is promoted, and conversely, the larger the primary recrystallized grains, the harder it is for the penetration of S into the steel to proceed .
Therefore, when primary recrystallized grains are small, it is easy to proceed with S penetration into steel, and when the amount of S added to the annealing separator is large, the penetration of S into steel becomes excessive, resulting in the magnetic characteristics. There is an adverse effect. On the other hand, when the primary recrystallized grains are large and it is difficult for the penetration of S into the steel, it is considered that the effect of the vulcanization can not be obtained unless the amount of S is increased.

一方、図2は、板厚が0.27mmにおける一次再結晶焼鈍後の結晶粒の平均粒径dと焼鈍分離剤中に含まれるS含有量sが磁気特性に及ぼす影響を示したグラフである。この図から、板厚0.27mmでは、磁気特性は、一次再結晶焼鈍後の結晶粒の平均粒径dと焼鈍分離剤中に含まれるS含有量sに影響されず、sが0.2mass%をこえる領域で良好な磁気特性が得られている。   On the other hand, FIG. 2 is a graph showing the influence of the average grain diameter d of the crystal grains after primary recrystallization annealing at a thickness of 0.27 mm and the S content s contained in the annealing separator on the magnetic characteristics. . From this figure, at a plate thickness of 0.27 mm, the magnetic characteristics are not affected by the average grain diameter d of the crystal grains after primary recrystallization annealing and the S content s contained in the annealing separator, and s is 0.2 mass. Good magnetic properties are obtained in the region of more than 10%.

このように、板厚0.27mmでは、sを0.2mass%で良好な磁気特性が得られるのに対し、板厚が0.23mm以下の方向性電磁鋼板では、増硫法の効果が安定しない理由について、発明者らは以下のように考えている。
方向性電磁鋼板の製品品質(磁気特性)に及ぼす製造条件の変動、特に、製鋼工程における成分変動や焼鈍工程における温度変動などの影響は、一般に、板厚が薄いほど受けやすいため、一次再結晶焼鈍後の結晶粒の大きさも上記製造条件の変動によって大きく変化する。そのため、板厚が0.23mm以下の方向性電磁鋼板は、焼鈍分離剤中に含まれるS含有量の変動の影響も受けて、磁気特性が安定しなかったものと考えられる。
本発明は、上記の新規な知見に基き、開発したものである。
As described above, when the thickness is 0.27 mm, good magnetic characteristics can be obtained with s of 0.2 mass%, but in the case of a grain-oriented electrical steel sheet having a thickness of 0.23 mm or less, the effect of the vulcanization method is stable. The inventors consider as follows about the reason for not doing.
In general, the smaller the thickness of the sheet, the more easily it is affected by fluctuations in the manufacturing conditions that affect the product quality (magnetic properties) of the grain-oriented electrical steel sheet, in particular, component fluctuations in the steelmaking process and temperature fluctuations in the annealing process. The size of the crystal grain after annealing also largely changes due to the fluctuation of the manufacturing conditions. Therefore, the grain-oriented electrical steel sheet having a thickness of 0.23 mm or less is also considered to be unstable in the magnetic characteristics, also affected by the fluctuation of the S content contained in the annealing separator.
The present invention has been developed based on the above novel findings.

次に、本発明の方向性電磁鋼板の製造に用いる鋼素材(スラブ)の成分組成について説明する。
C:0.08mass%以下
Cは、一次再結晶集合組織を改善するのに有用な元素であるため、0.0010mass%以上含有させることが好ましい。しかし、0.08mass%を超えると、却って一次再結晶集合組織の劣化を招くので、上限は0.08mass%とする。なお、良好な磁気特性を得る観点からは、0.01〜0.06mass%の範囲が好ましい。
Next, the component composition of the steel material (slab) used for manufacturing the grain-oriented electrical steel sheet of the present invention will be described.
C: 0.08 mass% or less Since C is an element useful for improving primary recrystallization texture, it is preferable to contain 0.0010 mass% or more. However, if it exceeds 0.08 mass%, the primary recrystallized texture will rather deteriorate, so the upper limit is made 0.08 mass%. In addition, from a viewpoint of obtaining a favorable magnetic characteristic, the range of 0.01-0.06 mass% is preferable.

Si:4.5mass%以下
Siは、鋼の比抵抗を高め、鉄損を低減する有用元素であるので、2.0mass%以上含有させるのが好ましい。しかし、4.5mass%を超えると、冷間圧延性が著しく悪化するので、上限は4.5mass%とする。なお、良好な鉄損特性を得る観点からは、2.0〜4.0mass%の範囲が好ましい。
Si: 4.5 mass% or less Since Si is a useful element which raises the specific resistance of steel and reduces iron loss, it is preferable to contain 2.0 mass% or more. However, if it exceeds 4.5 mass%, the cold rolling property is significantly deteriorated, so the upper limit is set to 4.5 mass%. In addition, from a viewpoint of obtaining a favorable iron loss characteristic, the range of 2.0-4.0 mass% is preferable.

Mn:0.5mass%以下
Mnは、製造時における熱間加工性を向上させる効果があるので、0.01mass%以上含有させるのが好ましい。しかし、0.5mass%を超えると、一次再結晶集合組織が悪化し、磁気特性の劣化を招くので、Mnの上限は0.5mass%とする。好ましくは、0.2mass%以下、さらに好ましくは0.1mass%以下である。
Mn: 0.5 mass% or less Since Mn has an effect of improving the hot workability at the time of production, it is preferable to contain 0.01 mass% or more. However, if it exceeds 0.5 mass%, the primary recrystallization texture is deteriorated to cause deterioration of the magnetic properties, so the upper limit of Mn is made 0.5 mass%. Preferably, it is 0.2 mass% or less, more preferably 0.1 mass% or less.

sol.Al:0.0100mass%未満
Alは、鋼中に過剰に存在すると二次再結晶の発現を阻害する。特に、sol.Al量で0.0100mass%以上になると、低温スラブ加熱の製造条件では、二次再結晶が起こり難くなって磁気特性が劣化する。よって、Alはsol.Al量で0.0100mass%未満に制限する。
sol. Al: less than 0.0100 mass% Al, when present in excess in steel, inhibits the development of secondary recrystallization. In particular, sol. When the Al content is 0.0100 mass% or more, secondary recrystallization hardly occurs under the production conditions of low temperature slab heating, and the magnetic characteristics are degraded. Therefore, Al is sol. The amount of Al is limited to less than 0.0100 mass%.

N:0.0100mass%未満
Nは、sol.Alと同様、鋼中に過剰に存在すると二次再結晶の発現を阻害する。特にN量が0.0100mass%以上になると、二次再結晶が起こり難くなって、磁気特性が劣化する。よって、Nは0.0100mass%未満に制限する。好ましくは0.070mass%以下である。
N: less than 0.0100 mass% N is sol. Like Al, excessive presence in steel inhibits the development of secondary recrystallization. In particular, when the N content is 0.0100 mass% or more, secondary recrystallization hardly occurs and the magnetic characteristics deteriorate. Therefore, N is limited to less than 0.0100 mass%. Preferably it is 0.070 mass% or less.

S:0.0100mass%以下、Se:0.0100mass%以下
S,Seは、Al,Nと同様、鋼中に過剰に存在すると二次再結晶の発現を阻害する元素であり、それぞれ0.0100mass%を超えると、スラブ加熱時に粗大化したMnSやMnSeが一次再結晶組織を不均一にするため、磁気特性が劣化する。よって、SおよびSeは、それぞれ0.0100mass%以下に制限する。好ましくはそれぞれ0.0050mass%以下である。
S: 0.0100 mass% or less, Se: 0.0100 mass% or less S and Se, like Al and N, are elements that, when present in excess in steel, inhibit the development of secondary recrystallization, each of 0.0100 mass When it exceeds 10%, the MnS and MnSe coarsened at the time of slab heating make the primary recrystallized structure non-uniform, so that the magnetic properties deteriorate. Therefore, S and Se are each limited to 0.0100 mass% or less. Preferably, they are each 0.0050 mass% or less.

O:0.0050mass%以下
Oは、S,Seと同様、0.0050mass%以上になると、粗大な酸化物を形成し、二次再結晶を阻害するので、上限は0.0050mass%とする。好ましくは0.0030mass%以下である。
O: not more than 0.0050 mass% O, like S and Se, forms coarse oxides when it is not less than 0.0050 mass% and inhibits secondary recrystallization, so the upper limit is made 0.0050 mass%. Preferably it is 0.0030 mass% or less.

本発明に用いる鋼スラブは、上記成分に加えてさらに、以下に説明する成分のうちから選ばれる1種または2種以上を含有することができる。
Ni:0.05〜0.5mass%
Niは、熱延板組織の均一性を高め、磁気特性を改善する効果がある。しかし、0.05mass%未満では、上記効果に乏しく、一方、0.5mass%を超えると二次再結晶が不安定となり、逆に磁気特性が劣化するので、添加する場合には、0.05〜0.5mass%の範囲とするのが好ましい。より好ましくは0.07〜0.2mass%の範囲である。
The steel slab used in the present invention may further contain one or more selected from the components described below, in addition to the above components.
Ni: 0.05 to 0.5 mass%
Ni has the effect of improving the uniformity of the hot-rolled sheet structure and improving the magnetic properties. However, if the content is less than 0.05 mass%, the above effect is scarce, while if it exceeds 0.5 mass%, secondary recrystallization becomes unstable and the magnetic properties deteriorate, so 0.05 is added. It is preferable to set it as -0.5 mass%. More preferably, it is in the range of 0.07 to 0.2 mass%.

Sn:0.01〜0.5mass%、Sb:0.01〜0.5mass%、P:0.001〜0.2mass%およびCr:0.01〜0.5mass%
これらの元素は、いずれも、鉄損の改善に有効に寄与する元素であるが、含有量が上記下限値に満たないと、その添加効果に乏しく、一方、上記上限値を超えると、二次再結晶粒の発達が抑制される。そのため、それぞれ上記の範囲で含有させることが好ましい。より好ましくは、Sn:0.02〜0.2mass%、Sb:0.02〜0.2mass%、P:0.04〜0.12mass%およびCr:0.03〜0.2mass%の範囲である。
Sn: 0.01 to 0.5 mass%, Sb: 0.01 to 0.5 mass%, P: 0.001 to 0.2 mass% and Cr: 0.01 to 0.5 mass%
These elements are all elements that effectively contribute to the improvement of iron loss, but if the content is less than the above lower limit value, the addition effect is scarce, while if the above upper limit value is exceeded, the secondary The development of recrystallized grains is suppressed. Therefore, it is preferable to contain each in the above-mentioned range. More preferably, Sn: 0.02 to 0.2 mass%, Sb: 0.02 to 0.2 mass%, P: 0.04 to 0.12 mass% and Cr: 0.03 to 0.2 mass%. is there.

Cu:0.01〜0.5mass%
Cuは、仕上焼鈍中における鋼板の窒化や酸化を抑制し、Goss方位粒の優先的な成長を促進して、磁気特性を効果的に向上させる働きがある。しかし、0.01mass%未満では、上記添加効果が小さく、一方、0.5mass%を超える添加は、熱間圧延性を悪化する。よって、Cuは0.01〜0.5mass%の範囲で添加するのが好ましい。より好ましくは0.02〜0.2mass%の範囲である。
Cu: 0.01 to 0.5 mass%
Cu has the function of suppressing nitriding and oxidation of the steel sheet during finish annealing, promoting preferential growth of Goss oriented grains, and effectively improving the magnetic properties. However, if the amount is less than 0.01 mass%, the addition effect is small, while the addition exceeding 0.5 mass% deteriorates the hot-rollability. Therefore, it is preferable to add Cu in 0.01 to 0.5 mass%. More preferably, it is in the range of 0.02 to 0.2 mass%.

Nb:0.002〜0.01mass%
Nbは、一次再結晶粒の成長を抑制し、良好な結晶方位を有する二次再結晶粒の成長を促進して磁気特性を向上させる効果がある。上記効果は0.002mass%以上の添加で発現するが、0.01mass%を超えて添加すると、仕上焼鈍後も地鉄中に残留し、鉄損を劣化させる。よって、Nbは0.002〜0.01mass%の範囲で含有させるのが好ましい。より好ましくは0.002〜0.008mass%の範囲である。
Nb: 0.002 to 0.01 mass%
Nb has an effect of suppressing the growth of primary recrystallized grains and promoting the growth of secondary recrystallized grains having a favorable crystal orientation to improve the magnetic properties. The above effect is manifested by the addition of 0.002 mass% or more, but when it is added in excess of 0.01 mass%, it remains in the base iron even after finish annealing and degrades the iron loss. Therefore, Nb is preferably contained in a range of 0.002 to 0.01 mass%. More preferably, it is in the range of 0.002 to 0.008 mass%.

Mo:0.01〜0.2mass%
Moは、粒界に偏析して一次再結晶粒の成長を抑制し、良好な結晶方位を有する結晶粒の二次再結晶を促進して磁気特性を向上させる効果がある。上記効果は0.01mass%以上の添加で発現し、一方、0.2mass%を超える添加は、冷間圧延性を悪化させる。よって、Moは0.01〜0.2mass%の範囲で添加するのが好ましい。より好ましくは0.02〜0.08mass%の範囲である。
Mo: 0.01 to 0.2 mass%
Mo is segregated at grain boundaries to suppress the growth of primary recrystallized grains, and has an effect of promoting secondary recrystallization of crystal grains having a favorable crystal orientation to improve magnetic properties. The above effect is manifested by the addition of 0.01 mass% or more, while the addition exceeding 0.2 mass% deteriorates the cold rolling property. Therefore, it is preferable to add Mo in the range of 0.01 to 0.2 mass%. More preferably, it is in the range of 0.02 to 0.08 mass%.

次に、本発明の方向性電磁鋼板の製造方法について説明する。
本発明の方向性電磁鋼板の製造方法は、上記成分組成を有する鋼素材(スラブ)を、熱間圧延して熱延板とし、1回または中間焼鈍を挟む2回以上の冷間圧延して最終板厚の冷延板とし、脱炭焼鈍を兼ねた一次再結晶焼鈍し、MgOを主体とする焼鈍分離剤を塗布し、仕上焼鈍を施す一連の工程からなる。ここで、上記スラブは、本発明に適合する上記成分組成に調整した鋼を、通常公知の精錬プロセス等で溶製した後、常法の連続鋳造法等により鋼素材(スラブ)とする。
Next, the method for producing the grain-oriented electrical steel sheet of the present invention will be described.
In the method of manufacturing a grain-oriented electrical steel sheet of the present invention, a steel material (slab) having the above-described composition is hot-rolled into a hot-rolled sheet and cold-rolled once or twice or more with intermediate annealing interposed. A cold rolled sheet having a final thickness, primary recrystallization annealing also serving as decarburization annealing, an annealing separating agent mainly composed of MgO is applied, and a series of steps of finish annealing are performed. Here, the above-mentioned slab is made of a steel adjusted to the above-mentioned composition suitable for the present invention by a generally known refining process or the like, and then made into a steel material (slab) by a continuous casting method or the like.

その後、上記スラブを、再加熱した後、あるいは、再加熱せずに、熱間圧延し、熱延板とする。なお、スラブを再加熱する場合には、再加熱温度は1000〜1300℃の範囲とするのが好ましい。1000℃未満では、熱間圧延における圧延荷重が高くなり過ぎ、圧延することが困難となる。一方、1300℃を超える加熱は、インヒビタを含まない本発明では無意味であり、また、結晶粒が巨大化するため、磁気特性の劣化を招くからである。   Thereafter, the slab is hot-rolled into a hot-rolled sheet after reheating or without reheating. In addition, when reheating a slab, it is preferable to make reheating temperature into the range of 1000-1300 degreeC. If it is less than 1000 ° C., the rolling load in hot rolling becomes too high, and rolling becomes difficult. On the other hand, heating exceeding 1300 ° C. is meaningless in the present invention not containing any inhibitor, and the crystal grains become gigantic, which causes deterioration of the magnetic properties.

次いで、上記熱延板は、必要に応じて熱延板焼鈍を施したのち、1回または中間焼鈍を挟む2回以上の冷間圧延により、最終板厚の冷延板とする。なお、上記最終板厚は、0.23mm以下とするのが好ましい。0.23mm以下で、本発明の効果がより発現するからである。   Next, the hot-rolled sheet is subjected to hot-rolled sheet annealing if necessary, and then made into a cold-rolled sheet of final thickness by cold rolling once or twice or more with intermediate annealing interposed. The final plate thickness is preferably 0.23 mm or less. This is because the effects of the present invention are more manifested at 0.23 mm or less.

次いで、上記冷延板は、脱炭焼鈍を兼ねた一次再結晶焼鈍を施し、鋼板に含まれるCを0.0050mass%未満に低減する。0.0050mass%以上含まれると、製品板が磁気時効を起こして鉄損が劣化するからである。好ましくは0.0030mass%以下である。なお、脱炭焼鈍時の雰囲気は、湿水素窒素または湿水素アルゴン雰囲気とするのが好ましい。   Next, the cold rolled sheet is subjected to primary recrystallization annealing which also serves as decarburization annealing to reduce C contained in the steel sheet to less than 0.0050 mass%. If the content is 0.0050% by mass or more, the product plate is subjected to magnetic aging to deteriorate the iron loss. Preferably it is 0.0030 mass% or less. The atmosphere for decarburizing annealing is preferably wet hydrogen nitrogen or wet hydrogen argon.

上記脱炭焼鈍を兼ねた一次再結晶焼鈍後、鋼板表面にマグネシア(MgO)を主体とする焼鈍分離剤を塗布する。
この際、上記焼鈍分離剤は、一次再結晶焼鈍後から二次再結晶完了までの間に、地鉄中のS量を増加(増硫処理)させるため、硫酸塩あるいは硫化物を、S含有量sが0.2〜2.0mass%となる範囲で、かつ、焼鈍分離剤を塗布する一次再結晶後の結晶粒の平均粒径dとの間で、下記式;
2.0≦(s/d)×100≦12.0
の関係を満たして含有するものであることが必要である。
上記S含有量sが0.2mass%未満であったり、(s/d)×100が2.0未満では、増硫による磁気特性の向上効果が小さく、一方、上記S含有量sが2.0mass%超えであったり、(s/d)×100が12.0超えでは、鋼板中へのSの侵入が過剰となり、却って磁気特性に悪影響を及ぼすからである。なお、好ましいS含有量sは0.3〜1.0mass%の範囲、好ましい(s/d)×100は5.0〜10.0の範囲である。
After the primary recrystallization annealing also serving as the decarburization annealing, an annealing separator mainly composed of magnesia (MgO) is applied to the surface of the steel sheet.
At this time, the above-mentioned annealing separating agent increases the amount of S in the base iron (intensification treatment) between the primary recrystallization annealing and the completion of the secondary recrystallization. In the range of 0.2 to 2.0 mass% of the amount s, and between the average particle diameter d of the crystal grains after primary recrystallization to which the annealing separator is applied, the following formula;
2.0 ≦ (s / d) × 100 ≦ 12.0
It is necessary to satisfy the relationship of
When the S content s is less than 0.2 mass% or (s / d) × 100 is less than 2.0, the effect of improving the magnetic properties by vulcanization is small, while the S content s is less than 2. If the content exceeds 0 mass% or (s / d) × 100 exceeds 12.0, the penetration of S into the steel sheet becomes excessive, which adversely affects the magnetic properties. In addition, preferable S content s is the range of 0.3-1.0 mass%, preferable (s / d) x100 is the range of 5.0-10.0.

上記焼鈍分離剤を塗布した鋼板は、その後、仕上焼鈍を施す。この仕上焼鈍の条件は、常法に従って行えば良く、特に制限はない。この仕上焼鈍中に、焼鈍分離剤中の添加した硫酸塩あるいは硫化物が分解して増硫効果を発揮し、ゴス方位に高度に集積した結晶組織が形成され、良好な磁気特性が得られる。   The steel sheet coated with the above-mentioned annealing separator is then subjected to finish annealing. The conditions for this finish annealing may be performed according to a conventional method, and are not particularly limited. During this final annealing, the added sulfate or sulfide in the annealing separator decomposes to exhibit a hypertensive effect, forming a highly integrated crystal structure in the Goss orientation, and good magnetic characteristics can be obtained.

上記仕上焼鈍後の鋼板は、その後、必要に応じて、また、用途に応じて、平坦化焼鈍および適当な絶縁被膜を被成した後、製品板とする。   The steel sheet after the above-mentioned finish annealing is thereafter made into a product sheet after forming a flattening annealing and an appropriate insulating film, if necessary and depending on the application.

なお、本発明の方向性電磁鋼板は、鉄損をより低減させるため、磁区細分化処理を施すことが望ましい。磁区細分化の方法としては、一般的に実施されている方法、例えば、最終板厚に冷間圧延した鋼板や中間工程の鋼板の表面にエッチング加工を施して溝を形成したり、製品板の鋼板表面に電子ビームやレーザビームを照射したりする方法等を用いることができる。   In addition, as for the directionality electromagnetic steel sheet of this invention, in order to reduce an iron loss more, it is desirable to perform a magnetic domain refinement process. As a method of magnetic domain fragmentation, a method which is generally carried out, for example, etching a surface of a steel plate cold rolled to a final thickness or a steel plate of an intermediate step to form a groove, or forming a product plate A method of irradiating an electron beam or a laser beam on the surface of the steel plate can be used.

表1に示した種々の成分組成を有するスラブを、1200℃に再加熱した後、熱間圧延して板厚2.2mmの熱延板とし、1050℃×30秒の熱延板焼鈍を施した後、1回目の冷間圧延で中間板厚1.8mmとし、1050℃×120秒の中間焼鈍を施した後、2回目の冷間圧延で最終板厚0.20mmの冷延板とした。
その後、脱炭焼鈍を兼ねた一次再結晶焼鈍を施した。ここで、上記一次再結晶焼鈍における脱炭処理は、H:55vol%+N:45vol%、露点50℃の雰囲気下で、850℃×100秒間保持する条件で行った。
なお、それぞれのコイルについて、一次再結晶粒の平均粒径を、JIS G0551に規定された計数法で測定したところ、成分の違いなどにより、表1に示す違いが生じていた。
次いで、上記一次再結晶焼鈍後の鋼板表面に、MgOを主体とし、硫酸Mgを、表1に示す量を添加した焼鈍分離剤を塗布・乾燥した後、Nガス雰囲気下で、昇温速度15℃/hrで加熱し、1160℃×5hrの均熱処理する仕上焼鈍を施した。
次いで、上記仕上焼鈍後の鋼板表面に、リン酸塩系の絶縁張力コーティングを塗布し、焼付と形状矯正を兼ねた平坦化焼鈍を施して方向性電磁鋼板の製品板とした。
The slabs having various component compositions shown in Table 1 are reheated to 1200 ° C. and then hot rolled to form a hot-rolled sheet having a thickness of 2.2 mm and subjected to hot-rolled sheet annealing at 1050 ° C. × 30 seconds Then, after making the thickness of the intermediate plate 1.8 mm in the first cold rolling, subjected to intermediate annealing at 1050 ° C × 120 seconds, it was made a cold-rolled sheet with a final thickness 0.20 mm in the second cold rolling .
Then, the primary recrystallization annealing which served as decarburization annealing was given. Here, the decarburizing treatment in the primary recrystallization annealing was performed under the condition of holding at 850 ° C. for 100 seconds under an atmosphere of H 2 : 55 vol% + N 2 : 45 vol% and a dew point of 50 ° C.
In addition, when the average particle diameter of primary recrystallized grain was measured by the counting method prescribed | regulated to JIS G0551 about each coil, the difference shown in Table 1 had arisen by the difference of a component, etc.
Then, after applying and drying an annealing separator to the surface of the steel sheet after the above primary recrystallization annealing, to which MgO is mainly added and Mg sulfate is added in the amount shown in Table 1, the temperature rising rate is under N 2 gas atmosphere It heated at 15 ° C./hr and was subjected to finish annealing for soaking at 1160 ° C. × 5 hr.
Next, a phosphate-based insulation tension coating was applied to the surface of the steel sheet after the above-described finish annealing, and flattening annealing was carried out which also performed baking and shape correction, to obtain a product sheet of a grain-oriented electrical steel sheet.

上記のようにして得た製品板から、試験片を採取し、JIS C2556に規定された方法で磁気特性(磁束密度B、鉄損W17/50)を測定し、その測定結果を、表1中に併記した。表1から、一次再結晶粒の平均粒径dと焼鈍分離剤中のS含有量sの比(s/d)×100が2.0〜12.0の範囲にある場合に良好な磁気特性が得られていることがわかる。 Test pieces are collected from the product plate obtained as described above, and magnetic characteristics (magnetic flux density B 8 , iron loss W 17/50 ) are measured by the method defined in JIS C2556, and the measurement results are shown in the table. It is written together in 1. From Table 1, when the ratio (s / d) x 100 of the average particle diameter d of the primary recrystallized grains and the S content s in the annealing separator is in the range of 2.0 to 12.0, good magnetic properties It can be seen that

表2に示した種々の成分組成を有するスラブを、1200℃に再加熱した後、熱間圧延して板厚2.2mmの熱延板とし、1050℃×30秒の熱延板焼鈍を施した後、1回目の冷間圧延で中間板厚1.7mmとし、1050℃×120秒の中間焼鈍を施した後、2回目の冷間圧延で最終板厚0.20mmの冷延板とした。
その後、脱炭焼鈍を兼ねた一次再結晶焼鈍を施した。ここで、上記一次再結晶焼鈍における脱炭処理は、H:55vol%+N:45vol%、露点50℃の雰囲気下で、850℃×100秒間保持する条件で行った。
なお、それぞれのコイルについて、一次再結晶粒の平均粒径を、JIS G0551に規定された計数法で測定したところ、成分の違いなどにより、表2に示す違いが生じていた。
次いで、上記一次再結晶焼鈍後の鋼板表面に、MgOを主体とし、硫酸塩や硫化物を表2に示す量で添加した焼鈍分離剤を塗布・乾燥した後、Nガス雰囲気下で、昇温速度15℃/hrで加熱し、1160℃×5hrの均熱処理する仕上焼鈍を施した。
次いで、上記仕上焼鈍後の鋼板表面に、リン酸塩系の絶縁張力コーティングを塗布し、焼付と形状矯正を兼ねた平坦化焼鈍を施して方向性電磁鋼板の製品板とした。
The slabs having various component compositions shown in Table 2 are reheated to 1200 ° C. and hot rolled to form a hot-rolled sheet having a thickness of 2.2 mm and subjected to hot-rolled sheet annealing at 1050 ° C. × 30 seconds. Then, after making the thickness of the intermediate plate 1.7 mm in the first cold rolling, subjected to intermediate annealing at 1050 ° C × 120 seconds, it was made a cold-rolled plate with a final thickness 0.20 mm in the second cold rolling .
Then, the primary recrystallization annealing which served as decarburization annealing was given. Here, the decarburizing treatment in the primary recrystallization annealing was performed under the condition of holding at 850 ° C. for 100 seconds under an atmosphere of H 2 : 55 vol% + N 2 : 45 vol% and a dew point of 50 ° C.
In addition, when the average particle diameter of primary recrystallized grain was measured by the counting method prescribed | regulated to JIS G0551 about each coil, the difference shown in Table 2 had arisen by the difference of a component, etc.
Then, after applying and drying an annealing separator which is mainly composed of MgO and to which sulfates and sulfides are added in the amount shown in Table 2 on the steel sheet surface after the above primary recrystallization annealing, it is raised under N 2 gas atmosphere It heated at a temperature rate of 15 ° C./hr and was subjected to finish annealing for soaking at 1160 ° C. × 5 hr.
Next, a phosphate-based insulation tension coating was applied to the surface of the steel sheet after the above-described finish annealing, and flattening annealing was carried out which also performed baking and shape correction, to obtain a product sheet of a grain-oriented electrical steel sheet.

上記のようにして得た製品板から、試験片を採取し、JIS C2556に規定された方法で磁気特性(磁束密度B、鉄損W17/50)を測定し、その測定結果を、表2中に併記した。表2から、Sr,Mg,Ca,Ba,Ti,SbおよびSnの硫酸塩ならびに硫化物のいずれか1種以上を添加した場合でも、一次再結晶粒の平均粒径dと焼鈍分離剤中のS含有量sの比(s/d)×100が2.0〜12.0の範囲にある場合に良好な磁気特性が得られていることがわかる。 Test pieces are collected from the product plate obtained as described above, and magnetic characteristics (magnetic flux density B 8 , iron loss W 17/50 ) are measured by the method defined in JIS C2556, and the measurement results are shown in the table. It is written together in 2. From Table 2, even when any one or more of Sr, Mg, Ca, Ba, Ti, Sb and Sn sulfates and sulfides are added, the average grain diameter d of primary recrystallized grains and the content in the annealing separator It can be seen that good magnetic characteristics are obtained when the ratio (s / d) × 100 of the S content s is in the range of 2.0 to 12.0.

表3に示した種々の成分組成を有するスラブを、1200℃に再加熱した後、熱間圧延して板厚1.7mmの熱延板とし、1030℃×30秒の熱延板焼鈍を施した後、1回目の冷間圧延で中間板厚1.5mmとし、1050℃×120秒の中間焼鈍を施した後、2回目の冷間圧延で最終板厚0.18mmの冷延板とした。
その後、脱炭焼鈍を兼ねた一次再結晶焼鈍を施した。ここで、上記一次再結晶焼鈍における脱炭処理は、H:55vol%+N:45vol%、露点50℃の雰囲気下で、850℃×100秒間保持する条件で行った。
なお、それぞれのコイルについて、一次再結晶粒の平均粒径を、JIS G0551に規定された計数法で測定したところ、成分の違いなどにより、表3に示す違いが生じていた。
次いで、上記一次再結晶焼鈍後の鋼板表面に、MgOを主体とし、硫酸マグネシウムを、表3に示す量を添加した焼鈍分離剤を塗布・乾燥した後、Nガス雰囲気下で、昇温速度15℃/hrで加熱し、1160℃×5hrの均熱処理する仕上焼鈍を施した。
次いで、上記仕上焼鈍後の鋼板表面に、リン酸塩系の絶縁張力コーティングを塗布し、焼付と形状矯正を兼ねた平坦化焼鈍を施して方向性電磁鋼板の製品板とした。
さらに、上記絶縁被膜被成後の鋼板表面に、電子ビーム照射による磁区細分化処理を施し、方向性電磁鋼板の製品板とした。なお、電子ビームの照射は、鋼板の片表面に、加速電圧100kV、ビーム電流3mAの条件で、圧延方向の照射間隔を5mmとして、圧延直角方向に連続照射した。
The slabs having various component compositions shown in Table 3 are reheated to 1200 ° C. and then hot-rolled to form a hot-rolled sheet having a thickness of 1.7 mm and subjected to hot-rolled sheet annealing at 1030 ° C. × 30 seconds Then, after making the thickness of the intermediate plate 1.5 mm in the first cold rolling, subjected to intermediate annealing at 1050 ° C × 120 seconds, and made a cold-rolled sheet with a final thickness of 0.18 mm in the second cold rolling .
Then, the primary recrystallization annealing which served as decarburization annealing was given. Here, the decarburizing treatment in the primary recrystallization annealing was performed under the condition of holding at 850 ° C. for 100 seconds under an atmosphere of H 2 : 55 vol% + N 2 : 45 vol% and a dew point of 50 ° C.
In addition, when the average particle diameter of primary recrystallized grain was measured by the counting method prescribed | regulated to JIS G0551 about each coil, the difference shown in Table 3 had arisen by the difference of a component, etc.
Then, an annealing separator containing mainly MgO and magnesium sulfate in an amount shown in Table 3 is applied to the steel sheet surface after the above primary recrystallization annealing and dried, and then the temperature rising rate is performed under an N 2 gas atmosphere. It heated at 15 ° C./hr and was subjected to finish annealing for soaking at 1160 ° C. × 5 hr.
Next, a phosphate-based insulation tension coating was applied to the surface of the steel sheet after the above-described finish annealing, and flattening annealing was carried out which also performed baking and shape correction, to obtain a product sheet of a grain-oriented electrical steel sheet.
Further, the surface of the steel plate after the formation of the insulating coating is subjected to magnetic domain fragmentation treatment by electron beam irradiation to obtain a product plate of a directional electromagnetic steel plate. The irradiation of the electron beam was continuously performed in the direction perpendicular to rolling on the surface of one side of the steel plate under the conditions of an acceleration voltage of 100 kV and a beam current of 3 mA with an irradiation interval of 5 mm in the rolling direction.

上記のようにして得た製品板から、試験片を採取し、JIS C2556に規定された方法で磁気特性(磁束密度B、鉄損W17/50)を測定し、その測定結果を、表3中に併記した。表3から、本発明に適合する成分組成を有する鋼素材を用い、本発明に適合する方法で製造した方向性電磁鋼板は、優れた磁気特性を有することがわかる。 Test pieces are collected from the product plate obtained as described above, and magnetic characteristics (magnetic flux density B 8 , iron loss W 17/50 ) are measured by the method defined in JIS C2556, and the measurement results are shown in the table. It was written in 3 together. It can be seen from Table 3 that a grain-oriented electrical steel sheet manufactured by a method compatible with the present invention using a steel material having a component composition compatible with the present invention has excellent magnetic properties.

表4に示した種々の成分組成を有するスラブを、1200℃に再加熱した後、熱間圧延して板厚1.9mmの熱延板とし、1000℃×30秒の熱延板焼鈍を施した後、1回の冷間圧延により最終板厚0.23mmの冷延板とした。次いで、表4に示したように、上記冷延板の一部の鋼板表面(片面)に、圧延方向に対して直角方向に、幅:180μm×深さ:15μmの溝を圧延方向に5mm間隔で形成する磁区細分化処理を施した。その後、脱炭焼鈍を兼ねた一次再結晶焼鈍を施した。ここで、上記一次再結晶焼鈍における脱炭処理は、H:55vol%+N:45vol%、露点50℃の雰囲気下で、850℃×100秒間保持する条件で行った。
次いで、上記一次再結晶焼鈍後の鋼板表面に、MgOを主体とし、硫酸マグネシウムを、表4に示す量を添加した焼鈍分離剤を塗布・乾燥した後、Nガス雰囲気下で、昇温速度15℃/hrで加熱し、1160℃×5hrの均熱処理する仕上焼鈍を施した。
次いで、上記仕上焼鈍後の鋼板表面に、リン酸塩系の絶縁張力コーティングを塗布し、焼付と形状矯正を兼ねた平坦化焼鈍を施して方向性電磁鋼板の製品板とした。
The slabs having various component compositions shown in Table 4 are reheated to 1200 ° C. and then hot-rolled to form a hot-rolled sheet having a thickness of 1.9 mm and subjected to hot-rolled sheet annealing at 1000 ° C. × 30 seconds Then, a cold-rolled sheet with a final thickness of 0.23 mm was formed by one cold rolling. Next, as shown in Table 4, on the surface (one side) of a part of the steel sheet (one side) of the cold-rolled sheet, grooves with a width of 180 μm and a depth of 15 μm are separated by 5 mm in the rolling direction Domain refinement processing to be formed. Then, the primary recrystallization annealing which served as decarburization annealing was given. Here, the decarburizing treatment in the primary recrystallization annealing was performed under the condition of holding at 850 ° C. for 100 seconds under an atmosphere of H 2 : 55 vol% + N 2 : 45 vol% and a dew point of 50 ° C.
Then, an annealing separator containing mainly MgO and magnesium sulfate in an amount shown in Table 4 is coated and dried on the steel sheet surface after the above primary recrystallization annealing, and then the temperature rising rate is performed under an N 2 gas atmosphere. It heated at 15 ° C./hr and was subjected to finish annealing for soaking at 1160 ° C. × 5 hr.
Next, a phosphate-based insulation tension coating was applied to the surface of the steel sheet after the above-described finish annealing, and flattening annealing was carried out which also performed baking and shape correction, to obtain a product sheet of a grain-oriented electrical steel sheet.

上記のようにして得た製品板から、試験片を採取し、JIS C2556に規定された方法で磁気特性(磁束密度B、鉄損W17/50)を測定し、その測定結果を、表4中に併記した。表4から、本発明に適合する成分組成を有する鋼素材を用い、本発明に適合する方法で製造した方向性電磁鋼板は、磁区細分化処理の有無にかかわらず優れた磁気特性を有することがわかる。 Test pieces are collected from the product plate obtained as described above, and magnetic characteristics (magnetic flux density B 8 , iron loss W 17/50 ) are measured by the method defined in JIS C2556, and the measurement results are shown in the table. I wrote it in 4 together. From Table 4, it is found that a grain-oriented electrical steel sheet manufactured by a method compatible with the present invention using a steel material having a component composition compatible with the present invention has excellent magnetic properties regardless of the presence or absence of magnetic domain refining treatment Recognize.

Claims (2)

C:0.08mass%以下、Si:4.5mass%以下、Mn:0.5mass%以下、sol.Al:0.0100mass%未満、N:0.0100mass%未満、S:0.0100mass%以下、Se:0.0100mass%以下およびO:0.0050mass%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼スラブを熱間圧延して熱延板とし、1回または中間焼鈍を挟む2回以上の冷間圧延して最終板厚の冷延板とし、脱炭焼鈍を兼ねた一次再結晶焼鈍し、MgOを主体とする焼鈍分離剤を塗布し、仕上焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法において、
上記冷延板の最終板厚を0.20mm以下とし、
上記一次再結晶焼鈍後の結晶粒の平均粒径dを10〜25μmとし、
上記焼鈍分離剤として、Sr,Mg,Ca,Ba,Ti,SbおよびSnの硫酸塩ならびに硫化物のうちから選ばれる1種または2種以上を、S含有量sで0.2〜2mass%の範囲で含有し、かつ、上記S含有量sと上記dが下記式を満たすものを用いることを特徴とする方向性電磁鋼板の製造方法。

2.0≦(s/d)×100≦12.0
C: 0.08 mass% or less, Si: 4.5 mass% or less, Mn: 0.5 mass% or less, sol. Al: less than 0.0100 mass%, N: less than 0.0100 mass%, S: not more than 0.0100 mass%, Se: not more than 0.0100 mass% and O: not more than 0.0050 mass%, the balance being Fe and unavoidable impurities The steel slab having the component composition comprising the following composition was hot-rolled to form a hot-rolled sheet, and cold-rolled to a final thickness by cold-rolling once or twice or more with intermediate In a method of manufacturing a grain-oriented electrical steel sheet comprising a series of steps of: primary recrystallization annealing; applying an annealing separator mainly composed of MgO;
The final thickness of the cold rolled sheet is 0.20 mm or less ,
The average grain diameter d of the crystal grains after the above primary recrystallization annealing is set to 10 to 25 μm,
As the above-mentioned annealing separator, one or two or more selected from sulfates and sulfides of Sr, Mg, Ca, Ba, Ti, Sb and Sn, with S content s of 0.2 to 2 mass% A method for producing a grain-oriented electrical steel sheet, characterized in that the material is contained in a range, and the S content s and the d satisfy the following formula.
Description 2.0 ≦ (s / d) × 100 ≦ 12.0
上記鋼スラブは、上記成分組成に加えてさらに、Ni:0.05〜0.5mass%、Sn:0.01〜0.5mass%、Sb:0.01〜0.5mass%、P:0.01〜0.2mass%、Cr:0.01〜0.5mass%、Cu:0.01〜0.5mass%、Nb:0.002〜0.01mass%およびMo:0.01〜0.2mass%のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。 In addition to the above component compositions, the above steel slab further contains Ni: 0.05 to 0.5 mass%, Sn: 0.01 to 0.5 mass%, Sb: 0.01 to 0.5 mass%, P: 0. 01 to 0.2 mass%, Cr: 0.01 to 0.5 mass%, Cu: 0.01 to 0.5 mass%, Nb: 0.002 to 0.01 mass% and Mo: 0.01 to 0.2 mass% The method for producing a grain-oriented electrical steel sheet according to claim 1, characterized in that it contains one or more kinds selected from the above.
JP2017002657A 2016-01-12 2017-01-11 Method of manufacturing directional magnetic steel sheet excellent in magnetic properties Active JP6504372B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016003178 2016-01-12
JP2016003178 2016-01-12

Publications (2)

Publication Number Publication Date
JP2017125260A JP2017125260A (en) 2017-07-20
JP6504372B2 true JP6504372B2 (en) 2019-04-24

Family

ID=59363914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017002657A Active JP6504372B2 (en) 2016-01-12 2017-01-11 Method of manufacturing directional magnetic steel sheet excellent in magnetic properties

Country Status (1)

Country Link
JP (1) JP6504372B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102176348B1 (en) * 2018-11-30 2020-11-09 주식회사 포스코 Grain oriented electrical steel sheet and manufacturing method of the same
KR102405173B1 (en) * 2019-12-20 2022-06-02 주식회사 포스코 Grain oriented electrical steel sheet and method of manufacturing the same
CN112080693B (en) * 2020-08-26 2021-04-13 盐城市联鑫钢铁有限公司 Titanium micro-alloyed anti-seismic steel bar and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3736125B2 (en) * 1998-07-27 2006-01-18 Jfeスチール株式会社 Oriented electrical steel sheet
JP4239458B2 (en) * 2001-12-27 2009-03-18 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
JP4292804B2 (en) * 2003-01-16 2009-07-08 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
JP5831435B2 (en) * 2012-12-11 2015-12-09 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheets with excellent magnetic properties

Also Published As

Publication number Publication date
JP2017125260A (en) 2017-07-20

Similar Documents

Publication Publication Date Title
JP6451967B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5360272B2 (en) Method for producing grain-oriented electrical steel sheet
JP5748029B2 (en) Method for producing grain-oriented electrical steel sheet
KR101600724B1 (en) Method of producing grain-oriented electrical steel sheet having excellent iron loss properties
WO2012032792A1 (en) Grain-oriented magnetic steel sheet and process for producing same
WO2017006955A1 (en) Grain-oriented electromagnetic steel sheet and method for manufacturing same
WO2017094797A1 (en) Method for manufacturing grain-oriented electromagnetic steel sheet
JP6350398B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5949813B2 (en) Method for producing grain-oriented electrical steel sheet
JP4321120B2 (en) Method for producing grain-oriented electrical steel sheets with excellent magnetic properties
JP6436316B2 (en) Method for producing grain-oriented electrical steel sheet
US11459629B2 (en) Method of producing grain-oriented electrical steel sheet
JP6020768B1 (en) Oriented electrical steel sheet and manufacturing method thereof
JP2019505664A (en) Annealing separator for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet, and method for producing grain-oriented electrical steel sheet
JP6504372B2 (en) Method of manufacturing directional magnetic steel sheet excellent in magnetic properties
JP6171887B2 (en) Method for producing grain-oriented electrical steel sheet
CN108474077B (en) Oriented electrical steel sheet and method for manufacturing the same
WO2016111088A1 (en) Non-oriented electromagnetic steel sheet and method for producing same
JP6225759B2 (en) Method for producing grain-oriented electrical steel sheet
JP6079092B2 (en) Method for producing grain-oriented electrical steel sheet having a thickness of 0.12 to 0.25 mm
JP4501655B2 (en) Method for producing grain-oriented electrical steel sheet
JP2023554123A (en) Non-oriented electrical steel sheet and its manufacturing method
JP5600991B2 (en) Method for producing grain-oriented electrical steel sheet
JP6572956B2 (en) Method for producing grain-oriented electrical steel sheet
JP4211447B2 (en) Method for producing grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181012

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190130

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190312

R150 Certificate of patent or registration of utility model

Ref document number: 6504372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250