JP4321120B2 - Method for producing grain-oriented electrical steel sheets with excellent magnetic properties - Google Patents

Method for producing grain-oriented electrical steel sheets with excellent magnetic properties Download PDF

Info

Publication number
JP4321120B2
JP4321120B2 JP2003152452A JP2003152452A JP4321120B2 JP 4321120 B2 JP4321120 B2 JP 4321120B2 JP 2003152452 A JP2003152452 A JP 2003152452A JP 2003152452 A JP2003152452 A JP 2003152452A JP 4321120 B2 JP4321120 B2 JP 4321120B2
Authority
JP
Japan
Prior art keywords
annealing
less
ppm
magnetic properties
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003152452A
Other languages
Japanese (ja)
Other versions
JP2004353036A (en
Inventor
稔 高島
敬 寺島
峰男 村木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003152452A priority Critical patent/JP4321120B2/en
Publication of JP2004353036A publication Critical patent/JP2004353036A/en
Application granted granted Critical
Publication of JP4321120B2 publication Critical patent/JP4321120B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
本発明は、優れた磁気特性を有する方向性電磁鋼板を安価に得ることができる磁気特性に優れた方向性電磁鋼板の製造方法に関するものである。
【0002】
【従来の技術】
方向性電磁鋼板は、変圧器や発電機の鉄心材料として用いられる軟磁性材料で、鉄の磁化容易軸である<001>方位が鋼板の圧延方向に高度に揃った結晶組織を有するものである。このような集合組織は、方向性電磁鋼板の製造工程中、二次再結晶焼鈍の際にいわゆるゴス(Goss)方位と称される(110)〔001〕方位の結晶粒を優先的に巨大成長させる、二次再結晶を通じて形成される。
【0003】
従来、このような方向性電磁鋼板は、4.5 mass%以下程度のSiと、MnS,MnSe,AlNなどのインヒビター成分を含有するスラブを、1300℃以上に加熱し、インヒビター成分を一旦固溶させたのち、熱間圧延し、必要に応じて熱延板焼鈍を施したのち、1回または中間焼鈍を挟む2回以上の冷間圧延によって最終板厚とし、ついで湿潤水素雰囲気中で一次再結晶焼鈍を施して、一次再結晶および脱炭を行い、ついでマグネシア(MgO)を主剤とする焼鈍分離剤を塗布してから、二次再結晶およびインヒビター成分の純化のために、1200℃で5h程度の最終仕上焼鈍を行うことによって製造されてきた(例えば、特許文献1、特許文献2、特許文献3)。
【0004】
【特許文献1】
米国特許第 1965559号公報
【特許文献2】
特公昭40−15611 号公報
【特許文献3】
特公昭51−13469 号公報
【0005】
【発明が解決しようとする課題】
上述したとおり、従来の方向性電磁鋼板の製造に際しては、MnS,MnSe,AlNなどの析出物(インヒビター成分)をスラブ段階で含有させ、1300℃を超える高温のスラブ加熱により、これらのインヒビター成分を一旦固溶させ、後工程で微細析出させることにより二次再結晶を発現させるという工程が採用されてきた。このように、従来の方向性電磁鋼板の製造工程では、1300℃を超える高温でのスラブ加熱が必要であったため、その製造コストは極めて高いものにつき、近年の製造コスト低減の要求に応えることができないというところに問題を残していた。
【0006】
本発明は、上紀の問題を有利に解決するもので、方向性電磁鋼板の製造工程において高温のスラブ加熱を施す必要がなく、低コストで磁気特性に優れた方向性電磁鋼板を製造することができる有利な方法を提案することを目的とする。
【0007】
【課題を解決するための手段】
さて、発明者らは、上記の問題を解決するために、スラブにインヒビター成分を含有させずに二次再結晶を発現させる技術について、鋭意研究を進めた。
その結果、スラブにインヒビター成分を含有させない場合であっても、一次再結晶焼鈍後、二次再結晶完了前に、地鉄中のS量を増加させることによって、安定して二次再結晶を発現させることができる技術(「増硫法」)を開発した。
【0008】
すなわち、本発明の要旨とするところは、以下のとおりである。
1.質量%で、C:0.08%以下、Si:4.5 %以下およびMn:0.5 %以下を含有すると共に、S,SeおよびOをそれぞれ50 ppm未満ならびにNを60 ppm未満、sol.Alを100ppm未満に抑制し、残部はFeおよび不可避的不純物の組成になる鋼スラブを、再加熱することなくあるいは再加熱後、熱間圧延を施して熱延板としたのち、焼鈍および圧延によって最終板厚の冷間圧延板とし、ついで一次再結晶焼鈍後、焼鈍分離剤を塗布してから二次再結晶焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法において、
焼鈍分離剤中に、硫化物および/または硫酸塩を 0.2〜15mass%含有させると共に、二次再結晶焼鈍における昇温速度を30℃/h以下、二次再結晶完了までの焼鈍雰囲気をN 2 ,Arあるいはこれらの混合ガスとすることにより、
一次再結晶焼鈍後から二次再結晶完了までの間に、鋼板に対して増硫処理を施すことを特徴とする磁気特性に優れた方向性電磁鋼板の製造方法。
【0009】
2.前記増硫処埋による鋼板地鉄中のS濃度の増加量が、2ppm 以上、200 ppm以下であることを特徴とする上記1記載の磁気特性に優れた方向性電磁鋼板の製造方法。
【0011】
.前記硫化物および/または硫酸塩が、Ag, Al, Ba, Ca, Co, Cr, Cu, Fe, In, K, Li, Mg, Mn, Na, Ni, Sn, Sb, Sr, ZnおよびZrの硫化物または硫酸塩のうちから選ばれる一種または二種以上であることを特徴とする上記1または2記載の磁気特性に優れた方向性電磁鋼板の製造方法。
【0012】
.前記焼鈍分離剤の主剤がマグネシアであることを特徴とする上記1〜のいずれかに記載の磁気特性に優れた方向性電磁鋼板の製造方法。
【0013】
.前記鋼スラブが、さらに質量%で、Cr:0.05〜0.5 %、Ni:0.05〜0.5 %、Cu:0.05〜0.5 %、P:0.01〜0.2 %、Sb:0.01〜0.2 %およびSn:0.01〜0.4 %のうちから選んだ一種または二種以上を含有する組成になることを特徴とする上記1〜のいずれかに記載の磁気特性に優れた方向性電磁鋼板の製造方法。
【0014】
【発明の実施の形態】
以下、本発明を具体的に説明する。
まず、本発明において鋼スラブの成分組成を上記の範囲に限定した理由について説明する。なお、成分に関する「%」表示は特に断らない限り質量%を意味するものとする。
C:0.08%以下
Cは、一次再結晶集合組織を改善する上で有用な元素であるが、含有量が0.08%を超えるとかえって一次再結晶集合組織の劣化を招くので、本発明では0.08%以下に限定した。磁気特性の観点から望ましい添加量は、0.01〜0.06%の範囲である。なお、要求される磁気特性のレベルがさほど高くない場合には、一次再結晶焼鈍における脱炭を省略あるいは簡略化するために、Cを0.01%以下としてもよい。
【0015】
Si:4.5 %以下
Siは、電気抵抗を高めることによって鉄損を改善する有用元素であるが、含有量が4.5 %を超えると冷間圧延性が著しく劣化するので、Siは4.5 %以下に限定した。鉄損の観点から望ましい添加量は、 2.0〜4.0 %の範囲である。なお、要求される鉄損レベルによっては、Siを添加しなくてもよい。
【0016】
Mn:0.5 %以下
Mnは、製造時における熱間加工性を向上させる効果があるが、含有量が0.5 %を超えた場合には、一次再結晶集合組織が悪化して磁気特性の劣化を招くので、Mnは0.5 %以下に限定した。
【0017】
S,SeおよびO:それぞれ50 ppm未満
S,SeおよびO量がそれぞれ50 ppm以上になると、二次再結晶が困難となる。この理由は、粗大な酸化物や、スラブ加熱によって粗大化したMnS,MnSeが一次再結晶組織を不均一にするためである。従って、S,SeおよびOはいずれも、50ppm 未満に抑制するものとした。
【0018】
N:60 ppm未満
Nもまた、SやSe,Oと同様、過剰に存在すると、二次再結晶を困難にする。特にN量が60 ppm以上になると、二次再結晶が生じ難くなり、磁気特性が劣化するので、Nは60 ppm未満に抑制するものとした。
【0019】
sol.Al:100 ppm 未満
Alもまた、過剰に存在すると二次再結晶を困難とする。特に、sol.Al量が 100 ppmを超えると二次再結晶し難くなり、磁気特性が劣化するので、Alはsol.Al量で 100 ppm未満に抑制するものとした。
【0020】
以上、必須成分について説明したが、本発明では、工業的により安定して磁気特性を改善する成分として、以下の元素を適宜含有させることができる。
Cr:0.05〜0.5 %
Crは、フォルステライト被膜の形成を安定化させる働きがあり、そのためには0.05%以上含有させることが好ましいが、一方で含有量が 0.5%を超えると二次再結晶が困難となり、磁気特性が劣化するので、Crは0.05〜0.5 %の範囲で含有させることが望ましい。
【0021】
Ni:0.05〜0.5 %
Niは、熱延板組織の均一性を高めることにより、磁気特性を改善する働きがあり、そのためには0.05%以上含有させることが好ましいが、含有量が 0.5%を超えると二次再結晶が困難となり、磁気特性が劣化するので、Niは0.05〜0.5 %の範囲で含有させることが望ましい。
【0022】
Cu:0.05〜0.5 %
Cuは、二次再結晶焼鈍中の鋼板の窒化や酸化を抑制し、良好な結晶方位を有する結晶粒の二次再結晶を促進して磁気特性を効果的に向上させる働きがあり、そのためには0.05%以上含有させることが好ましいが、 0.5%を超えて含有されると熱間圧延性の劣化を招くので、Cuは0.05〜0.5 %の範囲で含有させることが望ましい。
【0023】
P:0.01〜0.2 %
Pは、フォルステライト被膜の形成を安定化させる働きがあり、そのためには0.01%以上含有させることが好ましいが、含有量が 0.2%を超えると冷間圧延性が劣化するので、Pは0.01〜0.2 %の範囲で含有させることが望ましい。
【0024】
Sb:0.01〜0.2 %
Sbは、二次再結晶焼鈍中の鋼板の窒化や酸化を抑制し、良好な結晶方位を有する結晶粒の二次再結晶を促進して磁気特性を効果的に向上させる有用元素であり、その目的のためには0.01%以上含有させることが好ましいが、0.2 %を超えて含有されると冷間圧延性が劣化するので、Sbは0.01〜0.2 %の範囲で含有させることが望ましい。
【0025】
Sn:0.01〜0.4 %
Snは、二次再結晶焼鈍中の鋼板の窒化や酸化を抑制し、良好な結晶方位を有する結晶粒の二次再結晶を促進して磁気特性を向上させる有用元素であり、そのためには0.01%以上含有させることが好ましいが、 0.4%を超えて含有されると冷間圧延性が劣化するので、Snは0.01〜0.4 %の範囲で含有させることが望ましい。
【0026】
次に、本発明の製造方法について説明する。
上記の好適成分組成範囲に調整した鋼スラブを、再加熱することなくあるいは再加熱したのち、熱間圧延に供する。なお、スラブを再加熱する場合には、再加熱温度は1000℃以上、1300℃以下程度とすることが望ましい。というのは、1300℃を超えるスラブ加熱は、スラブ中にインヒビターを含まない本発明では無意味で、コストアップとなるだけであり、一方1000℃未満では、圧延荷重が高くなり、圧延が困難となるからである。
【0027】
ついで、熱延板に、必要に応じて熱延板焼鈍を施したのち、1回の冷間圧延あるいは中間焼鈍を挟む2回以上の冷間圧延を施して、最終冷延板とする。この冷間圧延は、常温で行ってもよいし、常温より高い温度たとえば 250℃程度に鋼板温度を上げて圧延する温間圧延としてもよい。
【0028】
ついで、最終冷間圧延板に一次再結晶焼鈍を施す。
この一次再結晶焼鈍の第一の目的は、圧延組織を有する冷間圧延板を一次再結晶させて、二次再結晶に最適な一次再結晶粒径に調整することである。そのためには、一次再結晶焼鈍の焼鈍温度は 800℃以上、 950℃未満程度とすることが望ましい。
また、第二の目的は、脱炭である。製品板中に炭素が50 ppm以上含まれると、鉄損が劣化するので、この一次再結晶焼鈍で炭素を 200 ppm未満まで低減することが望ましい。なお、この時の焼鈍雰囲気は、湿水素窒素あるいは湿水素アルゴン雰囲気とすることが望ましい。
【0029】
上記の一次再結晶焼鈍後、鋼板の表面に焼鈍分離剤を塗布する。二次再結晶焼鈍後の鋼板表面にフォルステライト被膜を形成するためには、焼鈍分離剤の主剤をマグネシア(MgO)とする必要があるが、フォルステライト被膜の形成が必要ない場合には、焼鈍分離剤主剤として、アルミナ(Al2O3 )やカルシア(CaO)など、二次再結晶焼鈍温度より高い融点を有する適当な酸化物を用いることができる。
【0030】
その後、二次再結晶焼鈍を行う。この二次再結晶焼鈍により、ゴス方位に高度に集積した結晶組織となり、良好な磁気特性が得られる。
【0031】
さて、本発明では、上記した一次再結晶焼鈍後から二次再結晶完了までの間に、地鉄中のS量を増加させる「増硫処理」を行う。
二次再結晶中に地鉄S量を増加させる方法としては、
(1) Sを含む雰囲気ガス(たとえばH2Sなど)を二次再結晶焼鈍中に導入する方法、
(2) 焼鈍分離剤中に硫酸塩や硫化物を徴量添加する方法
などが考えられる。
【0032】
工業的規模では、二次再結晶焼鈍はコイル焼鈍にて行われるため、上記(1) の方法ではコイル内部にまでSが到達し難く、板幅方向に均一な磁気特性を得ることが難しい。この点、上記(2) の方法は、幅方向の均一性にも優れた望ましい方法である。
そこで、本発明では、上記(2) の方法により、増硫処理を行うものとした。
かような増硫処理により、二次再結晶が安定化し、磁気特性が向上する。
【0033】
上記の現象は、スラブ中にインヒビター成分を含有しない鋼の場合に特有な現象である。すなわち、鋼中にAlNやMnSなどのインヒビター(析出物)が存在しない場合、一次再結晶組織中のGoss方位粒を囲む粒界は、他の方位の粒を囲む粒界に比べて易動度が大きく、その結果Goss方位が優先成長(二次再結晶)するのである。
一次再結晶後に地鉄中のS量を増加させることによって、磁気特性が向上する理由は必ずしも明らかではないが、粒界へ偏析するS量が増す結果、Goss方位以外の方位を囲む粒界の移動がさらに抑制され、二次再結晶が安定化すると共に、二次粒のGoss方位への先鋭性が増すものと考えられる。
【0034】
ここに、上記の増硫処理による望ましい地鉄中のS増加量は、2ppm 以上、200 ppm 以下である。なお、このS増加量が、2ppm 未満や200ppm超の場合でも、二次再結晶は安定化する傾向にあるが、その効果は小さい。
【0035】
また、焼鈍分離剤への硫酸塩や硫化物の添加量としては、0.2 %以上、15%以下とする必要がある。というのは、硫酸塩や硫化物の添加量が0.2 %未満では、地鉄のS増加量が少なく、一方15%超では地鉄のS増加量が多すぎて、いずれの場合も磁気特性改善効果が小さい。
ここに、焼鈍分離剤中に添加する硫酸塩や硫化物としては、Ag, Al, Ba, Ca, Co, Cr, Cu, Fe, In, K, Li, Mg, Mn, Na, Ni, Sn, Sb, Sr, ZnおよびZrの硫酸塩または硫化物のうちから選ばれる一種または二種以上が好適である。
【0036】
なお、二次再結晶焼鈍では、昇温速度が30℃/hを超えると、二次再結晶完了までにSが地鉄に拡散し難い。従って、Sの地鉄中への拡散を確実なものとするためには、昇温速度を30℃/h以下とする必要がある。また焼鈍雰囲気は、N2 ,Arあるいはこれらの混合ガスのいずれもが適合する。ただし、二次再結晶完了までは、H2 を雰囲気ガスとして使用しない。というのは、焼鈍分離剤中のSがH2S(ガス)として系外に出て行き、特にコイルのエッジにおいて増硫の効果が小さくなるからである。
【0037】
上記の二次再結晶焼鈍後、鋼板表面に、さらに絶縁被膜を塗布、焼き付けることもできる。かかる絶縁被膜の種類については、特に限定されず、従来公知のあらゆる絶縁被膜が適合する。たとえば、特開昭50−79442 号公報や特開昭48−39338 号公報に記載されているリン酸塩−クロム酸塩−コロイダルシリカを含有する塗布液を鋼板に塗布し、800 ℃程度で焼き付ける方法が好適である。
また、平坦化焼鈍により、鋼板の形状整えることも可能であり、さらにこの平坦化焼鈍を絶縁被膜の焼き付け処理と兼備させることもできる。
【0038】
【実施例】
実施例1
C:0.07%、Si:3.5 %、Mn:0.05%、sol.Al:45 ppm、N:35 ppm、S:10ppm 、Se:1 ppm、O:10 ppmを含有し、残部はFeおよび不可避的不純物の組成になる連鋳スラブを、再加熱することなく、熱間圧延して、板厚:2.0 mmの熱延板とした後、1000℃で30秒の熱延板焼鈍を施した。ついで、冷間圧延により、板厚:0.30mmとした後、 850℃, 100sの一次再結晶焼鈍を施した。一次再結晶焼鈍後の地鉄S濃度はスラブ組成と同じ10 ppmであった。
ついで、MgOを主剤とし、CaSO4 を種々の範囲で含有する焼鈍分離剤を、一次再結晶板に塗布・乾燥した後、昇温速度:15℃/h、雰囲気ガス:900 ℃までN2ガス、900 ℃以上はH2 、均熱処理:1160℃, 5hの条件で二次再結晶焼鈍を施した。
【0039】
上記の条件で得られた仕上焼鈍板の表面に、リン酸塩−クロム酸塩−コロイダルシリカを、質量比で3:1:3の割合で含有する処理液を塗布し、800 ℃で焼き付けた。その後、コイル幅中央部の磁気特性について調査した。磁気特性は、 800℃で3時間の歪取り焼鈍を行ったのち、800 A/m で励磁したときの磁束密度B8 および50Hzで1.7 Tまで交流で励磁したときの鉄損W17/50 で評価した。
得られた結果を表1に示す。
また、表1には、二次再結晶が完了する 900℃にて二次再結晶焼鈍を中止し、地鉄中のS濃度について測定した結果も併せて示す。
【0040】
【表1】

Figure 0004321120
【0041】
同表から明らかなように、本発明に従い、一次再結晶焼鈍後から二次再結晶完了までの間に地鉄中のS量を増大させた場合には、磁気特性の改善が見られた。特に、CaSO4 を 0.2〜15%の範囲で含有させて、地鉄中S量を2ppm 以上、200ppm 以下の範囲で増加させた場合に、とりわけ良好な結果が得られた。
【0042】
また、図1および図2にそれぞれ、一次再結晶焼鈍後から二次再結晶完了までの間の地鉄中の増硫量(S増加量)と磁束密度B8 および鉄損W17/50 との関係について示したが、同図から明らかなように、地鉄中のS量を増大させることによってB8 およびW17/50 が共に改善され、この効果は特に増硫量が2〜200 ppm の範囲で大きいことが分かる。
【0043】
実施例2
C:0.02%、Si:3.0 %、Mn:0.10%、sol.Al:80 ppm、N:55 ppm、S:20 ppm、Se:20 ppm、O:30 ppmを含有し、残部はFeおよび不可避的不純物の組成になる連鋳スラブを、1180℃に再加熱後、熱間圧延して、板厚:2.5 mmの熱延板とし、ついで冷間圧延により、板厚:0.35mmとした後、 800℃, 100sの一次再結晶焼鈍を施した。一次再結晶焼鈍後の地鉄S濃度はスラブ組成と同じ20 ppmであった。
ついで、MgOを主剤とし、表2に示す種々の硫化物、硫酸塩およびその他の添加剤を含有する焼鈍分離剤を、一次再結晶板に塗布・乾燥したのち、昇温速度:10℃/h、雰囲気ガス:950 ℃以下は(50%N2+50%Ar)ガス、 950℃以上はH2 ガス、均熱処理:1200℃, 10hの条件で二次再結晶焼鈍を施した。
【0044】
上記の条件で得られた仕上焼鈍板の表面に、リン酸塩−クロム酸塩−コロイダルシリカを、質量比で3:1:3の割合で含有する処理液を塗布し、800 ℃で焼き付けた。その後、コイル幅中央部の磁気特性について調査した。磁気特性は、 800℃で3時間の歪取り焼鈍を行ったのち、800 A/m で励磁したときの磁束密度B8 および50Hzで1.7 Tまで交流で励磁したときの鉄損W17/50 で評価した。
得られた結果を表2に示す。
【0045】
【表2】
Figure 0004321120
【0046】
同表から明らかなように、焼鈍分離剤中に、Ag, Al, Ba, Ca, Co, Cr, Cu, Fe, In, K, Li, Mg, Mn, Na, Ni, Sn, Sb, Sr, ZnおよびZrの硫酸塩または硫化物を、単独または複合して適量添加した場合には、良好な磁気特性を得ることができた。
【0047】
実施例3
表3に示す種々の成分になる連鋳スラブを、1230℃に再加熱後、熱間圧延して、板厚:2.2 mmの熱延板とし、ついで冷間圧延により板厚:0.23mmとしたのち、 850℃, 180sの一次再結晶焼鈍を施した。ついで、MgO:95%、SrS:2%およびTiO2:3%を含有する焼鈍分離剤(A)およびMgO:97%およびTiO2:3%を含有する焼鈍分離剤(B)を、一次再結晶板に塗布・乾燥したのち、昇温速度:10℃/h、雰囲気ガス:950 ℃以下はArガス、950 ℃以上はH2 ガス、均熱処理:1100℃, 10hの条件で二次再結晶焼鈍を施した。
上記の条件で得られた仕上焼鈍板の表面に、リン酸塩−クロム酸塩−コロイダルシリカを、質量比で3:1:3の割合で含有する処理液を塗布し、800 ℃で焼き付けた。その後、コイル幅中央部の磁気特性について調査した。磁気特性は、 800℃で3時間の歪取り焼鈍を行ったのち、800 A/m で励磁したときの磁束密度B8 および50Hzで1.7 Tまで交流で励磁したときの鉄損W17/50 で評価した。
得られた結果を表3に示す。
【0048】
【表3】
Figure 0004321120
【0049】
同表から明らかなように、本発明に従い、焼鈍分離剤中に硫化物として2%のSrSを含有させた場合には、良好な磁気特性が得られている。
【0050】
【発明の効果】
かくして、本発明によれば、磁気特性に優れた方向性電磁鋼板を、工業的に安定してかつ安価に製造することが可能となり、その工業的価値は極めて高い。
【図面の簡単な説明】
【図1】 一次再結晶焼鈍後から二次再結晶完了までの間の地鉄中の増硫量(S増加量)と磁束密度B8 との関係を示したグラフである。
【図2】 一次再結晶焼鈍後から二次再結晶完了までの間の地鉄中の増硫量(S増加量)と鉄損W17/50 との関係を示したグラフである。[0001]
The present invention relates to a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, which can obtain a grain-oriented electrical steel sheet having excellent magnetic properties at low cost.
[0002]
[Prior art]
A grain-oriented electrical steel sheet is a soft magnetic material used as a core material for transformers and generators, and has a crystal structure in which the <001> orientation, which is the easy axis of iron, is highly aligned in the rolling direction of the steel sheet. . Such a texture preferentially grows crystal grains with a (110) [001] orientation, which is referred to as a so-called Goss orientation, during secondary recrystallization annealing during the production process of grain-oriented electrical steel sheets. Formed through secondary recrystallization.
[0003]
Conventionally, such grain-oriented electrical steel sheets were heated to 1300 ° C. or higher by heating a slab containing about 4.5 mass% or less of Si and an inhibitor component such as MnS, MnSe, or AlN to temporarily dissolve the inhibitor component. After that, after hot rolling and performing hot-rolled sheet annealing as necessary, the final sheet thickness is obtained by one or more cold rollings sandwiching intermediate annealing, followed by primary recrystallization annealing in a wet hydrogen atmosphere After performing primary recrystallization and decarburization, and then applying an annealing separator mainly composed of magnesia (MgO), the secondary recrystallization and the inhibitor component are purified at 1200 ° C. for about 5 hours. It has been manufactured by performing final finish annealing (for example, Patent Document 1, Patent Document 2, and Patent Document 3).
[0004]
[Patent Document 1]
US Patent No. 1965559 [Patent Document 2]
Japanese Patent Publication No. 40-15611 [Patent Document 3]
Japanese Patent Publication No.51-13469 [0005]
[Problems to be solved by the invention]
As described above, in the production of conventional grain-oriented electrical steel sheets, precipitates (inhibitor components) such as MnS, MnSe, and AlN are included in the slab stage, and these inhibitor components are added by high-temperature slab heating exceeding 1300 ° C. A process of causing secondary recrystallization by once forming a solid solution and finely precipitating in a subsequent process has been adopted. In this way, the conventional manufacturing process for grain-oriented electrical steel sheets required slab heating at a high temperature exceeding 1300 ° C, so that the manufacturing cost is extremely high, and it can meet the recent demand for reduction in manufacturing cost. I left a problem where I couldn't.
[0006]
The present invention advantageously solves the above-mentioned problems, and does not require high-temperature slab heating in the production process of grain-oriented electrical steel sheets, and produces grain-oriented electrical steel sheets having excellent magnetic properties at low cost. The object is to propose an advantageous method that can be used.
[0007]
[Means for Solving the Problems]
Now, in order to solve the above-mentioned problems, the inventors have made extensive studies on a technique for developing secondary recrystallization without containing an inhibitor component in the slab.
As a result, even if the inhibitor component is not included in the slab, the secondary recrystallization can be stably performed by increasing the amount of S in the ground iron after the primary recrystallization annealing and before the completion of the secondary recrystallization. A technology that can be developed ("sulfurization method") has been developed.
[0008]
That is, the gist of the present invention is as follows.
1. In mass%, C: 0.08% or less, Si: 4.5% or less, and Mn: 0.5% or less, S, Se, and O are each less than 50 ppm, N is less than 60 ppm, and sol.Al is less than 100 ppm. suppressing, the steel slab balance consisting Fe and inevitable impurities, after have that without reheating reheating, after the hot rolled sheet is subjected to hot rolling, the final thickness by annealing and rolling In the method for producing a grain-oriented electrical steel sheet comprising a series of steps of applying a secondary recrystallization annealing after applying the annealing separator after the primary recrystallization annealing.
In addition to containing 0.2 to 15 mass% of sulfide and / or sulfate in the annealing separator, the heating rate in secondary recrystallization annealing is 30 ° C./h or less, and the annealing atmosphere until the completion of secondary recrystallization is N 2. , Ar or a mixture of these,
A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, characterized by subjecting a steel sheet to a vulcanization treatment after primary recrystallization annealing to completion of secondary recrystallization.
[0009]
2. 2. The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to 1 above, wherein the amount of increase in the S concentration in the steel sheet steel by the vulcanization treatment is 2 ppm or more and 200 ppm or less.
[0011]
3 . The sulfide and / or sulfate is composed of Ag, Al, Ba, Ca, Co, Cr, Cu, Fe, In, K, Li, Mg, Mn, Na, Ni, Sn, Sb, Sr, Zn, and Zr. 3. The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to 1 or 2 above, which is one or more selected from sulfides or sulfates.
[0012]
4 . 4. The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to any one of 1 to 3 , wherein the main component of the annealing separator is magnesia.
[0013]
5 . The steel slab is further in mass%, Cr: 0.05-0.5%, Ni: 0.05-0.5%, Cu: 0.05-0.5%, P: 0.01-0.2%, Sb: 0.01-0.2% and Sn: 0.01-0.4 The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to any one of 1 to 4 above, wherein the composition comprises one or more selected from the group consisting of 1% and 2%.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be specifically described.
First, the reason why the component composition of the steel slab is limited to the above range in the present invention will be described. Unless otherwise specified, “%” in relation to ingredients means mass%.
C: 0.08% or less C is an element useful for improving the primary recrystallized texture. However, if the content exceeds 0.08%, the primary recrystallized texture is deteriorated. Therefore, in the present invention, 0.08% Limited to: A desirable addition amount from the viewpoint of magnetic properties is in the range of 0.01 to 0.06%. If the required magnetic property level is not so high, C may be set to 0.01% or less in order to omit or simplify the decarburization in the primary recrystallization annealing.
[0015]
Si: 4.5% or less
Si is a useful element that improves iron loss by increasing electric resistance. However, if the content exceeds 4.5%, the cold rolling property deteriorates remarkably, so Si is limited to 4.5% or less. A desirable addition amount from the viewpoint of iron loss is in the range of 2.0 to 4.0%. Depending on the required iron loss level, Si may not be added.
[0016]
Mn: 0.5% or less
Mn has the effect of improving hot workability during production, but when the content exceeds 0.5%, the primary recrystallization texture deteriorates and causes deterioration of magnetic properties, so Mn is 0.5 % Or less.
[0017]
S, Se and O: less than 50 ppm, respectively When the amount of S, Se and O is 50 ppm or more, secondary recrystallization becomes difficult. This is because coarse oxides and MnS and MnSe coarsened by slab heating make the primary recrystallized structure non-uniform. Therefore, S, Se, and O are all suppressed to less than 50 ppm.
[0018]
N: Less than 60 ppm N, as well as S, Se, and O, makes secondary recrystallization difficult if present in excess. In particular, when the N content is 60 ppm or more, secondary recrystallization hardly occurs and the magnetic properties are deteriorated. Therefore, N is suppressed to less than 60 ppm.
[0019]
sol.Al: less than 100 ppm
Al also makes secondary recrystallization difficult if present in excess. In particular, when the amount of sol.Al exceeds 100 ppm, secondary recrystallization becomes difficult and the magnetic properties deteriorate. Therefore, Al is suppressed to less than 100 ppm by the amount of sol.Al.
[0020]
The essential components have been described above. In the present invention, the following elements can be appropriately contained as components that improve the magnetic properties more stably industrially.
Cr: 0.05-0.5%
Cr has a function of stabilizing the formation of forsterite film. For this purpose, it is preferable to contain 0.05% or more. On the other hand, if the content exceeds 0.5%, secondary recrystallization becomes difficult, and magnetic properties are reduced. Since it deteriorates, it is desirable to contain Cr in the range of 0.05 to 0.5%.
[0021]
Ni: 0.05-0.5%
Ni works to improve the magnetic properties by increasing the uniformity of the hot-rolled sheet structure. For that purpose, it is preferable to contain 0.05% or more, but if the content exceeds 0.5%, secondary recrystallization will occur. Since it becomes difficult and the magnetic properties deteriorate, it is desirable to contain Ni in the range of 0.05 to 0.5%.
[0022]
Cu: 0.05-0.5%
Cu suppresses nitriding and oxidation of steel sheets during secondary recrystallization annealing, and promotes secondary recrystallization of grains with good crystal orientation, effectively improving magnetic properties. It is preferable to contain 0.05% or more, but if it exceeds 0.5%, hot rollability deteriorates, so Cu is desirably contained in the range of 0.05 to 0.5%.
[0023]
P: 0.01-0.2%
P has a function of stabilizing the formation of the forsterite film, and for that purpose, it is preferably contained in an amount of 0.01% or more. However, if the content exceeds 0.2%, the cold rolling property deteriorates, so P is 0.01 to It is desirable to make it contain in 0.2% of range.
[0024]
Sb: 0.01-0.2%
Sb is a useful element that effectively suppresses nitridation and oxidation of steel sheets during secondary recrystallization annealing, promotes secondary recrystallization of grains with good crystal orientation, and effectively improves magnetic properties. For the purpose, it is preferable to contain 0.01% or more, but if it exceeds 0.2%, the cold rolling property deteriorates, so Sb is preferably contained in the range of 0.01 to 0.2%.
[0025]
Sn: 0.01-0.4%
Sn is a useful element that suppresses nitriding and oxidation of steel sheets during secondary recrystallization annealing and promotes secondary recrystallization of grains having good crystal orientation to improve magnetic properties. However, if it exceeds 0.4%, the cold rolling property deteriorates, so it is desirable to contain Sn in the range of 0.01 to 0.4%.
[0026]
Next, the manufacturing method of this invention is demonstrated.
The steel slab adjusted to the above preferable component composition range is subjected to hot rolling without being reheated or after being reheated. When the slab is reheated, the reheating temperature is desirably about 1000 ° C. or higher and about 1300 ° C. or lower. This is because heating the slab above 1300 ° C is meaningless in the present invention that does not contain an inhibitor in the slab, and only increases the cost, whereas if it is less than 1000 ° C, the rolling load becomes high and rolling is difficult. Because it becomes.
[0027]
Next, the hot-rolled sheet is subjected to hot-rolled sheet annealing as necessary, and then subjected to one cold rolling or two or more cold rollings sandwiching the intermediate annealing to obtain a final cold-rolled sheet. This cold rolling may be performed at room temperature, or may be warm rolling in which the steel sheet temperature is raised to a temperature higher than room temperature, for example, about 250 ° C.
[0028]
Next, primary recrystallization annealing is applied to the final cold rolled sheet.
The primary purpose of this primary recrystallization annealing is to adjust the primary recrystallization grain size optimal for secondary recrystallization by primary recrystallization of a cold rolled sheet having a rolled structure. For that purpose, it is desirable that the annealing temperature of the primary recrystallization annealing is 800 ° C. or more and less than 950 ° C.
The second purpose is decarburization. If the product plate contains 50 ppm or more of carbon, the iron loss will deteriorate, so it is desirable to reduce the carbon to less than 200 ppm by this primary recrystallization annealing. Note that the annealing atmosphere at this time is preferably a wet hydrogen nitrogen or wet hydrogen argon atmosphere.
[0029]
After the primary recrystallization annealing, an annealing separator is applied to the surface of the steel plate. In order to form a forsterite film on the surface of a steel sheet after secondary recrystallization annealing, it is necessary to use magnesia (MgO) as the main ingredient of the annealing separator, but if it is not necessary to form a forsterite film, annealing is performed. As the separating agent main agent, an appropriate oxide having a melting point higher than the secondary recrystallization annealing temperature, such as alumina (Al 2 O 3 ) or calcia (CaO), can be used.
[0030]
Thereafter, secondary recrystallization annealing is performed. By this secondary recrystallization annealing, a crystal structure highly accumulated in the Goth orientation is obtained, and good magnetic properties can be obtained.
[0031]
Now, in the present invention, “sulfurization treatment” is performed to increase the amount of S in the iron from the above-described primary recrystallization annealing to the completion of secondary recrystallization.
As a method of increasing the amount of steel S during secondary recrystallization,
(1) A method of introducing an atmospheric gas containing S (for example, H 2 S) during secondary recrystallization annealing,
(2) A method of adding a sufficient amount of sulfate or sulfide to the annealing separator may be considered.
[0032]
On an industrial scale, since secondary recrystallization annealing is performed by coil annealing, it is difficult for S to reach the inside of the coil by the method (1), and it is difficult to obtain uniform magnetic characteristics in the plate width direction. In this respect, the method (2) is a desirable method that is excellent in uniformity in the width direction.
Therefore, in the present invention, the vulcanization treatment is performed by the method (2).
Such a vulcanization treatment stabilizes secondary recrystallization and improves magnetic properties.
[0033]
The above phenomenon is a phenomenon peculiar in the case of steel not containing an inhibitor component in the slab. That is, when there are no inhibitors (precipitates) such as AlN or MnS in the steel, the grain boundaries surrounding the Goss orientation grains in the primary recrystallization structure are more mobile than the grain boundaries surrounding grains in other orientations. As a result, the Goss orientation preferentially grows (secondary recrystallization).
The reason why the magnetic properties are improved by increasing the amount of S in the base iron after the primary recrystallization is not necessarily clear, but as a result of the increase of the amount of S segregating to the grain boundary, the grain boundary surrounding the orientation other than the Goss orientation It is considered that the migration is further suppressed, secondary recrystallization is stabilized, and the sharpness of the secondary grains toward the Goss orientation is increased.
[0034]
Here, the desirable amount of S increase in the base iron by the above vulcanization treatment is 2 ppm or more and 200 ppm or less. Even when the amount of increase in S is less than 2 ppm or more than 200 ppm, secondary recrystallization tends to stabilize, but the effect is small.
[0035]
Also, the amount of sulfate or sulfide added to the annealing separator must be 0.2% or more and 15% or less. This is because if the amount of sulfate or sulfide added is less than 0.2%, the amount of S increase in the iron will be small, while if it exceeds 15%, the amount of S in the iron will be too large. Small effect.
Examples of sulfates and sulfides added to the annealing separator include Ag, Al, Ba, Ca, Co, Cr, Cu, Fe, In, K, Li, Mg, Mn, Na, Ni, Sn, One or more selected from sulfates or sulfides of Sb, Sr, Zn and Zr are preferred.
[0036]
In the secondary recrystallization annealing, when the rate of temperature rise exceeds 30 ° C./h, it is difficult for S to diffuse into the ground iron until the completion of the secondary recrystallization. Therefore, in order to ensure the diffusion into the base steel of S, it is necessary to keep the heating rate and 30 ° C. / h or less. As the annealing atmosphere, N 2 , Ar, or a mixed gas thereof is suitable. However, until the secondary recrystallization is completed, we do not use of H 2 as an atmosphere gas. This is because S in the annealing separator goes out of the system as H 2 S (gas), and the effect of vulcanization is reduced particularly at the edge of the coil.
[0037]
After the secondary recrystallization annealing, an insulating film can be further applied and baked on the steel sheet surface. The type of the insulating coating is not particularly limited, and any conventionally known insulating coating is suitable. For example, a coating solution containing phosphate-chromate-colloidal silica described in JP-A-50-79442 and JP-A-48-39338 is applied to a steel plate and baked at about 800 ° C. The method is preferred.
Further, the shape of the steel sheet can be adjusted by flattening annealing, and this flattening annealing can be combined with the baking treatment of the insulating coating.
[0038]
【Example】
Example 1
Contains C: 0.07%, Si: 3.5%, Mn: 0.05%, sol.Al: 45 ppm, N: 35 ppm, S: 10 ppm, Se: 1 ppm, O: 10 ppm, the balance being Fe and inevitable The continuous cast slab having an impurity composition was hot-rolled without reheating to obtain a hot-rolled sheet having a thickness of 2.0 mm, and then subjected to hot-rolled sheet annealing at 1000 ° C. for 30 seconds. Next, after cold rolling, the plate thickness was set to 0.30 mm, followed by primary recrystallization annealing at 850 ° C. for 100 s. The iron S concentration after primary recrystallization annealing was 10 ppm, the same as the slab composition.
Next, an annealing separator containing MgO as the main ingredient and CaSO 4 in various ranges was applied to the primary recrystallized plate and dried, followed by a heating rate of 15 ° C / h and an ambient gas of up to 900 ° C. N 2 gas The second recrystallization annealing was performed under the conditions of H 2 at 900 ° C. or higher, soaking treatment: 1160 ° C., 5 hours.
[0039]
A treatment liquid containing phosphate-chromate-colloidal silica in a mass ratio of 3: 1: 3 was applied to the surface of the finish-annealed plate obtained under the above conditions, and baked at 800 ° C. . Thereafter, the magnetic characteristics at the center of the coil width were investigated. The magnetic characteristics are as follows: magnetic flux density B 8 when excited at 800 A / m for 3 hours after 800 ° C annealing and iron loss W 17/50 when excited at 1.7 Hz at 50 Hz. evaluated.
The obtained results are shown in Table 1.
Table 1 also shows the results of measuring the S concentration in the ground iron after stopping the secondary recrystallization annealing at 900 ° C. when the secondary recrystallization is completed.
[0040]
[Table 1]
Figure 0004321120
[0041]
As is clear from the table, according to the present invention, when the amount of S in the ground iron was increased after the primary recrystallization annealing until the completion of the secondary recrystallization, the magnetic characteristics were improved. Particularly good results were obtained when CaSO 4 was contained in the range of 0.2 to 15% and the S content in the ground iron was increased in the range of 2 ppm or more and 200 ppm or less.
[0042]
1 and FIG. 2, respectively, the amount of sulfur increase (S increase) in the core iron after the primary recrystallization annealing to the completion of the secondary recrystallization, the magnetic flux density B 8 and the iron loss W 17/50 As is apparent from the figure, both B 8 and W 17/50 are improved by increasing the amount of S in the ground iron, and this effect is particularly effective when the amount of sulfur increase is 2 to 200 ppm. It can be seen that it is large in the range.
[0043]
Example 2
Contains C: 0.02%, Si: 3.0%, Mn: 0.10%, sol.Al: 80 ppm, N: 55 ppm, S: 20 ppm, Se: 20 ppm, O: 30 ppm, the balance being Fe and inevitable Continuously cast slab with a composition of mechanical impurities, reheated to 1180 ° C, hot rolled to a hot rolled sheet with a thickness of 2.5 mm, then cold rolled to a sheet thickness of 0.35 mm, The primary recrystallization annealing was performed at 800 ℃ and 100s. The iron S concentration after primary recrystallization annealing was 20 ppm, the same as the slab composition.
Next, an annealing separator containing various sulfides, sulfates and other additives shown in Table 2 containing MgO as the main agent was applied to the primary recrystallized plate and dried, and then the rate of temperature increase: 10 ° C / h Atmosphere gas: (50% N 2 + 50% Ar) gas below 950 ° C., H 2 gas above 950 ° C., soaking treatment: 1200 ° C., 10 h, secondary recrystallization annealing was performed.
[0044]
A treatment liquid containing phosphate-chromate-colloidal silica in a mass ratio of 3: 1: 3 was applied to the surface of the finish-annealed plate obtained under the above conditions, and baked at 800 ° C. . Thereafter, the magnetic characteristics at the center of the coil width were investigated. The magnetic characteristics are as follows: magnetic flux density B 8 when excited at 800 A / m for 3 hours after 800 ° C annealing and iron loss W 17/50 when excited at 1.7 Hz at 50 Hz. evaluated.
The obtained results are shown in Table 2.
[0045]
[Table 2]
Figure 0004321120
[0046]
As is apparent from the table, in the annealing separator, Ag, Al, Ba, Ca, Co, Cr, Cu, Fe, In, K, Li, Mg, Mn, Na, Ni, Sn, Sb, Sr, When an appropriate amount of a sulfate or sulfide of Zn and Zr was added alone or in combination, good magnetic properties could be obtained.
[0047]
Example 3
Continuously cast slabs with various components shown in Table 3 were reheated to 1230 ° C and hot-rolled to form hot-rolled sheets with a thickness of 2.2 mm, and then cold-rolled to a thickness of 0.23 mm. After that, primary recrystallization annealing was performed at 850 ° C. for 180 s. Subsequently, an annealing separator (A) containing MgO: 95%, SrS: 2% and TiO 2 : 3% and an annealing separator (B) containing MgO: 97% and TiO 2 : 3% were subjected to primary re-treatment. After coating and drying on the crystal plate, secondary recrystallization under conditions of heating rate: 10 ° C / h, atmosphere gas: Ar gas below 950 ° C, H 2 gas above 950 ° C, soaking treatment: 1100 ° C, 10h Annealed.
A treatment liquid containing phosphate-chromate-colloidal silica in a mass ratio of 3: 1: 3 was applied to the surface of the finish-annealed plate obtained under the above conditions, and baked at 800 ° C. . Thereafter, the magnetic characteristics at the center of the coil width were investigated. The magnetic characteristics are as follows: magnetic flux density B 8 when excited at 800 A / m for 3 hours after 800 ° C annealing and iron loss W 17/50 when excited at 1.7 Hz at 50 Hz. evaluated.
The obtained results are shown in Table 3.
[0048]
[Table 3]
Figure 0004321120
[0049]
As apparent from the table, when 2% SrS is contained as a sulfide in the annealing separator according to the present invention, good magnetic properties are obtained.
[0050]
【The invention's effect】
Thus, according to the present invention, a grain-oriented electrical steel sheet having excellent magnetic properties can be produced industrially stably and inexpensively, and its industrial value is extremely high.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the amount of sulfur increase (increase in S) in a base iron and the magnetic flux density B 8 from after primary recrystallization annealing to completion of secondary recrystallization.
FIG. 2 is a graph showing the relationship between the amount of sulfur increase (S increase) in iron and the iron loss W 17/50 after the primary recrystallization annealing until the completion of secondary recrystallization.

Claims (5)

質量%で、C:0.08%以下、Si:4.5 %以下およびMn:0.5 %以下を含有すると共に、S,SeおよびOをそれぞれ50 ppm未満ならびにNを60 ppm未満、sol.Alを100ppm未満に抑制し、残部はFeおよび不可避的不純物の組成になる鋼スラブを、再加熱することなくあるいは再加熱後、熱間圧延を施して熱延板としたのち、焼鈍および圧延によって最終板厚の冷間圧延板とし、ついで一次再結晶焼鈍後、焼鈍分離剤を塗布してから二次再結晶焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法において、
焼鈍分離剤中に、硫化物および/または硫酸塩を 0.2〜15mass%含有させると共に、二次再結晶焼鈍における昇温速度を30℃/h以下、二次再結晶完了までの焼鈍雰囲気をN 2 ,Arあるいはこれらの混合ガスとすることにより、
一次再結晶焼鈍後から二次再結晶完了までの間に、鋼板に対して増硫処理を施すことを特徴とする磁気特性に優れた方向性電磁鋼板の製造方法。
In mass%, C: 0.08% or less, Si: 4.5% or less, and Mn: 0.5% or less, S, Se, and O are each less than 50 ppm, N is less than 60 ppm, and sol.Al is less than 100 ppm. The steel slab with a balance of Fe and unavoidable impurities is suppressed without reheating or after reheating, and then hot rolled to form a hot-rolled sheet, and then the final sheet thickness is cooled by annealing and rolling. In the manufacturing method of grain-oriented electrical steel sheet consisting of a series of steps of applying a secondary recrystallization annealing after applying an annealing separator after primary recrystallization annealing,
In addition to containing 0.2 to 15 mass% of sulfide and / or sulfate in the annealing separator, the heating rate in secondary recrystallization annealing is 30 ° C./h or less, and the annealing atmosphere until the completion of secondary recrystallization is N 2. , Ar or a mixture of these,
A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, characterized by subjecting a steel sheet to a vulcanization treatment after primary recrystallization annealing to completion of secondary recrystallization.
前記増硫処埋による鋼板地鉄中のS濃度の増加量が、2ppm 以上、200 ppm 以下であることを特徴とする請求項1記載の磁気特性に優れた方向性電磁鋼板の製造方法。  The method for producing a grain-oriented electrical steel sheet with excellent magnetic properties according to claim 1, wherein the amount of increase in the S concentration in the steel sheet steel by the vulcanization treatment is 2 ppm or more and 200 ppm or less. 前記硫化物および/または硫酸塩が、Ag, Al, Ba, Ca, Co, Cr, Cu, Fe, In, K, Li, Mg, Mn, Na, Ni, Sn, Sb, Sr, ZnおよびZrの硫化物または硫酸塩のうちから選ばれる一種または二種以上であることを特徴とする請求項1または2記載の磁気特性に優れた方向性電磁鋼板の製造方法。The sulfide and / or sulfate is composed of Ag, Al, Ba, Ca, Co, Cr, Cu, Fe, In, K, Li, Mg, Mn, Na, Ni, Sn, Sb, Sr, Zn, and Zr. The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to claim 1 or 2, wherein the method is one or more selected from sulfides or sulfates. 前記焼鈍分離剤の主剤がマグネシアであることを特徴とする請求項1〜のいずれかに記載の磁気特性に優れた方向性電磁鋼板の製造方法。The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to any one of claims 1 to 3 , wherein the main component of the annealing separator is magnesia. 前記鋼スラブが、さらに質量%で、Cr:0.05〜0.5 %、Ni:0.05〜0.5 %、Cu:0.05〜0.5 %、P:0.01〜0.2 %、Sb:0.01〜0.2 %およびSn:0.01〜0.4 %のうちから選んだ一種または二種以上を含有する組成になることを特徴とする請求項1〜のいずれかに記載の磁気特性に優れた方向性電磁鋼板の製造方法。The steel slab is further in mass%, Cr: 0.05-0.5%, Ni: 0.05-0.5%, Cu: 0.05-0.5%, P: 0.01-0.2%, Sb: 0.01-0.2% and Sn: 0.01-0.4 method for producing a superior grain-oriented electrical steel sheet on the magnetic properties according to any one of claims 1 to 4, selected one or characterized in that the composition containing at least two from among%.
JP2003152452A 2003-05-29 2003-05-29 Method for producing grain-oriented electrical steel sheets with excellent magnetic properties Expired - Fee Related JP4321120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003152452A JP4321120B2 (en) 2003-05-29 2003-05-29 Method for producing grain-oriented electrical steel sheets with excellent magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003152452A JP4321120B2 (en) 2003-05-29 2003-05-29 Method for producing grain-oriented electrical steel sheets with excellent magnetic properties

Publications (2)

Publication Number Publication Date
JP2004353036A JP2004353036A (en) 2004-12-16
JP4321120B2 true JP4321120B2 (en) 2009-08-26

Family

ID=34047669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003152452A Expired - Fee Related JP4321120B2 (en) 2003-05-29 2003-05-29 Method for producing grain-oriented electrical steel sheets with excellent magnetic properties

Country Status (1)

Country Link
JP (1) JP4321120B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014125841A1 (en) 2013-02-18 2014-08-21 Jfeスチール株式会社 Nitriding equipment for oriented electromagnetic steel plate and nitriding method
WO2014125839A1 (en) 2013-02-18 2014-08-21 Jfeスチール株式会社 Nitriding equipment for oriented electromagnetic steel plates and nitriding method
WO2014125840A1 (en) 2013-02-18 2014-08-21 Jfeスチール株式会社 Nitriding method for oriented electromagnetic steel plates and nitriding device
JP2014196558A (en) * 2013-03-07 2014-10-16 Jfeスチール株式会社 Method of producing grain-oriented electrical steel sheet
WO2018051902A1 (en) 2016-09-13 2018-03-22 Jfeスチール株式会社 Grain-oriented electrical steel sheet with chrome-free insulation/tension coating, and production method thereof
WO2020111741A1 (en) * 2018-11-30 2020-06-04 주식회사 포스코 Grain-oriented electric steel sheet and manufacturing method therefor
WO2020122558A1 (en) * 2018-12-13 2020-06-18 주식회사 포스코 Grain-oriented electrical steel sheet and method for producing same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6205710B2 (en) * 2012-10-31 2017-10-04 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
JP5831435B2 (en) * 2012-12-11 2015-12-09 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheets with excellent magnetic properties
JP5939156B2 (en) * 2012-12-28 2016-06-22 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
JP6225759B2 (en) * 2014-03-10 2017-11-08 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
KR101647655B1 (en) * 2014-12-15 2016-08-11 주식회사 포스코 Grain orientied electrical steel sheet and method for manufacturing the same
WO2016129015A1 (en) * 2015-02-13 2016-08-18 Jfeスチール株式会社 Oriented electrical steel sheet and method for producing same
WO2016139818A1 (en) 2015-03-05 2016-09-09 Jfeスチール株式会社 Directional magnetic steel plate and method for producing same
JP6350398B2 (en) 2015-06-09 2018-07-04 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
JP6439665B2 (en) * 2015-12-04 2018-12-19 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
KR102177523B1 (en) * 2015-12-22 2020-11-11 주식회사 포스코 Grain orientied electrical steel sheet and method for manufacturing the same
CN106011612A (en) * 2016-03-31 2016-10-12 苏州睿昕汽车配件有限公司 High-temperature-resistant automobile part alloy steel material and preparation method thereof
JP6322300B1 (en) * 2017-01-06 2018-05-09 株式会社エーアイ Process for manufacturing platinum processed products
KR102120277B1 (en) * 2018-09-27 2020-06-08 주식회사 포스코 Grain oriented electrical steel sheet and method for manufacturing the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014125841A1 (en) 2013-02-18 2014-08-21 Jfeスチール株式会社 Nitriding equipment for oriented electromagnetic steel plate and nitriding method
WO2014125839A1 (en) 2013-02-18 2014-08-21 Jfeスチール株式会社 Nitriding equipment for oriented electromagnetic steel plates and nitriding method
WO2014125840A1 (en) 2013-02-18 2014-08-21 Jfeスチール株式会社 Nitriding method for oriented electromagnetic steel plates and nitriding device
KR20150119124A (en) 2013-02-18 2015-10-23 제이에프이 스틸 가부시키가이샤 Method and device for nitriding grain-oriented electrical steel sheet
US11198917B2 (en) 2013-02-18 2021-12-14 Jfe Steel Corporation Method for nitriding grain-oriented electrical steel sheet
US10066286B2 (en) 2013-02-18 2018-09-04 Jfe Steel Corporation Apparatus and method for nitriding grain-oriented electrical steel sheet
US10214793B2 (en) 2013-02-18 2019-02-26 Jfe Steel Corporation Method and device for nitriding grain-oriented electrical steel sheet
JP2014196558A (en) * 2013-03-07 2014-10-16 Jfeスチール株式会社 Method of producing grain-oriented electrical steel sheet
KR20190027871A (en) 2016-09-13 2019-03-15 제이에프이 스틸 가부시키가이샤 Directional electric steel sheet with chrome-free insulating tensile film and method for manufacturing the same
WO2018051902A1 (en) 2016-09-13 2018-03-22 Jfeスチール株式会社 Grain-oriented electrical steel sheet with chrome-free insulation/tension coating, and production method thereof
US11756713B2 (en) 2016-09-13 2023-09-12 Jfe Steel Corporation Grain-oriented magnetic steel sheets having chromium-free insulating tension coating, and methods for producing such steel sheets
WO2020111741A1 (en) * 2018-11-30 2020-06-04 주식회사 포스코 Grain-oriented electric steel sheet and manufacturing method therefor
KR20200066062A (en) * 2018-11-30 2020-06-09 주식회사 포스코 Grain oriented electrical steel sheet and manufacturing method of the same
KR102142511B1 (en) 2018-11-30 2020-08-07 주식회사 포스코 Grain oriented electrical steel sheet and manufacturing method of the same
WO2020122558A1 (en) * 2018-12-13 2020-06-18 주식회사 포스코 Grain-oriented electrical steel sheet and method for producing same
KR20200072859A (en) * 2018-12-13 2020-06-23 주식회사 포스코 Grain oriented electrical steel sheet and manufacturing method of the same
KR102171694B1 (en) 2018-12-13 2020-10-29 주식회사 포스코 Grain oriented electrical steel sheet and manufacturing method of the same

Also Published As

Publication number Publication date
JP2004353036A (en) 2004-12-16

Similar Documents

Publication Publication Date Title
JP4321120B2 (en) Method for producing grain-oriented electrical steel sheets with excellent magnetic properties
JP5983777B2 (en) Method for producing grain-oriented electrical steel sheet
EP2940160B1 (en) Production method for grain-oriented electrical steel sheet
KR102057126B1 (en) Grain-oriented electrical steel sheet and method for manufacturing the same
JP5949813B2 (en) Method for producing grain-oriented electrical steel sheet
JP5983776B2 (en) Method for producing grain-oriented electrical steel sheet
JP6020768B1 (en) Oriented electrical steel sheet and manufacturing method thereof
JP6171887B2 (en) Method for producing grain-oriented electrical steel sheet
CN113166892A (en) Oriented electrical steel sheet and method for manufacturing the same
JP6079580B2 (en) Method for producing grain-oriented electrical steel sheet
JP5939156B2 (en) Method for producing grain-oriented electrical steel sheet
JP4389553B2 (en) Method for producing grain-oriented electrical steel sheet
JP4259269B2 (en) Method for producing grain-oriented electrical steel sheet
JP6011586B2 (en) Method for producing grain-oriented electrical steel sheet
JP4292804B2 (en) Method for producing grain-oriented electrical steel sheet
JP5999040B2 (en) Method for producing grain-oriented electrical steel sheet
JP5928362B2 (en) Method for producing grain-oriented electrical steel sheet and primary recrystallized steel sheet for producing grain-oriented electrical steel sheet
JP6209998B2 (en) Method for producing grain-oriented electrical steel sheet
JP5904151B2 (en) Method for producing grain-oriented electrical steel sheet
JP6863310B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP6036587B2 (en) Method for producing grain-oriented electrical steel sheet and primary recrystallized steel sheet for producing grain-oriented electrical steel sheet
JP3507232B2 (en) Manufacturing method of unidirectional electrical steel sheet with large product thickness
JPH0551705A (en) Grain-oriented silicon steel sheet and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090319

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090525

R150 Certificate of patent or registration of utility model

Ref document number: 4321120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140612

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees