JP3482833B2 - Grain-oriented electrical steel sheets with excellent iron loss, distortion resistance and magnetic properties in actual machines - Google Patents

Grain-oriented electrical steel sheets with excellent iron loss, distortion resistance and magnetic properties in actual machines

Info

Publication number
JP3482833B2
JP3482833B2 JP23549897A JP23549897A JP3482833B2 JP 3482833 B2 JP3482833 B2 JP 3482833B2 JP 23549897 A JP23549897 A JP 23549897A JP 23549897 A JP23549897 A JP 23549897A JP 3482833 B2 JP3482833 B2 JP 3482833B2
Authority
JP
Japan
Prior art keywords
steel sheet
grain
crystal
strain
iron loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23549897A
Other languages
Japanese (ja)
Other versions
JPH10183313A (en
Inventor
道郎 小松原
俊人 高宮
邦浩 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP23549897A priority Critical patent/JP3482833B2/en
Priority to US08/953,920 priority patent/US6083326A/en
Priority to DE69706388T priority patent/DE69706388T2/en
Priority to EP97118194A priority patent/EP0837148B1/en
Priority to KR1019970054015A priority patent/KR100424126B1/en
Priority to CN97126080A priority patent/CN1099474C/en
Priority to BR9705106A priority patent/BR9705106A/en
Publication of JPH10183313A publication Critical patent/JPH10183313A/en
Priority to US09/557,230 priority patent/US6444050B1/en
Priority to US10/163,522 priority patent/US6929704B2/en
Application granted granted Critical
Publication of JP3482833B2 publication Critical patent/JP3482833B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、変圧器や発電機
の鉄心に利用される方向性電磁鋼板、中でも鉄損特性
耐歪特性および実機での磁気特性に優れた方向性電磁鋼
板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grain-oriented electrical steel sheet used for the core of a transformer or a generator, and in particular, iron loss characteristics ,
The present invention relates to a grain-oriented electrical steel sheet having excellent strain resistance and magnetic properties in an actual machine.

【0002】[0002]

【従来の技術】Siを含有し、かつ結晶方位が(110)
〔001〕方位や(100)〔001〕方位に配向した
方向性電磁鋼板は、優れた軟磁気特性を有することから
商用周波数域での各種鉄心材料として広く使用されてい
る。この種電磁鋼板に要求される特性としては、特に鉄
損(一般に50Hzの周波数で 1.7Tに磁化させた時の損失
であるW17/50(W/kg)で表される)が低いことが重要で
ある。
2. Description of the Related Art Containing Si and having a crystal orientation of (110)
The grain-oriented electrical steel sheet oriented in the [001] orientation or the (100) [001] orientation has excellent soft magnetic properties and is therefore widely used as various iron core materials in the commercial frequency range. The characteristics required for this type of electrical steel sheet are particularly low iron loss (generally represented by W 17/50 (W / kg), which is the loss when magnetized to 1.7 T at a frequency of 50 Hz). is important.

【0003】鉄損を低減する方法としては、渦電流損の
低減に有効なSiを含有させて電気抵抗を高める方法、鋼
板板厚を薄くする方法、結晶粒径を小さくする方法、お
よびヒステリシス損の低減に有効な結晶粒の方位を揃え
る方法等がある。このうちSiを含有させて電気抵抗を高
める方法は、Siを過度に含有させると飽和磁束密度の低
下を招き、鉄心のサイズ拡大の原因ともなるので、限界
があり、また鋼板板厚を薄くする方法も極端な製造コス
トの増大を招くことから限界があった。
As a method of reducing iron loss, a method of increasing electric resistance by containing Si which is effective for reducing eddy current loss, a method of reducing a steel plate thickness, a method of reducing a crystal grain size, and a hysteresis loss. There is a method of aligning the orientation of crystal grains that is effective in reducing Of these, the method of increasing the electrical resistance by containing Si causes a decrease in the saturation magnetic flux density when Si is excessively contained, and also causes an increase in the size of the iron core.Therefore, there is a limit, and the steel plate thickness is made thin. The method is also limited because it causes an extreme increase in manufacturing cost.

【0004】従って、鉄損低減のための技術開発は、結
晶方位の集積度向上(これは、一般に 800 A/mの磁化力
における磁束密度B8 (T)で表される)と結晶粒径の
低減に注力されたが、結晶方位の集積度を向上させると
必然的に結晶粒径が大きくなり鉄損が劣化するという二
律背反性が存在するため、最小の鉄損値を得るために
は、最適な結晶方位集積度すなわち最適なB8 値に調整
することが必要であった。
Therefore, the technical development for reducing iron loss is to improve the degree of integration of crystal orientation (which is generally represented by the magnetic flux density B 8 (T) at a magnetizing force of 800 A / m) and the crystal grain size. However, there is a trade-off that increasing the degree of integration of crystal orientations inevitably increases the crystal grain size and deteriorates iron loss, so in order to obtain the minimum iron loss value, It was necessary to adjust to the optimum crystal orientation integration degree, that is, the optimum B 8 value.

【0005】しかしながら、近年、プラズマジェットや
レーザー光を照射して人工的に磁区幅を細分化する技術
が開発され、鉄損低減のために結晶粒径を細粒化する必
要性がなくなったことから、結晶方位の集積度を高めて
鉄損を低減する方法が主流となり、磁束密度(B8 )が
1.93〜2.00Tという材料まで開発されるようになってき
た。
However, in recent years, a technique for artificially subdividing the magnetic domain width by irradiating a plasma jet or laser light has been developed, and it is no longer necessary to reduce the crystal grain size to reduce iron loss. Therefore, the method of increasing the degree of integration of crystal orientation to reduce iron loss becomes the mainstream, and the magnetic flux density (B 8 ) is
Materials from 1.93 to 2.00T have been developed.

【0006】また、磁区細分化処理として、線状溝の形
成や線状歪の導入を始めとして、鋼板金属表面と非金属
被膜との界面の粗度を低減したり、金属表面に結晶方位
強調処理を施す方法が開発され、これらの磁区細分化処
理によって材料の鉄損特性は大幅に向上した。
As the magnetic domain refining treatment, the roughness of the interface between the metal surface of the steel sheet and the non-metal coating is reduced, and the crystal orientation is emphasized on the metal surface, including the formation of linear grooves and the introduction of linear strain. The method of applying the treatment was developed, and the iron loss characteristics of the material were greatly improved by these domain refinement treatments.

【0007】ところで、結晶方位の集積度を高めるため
には、2次再結晶を完全に制御することが必要となって
くる。2次再結晶は、インヒビターと呼ばれるAlNやMn
Se、MnSなどの析出物を鋼中に微細に分散析出させて結
晶粒の正常成長を抑制し、ゴス方位と呼ばれる特定の好
ましい方位((110)〔001〕方位およびその近傍
方位)の粒のみを大きく成長させる技術であり、インヒ
ビターとしてはこの他にもSb,Sn,Biなどの粒界偏析型
元素をサブインヒビターとして用いている。こうした技
術と結晶粒の集合組織を制御する技術が結合して上記の
ような優れた磁束密度を有する電磁鋼板の製造技術が完
成された。
By the way, in order to increase the degree of integration of crystal orientation, it is necessary to completely control the secondary recrystallization. Secondary recrystallization is performed by using AlN and Mn called inhibitors.
Precipitates such as Se and MnS are finely dispersed and precipitated in the steel to suppress normal growth of crystal grains, and only grains having a specific preferred orientation ((110) [001] orientation and its neighboring orientation) called Goss orientation In addition to this, grain boundary segregation-type elements such as Sb, Sn, and Bi are used as sub-inhibitors. By combining these techniques with the technique of controlling the texture of crystal grains, the production technique of the electromagnetic steel sheet having the above-mentioned excellent magnetic flux density has been completed.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、このよ
うな優れた軟磁気特性を有する方向性電磁鋼板を用いて
変圧器を製造した場合、実機として所期した特性が得ら
れない場合が多々発生するようになった。特に剪断加工
の後、歪取焼鈍を行わない状態で使用する積変圧器の場
合に材料特性と変圧器特性とのギャップがとりわけ大き
かった。
However, when a transformer is manufactured by using a grain-oriented electrical steel sheet having such excellent soft magnetic characteristics, it often happens that the desired characteristics cannot be obtained as an actual machine. It became so. In particular, in the case of a product transformer that is used without being subjected to strain relief annealing after shearing, the gap between the material properties and the transformer properties was particularly large.

【0009】従来においても、磁束密度の高い方向性電
磁鋼板を使用して積変圧器を製造した場合に所期した実
機特性が得られないという問題が発生し、種々調査が行
われてきたが、これは磁束密度の高い材料を用いた場合
の特有の現象として、変圧器のT結合部に磁束の流れ方
向から逸脱する方向への好ましからざる磁束の廻り込み
が生じ、不要な損失が生じるため所定の鉄損低減効果が
得られないとの説明がなされ、改善の余地がないものと
されてきた。しかしながら、磁束密度がさらに向上した
昨今の材料を用いた場合、実際に変圧器に組み込んだ際
の磁気特性すなわち実機特性の劣化量は甚だしく、材料
開発の利益すら享受できない状況にある。
Conventionally, when a product transformer is manufactured using a grain-oriented electrical steel sheet having a high magnetic flux density, a problem that desired actual machine characteristics cannot be obtained occurs, and various investigations have been conducted. , This is a peculiar phenomenon when a material with a high magnetic flux density is used, because undesired wraparound of magnetic flux occurs in the T coupling part of the transformer in a direction deviating from the magnetic flux flow direction, and unnecessary loss occurs. It was explained that the prescribed iron loss reduction effect could not be obtained, and there was no room for improvement. However, when using recent materials with even higher magnetic flux density, when actually incorporated in a transformer
The amount of deterioration of the magnetic properties, that is, the properties of the actual machine is so great that even the benefits of material development cannot be enjoyed.

【0010】また、磁束密度の向上に伴い、剪断加工や
積み加工時に加える歪によって鉄損特性が大きく劣化す
る現象が認められた。これについては未だ研究の途中で
あり、現状では材料のハンドリングに注意して歪の付加
をできるだけ抑制するしか現実的な対応策がない状態で
ある。
Further, it has been recognized that as the magnetic flux density is improved, the iron loss characteristics are greatly deteriorated due to the strain applied during shearing and stacking. This is still under study, and at present, the only practical countermeasure is to pay attention to the handling of the material and suppress the addition of strain as much as possible.

【0011】さらに、前述した種々の磁区細分化技術に
よって、材料の鉄損特性は確かに向上したが、実際に開
発した材料を用いて実機を製作した場合、特に高磁場で
実機を使用した場合に、所望の特性が得られないという
問題が生じている。
Furthermore, although the iron loss characteristics of the material are certainly improved by the various magnetic domain subdivision techniques described above, when the actual machine is manufactured using the actually developed material, particularly when the actual machine is used in a high magnetic field. In addition, there is a problem that desired characteristics cannot be obtained.

【0012】この発明は、2次再結晶粒の結晶方位が高
度に集積した材料において、材料の鉄損から推定される
レベルに対し実機特性が大きく劣化する原因、および加
工工程において付加される歪に対する感受性が高い原因
を解明し、かような特性劣化を生じることがなく、しか
も特性の一層の向上を図った方向性電磁鋼板を提案する
ことを目的とする。
In the present invention, in the material in which the crystal orientation of the secondary recrystallized grains is highly integrated, the cause of the deterioration of the actual machine characteristics relative to the level estimated from the iron loss of the material and the strain added in the working process It is an object of the present invention to elucidate the cause of its high sensitivity to, and to propose a grain-oriented electrical steel sheet that does not cause such characteristic deterioration and further improves the characteristics.

【0013】[0013]

【課題を解決するための手段】以下、この発明の解明経
緯について説明する。さて、方向性電磁鋼板の高磁束密
度化の方法は、従来から良く知られていて、インヒビタ
ー元素としてAl,Sb,Sn,Biなどの添加が有効であるこ
とが知られている。例えば、特公昭46-23820号公報に
は、AlとSを含有する方向性電磁鋼板によってB10とし
て 1.981Tの値が、また特公昭62-56923号公報には、イ
ンヒビターとしてAl,Se,SbおよびBiを含有する方向性
電磁鋼板によってB8 として1.95Tの値が報告されてい
る。
Means for Solving the Problems The clarification process of the present invention will be described below. A method for increasing the magnetic flux density of grain-oriented electrical steel sheets has been well known in the past, and it is known that the addition of Al, Sb, Sn, Bi, etc. as an inhibitor element is effective. For example, in JP-B-46-23820, the value of 1.981T as B 10 by a directional electromagnetic steel sheet containing Al and S, but also in JP-B-62-56923, Al as an inhibitor, Se, Sb A value of 1.95T is reported as B 8 by the grain-oriented electrical steel sheet containing Bi and Bi.

【0014】これらの方向性電磁鋼板の磁気特性はすば
らしいものである。しかしながら、これらの高磁束密度
電磁鋼板を用いて変圧器を製作した場合、特性の劣化が
著しく、実機の鉄損として所望の値が得られない場合が
多かった。この原因は、材料の結晶の高集積度に起因
し、従来から仕方のないものとされてきたことは前述し
たとおりである。
The magnetic properties of these grain-oriented electrical steel sheets are excellent. However, when a transformer is manufactured using these high magnetic flux density electromagnetic steel sheets, the characteristics are significantly deteriorated, and in many cases a desired value cannot be obtained as the iron loss of an actual machine. This is due to the high degree of integration of the crystal of the material, which has been unavoidable in the past as described above.

【0015】そこで、発明者らは、高磁束密度材料を使
用した積み変圧器のT結合部における磁束の廻り込みに
及ぼす各種要因について調査した。その結果、特性劣化
の原因が、従来から言われてきた結晶方位の集積度が高
いことによるだけでなく、この他に結晶粒径の影響があ
ることを新たに見出した。また、加工工程で導入される
歪の特性劣化に及ぼす影響に関して、以下のことを新規
に知見した。
Therefore, the present inventors have investigated various factors affecting the wraparound of the magnetic flux in the T coupling portion of the stacking transformer using the high magnetic flux density material. As a result, it was newly found that the cause of the characteristic deterioration is not only due to the high degree of integration of crystal orientation, which has been conventionally said, but also due to the influence of the crystal grain size. Moreover, regarding the effect of the strain introduced in the processing step on the characteristic deterioration, the following new findings were made.

【0016】すなわち、結晶方位の集積度が高い場合、
鋼板表面に現われる磁極は結晶粒表面よりも結晶粒界に
現われる磁極の方が圧倒的に大きい。磁区の細分化によ
る鉄損の低減は、磁極の発生によって増加した静磁エネ
ルギーを磁区細分化により低下する機構によって達成さ
れるのであるが、高磁束密度方向性電磁鋼板の場合、粒
界に現われる磁極による効果がそれゆえ大部分となる。
しかしながら、この材料の場合、必然的に結晶粒径が大
きくなっているので結晶粒界間の距離が大きく、同一量
の磁極が結晶粒界に現われていても静磁エネルギーの増
加量は結晶粒径の小さな材料よりも小さい。また、材料
の鉄損を最小にすべく磁区細分化処理を施した材料で
は、これにひとたび歪が付加された場合、エネルギーバ
ランスが容易に崩れて磁区細分化効果が失われ、磁区幅
が増加する。これが、高磁束密度電磁鋼板において歪感
受性が高い理由である。
That is, when the degree of integration of crystal orientation is high,
Regarding the magnetic poles appearing on the surface of the steel sheet, the magnetic poles appearing at the crystal grain boundaries are overwhelmingly larger than the crystal grain surfaces. Reduction of iron loss due to subdivision of magnetic domains is achieved by a mechanism that reduces the magnetostatic energy increased by the generation of magnetic poles due to subdivision of magnetic domains. In the case of high magnetic flux density grain-oriented electrical steel sheet, it appears at grain boundaries. The effect of the magnetic poles is therefore predominant.
However, in the case of this material, the crystal grain size is inevitably large, so the distance between the crystal grain boundaries is large, and even if the same amount of magnetic pole appears in the crystal grain boundaries, the increase in magnetostatic energy is Smaller than small diameter material. In addition, in a material that has undergone magnetic domain refinement processing to minimize iron loss of the material, once strain is added to this, the energy balance is easily disrupted and the magnetic domain refinement effect is lost, increasing the magnetic domain width. To do. This is the reason why the high magnetic flux density magnetic steel sheet has high strain sensitivity.

【0017】以下、上記の知見を得るに至った実験につ
いて述べる。 C:0.08wt%、Si:3.35wt%、Mn:0.07wt%、Al:0.02
5 wt%、Se:0.020 wt%、Sb:0.040 wt%およびN:0.
008 wt%を含み、残余は不可避的不純物とFeからなる方
向性電磁鋼用の熱延板を、1000℃、30秒間の熱延板焼鈍
後、酸洗し、ついで圧下率:30%の冷間圧延を施したの
ち、中間焼鈍として1050℃で1分間の熱処理を施してか
ら、再び酸洗し、 150〜200 ℃の温間で圧下率:85%の
圧延を施して最終厚み:0.22mmの鋼板とした。ついで脱
脂処理を施した後、磁区細分化処理として鋼板表面に、
深さ:25μm、幅:50μm で、板幅方向から10°傾いた
方向に、長手方向への繰り返しピッチ:3mmの条件で線
状溝を設けた。その後、 850℃で2分間の脱炭・1次再
結晶焼鈍を施したのち、鋼板を2分割し、一方はそのま
ま従来材として用い、他方については、鋼板表面に 1.5
mm径のサイズで点状に、板幅方向に20mm、長手方向に30
mmのピッチで40〜45 Ws のエネルギー投与(1000〜1200
℃の推定温度)条件下の放電処理により瞬間的な加熱処
理を施した。その後、鋼板表面に、TiO2:10wt%および
Sr(OH)2:2wt%を添加したMgOを焼鈍分離剤として塗
布した後、コイルに巻取り、最終仕上げ焼鈍に供した。
最終仕上げ焼鈍は、 850℃までN2 中、1150℃までH2
とN2 の混合雰囲気中での2次再結晶を目的とした処理
と、引き続き1150℃からH2 中で5時間保持する純化を
目的とした処理を同時に行った。最終仕上げ焼鈍後は、
未反応の焼鈍分離剤を除去した後、50%のコロイダルシ
リカとりん酸マグネシウムからなる張力コートを塗布
し、製品とした。
The experiments that lead to the above findings will be described below. C: 0.08 wt%, Si: 3.35 wt%, Mn: 0.07 wt%, Al: 0.02
5 wt%, Se: 0.020 wt%, Sb: 0.040 wt% and N: 0.
A hot rolled sheet for grain-oriented electrical steel containing 008 wt% and the balance of inevitable impurities and Fe was annealed at 1000 ° C for 30 seconds, pickled, and then cold rolled at a reduction rate of 30%. After intermediate rolling, heat treatment at 1050 ° C for 1 minute as intermediate annealing, then pickling again, rolling at 150-200 ° C with rolling reduction of 85% and final thickness: 0.22mm Steel plate. Then, after degreasing treatment, on the surface of the steel sheet as magnetic domain refinement treatment,
A linear groove was formed with a depth of 25 μm and a width of 50 μm in a direction tilted by 10 ° from the plate width direction and with a repeating pitch in the longitudinal direction of 3 mm. Then, after decarburization and primary recrystallization annealing at 850 ° C for 2 minutes, the steel sheet was divided into two parts, one was used as it was as a conventional material, and the other was 1.5
Dotted with a size of mm diameter, 20 mm in the width direction and 30 in the longitudinal direction
Energy dose of 40-45 Ws (1000-1200
Instantaneous heat treatment was performed by discharge treatment under the condition of (estimated temperature of ° C). After that, TiO 2 : 10 wt% and
After MgO added with 2 wt% of Sr (OH) 2 was applied as an annealing separator, it was wound on a coil and subjected to final finish annealing.
Final finish annealing is performed in N 2 up to 850 ° C, H 2 up to 1150 ° C
A treatment for the purpose of secondary recrystallization in a mixed atmosphere of N 2 and N 2 and a treatment for the purpose of purification by holding at 1150 ° C. for 5 hours in H 2 were simultaneously performed. After the final finish annealing,
After removing the unreacted annealing separator, a tension coat consisting of 50% colloidal silica and magnesium phosphate was applied to obtain a product.

【0018】各製品の磁気特性を測定した後、スリット
加工、剪断加工、積み加工によりモデル変圧器を作成し
て変圧器の特性を測定し、その後鋼板をマクロエッチし
て結晶粒径を測定した。また、上記のスリット加工、剪
断加工、積み加工に際しては細心の注意を払い歪の付加
を極力抑制したが、歪付与の効果を実験的に評価するた
め、これらの加工時に50mm径の球体を有するキャスター
を5kgの荷重で押し付けて意図時に歪を付加する実験も
併せて行った。得られた結果を整理して表1に示す。
After measuring the magnetic characteristics of each product, a model transformer was prepared by slitting, shearing, and stacking to measure the characteristics of the transformer, and then the steel sheet was macro-etched to measure the crystal grain size. . In addition, although the above-mentioned slit processing, shearing processing, and stacking processing were performed with the utmost care, the addition of strain was suppressed as much as possible, but in order to experimentally evaluate the effect of strain imparting, a sphere with a diameter of 50 mm was used during these processing. An experiment was also conducted in which casters were pressed with a load of 5 kg to add strain when intended. The results obtained are summarized in Table 1.

【0019】[0019]

【表1】 [Table 1]

【0020】表1から明らかなように、脱炭・1次再結
晶焼鈍後、 1.5mm径のサイズで点状に瞬間的な高温処理
を施したのち2次再結晶させた製品(記号(a), (b))で
は、モデル変圧器の鉄損は極めて良好であり、製品の鉄
損に対する変圧器の鉄損の比(以後、実機化因子と呼称
する)は低かったのに対し、このような処理を行わない
製品(記号(c), (d))では、モデル変圧器の鉄損は大き
く劣化し、特に加工工程においてキャスターを用いて歪
を付加した場合には実機化因子が大きく、変圧器の鉄損
の劣化程度は極めて大、すなわち歪感受性が大きいこと
が判明した。
As is clear from Table 1, after decarburization / primary recrystallization annealing, a product having a size of 1.5 mm and subjected to a momentary high temperature treatment and then secondary recrystallization (symbol (a ), (b)), the iron loss of the model transformer was extremely good, and the ratio of the iron loss of the transformer to the iron loss of the product (hereinafter referred to as the realization factor) was low, whereas In products without such treatment (symbols (c) and (d)), the iron loss of the model transformer is greatly deteriorated, and especially when strain is added by using casters in the machining process, the factor of realization is large. , It was found that the degree of deterioration of the iron loss of the transformer is extremely large, that is, the strain sensitivity is large.

【0021】上記のような結果が得られた理由を解明す
べく、鋼板のマクロエッチによる結晶粒の状態とモデル
変圧器の磁束分布の状態について詳細に調査したとこ
ろ、脱炭焼鈍板に 1.5mm径の点状の瞬間的高温熱処理を
施したのち2次再結晶させた製品(a), (b)では、かかる
処理を施した場所において 0.5〜2.5 mm径のサイズの微
細な結晶粒が鋼板の表面から裏面まですなわち板厚方向
を貫通して形成されていたのに対し、このような処理を
施さなかった製品(c), (d)では、大部分が鋼板面内にお
いて20〜70mmの粒径の粗大粒からなるものであった。
In order to elucidate the reason why the above results were obtained, the state of crystal grains of the steel plate by macro etching and the state of the magnetic flux distribution of the model transformer were investigated in detail. In the products (a) and (b) that were subjected to secondary high-temperature heat treatment after being subjected to a point-like instantaneous high-temperature heat treatment, fine crystal grains with a diameter of 0.5 to 2.5 mm were formed on the steel plate at the location where such treatment was applied. Although the product was formed from the front surface to the back surface, that is , through the sheet thickness direction, most of the products (c) and (d) that were not subjected to such treatment had a thickness of 20 to 70 mm within the plane of the steel sheet. It was composed of coarse particles.

【0022】また、このようにして人為的に生成させた
微細結晶粒の結晶方位を測定したところ、ランダム方位
となっており、通常の2次再結晶粒の方位であるゴス方
位から15°以上もずれていた。ちなみに、脱炭焼鈍板に
1.5mm径の点状の瞬間的高温熱処理を施したのち2次再
結晶させた場合(製品(a), (b))と同様の方法で、板幅
方向における間隔:10mmピッチ、圧延方向における間
隔:15mmピッチで鋼板に人為的に微細粒を生成させた例
を図1に示し、また図2の(100)極点図には、その
方位を、自然発生した微細粒のそれと比較して示す。図
1には、自然に発生した微細粒も散見されるが、瞬間的
な高温熱処理を施した位置には確実に微細粒が生成して
いる。また、図2に示したとおり、人為的に生成させた
微細粒の方位はランダムに分布しているのに対し、自然
に発生した微細粒のそれはゴス方位に極めて近いことが
判る。
Further, when the crystal orientation of the fine crystal grains artificially generated in this way was measured, it was found to be a random orientation, which was 15 ° or more from the Goss orientation which is the usual orientation of secondary recrystallized grains. It was off. By the way, for decarburized annealing plate
In the same manner as in the case of secondary recrystallization after subjecting to a point-shaped instantaneous high-temperature heat treatment with a diameter of 1.5 mm, the interval in the strip width direction: 10 mm pitch, in the rolling direction Interval: An example of artificially generating fine particles on a steel plate at a pitch of 15 mm is shown in FIG. 1, and the (100) pole figure of FIG. 2 shows its orientation in comparison with that of naturally occurring fine particles. . In FIG. 1, naturally occurring fine particles are also scattered, but fine particles are surely generated at positions where instantaneous high temperature heat treatment is performed. Further, as shown in FIG. 2, the orientation of the fine particles artificially generated is randomly distributed, whereas that of the naturally occurring fine particles is extremely close to the Goth orientation.

【0023】次に、上記2種類の製品の板厚方向に貫通
する結晶粒について、粒径分布を測定した結果を表2に
示す。ここで、各結晶粒の粒径は、その面積に相当する
円の直径で計算し、また平均結晶粒径の計算は一定面積
内に存在する結晶粒の個数を数え、1個当たりの平均面
積を求め、その面積に相当する円の直径で表した。
Next, Table 2 shows the results of measuring the grain size distribution of the crystal grains penetrating in the plate thickness direction of the above two types of products. Here, the grain size of each crystal grain is calculated by the diameter of a circle corresponding to the area, and the average crystal grain size is calculated by counting the number of crystal grains existing in a certain area. Was calculated and expressed by the diameter of the circle corresponding to the area.

【0024】[0024]

【表2】 [Table 2]

【0025】表2から、実機化因子が大きく、変圧器特
性が劣った製品(c), (d)は、2.5 mm以下の微細粒の個数
が約30%であり、15〜70mmのサイズの結晶粒が約60%を
占めることが判る。これに対し、実機化因子の低い、変
圧器の鉄損特性に優れた製品である (a)や(b) は 2.5mm
以下の微細粒の個数比率が約90%であり、15〜70mmのサ
イズの結晶粒の個数比率は8%と極めて低いことが判
る。
From Table 2, the products (c) and (d), which have a large factor of realization and inferior transformer characteristics, have about 30% of fine particles of 2.5 mm or less, and have a size of 15 to 70 mm. It can be seen that the crystal grains occupy about 60%. On the other hand, products with excellent iron loss characteristics of transformers with low actualization factor (a) and (b) are 2.5 mm.
It can be seen that the number ratio of the following fine particles is about 90%, and the number ratio of the crystal grains having a size of 15 to 70 mm is 8%, which is extremely low.

【0026】このように、実機化因子の値が異なる2種
類の材料においては、微細結晶粒の個数比率に大きな差
異があることが判明したが、このような微細粒の存在に
よって如何なる機構で実機化因子および歪感受性の低下
すなわち耐歪特性の向上効果が得られたかについて、次
に調査した。まず、モデル変圧器におけるT部接合部の
磁束の流れを調査したところ、微細粒の存在によって磁
束の廻り込みが抑制されていることが判った。すなわ
ち、粗大結晶粒の方位の集積度の向上にも拘わらず、粗
大結晶粒の中に存在する微細な結晶粒が磁束の廻り込み
を抑制していることが新たに判明した。それ故、高磁束
密度の材料であるにも拘わらず、実機化因子が低く抑制
されたわけである。
As described above, it was found that there is a large difference in the number ratio of the fine crystal grains between the two types of materials having different values of the realization factor. However, due to the existence of such fine grains, any mechanism may be used. Next, it was investigated whether or not the chemical conversion factor and the reduction in strain sensitivity, that is, the effect of improving the strain resistance characteristic was obtained. First, when the flow of the magnetic flux at the T-junction in the model transformer was investigated, it was found that the presence of fine particles suppressed the wraparound of the magnetic flux. That is, it has been newly found that the fine crystal grains existing in the coarse crystal grains suppress the wraparound of the magnetic flux despite the improvement in the degree of integration of the orientation of the coarse crystal grains. Therefore, the materialization factor was suppressed to a low level even though the material had a high magnetic flux density.

【0027】次に、加工工程で付加される歪に起因した
磁気特性の劣化に対する耐性すなわち耐歪特性に対する
効果について検討を加えた。鋼板内に歪が付加された場
合、歪に起因する鋼板の磁気的エネルギーが増加し、相
対的に静磁エネルギーの比率が低下するため、磁区の細
分化効果は減殺される。これに対抗するには、弾性エネ
ルギーや静磁エネルギーなど磁区細分化に寄与する種類
のエネルギーを、付加された歪によるエネルギー増加分
よりも少なくとも優る量だけ、予め鋼板内に与えておく
ことが有効である。かようなエネルギー付与方法として
は、張力付与があり、その他にも静磁エネルギー増加手
法がある。このうち、張力付与については、現状よりも
強い張力を付与できるコーティングは見当たらず、コー
ティング厚みを増加する手段では占積率の低下を招き、
変圧器特性が劣化する。
Next, due to the strain added in the processing step
A study was made on the resistance to deterioration of magnetic properties, that is , the effect on strain resistance . When strain is applied to the steel sheet, the magnetic energy of the steel sheet due to the strain is increased and the ratio of magnetostatic energy is relatively reduced, so that the subdivision effect of the magnetic domains is diminished. In order to counter this, it is effective to preliminarily give the type of energy, such as elastic energy or magnetostatic energy, that contributes to the subdivision of the magnetic domain to the steel sheet in advance in an amount at least superior to the amount of energy increase due to the added strain. Is. As such an energy applying method, there is a tension applying method, and other methods include a magnetostatic energy increasing method. Among these, regarding tension application, no coating that can apply tension higher than the current situation is found, and means for increasing the coating thickness causes a decrease in space factor,
Transformer characteristics deteriorate.

【0028】そこで、静磁エネルギーについて考察する
と、磁束密度が向上し鋼板の結晶粒の方位の集積度が向
上すると、前述したような理由で結晶粒界に磁極が集積
し、しかも結晶粒径が粗大化に伴う結晶粒界の間隔の増
大のため、静磁エネルギーの大きさは激減する。しかし
ながら、人為的に生成させた微細粒は、その方位がゴス
方位から大きく(通常15°以上)ずれているため、かよ
うな微細粒を粗大結晶粒の中に存在させることによって
静磁エネルギーを増加させることが可能となり、これに
伴い製品の耐歪特性が向上するのである。
Therefore, considering the magnetostatic energy, when the magnetic flux density is improved and the degree of integration of the orientation of the crystal grains of the steel sheet is improved, magnetic poles are accumulated at the crystal grain boundaries and the crystal grain size is The magnitude of the magnetostatic energy is drastically reduced due to the increase in the spacing of the grain boundaries due to the coarsening. However, the orientation of artificially generated fine grains is largely deviated from the Goss orientation (usually 15 ° or more), so that the presence of such fine grains in the coarse crystal grains causes magnetostatic energy to be increased. It is possible to increase the strain resistance, and the strain resistance of the product is improved accordingly.

【0029】この効果を、最大限発揮させるためには、
微細粒の粒径が板厚を貫通していることが重要である。
というのは、微細粒が板厚を貫通していないと、板厚垂
直方向に射影される粒界面積が小さく、結晶粒界上に発
生する磁極の量も少ないため、静磁エネルギーを高める
効果が弱いからであり、また磁束の廻り込みを抑制する
効果も同様に劣るため、実機化因子も増大することにな
るからである。
In order to maximize this effect,
It is important that the particle size of the fine particles penetrates the plate thickness.
This is because if fine grains do not penetrate the plate thickness, the grain boundary area projected in the direction perpendicular to the plate thickness is small and the amount of magnetic poles generated on the crystal grain boundaries is small, so the magnetostatic energy is increased. Is also weak, and the effect of suppressing the wraparound of the magnetic flux is also inferior, so that the factor for realization is also increased.

【0030】次に、鋼板板厚を貫通する結晶粒全体に占
める3mm以下の微細結晶粒の個数比率の割合と耐歪特性
をも含めた実機化因子との関係について調査した結果
を、図3に示す。同図に示したとおり、微細粒の個数比
率が65〜98%の間、特に75〜98%の間で実機化因子が低
くかつ耐歪特性(歪付与加工時における実機化因子で評
価)も向上している。
Next, the result of investigation on the relationship between the ratio of the number of fine crystal grains of 3 mm or less to the total number of crystal grains penetrating the plate thickness of the steel sheet and the factor of practical use including strain resistance was shown in FIG. Shown in. As shown in the figure, when the number ratio of fine grains is between 65% and 98%, especially between 75% and 98%, the materialization factor is low and the strain resistance characteristics (evaluated by the materialization factor at the time of strain imparting processing) Has improved.

【0031】次に、板厚を貫通する全結晶粒についてそ
の平均粒径として適正な値を実験により求めた。すなわ
ち、磁束密度の向上に伴って粗大結晶粒はますます粗大
化していくが、これに応じて微細結晶粒の個数比率は数
値上増加していく。しかしながら、微細結晶粒間の距離
も同一の微細粒個数比率では粗大結晶粒の増大の応じて
実質的には増加していくことになるので、微細粒の存在
による静磁エネルギーの増加効果はさほど期待できない
ことになる。従って、平均結晶粒径として好ましい上限
値が存在することになる。図4に、この点について実験
した結果を示す。同図から明らかなように、板厚を貫通
する全結晶粒の平均結晶粒径が8〜50mmの範囲におい
て、とりわけ優れた実機化因子と耐歪特性の向上効果が
得られている。
Next, an appropriate value as an average grain size of all crystal grains penetrating the plate thickness was experimentally determined. That is, as the magnetic flux density is improved, the coarse crystal grains are further coarsened, but the number ratio of the fine crystal grains is numerically increased accordingly. However, since the distance between fine crystal grains also increases substantially with the increase of coarse crystal grains at the same fine grain number ratio, the effect of increasing magnetostatic energy due to the presence of fine grains is not so great. You can't expect it. Therefore, there is a preferable upper limit as the average crystal grain size. FIG. 4 shows the result of an experiment conducted on this point. As is clear from the figure, when the average crystal grain size of all the crystal grains penetrating the plate thickness is in the range of 8 to 50 mm, particularly excellent realization factor and strain resistance improving effect are obtained.

【0032】以上、板厚を貫通する微細粒の生成によっ
て、実機化因子の増加が抑制される機構および耐歪特性
が向上する機構について説明した。次に、このような効
果を得るために必要な微細粒の生成に必要な製造条件に
ついて検討した結果について述べる。
The mechanism for suppressing the increase of the factor for practical use and the mechanism for improving the strain resistance by the generation of the fine grains penetrating the plate thickness have been described above. Next, the results of an examination of the manufacturing conditions necessary to generate the fine particles necessary to obtain such effects will be described.

【0033】種々の実験の結果、上記の効果を有する微
細粒の生成には、2次再結晶前に、局所的に異常粒成長
の促進のための駆動力を高めておくことが必要で、特に
一定量の歪を鋼板内部に存在させることが有効であるこ
とが判明した。2次再結晶は特定方位の結晶粒が、その
他の1次再結晶粒を急激に蚕食して成長する現象であ
る。近年、この2次再結晶粒の核生成および成長には1
次再結晶粒の集合組織による選択性が強く作用している
ことが明らかになりつつあり、ゴス方位およびその近傍
以外の方位を有する結晶粒の核生成および成長は容易で
ないと言われている。
As a result of various experiments, in order to generate fine grains having the above effect, it is necessary to locally increase the driving force for promoting abnormal grain growth before secondary recrystallization. It has been found that it is particularly effective to allow a certain amount of strain to exist inside the steel sheet. Secondary recrystallization is a phenomenon in which crystal grains in a specific orientation grow by rapidly eroding other primary recrystallized grains. In recent years, 1 has been required for the nucleation and growth of these secondary recrystallized grains.
It is becoming clear that the selectivity of the secondary recrystallized grains has a strong effect, and it is said that it is not easy to generate and grow nuclei of grains having an orientation other than the Goss orientation and the vicinity thereof.

【0034】しかしながら、発明者らの研究によれば、
鋼板内部の一定領域に異常粒成長の駆動力を高める処
理、例えば一定量の歪を導入する処理を施すことによ
り、一般の結晶粒の核生成および成長の駆動力を高める
ことが可能となり、ゴス方位から大きくずれた方位の結
晶粒が早期に成長することができるようになる。ここで
いう異常粒成長とは、極めて少数の結晶粒が圧倒的多数
の他の結晶粒を蚕食して急激に成長する現象の一般的な
呼称であり、2次再結晶が1次再結晶集合組織に依存す
る特定の方位を有する少数の結晶粒のみが急激に成長す
る現象である点において、両者は明瞭に異なる。
However, according to the research by the inventors,
By performing a process for increasing the driving force for abnormal grain growth in a certain region inside the steel sheet, for example, a process for introducing a certain amount of strain, it becomes possible to increase the driving force for nucleation and growth of general crystal grains. It becomes possible to grow the crystal grains in the direction greatly deviated from the direction at an early stage. Abnormal grain growth here is a general term for a phenomenon in which a very small number of crystal grains grows rapidly by eroding an overwhelmingly large number of other crystal grains, and secondary recrystallization is a primary recrystallization aggregation. The two are distinctly different in that only a small number of crystal grains having a specific orientation depending on the structure grow rapidly.

【0035】また、発明者らの研究によると、駆動力を
高める処理に起因する異常粒成長はあくまでもその領域
内のみであり、この領域の外では1次再結晶粒の集合組
織による選択性が強く働き、当該結晶粒はもはや、それ
以上成長することができないことも究明された。このよ
うな現象は、この発明の目的にとって非常に都合の良い
性質である。以下、この点について述べる。
Further, according to the research conducted by the inventors, abnormal grain growth due to the treatment for increasing the driving force is only in the region, and the selectivity due to the texture of the primary recrystallized grains is present outside this region. It was also determined that it worked so strongly that the grains could no longer grow any further. Such a phenomenon is a very convenient property for the purpose of the present invention. This point will be described below.

【0036】まず、第1に、鋼板内に歪を導入する場
合、歪の大きさと歪導入領域の大きさのみを制御すれ
ば、微細粒のサイズを制御することが可能となる。例え
ば、前述の実験に示したように、鋼板を貫通する微細粒
の適正サイズは円相当径で評価して3mm以下であるの
で、2次再結晶前に鋼板内部に存在させる歪導入領域に
ついても3mm以下に制御すれば、微細粒の大きさを適切
に制御できるのである。
First, when introducing strain into the steel sheet, it is possible to control the size of fine grains by controlling only the magnitude of strain and the size of the strain introduction region. For example, as shown in the above-mentioned experiment, the proper size of the fine grains penetrating the steel plate is 3 mm or less when evaluated by the equivalent circle diameter, so that the strain introduction region to be present inside the steel plate before the secondary recrystallization is also If it is controlled to 3 mm or less, the size of fine particles can be controlled appropriately.

【0037】第2に、このようにして人為的に生成した
微細粒は、通常の粗大な2次再結晶粒の方位であるゴス
方位((110)〔001〕方位)から大きくずれてい
るので、粗大な2次再結晶粒と微細粒との結晶粒界に磁
極が高密度に生成し、前述した良好な耐歪特性と強い実
機化因子抑制効果が得られることになる。なお、方向性
電磁鋼板の製造過程においても自然発生的にかような微
細粒が生成されることがあるが、自然に発生した微細粒
は上記と同様の作用を有しているとはいえ、その発生過
程は、自然発生した他のとの成長競争に負けた粒であ
り、本質的には2次再結晶粒であるとこに変わりはな
く、ゴス方位に極めて近いので、結晶粒界にはさほど高
密度の磁極は生成せず、従って耐歪特性改善作用はおよ
び実機化因子抑制作用も弱い。
Secondly, since the fine particles artificially generated in this way are largely deviated from the Goss orientation ((110) [001] orientation) which is the orientation of the usual coarse secondary recrystallized grains. Thus, the magnetic poles are generated at a high density at the crystal grain boundaries between the coarse secondary recrystallized grains and the fine grains, and the above-described good strain resistance characteristics and the strong effect of suppressing the realization factor can be obtained. Incidentally, such fine particles may be spontaneously generated also in the manufacturing process of the grain-oriented electrical steel sheet, but it can be said that the naturally occurring fine particles have the same action as described above. the development process is a grain that has lost the growth competition with other grain that was naturally occurring, essentially no change in Toko is a secondary recrystallized grains is in, so very close to the Goss orientation, the crystal grain boundaries Magnetic poles with a very high density are not generated, and therefore, the strain resistance improving effect and the realization factor suppressing effect are weak.

【0038】第3に、人為的に生成させるので、製品に
おける最も好ましい位置に微細粒を生成させることが可
能となる。なお、人為的に生成させた微細粒は、前述し
たとおりゴス方位から大きくずれていて、結晶方位とし
ては劣るので、製品内に高密度に存在させてはならな
い。すなわち、できるだけ離散的に存在させることが好
ましく、粗大な結晶粒の内部に孤立した状態で存在して
いることが理想的である。このような状態は、予め歪導
入領域を局所的かつ離散的に形成させることによって容
易に実現できる。また、粗大な結晶粒の内部であれば、
数個の微細粒が集合した状態は有利に適合する。
Thirdly, since it is artificially generated, it becomes possible to generate fine particles at the most preferable position in the product. Since the fine particles artificially generated are largely deviated from the Goss orientation as described above and the crystal orientation is inferior, they should not be present in the product at a high density. That is, it is preferable that they exist as discretely as possible, and ideally they exist in an isolated state inside the coarse crystal grains. Such a state can be easily realized by forming the strain introduction regions locally and discretely in advance. Also, if inside the coarse crystal grains,
A state in which several fine particles are aggregated is suitable.

【0039】次に、脱炭・1次再結晶焼鈍後の鋼板に瞬
間的高温熱処理を施すことによって、人為的にこのよう
な微細粒が得られた機構について検討した結果について
述べる。さて、鋼板に瞬間的に高温熱処理を施した位置
の結晶組織の、2次再結晶焼鈍途中の過程における変化
について詳細に調査した。その結果、高温熱処理直後に
おいては、結晶粒径や析出インヒビターなどの結晶学的
変化はさほど大きくなく、無視できるほどであった。し
かしながら、2次再結晶焼鈍の極めて早い段階におい
て、一つの1次再結晶粒が周囲の1次再結晶粒の 1.5倍
から 3.0倍に粗大化していることが観察された。このよ
うな結晶粒の粗大化が生じる温度は、2次再結晶が起き
る通常の温度よりもはるかに低い温度であり、しかもそ
の後、板厚方向に貫通するまでに成長する時間も極めて
短い。板厚方向に貫通した後は、高温熱処理した領域内
までは同様に速やかに成長するが、その後は鋼板の昇温
をさらに継続しても成長は遅々としていて、この結晶粒
の成長はほぼ停止状態となる。
Next, the results of studying the mechanism by which such fine grains are artificially obtained by subjecting the steel sheet after decarburization and primary recrystallization annealing to instantaneous high temperature heat treatment will be described. Now, the change in the crystal structure at the position where the steel sheet was instantaneously subjected to the high temperature heat treatment was investigated in detail during the course of the secondary recrystallization annealing. As a result, immediately after the high temperature heat treatment, the crystallographic changes such as the crystal grain size and the precipitation inhibitor were not so large and were negligible. However, at the very early stage of the secondary recrystallization annealing, it was observed that one primary recrystallized grain was coarsened 1.5 to 3.0 times as large as the surrounding primary recrystallized grain. The temperature at which such coarsening of crystal grains occurs is much lower than the normal temperature at which secondary recrystallization occurs, and the time for subsequent growth until penetrating in the plate thickness direction is also extremely short. After penetrating in the plate thickness direction, it rapidly grows up to the inside of the high temperature heat treated region, but thereafter the growth is slow even if the temperature of the steel plate is further continued, and the growth of these crystal grains is almost the same. It will be stopped.

【0040】さらに、昇温を続けるに伴い、高温熱処理
を施していない非処理部の領域において、通常の2次再
結晶の核が生成し、成長が進行することになる。しかし
ながら、高温熱処理を施した領域に早い段階から成長し
た結晶粒は、後から発生した通常の2次再結晶によって
は蚕食されず、結局、製品内に微細結晶粒として残存す
ることになる。
Further, as the temperature rise is continued, normal secondary recrystallization nuclei are generated and the growth proceeds in the region of the non-treated part which is not subjected to the high temperature heat treatment. However, the crystal grains grown from the early stage in the region subjected to the high temperature heat treatment are not silkworm eroded by the normal secondary recrystallization generated later, and eventually remain as fine crystal grains in the product.

【0041】このような現象は以下の機構により起こる
ことが、発明者らにより解明された。すなわち、高温熱
処理を施した領域においては、各1次再結晶粒の内部に
歪が一定量以上導入されており、最終仕上げ焼鈍の昇温
過程において、その歪の一部は失われていくが、高密度
の転位が各結晶粒内に残存している。この残存する転位
が、異常粒成長における結晶成長の駆動力を高める作用
を及ぼす。異常粒成長の駆動力が十分高くなると、1次
再結晶集合組織による結晶方位の選択性に打ち勝って、
一般の方位の結晶粒が核生成および粒成長を始めるよう
になる。この現象は、異常粒成長の駆動力が大きいため
に発生するものであるから、非処理部の領域で起こる通
常の2次再結晶の核生成や粒成長よりも格段に低い温度
で起こる。しかしながら、異常粒成長の駆動力を高めた
領域の外では、結晶成長の方位選択性が非常に強いた
め、成長することができない。
The inventors have clarified that such a phenomenon occurs by the following mechanism. That is, in the region subjected to the high temperature heat treatment, a certain amount or more of strain is introduced inside each primary recrystallized grain, and part of the strain is lost in the temperature rising process of final finish annealing. , High-density dislocations remain in each crystal grain. The remaining dislocations act to increase the driving force for crystal growth in abnormal grain growth. When the driving force for abnormal grain growth becomes sufficiently high, the selectivity of the crystal orientation due to the primary recrystallization texture is overcome,
Crystal grains in a general orientation start nucleation and grain growth. Since this phenomenon occurs because the driving force for abnormal grain growth is large, it occurs at a temperature much lower than the usual nucleation of secondary recrystallization and grain growth that occur in the non-treated region. However, outside the region where the driving force for abnormal grain growth is increased, the orientational selectivity of crystal growth is so strong that it cannot grow.

【0042】このように、高温熱処理領域において異常
粒成長する結晶粒方位は、結晶方位選択性が相対的に弱
いため、ランダム方位となることが特徴であるが、あく
までも異常粒成長の一種であるので、1次再結晶粒の正
常粒成長に対する成長の抑制力の存在は不可欠であり、
強いインヒビター作用を必要とする。すなわち、薬剤を
塗布したり、高温長時間の熱処理による従来からの方法
は、析出インヒビターを粗大化させ抑制力を低下させる
ので、異常粒成長が起こり難くなり、正常粒成長による
多数の微細粒の発生を惹起させる結果となるので不適切
であり、この発明の方法とは本質的に異なり、忌避され
るべき方法である。
As described above, the crystal grain orientation for abnormal grain growth in the high temperature heat treatment region is characterized by a random orientation because the crystal orientation selectivity is relatively weak, but it is a kind of abnormal grain growth. Therefore, it is indispensable that the growth suppressing effect on the normal grain growth of the primary recrystallized grains is
Requires a strong inhibitory action. That is, the conventional method of applying a chemical or heat treatment at a high temperature for a long time coarsens the precipitation inhibitor and reduces the suppression power, so that abnormal grain growth is unlikely to occur and a large number of fine grains due to normal grain growth are formed. It is unsuitable because it results in development, and is essentially different from the method of the present invention and is a method to be repelled.

【0043】上述したように人為的に微細粒を生成させ
るためには、微細粒の成長を意図する領域内において、
結晶方位選択性を越えるレベルまで異常粒成長の駆動力
を高めることが必須条件であることを既に述べた。ここ
に異常粒成長の駆動力としては、(1) 歪の存在、(2) 1
次再結晶粒の微細化および(3) インヒビターの抑制力の
強化による結晶粒径に対するスーパーヒート化の増大等
が挙げられるが、(3) の方法はランダム方位の粒の発生
の制御が困難であり、しばしばゴス方位に近い結晶方位
の粒が成長し、微細粒の生成を意図する領域を越えて粗
大に成長するため、微細粒のサイズ制御が極めて困難と
なる。従って、上記結晶成長のための駆動力を高める方
法としては、(1) 歪を存在させること、または (2)1次
再結晶粒のサイズを小さくすることが有利な方法であ
り、特に歪を存在させる方法が最も有利な技術であるこ
とが、種々の実験から判明した。
In order to artificially generate fine particles as described above, in the region where the growth of fine particles is intended,
It has already been stated that it is essential to increase the driving force for abnormal grain growth to a level exceeding the crystal orientation selectivity. The driving force for abnormal grain growth is (1) existence of strain, (2) 1
It can be said that the secondary recrystallized grains become finer and (3) the superheat is increased with respect to the grain size by strengthening the inhibitory force of the inhibitor. Often, grains having a crystal orientation close to the Goss orientation grow and grow coarsely beyond a region intended to generate fine grains, which makes it extremely difficult to control the size of fine grains. Therefore, as a method of increasing the driving force for crystal growth, (1) existence of strain or (2) reduction of the size of primary recrystallized grains is an advantageous method. Various experiments have shown that the method present is the most advantageous technique.

【0044】例えば、前述した瞬間的な高温熱処理にお
いては、調査の結果、加熱処理が瞬間的であるため、高
温度であっても結晶粒径の増加や析出インヒビターの粗
大化といった結晶学的な変化が小さく、熱歪を多量に存
在させることが、結晶成長の駆動力を高めるのに有利に
作用していたことが判明した。つまり、急激な昇温と降
温により、結晶学的な組織変化を抑えて物理的な歪のみ
を鋼板内に導入できたことが有利に作用したものであ
る。ただし、若干の結晶粒径の増加や析出インヒビター
の粗大化は、これが、異常粒成長の核生成数の増加を抑
制する性質があり、領域内に生成する微細粒の個数を単
一なものに制限する作用があるので、結晶成長の駆動力
を低減させない限りにおいては好ましいと考えられる。
For example, in the above-mentioned instantaneous high-temperature heat treatment, as a result of investigation, the heat treatment is instantaneous, so that even at a high temperature, the crystal grain size is increased and the precipitation inhibitor is coarsened. It was found that the small change and the presence of a large amount of thermal strain had an advantageous effect on increasing the driving force for crystal growth. In other words, it is advantageous that the crystallographic structure change can be suppressed and only the physical strain can be introduced into the steel sheet by the rapid temperature rise and temperature drop. However, a slight increase in the crystal grain size and coarsening of the precipitation inhibitor have the property of suppressing the increase in the number of nucleation of abnormal grain growth, and the number of fine grains generated in the region is made uniform. Since it has a limiting effect, it is considered preferable unless the driving force for crystal growth is reduced.

【0045】上述した熱処理以外にも、結晶学的な組織
変化を抑えて物理的な歪を鋼板内に導入する方法は種々
考えられるが、発明者らが数多くの実験から最も有利な
方法として開発したものは、表面に小突起を有する鋼板
よりも硬い物体を鋼板表面に押圧する方法、高電圧を印
加し鋼板表面と局所的に通電または放電する方法、およ
びパルスレーザーを局所的に印加する方法等である。
Besides the heat treatment described above, various methods of suppressing the crystallographic structure change and introducing physical strain into the steel sheet are conceivable, but the inventors have developed as the most advantageous method from many experiments. What was done is a method of pressing an object harder than a steel plate having small projections on the surface of the steel plate, a method of applying a high voltage to locally energize or discharge the steel plate surface, and a method of locally applying a pulse laser. Etc.

【0046】また、結晶成長の駆動力を高めるための他
の方法である、1次再結晶粒の微粒化方法としては、実
験の結果、鋼板表面から局所的に浸炭させ、熱処理にお
けるα−γ変態を利用して局所的に微粒化する方法がと
りわけ効果的であった。さらに、インヒビターの抑制力
を強化する方法としては、局所的に鋼板表面から浸窒さ
せ、窒化珪素や窒化アルミを生成させて抑制力を局所的
に増大させる方法が、効果の安定性は低いものの有効で
あった。
As another method for increasing the driving force for crystal growth, as a method for atomizing primary recrystallized grains, as a result of experiments, as a result of local carburization from the steel sheet surface, α-γ in heat treatment was used. The method of locally atomizing by utilizing the transformation was particularly effective. Further, as a method of strengthening the inhibitory power of the inhibitor, a method of locally nitrifying the steel sheet surface to generate silicon nitride or aluminum nitride to locally increase the inhibitory power is not as stable as the effect. It was effective.

【0047】ところで、前述したように、近年、方向性
電磁鋼板の鉄損を低減する技術として、プラズマジェッ
トやレーザー光を照射して局所的に線状歪を導入した
り、鋼板表面に線状溝を設けて、人工的に磁区幅を細分
化する技術が開発された。この発明においても、このよ
うな磁区細分化技術を併せて活用すれば、より一層の特
性改善が期待できる。そこで、発明者らは、この磁区細
分化技術の点を含めて、さらに実機特性の改善を図るべ
く鋭意研究を進めたところ、材料特性を実機特性に有効
に反映させるためには、これらの磁区細分化および微細
粒の制御因子を結晶粒径に応じて所定の範囲に制御する
ことが重要であることを見出した。以下、これについて
述べる。
By the way, as described above, in recent years, as a technique for reducing the iron loss of grain-oriented electrical steel sheets, a linear jet is locally introduced by irradiating a plasma jet or laser light, or a linear steel sheet surface is introduced. A technique for artificially subdividing the magnetic domain width by providing a groove has been developed. In the present invention as well, if such a magnetic domain subdivision technique is also utilized, further improvement in characteristics can be expected. Therefore, the inventors of the present invention have conducted earnest research to further improve the characteristics of the actual machine, including the magnetic domain subdivision technology. In order to effectively reflect the material characteristics in the characteristics of the actual machine, the magnetic domain It has been found that it is important to control the control factors for subdivision and fine grains within a predetermined range according to the crystal grain size. This will be described below.

【0048】方向性電磁鋼板は、主として変圧器の鉄心
材料として作用されるが、このとき用いられる磁束密度
の領域は、機器の設計によって多様である。一般に高磁
束密度の材料であればあるほど、高磁束密度での使用が
有利となるため高磁束密度領域での実機の特性に優れて
いることが要求される。前述したように、高磁束密度の
方向性電磁鋼板は、材料の磁気特性に較べ実機特性が劣
化することがよく知られている。ここで、電磁鋼板を構
成する結晶粒径は、材料特性が高磁束密度化すると必然
的に粗大化するが、結晶粒径に応じて、溝の深さ、もし
くは局所的歪の領域などを変えることにより、有利に実
機化因子を低減できる、すなわち材料特性を実機特性に
反映できることが判明した。この実験について下記に述
べる。
The grain-oriented electrical steel sheet is mainly used as a core material of a transformer, and the magnetic flux density range used at this time varies depending on the design of the equipment. Generally, the higher the magnetic flux density of a material, the more advantageous it is to use at a high magnetic flux density, so that it is required that the characteristics of the actual machine in the high magnetic flux density region are excellent. As described above, it is well known that the grain-oriented electrical steel sheet having a high magnetic flux density deteriorates the actual machine characteristics as compared with the magnetic characteristics of the material. Here, the crystal grain size that constitutes the electromagnetic steel sheet inevitably becomes coarser as the material characteristics increase in magnetic flux density, but the depth of the groove or the region of local strain is changed according to the crystal grain size. Therefore, it has been found that the actual machine factor can be advantageously reduced, that is, the material characteristics can be reflected in the actual machine characteristics. This experiment is described below.

【0049】C:0.08wt%、Si:3.40wt%、Mn:0.07wt
%、Al:0.025 wt%、Se:0.018 wt%、Sb:0.040 wt
%、Ni:0.12wt%、Bi:0.004 wt%およびN:0.008 wt
%を含有し(Bi含有鋼)、残部はFeおよび不可避的不純
物の組成になる方向性電磁鋼用熱延板を、 750℃、3秒
間の炭化物調整のための熱延焼鈍後、酸洗し、ついで圧
下率:30%の冷間圧延を施したのち、中間焼鈍として10
50℃で45秒間の均熱と40℃/sの急冷からな熱処理を施し
てから、再び酸洗し、ついで 150〜200 ℃の温間で圧下
率:87%の圧延を施して最終板厚:0.22mmの鋼板とし
た。また、C:0.05wt%、Si:3.20wt%、Mn:0.15wt
%、Al:0.014 wt%、S:0.008 wt%、Sb:0.005 wt
%、B:0.0005wt%およびN:0.007 wt%を含有し(B
含有鋼)、残部はFeおよび不可避的不純物の組成になる
方向性電磁鋼用熱延板を、800 ℃、30秒間の熱延板焼鈍
後、酸洗し、ついで 170℃の温間で圧下率:87%圧延を
施して最終板厚:0.34mmの鋼板とした。
C: 0.08 wt%, Si: 3.40 wt%, Mn: 0.07 wt
%, Al: 0.025 wt%, Se: 0.018 wt%, Sb: 0.040 wt
%, Ni: 0.12 wt%, Bi: 0.004 wt% and N: 0.008 wt
% (Bi-containing steel) with the balance being Fe and unavoidable impurities in the composition Hot-rolled sheet for grain-oriented electrical steel, hot-annealed at 750 ° C for 3 seconds to adjust carbides, then pickled Then, after cold rolling at a reduction rate of 30%, an intermediate annealing of 10 was performed.
After soaking at 50 ° C for 45 seconds and quenching at 40 ° C / s, it is pickled again, and then rolled at a rolling reduction of 87% at a temperature of 150 to 200 ° C to give the final sheet thickness. : A 0.22 mm steel plate was used. In addition, C: 0.05 wt%, Si: 3.20 wt%, Mn: 0.15 wt
%, Al: 0.014 wt%, S: 0.008 wt%, Sb: 0.005 wt
%, B: 0.0005 wt% and N: 0.007 wt% (B
Steel, the balance of which is Fe and inevitable impurities in the composition. Hot-rolled steel sheet for grain-oriented electrical steel is annealed at 800 ℃ for 30 seconds, pickled, and then rolled at 170 ℃. : 87% rolled to obtain a steel plate with a final thickness of 0.34 mm.

【0050】次に、これらの鋼板を脱脂処理した後、Bi
含有鋼およびB含有鋼ともに、a)〜g) の記号の小コ
イルに各7分割し、それぞれ以下の処理を施した。 a) のコイルは、磁区細分化処理として、鋼板表面に深
さ:25μm で幅:250μm の線状溝を、板幅方向から10
゜傾いた方向に、長手方向への繰り返しピッチ:3mmの
条件で設け、その後 850℃で2分間の脱炭・1次再結晶
焼鈍を施したのち、鋼板表面に、Bi含有鋼の場合は 1.5
mm径のサイズで点状に板幅方向に30mm、長手方向に60mm
のピッチといった疎な分布で、65 Ws のエネルギー投与
条件下の放電処理により、数ミリ秒間の瞬間的な加熱処
理を施し、一方B含有鋼の場合は1.5 mm径のサイズで点
状に板幅方向に15mm、長手方向に30mmのピッチといった
密な分布で、65 Ws のエネルギー投与条件下の放電処理
により、数ミリ秒間の瞬間的な加熱処理を施した。
Next, after degreasing these steel sheets, Bi
Both the contained steel and the B-containing steel were divided into seven small coils with symbols a) to g), and the following treatments were applied to the small coils. The coil in a) was subjected to a magnetic domain refinement treatment by forming linear grooves with a depth of 25 μm and a width of 250 μm on the surface of the steel plate in the width direction of 10 μm.
It was installed in a tilted direction at a repeating pitch of 3 mm in the longitudinal direction: 3 mm, followed by decarburization and primary recrystallization annealing at 850 ° C for 2 minutes.
30 mm in the width direction and 60 mm in the longitudinal direction in the shape of dots with a size of mm diameter
With a sparse distribution such as a pitch of 65 Ws, an instantaneous heat treatment for several milliseconds was performed by an electric discharge treatment under an energy application condition of 65 Ws. With a dense distribution of 15 mm in the longitudinal direction and 30 mm in the longitudinal direction, an instantaneous heat treatment for several milliseconds was performed by an electric discharge treatment under an energy application condition of 65 Ws.

【0051】b) のコイルは、磁区細分化処理として、
鋼板表面に深さ:10μm で幅:50μm の線状溝を、板幅
方向から10゜傾いた方向に、長手方向への繰り返しピッ
チ:3mmの条件で設け、その後 850℃で2分間の脱炭・
1次再結晶焼鈍を施した後、鋼板表面に、Bi含有鋼の場
合は 1.5mm径のサイズで点状に板幅方向に30mm、長手方
向に60mmのピッチといった疎な分布で、65 Ws のエネル
ギー投与条件下の放電処理により、数ミリ秒間の瞬間的
な加熱処理を施し、一方B含有鋼の場合は1.5mm径のサ
イズで点状に板幅方向に15mm、長手方向に30mmのピッチ
といった密な分布で、65 Ws のエネルギー投与条件下の
放電処理により、数ミリ秒間の瞬間的な加熱処理を施し
た。
The coil of b) is subjected to magnetic domain subdivision processing,
A linear groove with a depth of 10 μm and a width of 50 μm was provided on the surface of the steel sheet in a direction inclined by 10 ° from the width direction of the steel sheet, with a repeating pitch in the longitudinal direction of 3 mm, and then decarburized at 850 ° C. for 2 minutes.・
After the primary recrystallization annealing, on the surface of the steel sheet, in the case of Bi-containing steel, with a size of 1.5 mm diameter, a sparse distribution of 30 mm in the width direction and 60 mm in the longitudinal direction with a sparse distribution of 65 Ws By electric discharge treatment under energy application condition, instantaneous heat treatment for a few milliseconds is performed, while in the case of B-containing steel, the size is 1.5 mm in diameter, and the dots are 15 mm in the width direction and 30 mm in the longitudinal direction. In a dense distribution, an instantaneous heat treatment for several milliseconds was performed by an electric discharge treatment under an energy application condition of 65 Ws.

【0052】c) 〜e) のコイルは、850 ℃で2分間の
脱炭・次再結晶焼鈍を施したのち、鋼板表面に、Bi含有
鋼の場合は 1.5mm径のサイズで点状に板幅方向に30mm、
長手方向に60mmのピッチといった疎な分布で、65 Ws の
エネルギー投与条件下の放電処理により、数ミリ秒間の
瞬間的な加熱処理を施し、一方B含有鋼の場合は1.5mm
径のサイズで点状に板幅方向に15mm、長手方向に30mmの
ピッチといった密な分布で、65 Ws のエネルギー投与条
件下の放電処理により、数ミリ秒間の瞬間的な加熱処理
を施した。
The coils of c) to e) were subjected to decarburization and subsequent recrystallization annealing at 850 ° C. for 2 minutes, and then, on the steel sheet surface, in the case of Bi-containing steel, a sheet with a size of 1.5 mm was formed into dots. 30 mm in the width direction,
With a sparse distribution such as a pitch of 60 mm in the longitudinal direction, a momentary heat treatment for several milliseconds was performed by an electric discharge treatment under the energy application condition of 65 Ws, while 1.5 mm in the case of B-containing steel.
With a dense distribution of 15 mm in the width direction and a pitch of 30 mm in the longitudinal direction in the size of diameter, an instantaneous heat treatment for several milliseconds was performed by an electric discharge treatment under an energy application condition of 65 Ws.

【0053】f) のコイルは、850 ℃で2分間の脱炭・
1次再結晶焼鈍を施したのち、鋼板表面に、Bi含有鋼の
場合は 1.5mm径のサイで点状に板幅方向に15mm、長手方
向に30mmのピッチといった密な分布で、65 Ws のエネル
ギー投与条件下の放電処理により、数ミリ秒間の瞬間的
な加熱処理を施し、一方B含有鋼の場合は 1.5mm径のサ
イズで点状に板幅方向に30mm、長手方向に60mmのピッチ
といった疎な分布で、65 Ws のエネルギー投与条件下の
放電処理により、数ミリ秒間の瞬間的な加熱処理を施し
た。
The coil of f) was decarburized at 850 ° C for 2 minutes.
After performing the primary recrystallization annealing, in the case of Bi-containing steel, the surface of the steel sheet was densely distributed with a 1.5 mm diameter die in a dotted pattern of 15 mm in the width direction and 30 mm in the longitudinal direction at 65 Ws. An instantaneous heat treatment for a few milliseconds is performed by an electric discharge treatment under the condition of energy application, while in the case of B-containing steel, the size is 1.5 mm and the dots are 30 mm in the width direction and 60 mm in the longitudinal direction. In a sparse distribution, an instantaneous heat treatment for several milliseconds was performed by an electric discharge treatment under an energy application condition of 65 Ws.

【0054】g) のコイルは、比較材として、単に 850
℃で2分間の脱炭・1次再結晶焼鈍を施した。
The coil of g) is merely 850 as a comparative material.
Decarburization and primary recrystallization annealing were performed at 2 ° C for 2 minutes.

【0055】ついで、a) 〜g) のコイルはいずれも、
表面にTiO2:10wt%およびSr(OH)2:2wt%を添加したM
gOを焼鈍分離剤として塗布したのち、コイル状に巻取
り、最終仕上げ焼鈍に供した。最終仕上げ焼鈍は、 850
℃までN2中、1150℃までH2とN2の混合雰囲気中での2次
再結晶を目的とした処理と、引き続き1150℃からH2で5
時間保持する純化を目的とする処理を同時に行った。最
終仕上げ焼鈍後、未反応焼鈍分離剤を除去した後、50wt
%のコロイダルシリカとリン酸マグネシウムからなる張
力コートを塗布し、製品とした。
Then, all of the coils a) to g) are
M with TiO 2 : 10% and Sr (OH) 2 2% by weight added to the surface
After applying gO as an annealing separator, it was wound into a coil and subjected to final finishing annealing. The final finish annealing is 850
Among ° C. until N 2, and treatment for secondary recrystallization in a mixed atmosphere of H 2 and N 2 up to 1150 ° C., from subsequently 1150 ° C. in H 2 5
The treatment for the purpose of purification for time holding was performed at the same time. After final finishing annealing, after removing unreacted annealing separator, 50wt%
% Of colloidal silica and magnesium phosphate was applied to obtain a product.

【0056】ただし、c) のコイルについては、磁区細
分化処理として、0.5mm 幅のプラズマジェット(PJ)
を鋼板幅方向に線状に、圧延方向への繰り返し間隔:10
mmで照射し、局所的な線状歪領域を設けてから、製品と
した。また、d) のコイルについては、磁区細分化処理
として、1.5mm 幅のプラズマジェット(PJ)を鋼板幅
方向に線状に、圧延方向への繰り返し間隔:3mmで照射
し、局所的な線状歪領域を設けてから、製品とした。
However, with respect to the coil of c), a plasma jet (PJ) with a width of 0.5 mm was used as a magnetic domain refining process.
In the width direction of the steel sheet, and the repeating interval in the rolling direction: 10
After irradiating with mm, a local linear strain area was provided, and the product was obtained. As for the coil of d), as a domain refinement treatment, a plasma jet (PJ) with a width of 1.5 mm was irradiated linearly in the width direction of the steel sheet at a repeating interval of 3 mm in the rolling direction to form a local linear shape. The product was made after the strained area was provided.

【0057】かくして得られた各製品板から試料を切り
出し、、高磁場においてよく使用されるBi含有鋼のため
にW18/50 の鉄損値を、また低磁場においてよく使用さ
れるB含有鋼のためにW15/50 の鉄損値をそれぞれ測定
した。また、各製品を用い、スリット加工、剪断加工お
よび積み加工によりモデル変圧器を作成して、W15/50
およびW18/50 の値を測定し、その後鋼板をマクロエェ
チして結晶粒径を測定した。なお、上記のスリット加
工、剪断加工および積み加工に際しては、細心の注意を
払い歪の付加を極力抑制した。得られた結果を整理して
表3に示す。
Samples were cut from each of the product plates thus obtained, and had an iron loss value of W 18/50 for Bi-containing steel often used in high magnetic fields, and B-containing steel often used in low magnetic fields. For that purpose, the iron loss value of W 15/50 was measured respectively. In addition, using each product, a model transformer is created by slit processing, shearing processing, and stacking processing, and W 15/50
And W 18/50 were measured, and then the steel sheet was macro-etched to measure the crystal grain size. In addition, in the above slit processing, shearing processing, and stacking processing, the addition of strain was suppressed as carefully as possible. The obtained results are summarized and shown in Table 3.

【0058】[0058]

【表3】 [Table 3]

【0059】表3から明らかなように、高磁場での鉄損
18/50 の低いことが要請されるB 8 の値が高いBi含有
鋼においては、微細粒の個数比率が高い方(f)が鉄損
や実機化因子に優れており、また、微細粒の個数比率が
低い場合においても、溝を浅くしたり(b)、PJの照
射領域の間隔を長くする(c)こととの複合効果で高磁
場における鉄損や実機化因子は低減することができる。
また逆に、低磁場での鉄損W15/50 の低いことが要請さ
れるB8 の低いB含有鋼においては、微細粒の個数比率
が低い方(f)が鉄損に優れており、また、微細粒の個
数比率が高い場合においても、溝を深くしたり(a)、
PJの照射間隔を短くする(d)こととの複合効果で低
磁場における鉄損や実機化因子を低減できることが判
る。
As is clear from Table 3, iron loss at high magnetic field
W18/50B is required to be low 8With high Bi content
In steel, the higher the percentage of fine particles (f), the core loss
It is also excellent in realization factor, and the number ratio of fine particles is
Even if it is low, make the groove shallow (b), and illuminate the PJ.
High magnetism due to the combined effect of increasing the distance between the irradiation areas (c)
It is possible to reduce iron loss in the field and factor of realization.
Conversely, iron loss W in a low magnetic field15/50Requested to be low
B8For B-containing steels with a low
The lower the value (f) is, the more excellent the iron loss is.
Even if the number ratio is high, deep grooves (a),
Low due to the combined effect of shortening the PJ irradiation interval (d)
It was found that it is possible to reduce iron loss in the magnetic field and the factor of actualization.
It

【0060】ところで、材料の磁場特性はほぼ結晶粒径
に依存し、高磁場での特性が良い高磁束密度材料ほど結
晶粒径は大きくなる。しかしながら、粗大な結晶粒のな
かに存在するこの発明の特徴をなす3mm以下の微細粒は
材料の磁束密度に大きな影響を及ぼさないので、除外し
て考える必要がある。そこで、材料の磁束密度の特性を
代表する粒径として、鋼板を構成する結晶粒のうち、3
mm以下の結晶粒を除外した残余すなわち粒径が3mmを超
える結晶粒の平均粒径:D(mm)を用い、高磁場特性の指
標とした。
By the way, the magnetic field characteristics of the material substantially depend on the crystal grain size. The higher the magnetic flux density material having the better characteristics in the high magnetic field, the larger the crystal grain size. However, fine grains of 3 mm or less, which are characteristic of the present invention and exist in the coarse crystal grains, do not have a great influence on the magnetic flux density of the material, and therefore need to be excluded. Therefore, as the grain size that represents the characteristic of the magnetic flux density of the material, among the crystal grains that form the steel sheet, 3
The average particle diameter: D (mm) of the remainder excluding crystal grains of mm or less, that is, the crystal grains having a grain size of more than 3 mm was used as an index of high magnetic field characteristics.

【0061】 上記に基づき、良好な実機化因子を得る
ための 1)鋼板の単位面積における溝の適正な体積密度の範
囲、 2)鋼板の単位面積における局所歪を付与した領域の適
正な密度の範囲、 3)鋼板金属表面の適正な粗度の範囲、および 4)フォルステライト被膜の形成を抑制、またはフォル
ステライト被膜を除去したのち、ハロゲン化合物の水溶
液中で鋼板表面を電解処理して、結晶粒界段差を調整す
結晶方位強調処理における結晶粒界段差(BS;Bo
undaryStep)の適正な領域 が、Dの値に応じてどのように変化するかを実験により
求めた。得られた結果を、図5、図6、図7および図8
に示す。
Based on the above, in order to obtain a favorable realization factor, 1) the range of the proper volume density of the grooves in the unit area of the steel plate, 2) the proper density of the region to which the local strain is applied in the unit area of the steel sheet. Range, 3) a range of appropriate roughness of the steel plate metal surface, and 4) suppressing formation of forsterite coating, or
After removing the stellite film, water-soluble halogen compounds
Electrolyte the surface of the steel sheet in the liquid to adjust the grain boundary step.
Grain boundary step in the crystal orientation emphasizing treatment that (BS; Bo
It was experimentally determined how the appropriate region of the "UndaryStep" changes depending on the value of D. The obtained results are shown in FIG. 5, FIG. 6, FIG. 7 and FIG.
Shown in.

【0062】ここで、Vは、一定面積の鋼板表面に存在
する溝の体積(mm3)を鋼板の面積(mm2)で割った値、す
なわち単位鋼板面積あたりの溝の容積比(mm)であり、S
は、一定面積の鋼板表面に存在する局所歪を付与した領
域(mm2) を鋼板に表面で割った値、すなわち単位鋼板面
積あたりの局所歪の合計領域比S(無次元数)であり、
Raは、鋼板の非金属被膜を除去した後の金属表面の平均
粗度 (μm)であり、BSは、結晶方位強調処理を行った
際の結晶粒界の場所で生じる鋼板面の段差 (μm)の平均
値である。また、鋼板を構成する結晶粒のうち3mm以下
の粒を除いた平均値である上述のDの値を用い、Bm =
0.2× logD+1.4 の式からBm を算出し、算出したB
mに対する変圧器の鉄損を測定して実機化因子を求め
た。
Here, V is a value obtained by dividing the volume (mm 3 ) of the groove existing on the surface of the steel plate having a constant area by the area (mm 2 ) of the steel plate, that is, the volume ratio (mm) of the groove per unit steel plate area. And S
Is a value obtained by dividing a region (mm 2 ) to which a local strain is present on the surface of a steel sheet having a constant area by the surface of the steel sheet, that is, a total area ratio S (dimensional number) of local strains per unit steel sheet area,
Ra is the average roughness (μm) of the metal surface after removing the non-metal coating of the steel sheet, and BS is the step difference (μm) of the steel sheet surface that occurs at the location of the crystal grain boundaries when crystal orientation enhancement processing is performed. ) Is the average value. Further, using the above-mentioned value of D which is an average value excluding grains of 3 mm or less among the crystal grains constituting the steel plate, Bm =
Bm was calculated from the formula of 0.2 × logD + 1.4 and calculated B
The iron loss of the transformer with respect to m was measured and the factor of actualization was calculated.

【0063】 図5、図6、図7および図8から明らか
なように、3mmを超える結晶粒の平均粒径Dに応じ
て、 (1)鋼板表面積に対する溝の体積比V(単位:mm)
を、次式(1)の関係を満足する範囲とするか、 log10V≦−2.3−0.01×D ―――(1) (2)鋼板表面積に対する局所歪付与の領域比Sを、次
式(2)の関係を満足する範囲とするか、 log10S≦−0.7+0.005×D ―――(2) (3)鋼板金属表面と非金属被膜との界面の平均粗さR
aを、次式(3)の関係を満足する範囲とするか、 Ra≦0.3−0.1×log10D ―――(3) (4)フォルステライト被膜の形成を抑制、またはフォ
ルステライト被膜を除去したのち、ハロゲン化合物の水
溶液中で鋼板表面を電解処理して、結晶粒界段差を調整
する結晶方位強調処理について、その粒界平均段差BS
が次式(4)の関係を満足する範囲とする BS≦3.0−log10D ―――(4) ことにより、方向性電磁鋼板の実機化因子をさらに向上
させることができた。
As is clear from FIG. 5, FIG. 6, FIG. 7 and FIG. 8, according to the average grain size D of the crystal grains exceeding 3 mm, (1) the volume ratio V of the groove to the surface area of the steel plate (unit: mm)
Is a range satisfying the relationship of the following expression (1), or log 10 V ≦ −2.3-0.01 × D-(1) (2) Local strain imparting area ratio S to the steel plate surface area Is a range satisfying the relation of the following expression (2), or log 10 S ≦ −0.7 + 0.005 × D (2) (3) Average of interface between steel plate metal surface and non-metal coating Roughness R
a is set in a range satisfying the following expression (3), or Ra ≦ 0.3-0.1 × log 10 D --- (3) (4) Forsterite film formation is suppressed, or
After removing the rusterite film, water containing a halogen compound is used.
Electrolyte the steel plate surface in the solution to adjust the grain boundary step
The crystal orientation emphasizing treatment of, its grain boundary average step BS
By setting BS ≦ 3.0−log 10 D-(4) so that the value satisfies the relationship of the following expression (4), the factor for realizing the grain-oriented electrical steel sheet could be further improved.

【0064】上述したとおり、微細粒の形成技術と磁区
細分化技術とを組み合わせると、製品の鉄損値を低下さ
せ得るだけでなく、高磁束密度化に伴う2次再結晶粒の
粗大化に起因した実機化因子の増大を効果的に抑制し
て、変圧器の特性を製品特性の向上に見合った性能に向
上させることができる。この発明は、上述した多数の実
験・調査を基にして鋭意研究を重ねた末に完成されたも
のである。
As described above, the combination of the technique for forming fine grains and the technique for subdividing magnetic domains can not only lower the iron loss value of the product, but also increase the size of secondary recrystallized grains due to the increase in magnetic flux density. It is possible to effectively suppress the increase in the factor of realization due to the improvement, and to improve the characteristics of the transformer to the performance corresponding to the improvement of the product characteristics. The present invention was completed after earnest research based on the numerous experiments and investigations described above.

【0065】すなわち、この発明の要旨構成は次のとお
りである。 1.Si:1.5 〜7.0 wt%、 Mn:0.03〜2.5 wt% を含有し、かつC, SおよびNの不純物としての混入を
それぞれ C:0.003 wt%以下、 S:0.002 wt%以下、 N:0.002 wt%以下 に抑制し、残部はFeおよび不可避的不純物の組成になる
電磁鋼板であって、鋼板を構成する結晶粒のうち、鋼板
の表面から裏面まで貫通し、かつ鋼板表面における結晶
粒径が3mm以下である結晶粒の個数比率が65%以上、98
%以下であり、しかも鋼板表面に磁区細分化処理が施さ
れていることを特徴とする、鉄損特性、耐歪特性および
実機での磁気特性に優れた方向性電磁鋼板。
That is, the gist of the present invention is as follows. 1. Si: 1.5 to 7.0 wt%, Mn: 0.03 to 2.5 wt%, and contamination of C, S and N as impurities is C: 0.003 wt% or less, S: 0.002 wt% or less, N: 0.002 wt% % Or less, with the balance being Fe and inevitable impurities in the composition, which is a magnetic steel sheet, and among the crystal grains constituting the steel sheet , the steel sheet
Of penetrating from the surface to the back surface, and the crystal grain number ratio crystal <br/> grain size in the steel sheet surface is less than 3mm is at least 65%, 98
% Or less, and the surface of the steel sheet is subjected to magnetic domain refinement treatment, which is a grain-oriented electrical steel sheet excellent in iron loss characteristics , strain resistance characteristics and magnetic characteristics in an actual machine.

【0066】2.上記1において、鋼板の表面から裏面
まで貫通している結晶粒の鋼板表面における結晶粒径の
平均値が8mm以上、50mm以下であることを特徴とする、
鉄損特性、耐歪特性および実機での磁気特性に優れた方
向性電磁鋼板。
2. In the above 1, from the front surface of the steel plate to the back surface
The average value of the crystal grain size in the crystal grains of the steel sheet surface which penetrates to at least 8 mm, and wherein the at 50mm or less,
A grain-oriented electrical steel sheet with excellent iron loss characteristics , strain resistance characteristics, and magnetic characteristics in actual machines.

【0067】3.上記1または2において、鋼板の表面
から裏面まで貫通し、かつ鋼板表面における結晶粒径が
3mm以下である結晶粒自然に発生した結晶粒と人為
的に生成させ規則配置させた結晶粒からなることを特徴
とする、鉄損特性、耐歪特性および実機での磁気特性に
優れた方向性電磁鋼板。
3. In 1 or 2 above, the surface of the steel plate
Passing from to the back, and the crystal grains the crystal grain size in the steel sheet surface is less than 3mm, characterized in that it consists of naturally occurring crystal grains and artificially produced were regularly arranged crystal grains, core loss A grain-oriented electrical steel sheet with excellent characteristics , strain resistance, and magnetic characteristics in an actual machine.

【0068】4.上記1,2または3において、磁区細
分化処理が、 (1)鋼板表面に深さ:50μm以下で幅:350μm
以下の溝を圧延方向に繰り返し設けること、 (2)鋼板表層部に線状の局所歪を導入した領域を圧延
方向に繰り返し設けること、 (3)鋼板金属表面と非金属被膜との界面を平均粗さR
aで0.3μm以下に平滑化すること、 (4)フォルステライト被膜の形成を抑制、またはフォ
ルステライト被膜を除去したのち、ハロゲン化合物の水
溶液中で鋼板表面を電解処理して、結晶粒界段差を調整
する結晶方位強調処理を施すことのいずれかである、鉄
損特性、耐歪特性および実機での磁気特性に優れた方向
性電磁鋼板。
4. In the above 1, 2 or 3, the magnetic domain refining treatment is (1) Depth: 50 μm or less and width: 350 μm on the steel plate surface
The following grooves are repeatedly provided in the rolling direction, (2) the region where a linear local strain is introduced in the steel sheet surface layer portion is repeatedly provided in the rolling direction, (3) the interface between the steel sheet metal surface and the non-metal coating is averaged. Roughness R
smoothing to 0.3 μm or less with a, (4) suppressing formation of forsterite coating, or
After removing the rusterite film, water containing a halogen compound is used.
Electrolyte the steel plate surface in the solution to adjust the grain boundary step
A grain-oriented electrical steel sheet excellent in iron loss characteristics, strain resistance characteristics, and magnetic characteristics in an actual machine, which is obtained by performing a crystal orientation enhancement treatment.

【0069】5.上記4において、鋼板を構成する結晶
粒のうち、鋼板の表面から裏面まで貫通している結晶粒
で、鋼板表面における結晶粒径が3mmを超える大きさ
の結晶粒の平均粒径をD(mm)としたとき、 (1)圧延方向に繰り返し設ける溝について、鋼板の単
位面積当たりの溝の合計容積比V(単位:mm)が次式
(1)の関係を満足する範囲とするか、 log10V≦−2.3−0.01×D ―――(1) (2)圧延方向に繰り返し設ける線状の局所歪につい
て、鋼板の単位面積当たりの局所歪の合計領域比S(単
位:無次元)が次式(2)の関係を満足する範囲とする
か、 log10S≦−0.7+0.005×D ―――(2) (3)鋼板金属表面と非金属被膜との界面の平均粗さR
aについて、このRaが次式(3)の関係を満足する範
囲とするか、 Ra≦0.3−0.1×log10D ―――(3) (4)フォルステライト被膜の形成を抑制、またはフォ
ルステライト被膜を除去したのち、ハロゲン化合物の水
溶液中で鋼板表面を電解処理して、結晶粒界段差を調整
する結晶方位強調処理について、その粒界平均段差BS
が次式(4)の関係を満足する範囲とする BS≦3.0−log10D ―――(4) ことを特徴とする、鉄損特性、耐歪特性および実機での
磁気特性に優れた方向性電磁鋼板。
5. In the above 4, among the crystal grains constituting the steel sheet, the average grain diameter of the crystal grains that penetrates from the front surface to the back surface of the steel sheet and has a crystal grain size of more than 3 mm on the steel sheet surface is D (mm (1) For a groove that is repeatedly provided in the rolling direction, the total volume ratio V (unit: mm) of the groove per unit area of the steel plate is in a range that satisfies the relationship of the following expression (1), or log 10 V ≦ −2.3−0.01 × D (1) (2) Regarding linear local strain repeatedly provided in the rolling direction, the total area ratio S of local strain per unit area of the steel sheet (unit: (Dimensionless) is in a range satisfying the relation of the following expression (2), or log 10 S ≦ −0.7 + 0.005 × D (2) (3) Interface between steel plate metal surface and non-metal coating Average roughness R
Regarding a, the Ra is set to a range that satisfies the relation of the following expression (3), or Ra ≦ 0.3-0.1 × log 10 D --- (3) (4) Suppression of formation of forsterite film , Or
After removing the rusterite film, water containing a halogen compound is used.
Electrolyte the steel plate surface in the solution to adjust the grain boundary step
The crystal orientation emphasizing treatment of, its grain boundary average step BS
Is excellent in iron loss characteristics, strain resistance characteristics, and magnetic characteristics in an actual machine, which is BS ≦ 3.0-log 10 D-(4) within a range satisfying the following expression (4). Grain oriented electrical steel sheet.

【0070】[0070]

【発明の実施の形態】以下、この発明について具体的に
説明する。まず、この発明の電磁鋼板について、その成
分組成を上記の範囲に限定した理由について説明する。 Si:1.5 〜7.0 wt% Siは、製品の電気抵抗を高め鉄損を低減するのに有効な
成分であり、このために1.5 wt%以上を含有させるが、
7.0wt%を超えると硬度が高くなり製造や加工が困難に
なるので、 1.5〜7.0 wt%の範囲に限定した。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below. First, the reason why the component composition of the electromagnetic steel sheet of the present invention is limited to the above range will be described. Si: 1.5-7.0 wt% Si is an effective component for increasing the electrical resistance of the product and reducing iron loss. For this reason, 1.5 wt% or more is contained, but
If it exceeds 7.0 wt%, the hardness becomes high and it becomes difficult to manufacture and process, so the range was limited to 1.5 to 7.0 wt%.

【0071】Mn:0.03〜2.5 wt% Mnも、Siと同様、電気抵抗を高める働きがあり、また製
造時熱間加工を容易にする作用があるので、少なくとも
0.03wt%を含有させる必要があるが、2.5 wt%を超える
と熱処理時γ変態を誘起して磁気特性を劣化させるの
で、0.03〜2.5 wt%の範囲で含有させるものとした。
Mn: 0.03 to 2.5 wt% Like Mn, Mn also has a function of increasing electric resistance and a function of facilitating hot working at the time of manufacturing.
It is necessary to contain 0.03 wt%, but if it exceeds 2.5 wt%, γ-transformation will be induced during heat treatment and magnetic properties will be deteriorated, so the content was made 0.03 to 2.5 wt%.

【0072】C:0.003 wt%以下、S:0.002 wt%以
下、N:0.002 wt%以下 C,SおよびNはいずれも、磁気特性上有害な作用があ
り、特に鉄損を劣化させるので、それぞれC:0.003 wt
%以下、S:0.002 wt%以下、N:0.002 wt%以下に抑
制するものとした。
C: 0.003 wt% or less, S: 0.002 wt% or less, N: 0.002 wt% or less C, S and N all have a detrimental effect on the magnetic properties and particularly deteriorate iron loss. C: 0.003 wt
%, S: 0.002 wt% or less, N: 0.002 wt% or less.

【0073】なお、電磁鋼板の製造に際しては、鋼中
に、上記した元素の他、2次再結晶を誘起するためのイ
ンヒビター成分を含有させることが不可欠で、これらの
インヒビター成分としては、Al,B,Bi,Sb, Mo, Te,
Se, S, Sn, P, Ge, As, Nb,Cr, Ti, Cu, Pb, Znおよ
びIn等が有利に適合し、これらの元素を単独または複合
して含有させることできる。これらのインヒビター成分
は、2次再結晶焼鈍時にインヒビターとしての作用を果
たしたのちは、その後の純化焼鈍によって鋼板中から除
去されるか、あるいは不純物として鋼板中に残留する。
In the production of magnetic steel sheets, it is essential to contain an inhibitor component for inducing secondary recrystallization in the steel in addition to the above-mentioned elements. B, Bi, Sb, Mo, Te,
Se, S, Sn, P, Ge, As, Nb, Cr, Ti, Cu, Pb, Zn and In are suitable, and these elements can be contained alone or in combination. These inhibitor components
Acts as an inhibitor during secondary recrystallization annealing.
After that, it was removed from the steel sheet by the subsequent purification annealing.
It is left behind or remains in the steel sheet as an impurity.

【0074】次に、鋼板を構成する結晶粒についての限
定理由について説明する。この発明において重要な結晶
粒は、板厚方向に貫通しているものである。というの
は、かような貫通粒は、結晶粒界に多くの磁極を生成さ
せ、大きな静磁エネルギーの増加が見込めるからであ
る。ここに、各結晶粒の粒径は、鋼板表面における結晶
粒の面積と同一の面積を有する円の直径(円相当径)で
もって表わす。また、平均結晶粒径は、一定面積中に含
まれるかかる結晶粒の個数で該面積を除し、この値の円
相当径で表わすものとする。
Next, the reasons for limiting the crystal grains constituting the steel sheet will be described. The crystal grains important in the present invention are those that penetrate in the plate thickness direction. This is because such penetrating grains cause many magnetic poles to be generated at the grain boundaries, and a large increase in magnetostatic energy can be expected. Here, the grain size of each crystal grain is represented by the diameter of a circle having the same area as the area of the crystal grain on the surface of the steel sheet (circle equivalent diameter). Further, the average crystal grain size is expressed by the circle equivalent diameter of this value by dividing the area by the number of such crystal grains contained in a certain area.

【0075】さて、この発明で所期した耐歪特性に優
れ、かつ実機特性に優れた方向性電磁鋼板を得るために
は、かかる貫通粒の分布に関し、粒径が3mm以下の結晶
粒の個数比率を65%以上、98%以下とすることが必須要
件となる。というのは、3mm以下の微細結晶粒の個数比
率が65%未満では、微細粒の存在による静磁エネルギー
増加作用が得られず、耐歪特性の劣化や実機化因子の増
大を招き、変圧器の鉄損が劣化するからであり、一方、
3mm以下の微細粒の個数比率が98%を超えると、製品の
磁束密度が低下し、鉄損が劣化するからである。なお、
微細粒の個数比率については、75%以上で特に著しい実
機化因子の低減ならびに耐歪特性の向上効果が認められ
る。
Now, in order to obtain the grain-oriented electrical steel sheet excellent in the strain resistance characteristic and the actual machine characteristic expected in the present invention, regarding the distribution of such penetrating grains, the number of crystal grains having a grain size of 3 mm or less is used. It is essential that the ratio be 65% or more and 98% or less. The reason is that if the number ratio of fine crystal grains of 3 mm or less is less than 65%, the magnetostatic energy increase action due to the presence of fine grains cannot be obtained, which leads to deterioration of strain resistance characteristics and increase of factors for realization of equipment. This is because the iron loss of
This is because if the number ratio of fine particles of 3 mm or less exceeds 98%, the magnetic flux density of the product is reduced and the iron loss is deteriorated. In addition,
With regard to the number ratio of fine grains, when it is 75% or more, a particularly remarkable reduction factor of the practical machine factor and an improvement effect of the strain resistance characteristic are recognized.

【0076】また、かかる3mm以下の微細粒の結晶粒
は、自然に発生する微細な結晶利用することもできる
が、それに加えて、粒界に存在する磁極が鋼板中に均等
に分布し、静磁エネルギーの分布が一様となるように、
人為的に規則的に配置させることがより好ましい。これ
により、磁束の流れが均一になり、渦電流損が局部的に
異常に増大するといった鉄損の増加現象が抑制される。
Further, such fine crystal grains of 3 mm or less can be used as naturally occurring fine crystals, but in addition to that, the magnetic poles existing at grain boundaries are evenly distributed in the steel sheet, and To make the distribution of magnetic energy uniform,
It is more preferable to arrange them artificially and regularly. As a result, the flow of the magnetic flux becomes uniform, and an increase phenomenon of iron loss such that the eddy current loss locally abnormally increases is suppressed.

【0077】従って、上記のような微細粒を発生させる
ための各種処理を行う領域は、鋼板面内において、図9
に示すように離散的に分布させることが有効であるが、
特に均一に分散させた方が、磁束密度を低下させるなど
の害が少なく、また歪感受性が低下するといった効果も
増加するので、各種処理領域を鋼板面内に確率的に分散
させて存在させるのではなく、図10や図11に示すよう
に、人為的に規則配置させることが当然のことながら最
も優れた効果を得ることになる。この点、例えば図12に
示すような、線状に長く伸びた人工的結晶粒を生成させ
た場合は、製品の磁束密度の大幅な劣化を招き、鉄損は
逆に増加する。ここに、微細粒を離散的に存在させる間
隔として5mm以上とすることが好ましい。
Therefore, the region where various kinds of processing for producing the fine particles as described above is performed in the plane of the steel sheet as shown in FIG.
It is effective to distribute it discretely as shown in
Especially, if the particles are uniformly dispersed, there is less harm such as lowering the magnetic flux density, and the effect of lowering strain sensitivity is also increased. Instead, as shown in FIG. 10 and FIG. 11, artificially arranging regularly will naturally obtain the best effect. In this respect, for example, when artificial linearly elongated artificial crystal grains are generated as shown in FIG. 12, the magnetic flux density of the product is significantly deteriorated, and iron loss is increased. Here, it is preferable that the interval in which the fine particles are discretely present is 5 mm or more.

【0078】さらに、鋼板の平均結晶粒径については、
8mm以上、50mm以下とすることが好ましい。というの
は、平均粒径が8mm未満の場合、結晶方位の集積度の低
下ひいては磁束密度の低下を生じる場合があるため、安
定して優れた鉄損値を得ることが難しく、逆に平均粒径
が50mmを超えると、実機化因子が劣化したり、耐歪特性
が劣化する場合が多くなるからである。
Further, regarding the average crystal grain size of the steel sheet,
It is preferably 8 mm or more and 50 mm or less. If the average grain size is less than 8 mm, it may be difficult to obtain a stable and excellent iron loss value because the degree of integration of crystal orientation may be reduced and the magnetic flux density may be reduced. This is because if the diameter exceeds 50 mm, the factor for realization of the machine may deteriorate and the strain resistance may deteriorate.

【0079】以上のようにして、鋼中に、3mm以下の微
細粒を15mm以上の粗大粒と混在させることにより、磁束
密度が高く、かつ鉄損が低く、しかも耐歪特性および実
機特性にも優れた方向性電磁鋼板を得ることができる
が、鉄損特性の一層の低減のためには、さらに磁区細分
化処理を施すことが有利である。そこで、この発明で
は、磁区細分化技術として、線状歪の付与、線状溝の形
成、表面平滑化処理および結晶方位強調処理等を併用す
ることにしたのである。
As described above, by mixing fine particles of 3 mm or less with coarse particles of 15 mm or more in the steel, the magnetic flux density is high, the iron loss is low, and the strain resistance and actual machine characteristics are also improved. Although an excellent grain-oriented electrical steel sheet can be obtained, it is advantageous to further perform magnetic domain refinement treatment for further reduction of iron loss characteristics. Therefore, in the present invention, as the magnetic domain refining technique, the application of linear strain, the formation of linear grooves, the surface smoothing treatment, the crystal orientation enhancement treatment, and the like are used together.

【0080】 ところで、発明者らの研究によれば、上
記したような磁区細分化技術はいずれも、鋼板の結晶粒
の大きさ特に粒径が3mmを超える大きさの結晶粒の平
均粒径と強い相関があり、該結晶粒の平均粒径に応じて
好適な範囲があることが究明された。すなわち、鋼板を
構成する結晶粒のうち、板厚方向に貫通している結晶粒
で粒径が3mmを超える大きさの結晶粒の平均粒径をD
(mm)としたとき、 (1)圧延方向に繰り返し設ける溝について、鋼板の単
位面積当たりの溝の合計容積比V(単位:mm)が次式
(1)の関係を満足する範囲とするか、 log10V≦−2.3−0.01×D ―――(1) (2)圧延方向に繰り返し設ける線状の局所歪につい
て、鋼板の単位面積当たりの局所歪の合計領域比S(単
位:無次元)が次式(2)の関係を満足する範囲とする
か、 log10S≦−0.7+0.005×D ―――(2) (3)鋼板金属表面と非金属被膜との界面の平均粗さR
aについて、このRaが次式(3)の関係を満足する範
囲とするか、 Ra≦0.3−0.1×log10D ―――(3) (4)フォルステライト被膜の形成を抑制、またはフォ
ルステライト被膜を除去したのち、ハロゲン化合物の水
溶液中で鋼板表面を電解処理して、結晶粒界段差を調整
する結晶方位強調処理について、その粒界平均段差BS
が次式(4)の関係を満足する範囲とする BS≦3.0−log10D ―――(4) ことが好ましく、かくして鉄損特性のみならず、耐歪特
性および実機特性のより有利な向上が実現されるのであ
る。
By the way, according to the research conducted by the inventors, in each of the above-described magnetic domain refinement techniques, the average grain size of the crystal grains of the steel sheet, particularly the crystal grain size of the grain size exceeding 3 mm It was found that there is a strong correlation and there is a suitable range depending on the average grain size of the crystal grains. That is, among the crystal grains forming the steel plate, the average grain size of the crystal grains penetrating in the plate thickness direction and having a grain size exceeding 3 mm is D
(1) Regarding the groove to be repeatedly provided in the rolling direction, whether the total volume ratio V (unit: mm) of the groove per unit area of the steel plate satisfies the relationship of the following expression (1). , Log 10 V ≦ −2.3-0.01 × D (1) (2) Regarding linear local strain repeatedly provided in the rolling direction, the total area ratio S (of local strain per unit area of the steel sheet) Unit: dimensionless) is in a range satisfying the relation of the following expression (2), or log 10 S ≦ −0.7 + 0.005 × D (2) (3) Steel plate metal surface and non-metal coating Roughness of the interface of
Regarding a, the Ra is set to a range that satisfies the relation of the following expression (3), or Ra ≦ 0.3-0.1 × log 10 D --- (3) (4) Suppression of formation of forsterite film , Or
After removing the rusterite film, water containing a halogen compound is used.
Electrolyte the steel plate surface in the solution to adjust the grain boundary step
The crystal orientation emphasizing treatment of, its grain boundary average step BS
Is preferably in the range of satisfying the following equation (4): BS ≦ 3.0-log 10 D --- (4), and thus, not only the iron loss characteristics but also the strain resistance characteristics and the actual machine characteristics are more advantageous. That's a big improvement.

【0081】ここで、V(単位:mm)は、溝断面積×溝
の長さ×溝の本数に相当する合計容積(mm3)を、対象と
する鋼板の表面積(mm2)で割った値であり、S(単位:
無次元)は、線状の局所歪の幅×長さ×本数に相当する
局所歪領域の合計面積(mm2)を、対象とする鋼板の表面
積(mm2)で割った値であり、Raは、鋼板の金属表面の中
心線平均粗さを測定した値(μm ) であり、BS、結
晶方位強調処理を鋼板表面に施した時に、結晶粒界に生
じる段差の平均値(μm)である。
Here, V (unit: mm) is obtained by dividing the total volume (mm 3 ) corresponding to the groove cross-sectional area × the groove length × the number of grooves by the surface area (mm 2 ) of the target steel sheet. It is a value, and S (unit:
Dimensionless) is the total area of the local strain areas corresponding to the width × length × number of linear local distortion (mm 2), a value obtained by dividing by the surface area of the steel sheet of interest (mm 2), Ra Is the value (μm) obtained by measuring the center line average roughness of the metal surface of the steel sheet, and BS is the average value (μm) of the steps generated at the crystal grain boundaries when the crystal orientation enhancement treatment is applied to the steel sheet surface. is there.

【0082】なお、溝の形成方法としては、鋼板表面を
エッチングする方法や歯車ロールを押し当てて溝を形成
する方法が、また局所歪の導入方法としては、回転体に
よる押圧、レーザー照射およびプラズマジェット照射な
ど、従来公知の方法いずれもが適合する。また、鋼板金
属表面と非金属被膜との界面の平滑化方法としては、フ
ォルステライト被膜の形成を抑制したり、フォルステラ
イト被膜を除去したのち、酸洗、研磨、化学研磨または
研削などの手法によって鋼板表面の粗度を低減する方法
いずれもが適合する。さらに、結晶方位強調処理とは、
フォルステライト被膜の形成を抑制したり、フォルステ
ライト被膜を除去したのち、ハロゲン化合物の水溶液中
で鋼板表面を電解処理し、隣接する結晶粒の粒界段差を
調整しての結晶方位の面のみを優先的に残存させる
方法であり、この発明ではこの方法も有利に適合する。
The method of forming the groove may be a method of etching the steel plate surface or a method of pressing the gear roll to form the groove, and the method of introducing the local strain may be pressing by a rotating body, laser irradiation and plasma. Any conventionally known method such as jet irradiation is suitable. Further, as a method for smoothing the interface between the steel plate metal surface and the non-metal coating, by suppressing the formation of the forsterite coating or removing the forsterite coating, a method such as pickling, polishing, chemical polishing or grinding is used. Any method of reducing the roughness of the steel plate surface is suitable. Furthermore, the crystal orientation enhancement processing is
After suppressing the formation of the forsterite film or removing the forsterite film, the surface of the steel sheet is electrolytically treated in an aqueous solution of a halogen compound to eliminate the grain boundary step between adjacent crystal grains.
Adjusting only the surface of the crystal orientation of a specific a method for remaining preferentially, this method is also advantageously compatible with this invention.

【0083】次に、この発明の製造方法について説明す
る。さて、所望の好適成分組成に調整された鋼片は、公
知の熱延方法によって熱延鋼板とした後、必要に応じて
熱延板焼鈍を施し、1回または中間焼鈍を挟む2回以上
の冷間圧延によって最終板厚とする。この最終冷間圧延
では、その圧下率の調整によって2次再結晶時に成長す
る結晶の方位を制御するのであるが、圧下率が80%未満
では方位の劣る結晶粒が多数再結晶しがちで高い磁束密
度が得らない場合があり、一方95%を超えると2次再結
晶粒の核生成の確率が極端に低下し、2次再結晶が不安
定になる傾向にあるので、最終冷間圧延の圧下率は80〜
95%とすることが好ましい。
Next, the manufacturing method of the present invention will be described. By the way, a steel piece adjusted to a desired suitable component composition is formed into a hot-rolled steel sheet by a known hot-rolling method, and then subjected to hot-rolled sheet annealing as needed, and is performed once or twice or more with intermediate annealing interposed. The final plate thickness is obtained by cold rolling. In this final cold rolling, the orientation of the crystal that grows during secondary recrystallization is controlled by adjusting the reduction ratio, but if the reduction ratio is less than 80%, many crystal grains with poor orientation tend to recrystallize. In some cases, the magnetic flux density may not be obtained. On the other hand, if it exceeds 95%, the probability of nucleation of secondary recrystallized grains is extremely reduced and secondary recrystallization tends to become unstable. The rolling reduction is 80 ~
It is preferably 95%.

【0084】なお、上記の圧延に際し、公知の温間圧延
やパス間時効処理を組み合わせることは、磁束密度をさ
らに向上させる上で有利である。また、熱延板焼鈍や中
間焼鈍において弱脱炭処理を施すことも可能である。さ
らに、磁区細分化処理として、線状溝を利用する場合に
は、この最終冷延後に鋼板表面に線状の溝を設けること
が好ましい。
It is advantageous to combine known warm rolling and interpass aging treatment in the above rolling in order to further improve the magnetic flux density. It is also possible to perform weak decarburization treatment in hot-rolled sheet annealing or intermediate annealing. Furthermore, when a linear groove is used as the magnetic domain refining treatment, it is preferable to provide a linear groove on the surface of the steel sheet after the final cold rolling.

【0085】ついで、1次再結晶焼鈍を施すが、この時
必要に応じて同時に脱炭処理も兼備させC量を所定の値
以下まで低減する。この1次再結晶焼鈍途中から2次再
結晶開始までの間において、この発明の最も肝要な技術
として、結晶成長の駆動力を増加させる領域を鋼板内部
に局所的に設ける。ここに、板厚方向への結晶成長は比
較的容易に起こるので、かかる領域が鋼板板厚方向にお
いて、必ずしも板厚全体にわたって設けられている必要
はなく、板厚方向においてその一部の領域に設けられて
いても、その効果においては同等である。ただし、この
領域の鋼板表面への射影領域としては、円相当径にて0.
05mm以上3.0 mm以下とすることが必要である。というの
は、0.05mm未満ではしばしば後から発生する通常の2次
再結晶粒によって最終的に蚕食され消滅する例が多くな
り、一方 3.0mmを超えると生成する微細粒の大きさも
3.0mmを超えるので磁束密度の低下を招き、鉄損が増大
するからである。
Then, a primary recrystallization annealing is performed, and at this time, if necessary, a decarburizing treatment is simultaneously performed to reduce the C content to a predetermined value or less. From the middle of the primary recrystallization annealing to the start of secondary recrystallization, the most important technique of the present invention is to locally provide a region for increasing the driving force for crystal growth inside the steel sheet. Here, since crystal growth in the plate thickness direction occurs relatively easily, such a region does not necessarily have to be provided over the entire plate thickness in the plate thickness direction, and a part of the region in the plate thickness direction does not have to be provided. Even if provided, the effect is the same. However, as the projection area of this area on the steel plate surface, the equivalent circle diameter is 0.
It is necessary to make it between 05 mm and 3.0 mm. This is because when the thickness is less than 0.05 mm, there are many cases in which the secondary recrystallized grains that often occur afterwards often cause the moss to eventually erode and disappear. On the other hand, when the thickness exceeds 3.0 mm, the size of the fine grains generated is also increased.
This is because the diameter exceeds 3.0 mm, which causes a decrease in magnetic flux density and increases iron loss.

【0086】このような処理を施す領域については、3.
0 mm以下の狭小な領域であることが必要で、例えば長く
伸びた領域に処理した場合には、処理領域に方位の劣る
結晶粒が生成し、材料の磁束密度の大幅な劣化をきた
し、鉄損の増加を招く。
For the areas to be subjected to such processing, refer to 3.
It is necessary to have a narrow region of 0 mm or less.For example, when treating a long stretched region, crystal grains with poor orientation are generated in the treated region, causing a significant deterioration of the magnetic flux density of the material, It causes an increase in loss.

【0087】このような領域を設ける製造工程上の時期
としては、1次再結晶開始前では新たな1次再結晶粒の
生成によって、このような領域が消滅するので効果がな
く、一方2次再結晶開始後では微細粒が領域内で核生成
−粒成長する間もなく2次再結晶粒によって蚕食される
ので、やはり効果が失われる。
As the timing of the manufacturing process for providing such a region, there is no effect because such a region disappears due to the generation of new primary recrystallized grains before the start of the primary recrystallization, while the secondary region is not effective. After the start of recrystallization, the fine grains are eclipsed by the secondary recrystallized grains immediately before nucleation and grain growth in the region, so that the effect is also lost.

【0088】結晶成長の駆動力を増加させるための方法
としては、前述したとおり(1) 歪を導入する方法、(2)
1次再結晶粒を微細化する方法、(3) インヒビターの抑
制力の強化による方法等があるが、このうち(1), (2)の
方法が優れており、その中でも (1)の方法が人為的に微
細粒を発生させ制御する上で特に優れている。また、鋼
板に導入する歪量としては、0.005 未満の場合、微細粒
の生成が起こらない場合もあって作用が不安定となり、
一方0.70を超えると、同一位置に多数の微細粒が生成す
る傾向が強く、努力の割にその効果が薄くなるので、導
入歪量は 0.005〜0.70の範囲とすることが好ましい。
As a method for increasing the driving force for crystal growth, as described above, (1) a method of introducing strain, (2)
There are methods such as refining the primary recrystallized grains and (3) strengthening the inhibitory power of the inhibitor. Among them, the methods of (1) and (2) are superior, and among them, the method of (1) Is particularly excellent in artificially generating and controlling fine particles. If the amount of strain introduced into the steel sheet is less than 0.005, the action becomes unstable because fine particles may not be generated.
On the other hand, if it exceeds 0.70, a large number of fine particles are likely to be formed at the same position, and the effect thereof is weakened in spite of efforts. Therefore, the introduced strain amount is preferably in the range of 0.005 to 0.70.

【0089】工業的に、このような結晶成長の駆動力を
増加させた領域を高能率でかつ安定して設ける方法とし
て、特に優れた方法は、図14に示すような、表面に小突
起を有する物体で、鋼板よりも硬い物体を鋼板表面に押
圧する方法や、図13に示すような、鋼板表面と電極との
間に高電圧を印加し局所的に通電または放電する方法、
さらには高温のスポットレーザーを瞬間的に照射する方
法やパルスレーザーを局所的に照射する方法等である。
ここで、高温のスポットレーザーとは、炭酸ガスレーザ
ーなどのような連続発振するが大容量であるレーザーで
あり、鋼板表面の局所を数百ミリ秒以下の短時間のみ照
射し、加熱するものである。また、パルスレーザーと
は、Qスイッチ等を用いて、短時間、高密度の光束化と
したもので、極めて強力な衝撃力を鋼板の局所に付与す
ることができるものである。
As a method for industrially providing a region in which the driving force for crystal growth is increased with high efficiency and stability, a particularly excellent method is to form small protrusions on the surface as shown in FIG. With an object having, a method of pressing an object harder than a steel plate against the steel plate surface, as shown in FIG. 13 , a method of locally applying or discharging a high voltage between the steel plate surface and the electrode,
Furthermore, there are a method of irradiating with a high-temperature spot laser instantaneously, a method of locally irradiating with a pulse laser, and the like.
Here, a high-temperature spot laser is a laser that continuously oscillates but has a large capacity, such as a carbon dioxide gas laser, which irradiates and locally heats the surface of the steel sheet for a short time of several hundred milliseconds or less. is there. The pulse laser is a high-density light flux formed in a short time by using a Q switch or the like, and is capable of imparting extremely strong impact force locally to the steel sheet.

【0090】上記したようにして、結晶成長の駆動力を
増加させた領域を人為的に設けた後は、必要に応じて焼
鈍分離剤を塗布したのち、最終仕上げ焼鈍を施して2次
再結晶させる。最終仕上げ焼鈍は、1200℃前後の高温ま
で昇温し、純化焼鈍とフォルステライト質の下地被膜を
形成させてもよい。その後、鋼板表面に絶縁コーティン
グを塗布して製品とするが、コーティング塗布前に鋼板
表面を鏡面化したり、結晶方位強調処理を施しても良
い。また、絶縁コーティングとして張力コーティングを
用いてもよい。
As described above, after artificially providing the region where the driving force for crystal growth is increased, an annealing separator is applied if necessary, and then final finishing annealing is performed to carry out secondary recrystallization. Let In the final finish annealing, the temperature may be raised to a high temperature of around 1200 ° C., and the purification annealing and the forsterite undercoating may be formed. After that, an insulating coating is applied to the surface of the steel sheet to obtain a product, but the surface of the steel sheet may be mirror-finished or subjected to crystal orientation enhancement treatment before the coating is applied. In addition, tension coating may be used as the insulating coating.

【0091】ここに、磁区細分化処理として、プラズマ
ジェットやレーザー照射を利用する場合には、2次再結
晶後の鋼板表面に所定の処理を施せば良い。また、この
段階で、突起ロールによって線状の溝領域を設けること
もできる。また、界面平滑化処理や結晶方位強調処理を
利用する場合には、フォルステライト被膜の形成を抑制
したり、フォルステライト被膜を除去したのち所定の処
理を施し、その後に絶縁コーティングを施せば良い。
Here, when plasma jet or laser irradiation is used as the magnetic domain refining treatment, a predetermined treatment may be performed on the surface of the steel sheet after the secondary recrystallization. Further, at this stage, it is possible to provide the linear groove region with the projection roll. When the interface smoothing treatment or the crystal orientation enhancement treatment is used, the formation of the forsterite coating may be suppressed, or the forsterite coating may be removed, a predetermined treatment may be performed, and then an insulating coating may be applied.

【0092】上述した製造方法によって、鉄損が低く、
耐歪特性および実機特性に優れた高磁束密度の方向性電
磁鋼板を得ることができ、特に3mm以下の微細粒を15mm
以上の粗大粒と共に混在させることにより、磁束密度が
高く、鉄損が低い製品とし、かつ実機の鉄損が極めて低
く優れた変圧器を組み立てることができる。
By the manufacturing method described above, the iron loss is low,
It is possible to obtain grain-oriented electrical steel sheets with high magnetic flux density that are excellent in strain resistance and actual machine characteristics.
By mixing together with the above coarse particles, a product having a high magnetic flux density and a low iron loss, and an excellent transformer with an extremely low iron loss in an actual machine can be assembled.

【0093】[0093]

【実施例】【Example】

実施例1 C:0.08wt%、Si:3.35wt%、Mn:0.07wt%、Al:0.02
wt%、Sb:0.05wt%およびN:0.008 wt%を含み、残部
はFeおよび不可避的不純物からなる鋼スラブを、1410℃
に加熱した後、常法により 2.2mm厚の熱延鋼板とした。
ついで、1000℃, 30秒の熱延板焼鈍後、酸洗し、 1.5mm
厚に冷間圧延した。その後、1080℃で50秒間の中間処理
を施したのち、 220℃の鋼板温度での温間圧延により0.
22mmの最終板厚とした。ついで、脱脂処理後、 850℃で
2分間の脱炭焼鈍を施したのち、鋼板を2分割し、一方
はそのままMgOを主成分とする焼鈍分離剤を塗布した
(比較例)。また残る一方には、図14に示した装置を用
いて、鋼板表面に 1.5mmのサイズの領域に1 kV で瞬時
の放電処理を施し、かかる瞬時の高温熱処理により、粒
成長の駆動力増加処理を施した。そして、かような領域
を、図11に示されるパターンで、コイル長手方向のピッ
チ:10mm、幅方向のピッチ:15mmで繰り返し設けたの
ち、同じくMgOを主成分とする焼鈍分離剤を塗布した
(発明例)。
Example 1 C: 0.08 wt%, Si: 3.35 wt%, Mn: 0.07 wt%, Al: 0.02
steel slab containing wt%, Sb: 0.05 wt% and N: 0.008 wt% with the balance Fe and unavoidable impurities at 1410 ° C.
After heating, the hot-rolled steel sheet with a thickness of 2.2 mm was prepared by a conventional method.
Then, after annealing the hot-rolled sheet at 1000 ℃ for 30 seconds, pickled it to 1.5mm.
Cold rolled to a thickness. After that, an intermediate treatment was performed at 1080 ° C for 50 seconds, followed by warm rolling at a steel plate temperature of 220 ° C to 0.
The final plate thickness was 22 mm. Then, after degreasing, decarburization annealing was performed at 850 ° C. for 2 minutes, the steel sheet was divided into two, and one of them was directly coated with an annealing separating agent containing MgO as a main component (comparative example). On the other hand, using the equipment shown in Fig. 14, the surface of the steel sheet was subjected to an instantaneous discharge treatment at 1 kV at a size of 1.5 mm, and the instantaneous high-temperature heat treatment was used to increase the grain growth driving force. Was applied. Then, such regions were repeatedly provided in the pattern shown in FIG. 11 at a pitch of 10 mm in the longitudinal direction of the coil and a pitch of 15 mm in the width direction, and then an annealing separator containing MgO as a main component was also applied ( Invention example).

【0094】ついで、得られたコイルは、最終仕上げ焼
鈍として、N2 中で 850℃まで30℃/hの昇温速度で昇
温し、 850℃に25時間保持した後、25%のN2 と75%の
2の混合雰囲気中にて15℃/hの昇温速度で1200℃ま
で昇温し、さらにH2 中で5時間保持後、降温した。そ
の後、これらのコイルは、未反応焼鈍分離剤を除去した
後、50%コロイダルシリカを含有する張力コーティング
を塗布焼き付け、プラズマジェットで磁区細分化処理を
施して製品とした。ここに、プラズマジェットの照射
は、板幅方向に線状に、照射幅:0.05mm、圧延方向への
繰り返し間隔:5mmの条件で行った。
Then, the obtained coil was subjected to final finish annealing by raising the temperature to 850 ° C. in N 2 at a temperature rising rate of 30 ° C./h, holding it at 850 ° C. for 25 hours, and then applying 25% N 2 The temperature was raised to 1200 ° C. at a heating rate of 15 ° C./h in a mixed atmosphere of H 2 and 75% H 2 , further held in H 2 for 5 hours, and then lowered. Then, after removing the unreacted annealing separator, these coils were coated and baked with a tension coating containing 50% colloidal silica, and subjected to a magnetic domain subdivision treatment with a plasma jet to obtain a product. Irradiation of the plasma jet was performed linearly in the plate width direction under the conditions of irradiation width: 0.05 mm and repeating interval in the rolling direction: 5 mm.

【0095】これらの鋼板を用い、スリット加工、剪断
加工、積層固定加工を行い、それぞれ脚幅:250 mm、高
さ:900 mm、厚み:300 mmの3相の変圧器を各2台ずつ
製造した。この時、1台はできるだけ歪が加わらないよ
うにして製造し、他の1台は歪付与の効果を実験的に評
価するために、加工時に50mmの径の球体を有するキャス
ターを5kgの荷重で押し付けて意図的に歪を付加して、
製造した。これらの変圧器の鉄損特性と実機化因子の値
について調べた結果を、材料の磁気特性について調査し
た結果と併せて、表4に示す。また、表4には、材料を
マクロエッチして測定した3mm以下の結晶粒の個数比率
と3mmを超える結晶粒の平均粒径Dについての調査結果
も併せて示す。
Using these steel plates, slit processing, shearing processing, and laminated fixing processing were carried out to manufacture two 3-phase transformers each having leg width: 250 mm, height: 900 mm, thickness: 300 mm. did. At this time, one is manufactured with as little strain as possible, and the other one is a caster having a sphere with a diameter of 50 mm at the time of processing with a load of 5 kg in order to experimentally evaluate the effect of adding strain. By pushing it and adding distortion intentionally,
Manufactured. Table 4 shows the results of the investigation of the iron loss characteristics of these transformers and the values of the realization factors, together with the results of the investigation of the magnetic characteristics of the materials. Table 4 also shows the results of investigations on the number ratio of crystal grains of 3 mm or less measured by macro-etching the material and the average grain size D of crystal grains of more than 3 mm.

【0096】[0096]

【表4】 [Table 4]

【0097】同表から明らかなように、この発明の方向
性電磁鋼板を用いた変圧器の実機特性は、実機化因子も
低く、耐歪特性も極めて良好で、実際の変圧器の鉄心材
料として極めて優れていた。
As is apparent from the table, the actual machine characteristics of the transformer using the grain-oriented electrical steel sheet of the present invention have a low actualization factor and very good distortion resistance, and are suitable as an iron core material of an actual transformer. It was extremely good.

【0098】実施例2 C:0.08wt%、Si:3.40wt%、Mn:0.04wt%、Al:0.02
wt%、Cu:0.15wt%、Ni:0.10wt%、Bi:0.005 wt%、
Sb:0.04wt%およびN:0.008 wt%を含有し、残部はFe
および不可避的不純物からなる鋼スラブを、1430℃に加
熱したのち、常法により 2.6mm厚の熱延鋼板とした。つ
いで、 750℃で3秒の均熱処理からなる炭化物調整処理
を施し、酸洗後、冷延圧延によって 1.8mmの中間厚とし
たのち、1125で30秒の均熱処理とミスト水の噴射による
40℃/sの急冷からなる中間焼鈍を施した。
Example 2 C: 0.08 wt%, Si: 3.40 wt%, Mn: 0.04 wt%, Al: 0.02
wt%, Cu: 0.15 wt%, Ni: 0.10 wt%, Bi: 0.005 wt%,
Sb: 0.04 wt% and N: 0.008 wt%, balance Fe
After heating the steel slab consisting of unavoidable impurities to 1430 ° C, a hot rolled steel sheet with a thickness of 2.6 mm was prepared by a conventional method. Then, a carbide conditioning treatment consisting of soaking for 3 seconds at 750 ° C was performed, and after pickling, cold rolling was applied to obtain an intermediate thickness of 1.8 mm, then soaking at 1125 for 30 seconds and spraying mist water.
Intermediate annealing consisting of quenching at 40 ° C / s was performed.

【0099】ついで、酸洗後、 230℃の鋼板温度での温
間圧延により0.26mmの最終板厚とした。ついで脱脂処理
後、鋼板を5分割し、一つは 850℃で2分間の脱炭焼鈍
を施した後、MgOを主成分とする焼鈍分離剤を塗布した
(比較例)。また、残る4つは、 850℃で2分間の脱炭
焼鈍を施す際、 850℃に昇温直後に、図13に示した形状
のセラミック製ロールを鋼板の走行速度と同期させて回
転させつつ鋼板を押圧し、図11に示すようなパターン
で、2.0 mmのサイズの局所的な粒成長の駆動力増加処理
をコイル長手方向のピッチ:25mm、幅方向のピッチ:20
mmで鋼板に施した。この時、3つのコイルについては、
脱炭焼鈍の前に鋼板表面に、図15に示す線状突起を有す
るセラミック製ロールを走行するコイルと同期させて回
転させ、2つは深さ:5μm 、幅:100 μm の板幅方向
に延び、圧延方向のピッチ:5mm溝を、また他の1つは
深さ:30μm 、幅:500 μm の板幅方向に延び、圧延方
向のピッチ:2mm溝を形成した。脱炭焼鈍後、これら4
コイルは、比較例と同じく、MgOを主成分とする焼鈍分
離剤を塗布した(発明例)。
Then, after pickling, a final plate thickness of 0.26 mm was obtained by warm rolling at a steel plate temperature of 230 ° C. Then, after degreasing treatment, the steel sheet was divided into 5 parts, one of which was subjected to decarburization annealing at 850 ° C. for 2 minutes, and then an annealing separator containing MgO as a main component was applied (comparative example). In addition, the remaining four, when performing decarburization annealing at 850 ° C for 2 minutes, immediately after raising the temperature to 850 ° C, while rotating the ceramic roll of the shape shown in Fig. 13 in synchronization with the running speed of the steel sheet. Press the steel plate and apply the driving force increasing process for the local grain growth of 2.0 mm in the pattern as shown in Fig. 11 to the coil longitudinal pitch: 25 mm, widthwise pitch: 20
It was applied to the steel plate in mm. At this time, for the three coils,
Before decarburization annealing, the ceramic roll with linear protrusions shown in Fig. 15 was rotated in synchronism with the traveling coil on the surface of the steel sheet, and the two were placed in the width direction of depth: 5 μm, width: 100 μm. The pitch was 5 mm in the rolling direction, and the other was a pitch of 2 mm in the rolling direction with a depth of 30 μm and a width of 500 μm. After decarburization annealing, these 4
Similar to the comparative example, the coil was coated with an annealing separator containing MgO as a main component (invention example).

【0100】これらのコイルは、最終仕上げ焼鈍とし
て、N2 中で 850℃まで30℃/hの昇温速度で昇温し、
ついで25%のN2 と75%のH2 の混合雰囲気中にて15℃
/hの昇温速度で1200℃まで昇温し、さらにH2 中で5
時間保持した後、降温した。その後、これらのコイル
は、未反応焼鈍分離剤を除去した後、50%のコロイダル
シリカを含有する張力コーティングを塗布焼き付け、製
品とした。ただし、深さ:5μm の溝を設けた2つのコ
イルのうち、1つについては張力コーティングを塗布焼
き付け後、 0.1mm径のレーザービームを 0.3mm間隔で板
幅方向に照射し(圧延方向におけるピッチ:10mm)、線
状の局所歪領域を設けた。
As a final finish annealing, these coils were heated to 850 ° C. in N 2 at a heating rate of 30 ° C./h,
Then, in a mixed atmosphere of 25% N 2 and 75% H 2 at 15 ° C.
/ At a Atsushi Nobori rate was raised to 1200 ° C. for h, further in H 2 5
After holding for a time, the temperature was lowered. Thereafter, these coils were manufactured by removing the unreacted annealing separator and then applying a tension coating containing 50% of colloidal silica to bake them. However, one of the two coils with a groove depth of 5 μm was applied with a tension coating and baked, and then a 0.1 mm diameter laser beam was irradiated in the width direction at 0.3 mm intervals (pitch in the rolling direction). : 10 mm), and a linear local strain region was provided.

【0101】これらの鋼板を用い、スリット加工、剪断
加工、積層固定加工を行い、それぞれ脚幅:300 mm、高
さ:1100mm、厚み:250 mmの3相の変圧器を各2台ずつ
製造した。この時、1台はできるだけ歪が加わらないよ
うにして製造し、他の1台は歪付与の効果を実験的に評
価するために、加工時に50mmの径の球体を有するキャス
ターを5kgの荷重で押し付けて意図的に歪を付加して、
製造した。
Using these steel plates, slit processing, shearing processing, and laminated fixing processing were carried out to manufacture two 3-phase transformers each having a leg width of 300 mm, a height of 1100 mm, and a thickness of 250 mm. . At this time, one is manufactured with as little strain as possible, and the other one is a caster having a sphere with a diameter of 50 mm at the time of processing with a load of 5 kg in order to experimentally evaluate the effect of adding strain. By pushing it and adding distortion intentionally,
Manufactured.

【0102】これらの変圧器の鉄損特性と実機化因子の
値について調べた結果を、材料の磁気特性について調査
した結果と併せて表5に示す。また、表5には、材料を
マクロエッチして測定した3mm以下の結晶粒の個数比率
と3mmを超える結晶粒の平均粒径Dについての調査結果
も併せて示す。なお、変圧器の鉄損測定のためのBm と
しては、されら製品のD値の平均値=56mmより、Bm =
0.2×log1056 +1.4 =1.75より、Bm =1.75Tにおけ
る値とした。
Table 5 shows the results of examining the iron loss characteristics of these transformers and the values of the actualization factors, together with the results of examining the magnetic characteristics of the materials. Table 5 also shows the results of investigations on the number ratio of crystal grains of 3 mm or less measured by macro-etching the material and the average grain size D of crystal grains exceeding 3 mm. In addition, as Bm for the iron loss measurement of the transformer, from the average D value of these products = 56 mm, Bm =
From 0.2 × log 10 56 + 1.4 = 1.75, the value was taken as Bm = 1.75T.

【0103】[0103]

【表5】 [Table 5]

【0104】同表から明らかなように、粒成長の駆動力
の増加処理を施した発明例は、製品の鉄損が比較例に較
べて大幅に低下しており、また実機化因子も低く変圧器
特性に優れていた。特に、溝の容積を平均粒径Dに対し
て適正な範囲とした場合には、変圧器の実機化因子が最
も小さく、耐歪特性も極めて良好で、実際の変圧器の鉄
心材料として極めて優れていた。
As is clear from the table, the iron loss of the product of the invention example subjected to the treatment for increasing the grain growth driving force is significantly lower than that of the comparative example, and the factor of practical use is also low. It had excellent container characteristics. In particular, when the volume of the groove is set in an appropriate range with respect to the average particle diameter D, the factor for realizing the transformer is the smallest, the strain resistance is extremely good, and it is extremely excellent as the core material of the actual transformer. Was there.

【0105】実施例3 C:0.05wt%、Si:3.15wt%、Mn:0.35wt%、Al:0.01
7 wt%、Sb:0.005 wt%、B:0.0005wt%およびN:0.
008 wt%を含有し、残部はFeおよび不可避的不純物から
なる鋼スラブを、1180℃に加熱したのち、常法により
2.4mm厚の熱延鋼板とした。ついで、 800℃で30秒の熱
延板焼鈍を施し、酸洗後、 195℃の鋼板温度での温間圧
延により0.34mmの最終板厚とした。ついで脱脂処理後、
820℃で2分間の脱炭焼鈍を施した。ついで、この鋼板
を4分割し、1つは、1000℃で3分間の2次再結晶焼鈍
を施したのち、コーティング処理液を塗布・焼き付け、
製品とした(比較例)。また、残る3コイルは、1000
℃,3分間の2次再結晶焼鈍の途中、2次再結晶開始前
の昇温過程において、炉内でスポットレーザーを照射し
て、図10に示すようなパターンで、 2.5mmのサイズの局
所領域について、粒成長の駆動力増加処理を鋼板に施し
た。そして、このような領域を、コイル長手方向のピッ
チ:30mm、幅方向のピッチ:25mmで繰り返し設けた。そ
の後、コーティング処理液を塗布・焼き付け、製品とし
たが、3コイルのうち2つについては、コーティング処
理液塗布前に化学研磨し、鋼板の表面粗さを1つは0.07
μm 、他の1つは0.26μm とした。
Example 3 C: 0.05 wt%, Si: 3.15 wt%, Mn: 0.35 wt%, Al: 0.01
7 wt%, Sb: 0.005 wt%, B: 0.0005 wt% and N: 0.
A steel slab containing 008 wt% and the balance Fe and unavoidable impurities was heated to 1180 ° C and
It was a hot rolled steel sheet with a thickness of 2.4 mm. Then, hot-rolled sheet annealing was performed at 800 ° C for 30 seconds, pickling, and warm rolling at a steel sheet temperature of 195 ° C to give a final sheet thickness of 0.34 mm. After degreasing,
Decarburization annealing was performed at 820 ° C for 2 minutes. Next, this steel plate was divided into four, and one was subjected to secondary recrystallization annealing at 1000 ° C for 3 minutes, and then coated with a coating treatment liquid and baked,
Product (comparative example). The remaining 3 coils are 1000
During the secondary recrystallization annealing for 3 minutes at ℃, during the temperature rise process before the start of secondary recrystallization, the spot laser was irradiated in the furnace and the pattern as shown in Fig. 10 was applied to the local area of 2.5 mm size. For the region, the steel sheet was subjected to grain growth driving force increasing treatment. Then, such regions were repeatedly provided at a pitch of 30 mm in the longitudinal direction of the coil and a pitch of 25 mm in the width direction. After that, coating treatment liquid was applied and baked to make a product. Two of the three coils were chemically polished before the coating treatment liquid was applied, and the surface roughness of the steel plate was 0.07.
μm, and the other one was 0.26 μm.

【0106】これらの鋼板を用い、スリット加工、剪断
加工、積層固定加工を行い、それぞれ脚幅:200 mm、高
さ:800 mm、厚み:350 mmの3相の変圧器を各2台ずつ
製造した。この時、1台はできるだけ歪が加わらないよ
うにして製造し、他の1台は歪付与の効果を実験的に評
価するために、加工時に50mmの径の球体を有するキャス
ターを5kgの荷重で押し付けて意図的に歪を付加して、
製造した。
Using these steel plates, slit processing, shearing processing, and laminated fixing processing were carried out to produce two 3-phase transformers each having a leg width of 200 mm, a height of 800 mm, and a thickness of 350 mm. did. At this time, one is manufactured with as little strain as possible, and the other one is a caster having a sphere with a diameter of 50 mm at the time of processing with a load of 5 kg in order to experimentally evaluate the effect of adding strain. By pushing it and adding distortion intentionally,
Manufactured.

【0107】これらの変圧器の鉄損特性と実機化因子の
値について調べた結果を、材料の磁気特性について調査
した結果と併せて表6に示す。また、表6には、材料を
マクロエッチして測定した3mm以下の結晶粒の個数比率
と3mmを超える結晶粒の平均粒径Dについての調査結果
も併せて示す。なお、変圧器の鉄損測定のためのBm と
しては、されら製品のD値の平均値=10mmより、Bm =
0.2×log1010 +1.4 =1.60より、Bm =1.60Tにおけ
る値とした。
Table 6 shows the results of examining the iron loss characteristics of these transformers and the values of the realization factors, together with the results of examining the magnetic characteristics of the materials. In addition, Table 6 also shows the results of investigations regarding the number ratio of crystal grains of 3 mm or less measured by macro-etching the material and the average grain size D of crystal grains exceeding 3 mm. In addition, as Bm for iron loss measurement of the transformer, from the average value of D value of these products = 10 mm, Bm =
From 0.2 × log 10 10 + 1.4 = 1.60, the value was taken as Bm = 1.60T.

【0108】[0108]

【表6】 [Table 6]

【0109】同表から明らかなように、この発明に従う
方向性電磁鋼板を用いて組み立てた変圧器の実機特性
は、実機化因子も低く、耐歪特性も極めて良好で、実際
の変圧器の鉄心材料として極めて優れていた。
As is clear from the table, the actual machine characteristics of the transformer assembled by using the grain-oriented electrical steel sheet according to the present invention have a low realization factor and a very good distortion resistance characteristic. It was extremely excellent as a material.

【0110】実施例4 C:0.08wt%、Si:3.40wt%、Mn:0.09wt%、Al:0.02
wt%、Cu:0.10wt%、Mo:0.010 wt%、Ni:0.2 wt%、
Sb:0.045 wt%およびN:0.008 wt%を含有し、残部は
Feおよび不可避的不純物からなる鋼スラブを、1440℃に
加熱したのち、常法により 2.2mm厚の熱延鋼板とした。
ついで、酸洗後、冷間圧延によって 1.8mmの中間厚とし
たのち、1100で30秒の均熱処理とミスト水の噴射による
40℃/sの急冷からなる中間焼鈍後、酸洗し、さらに 200
℃の鋼板温度での温間圧延により0.22mmの最終板厚とし
た。ついで脱脂処理後、鋼板を6分割し、一つは 850℃
で2分間の脱炭焼鈍を施した後、MgOを主成分とする焼
鈍分離剤を塗布した(比較例)。また、残る5つのコイ
ルは、 850℃で2分間の脱炭焼鈍後、パルスレーザーを
照射し、鋼板表面に 2.0mmのサイズで0.01〜0.08の歪を
有する粒成長の駆動力増加処理を施した領域を、間隔:
2〜30mmで離散的かつ局所的に鋼板に設けた。ついで、
5 コイルのうち3コイルは、比較例と同じく、MgOを主
成分とする焼鈍分離剤を塗布したが、残りの2コイルは
被膜の生成を抑制するためSiO2を主成分とする焼鈍分離
剤を塗布した(発明例)。
Example 4 C: 0.08 wt%, Si: 3.40 wt%, Mn: 0.09 wt%, Al: 0.02
wt%, Cu: 0.10 wt%, Mo: 0.010 wt%, Ni: 0.2 wt%,
Sb: 0.045 wt% and N: 0.008 wt% are contained, and the balance is
A steel slab consisting of Fe and inevitable impurities was heated to 1440 ° C, and then a hot rolled steel sheet having a thickness of 2.2 mm was prepared by a conventional method.
Then, after pickling, cold rolling to an intermediate thickness of 1.8 mm, and then soaking at 1100 for 30 seconds and spraying mist water
After intermediate annealing consisting of quenching at 40 ° C / s, pickling and further 200
A final plate thickness of 0.22 mm was obtained by warm rolling at a steel plate temperature of ℃. Then, after degreasing, the steel plate is divided into 6 parts, one of which is 850 ℃
After decarburizing and annealing for 2 minutes, an annealing separator containing MgO as a main component was applied (comparative example). The remaining five coils were decarburized and annealed at 850 ° C for 2 minutes, then irradiated with pulsed laser to increase the driving force for grain growth with 2.0 mm size and 0.01-0.08 strain on the steel plate surface. Space, space:
It was provided on the steel plate discretely and locally at 2 to 30 mm. Then,
3 coils of the five coils, as well as the comparative examples, was coated with an annealing separator mainly comprised of MgO, the annealing separator remaining 2 coil composed mainly of SiO 2 to suppress the formation of the film It was applied (invention example).

【0111】これらのコイルは、最終仕上げ焼鈍とし
て、N2 中で 850℃まで30℃/hの昇温速度で昇温し、
ついで25%のN2 と75%のH2 の混合雰囲気中にて15℃
/hの昇温速度で1200℃まで昇温し、さらにH2 中で5
時間保持した後、降温した。その後、これらのコイルに
は、B2O3を含有する張力コーティングを塗布焼き付け、
製品とした。ただし、発明例のうち、SiO2を主成分とす
る焼鈍分離剤を塗布したものは表面酸化物被膜の生成は
認められず、従って、その後に塩化ナトリウム水溶液中
で結晶方位強調処理を施したのちに、上記張力コーティ
ングを塗布焼き付けた。この時、2コイルの一方は、結
集粒界段差の平均値:2.5 μm 、他方は 0.9μm とし
た。また、発明例のうち、MgOを主成分とする焼鈍分離
剤を塗布したものは、鋼板表面に生成したフォルステラ
イト被膜上に上記張力コーティングを塗布焼き付けた
が、かかる張力コーティングを塗布焼き付け後、3コイ
ルのうち、2コイルはプラズマジェットを板幅方向に線
状に照射した。この時、一つは局所歪領域の幅を0.05mm
として、鋼板圧延方向に15mmのピッチで照射(S=3.3
×10-3)したが、他の一つは、局所歪領域の幅を 0.8mm
として、鋼板圧延方向に5mmのピッチで照射(S=1.6
×10-1)した。
These coils were heated in N 2 to 850 ° C. at a temperature rising rate of 30 ° C./h as final finish annealing,
Then, in a mixed atmosphere of 25% N 2 and 75% H 2 at 15 ° C.
/ At a Atsushi Nobori rate was raised to 1200 ° C. for h, further in H 2 5
After holding for a time, the temperature was lowered. Then, these coils were applied with a tension coating containing B 2 O 3 and baked,
Made as a product. However, among the invention examples, those coated with the annealing separator having SiO 2 as the main component did not show the formation of the surface oxide film, and therefore, after the crystal orientation enhancement treatment was subsequently performed in the sodium chloride aqueous solution. The above tension coating was applied and baked on. At this time, one of the two coils had an average value of the steps of the aggregate grain boundaries: 2.5 μm, and the other had a value of 0.9 μm. Further, among the invention examples, the one to which the annealing separating agent containing MgO as a main component was applied was applied and baked with the above tension coating on the forsterite film formed on the steel plate surface. Of the coils, two coils were irradiated with the plasma jet linearly in the plate width direction. At this time, one is the width of the local strain area is 0.05mm
Irradiation at a pitch of 15 mm in the steel plate rolling direction (S = 3.3
× 10 -3 ), but the other one is the width of the local strain area is 0.8mm.
As the irradiation in the rolling direction of the steel plate at a pitch of 5 mm (S = 1.6
× 10 -1 ).

【0112】これらの鋼板を用い、スリット加工、剪断
加工、積層固定加工を行い、それぞれ脚幅:300 mm、高
さ:1100mm、厚み:250 mmの3相の変圧器を各2台ずつ
製造した。この時、1台はできるだけ歪が加わらないよ
うにして製造し、他の1台は歪付与の効果を実験的に評
価するために、加工時に50mmの径の球体を有するキャス
ターを5kgの荷重で押し付けて意図的に歪を付加して、
製造した。
Using these steel plates, slit processing, shearing processing, and laminated fixing processing were performed to manufacture two 3-phase transformers each having a leg width of 300 mm, a height of 1100 mm, and a thickness of 250 mm. . At this time, one is manufactured with as little strain as possible, and the other one is a caster having a sphere with a diameter of 50 mm at the time of processing with a load of 5 kg in order to experimentally evaluate the effect of adding strain. By pushing it and adding distortion intentionally,
Manufactured.

【0113】これらの変圧器の鉄損特性と実機化因子の
値について調べた結果を、材料の磁気特性について調査
した結果と併せて表7に示す。また、表7には、材料を
マクロエッチして測定した3mm以下の結晶粒の個数比率
と3mmを超える結晶粒の平均粒径Dについての調査結果
も併せて示す。なお、変圧器の鉄損測定のためのBm と
しては、されら製品のD値の平均値=100.5 mmより、B
m = 0.2×log10100.5+1.4 =1.80より、Bm =1.80T
における値とした。
Table 7 shows the results of examining the iron loss characteristics of these transformers and the values of the realization factors, together with the results of examining the magnetic characteristics of the materials. Table 7 also shows the results of investigations on the number ratio of crystal grains of 3 mm or less measured by macro-etching the material and the average grain size D of crystal grains of more than 3 mm. In addition, as Bm for iron loss measurement of the transformer, from the average value of D value of these products = 100.5 mm, Bm
From m = 0.2 x log 10 100.5 + 1.4 = 1.80, Bm = 1.80T
Value.

【0114】[0114]

【表7】 [Table 7]

【0115】同表から明らかなように、この発明に従う
方向性電磁鋼板を用いて組み立てた変圧器の実機特性
は、実機化因子も低く、耐歪特性も極めて良好で、実際
の変圧器の鉄心材料として極めて優れていた。
As is clear from the table, the actual machine characteristics of the transformer assembled by using the grain-oriented electrical steel sheet according to the present invention have a low actualization factor and very good distortion resistance, and the actual iron core of the transformer. It was extremely excellent as a material.

【0116】実施例5 C:0.08wt%、Si:3.45wt%、Mn:0.07wt%、Al:0.02
wt%、Ge:0.015 wt%、Mo:0.010 wt%、Ni:0.1 wt
%、Sb:0.050 wt%、Cr:0.05wt%およびN:0.008 wt
%を含有し、残部はFeおよび不可避的不純物からなる鋼
スラブを、1400℃に加熱したのち、常法により 2.4mm厚
の熱延鋼板とした。ついで、酸洗後、冷間圧延によって
1.5mmの中間厚としたのち、1100で30秒の均熱処理とミ
スト水の噴射による40℃/sの急冷からなる中間焼鈍後、
酸洗し、さらに 200℃の鋼板温度での温間圧延により0.
17mmの最終板厚とした。ついで脱脂処理後、鋼板を4分
割し、一つは 850℃で2分間の脱炭焼鈍を施した後、Mg
Oを主成分とする焼鈍分離剤を塗布した(比較例1)。
また、他の一つは、脱炭焼鈍の昇温直後に、図15に示し
たような線状突起を有するロールを走行するコイルと同
期させて回転させ、鋼板表面に深さ:30μm 、幅:35μ
m の溝を、圧延方向のピッチ:4mmで設けた(比較例
2)。さらに、他の一つは、脱炭焼鈍の昇温直後に、同
じく図15に示したような線状突起を有するロールを走行
するコイルと同期させながら回転させ、鋼板表面に深
さ:10μm 、幅:80μm 、圧延方向の繰り返し間隔:5
mmで溝を設けた(比較例3)。残る一つは、脱炭焼鈍の
昇温直後に、同じく図15に示したような線状突起を有す
るロールを走行するコイルと同期させながら回転させ、
鋼板表面に深さ:10μm 、幅:80μm 、圧延方向の繰り
返し間隔:5mmで溝を設け、ついで脱炭焼鈍後に、今度
は図13に示したような小突起を有するロールを走行する
コイルと同期させながら回転させ、鋼板表面にサイズ:
1.5 mmで図9に示したようなパターンで、圧延方向に 5
00mmの繰り返し間隔で局所的かつ離散的に、0.03〜0.15
の歪を有する粒成長の駆動力増加処理を施した。つい
で、これらの3コイルにはいずれも、MgOを主成分とす
る焼鈍分離剤を塗布した。
Example 5 C: 0.08 wt%, Si: 3.45 wt%, Mn: 0.07 wt%, Al: 0.02
wt%, Ge: 0.015 wt%, Mo: 0.010 wt%, Ni: 0.1 wt
%, Sb: 0.050 wt%, Cr: 0.05 wt% and N: 0.008 wt
%, With the balance being Fe and unavoidable impurities, the steel slab was heated to 1400 ° C and then made into a 2.4 mm thick hot-rolled steel sheet by the conventional method. Then, after pickling, by cold rolling
After the intermediate thickness of 1.5 mm, after the intermediate annealing consisting of soaking at 1100 for 30 seconds and quenching at 40 ° C / s by spraying mist water,
After pickling and further warm rolling at a steel plate temperature of 200 ° C, 0.
The final plate thickness was 17 mm. Then, after degreasing, the steel plate was divided into four, one was decarburized and annealed at 850 ° C for 2 minutes, and then Mg
An annealing separator containing O as a main component was applied (Comparative Example 1).
The other one is to rotate a roll having linear protrusions as shown in FIG. 15 in synchronization with the traveling coil immediately after the temperature rise in the decarburization annealing, so that the steel plate surface has a depth of 30 μm and a width of 30 μm. : 35μ
Grooves of m 2 were provided with a pitch of 4 mm in the rolling direction (Comparative Example 2). Further, the other one is to rotate the roll having linear protrusions as shown in FIG. 15 in synchronization with the traveling coil immediately after the temperature rise of the decarburization annealing, and the depth of the steel sheet surface: 10 μm, Width: 80 μm, repeating interval in rolling direction: 5
A groove was provided in mm (Comparative Example 3). The other one is to rotate the roll having linear protrusions as shown in FIG. 15 in synchronization with the traveling coil immediately after the temperature rise in the decarburization annealing,
Grooves were formed on the surface of the steel plate with a depth of 10 μm, a width of 80 μm, and a repeating interval in the rolling direction of 5 mm, and then, after decarburization annealing, this time synchronized with the coil running a roll having small protrusions as shown in FIG. Rotate while rotating and size on the steel plate surface:
At 1.5 mm, the pattern as shown in Fig. 9 is used.
0.03-0.15 locally and discretely with a repeat interval of 00 mm
The process for increasing the driving force for grain growth with strain of was applied. Then, an annealing separator containing MgO as a main component was applied to each of these three coils.

【0117】これらのコイルは、最終仕上げ焼鈍とし
て、N2 中で 850℃まで30℃/hの昇温速度で昇温し、
850℃に20時間保持したのち、25%のN2 と75%のH2
の混合雰囲気中にて15℃/hの昇温速度で1200℃まで昇
温し、さらにH2 中で5時間保持後、降温した。その
後、これらのコイルには、コロイダルシリカを含有する
張力コーティングを塗布し、平坦化焼鈍を兼ねて 800℃
で焼き付けた。
These coils were heated in N 2 to 850 ° C. at a temperature rising rate of 30 ° C./h for final finish annealing,
After keeping at 850 ℃ for 20 hours, 25% N 2 and 75% H 2
The temperature was raised to 1200 ° C. at a heating rate of 15 ° C./h in the mixed atmosphere of, and further kept in H 2 for 5 hours and then lowered. After that, a tension coating containing colloidal silica is applied to these coils, and the coil is also annealed at 800 ° C for flattening annealing.
Burned in.

【0118】これらの鋼板を用い、スリット加工、剪断
加工、積層固定加工を行い、それぞれ脚幅:300 mm、高
さ:1100mm、厚み:250 mmの3相の変圧器を各2台ずつ
製造した。この時、1台はできるだけ歪が加わらないよ
うにして製造し、他の1台は歪付与の効果を実験的に評
価するために、加工時に50mmの径の球体を有するキャス
ターを5kgの荷重で押し付けて意図的に歪を付加して、
製造した。
Using these steel plates, slit processing, shearing processing, and laminated fixing processing were performed to manufacture two 3-phase transformers each having a leg width of 300 mm, a height of 1100 mm, and a thickness of 250 mm. . At this time, one is manufactured with as little strain as possible, and the other one is a caster having a sphere with a diameter of 50 mm at the time of processing with a load of 5 kg in order to experimentally evaluate the effect of adding strain. By pushing it and adding distortion intentionally,
Manufactured.

【0119】これらの変圧器の鉄損特性と実機化因子の
値について調べた結果を、材料の磁気特性について調査
した結果と併せて表8に示す。また、表8には、材料を
マクロエッチして測定した3mm以下の結晶粒の個数比率
と3mmを超える結晶粒の平均粒径Dについての調査結果
も併せて示す。
Table 8 shows the results of examining the iron loss characteristics of these transformers and the values of the realization factors, together with the results of examining the magnetic characteristics of the materials. Table 8 also shows the results of investigations on the number ratio of crystal grains of 3 mm or less measured by macro-etching the material and the average grain size D of crystal grains exceeding 3 mm.

【0120】[0120]

【表8】 [Table 8]

【0121】製品のマクロエッチの結果は、比較例1と
比較例3は、通常の結晶組織であったが、比較例2は、
脱炭昇温直後に深さ25μm の溝を設けた場所において、
その直下に溝に沿った細長い結晶粒が生成しており、こ
の粒によって通常の2次再結晶粒が分断されていた。こ
れに対し、発明例では、粒成長促進処理を施した領域に
微細粒が生成しており、変圧器の実機特性は勿論、耐歪
特性にも優れた材料を得ることができた。
The results of the macro etching of the products showed that the comparative examples 1 and 3 had a normal crystal structure, whereas the comparative example 2 showed a
Immediately after the decarburization temperature rise, in a place where a groove with a depth of 25 μm was provided,
Immediately below it, elongated crystal grains were formed along the groove, and the normal secondary recrystallized grains were separated by these grains. On the other hand, in the invention example, fine particles were generated in the region subjected to the grain growth promoting treatment, and it was possible to obtain a material excellent in not only the actual machine characteristics of the transformer but also the strain resistance characteristics.

【0122】[0122]

【発明の効果】かくして、この発明によれば、製品鋼板
のもつ優れた材料特性を変圧器にそのまま反映させるこ
とができ、その結果、組み立て後においても優れた実機
特性を有する変圧器を得ることができる。
As described above, according to the present invention, the excellent material characteristics of the product steel sheet can be directly reflected in the transformer, and as a result, a transformer having excellent actual machine characteristics even after assembly can be obtained. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に従い、人為的に微細粒を生成させた
鋼板の金属組織写真である。
FIG. 1 is a metallographic photograph of a steel sheet in which fine particles are artificially generated according to the present invention.

【図2】人為的に生成させた微細粒と自然に発生した微
細粒の結晶方位を比較して示した(100)極点図であ
る。
FIG. 2 is a (100) pole figure showing a comparison of crystal orientations between artificially generated fine particles and naturally occurring fine particles.

【図3】3mm以下の微細粒の個数比率が、鉄損特性に対
する変圧器の鉄損比(実機化因子)および耐歪特性(歪
付与加工時の実機化因子)に及ぼす影響を示したグラフ
である。
FIG. 3 is a graph showing the effect of the number ratio of fine particles of 3 mm or less on the iron loss ratio of the transformer to the iron loss characteristic (actual machine factor) and the strain resistance characteristic (actual machine factor at the time of strain imparting processing). Is.

【図4】方向性電磁鋼板における貫通粒の平均粒径と鉄
損特性ならびに変圧器の実機化因子および歪付与加工時
の実機化因子との関係を示したグラフである。
FIG. 4 is a graph showing the relationship between the average grain size of through-grains and iron loss characteristics in a grain-oriented electrical steel sheet, the factor for realizing the transformer, and the factor for realizing the strain-applying process.

【図5】圧延方向に繰り返し設ける溝について、最も良
好な実機化因子を得るための鋼板の単位面積当たりの溝
の合計容積比Vを、3mmを超える結晶粒の平均粒径Dと
の関係で示したグラフである。
FIG. 5 shows the relationship between the total volume ratio V of the grooves per unit area of the steel plate for obtaining the best factor for practical application of the grooves repeatedly provided in the rolling direction and the average particle diameter D of the crystal grains exceeding 3 mm. It is the graph shown.

【図6】圧延方向に繰り返し設ける線状の局所歪につい
て、最も良好な実機化因子を得るための鋼板の単位面積
当たりの合計局所歪領域Sを、3mmを超える結晶粒の平
均粒径Dとの関係で示したグラフである。
FIG. 6 shows the total local strain region S per unit area of the steel plate for obtaining the best actualization factor for the linear local strain repeatedly provided in the rolling direction and the average grain diameter D of the crystal grains exceeding 3 mm. It is the graph shown by the relationship of.

【図7】鋼板金属表面と非金属被膜との界面の粗さにつ
いて、最も良好な実機化因子を得るための平均粗さRa
を、3mmを超える結晶粒の平均粒径Dとの関係で示した
グラフである。
FIG. 7: Regarding the roughness of the interface between the metal surface of the steel sheet and the non-metal coating, the average roughness Ra for obtaining the best actualization factor
Is a graph showing the relationship with the average grain size D of crystal grains exceeding 3 mm.

【図8】鋼板金属表面に施される結晶方位強調処理につ
いて、最も良好な実機化因子を得るための粒界平均段差
BSを、3mmを超える結晶粒の平均粒径Dとの関係で示
したグラフである。
FIG. 8 shows the grain boundary average step difference BS for obtaining the best actualization factor in the crystal orientation enhancement treatment performed on the steel plate metal surface, in relation to the average grain size D of crystal grains exceeding 3 mm. It is a graph.

【図9】結晶粒成長の駆動力を増加させた領域を、鋼板
表面に離散的に設けた状態を示した図である。
FIG. 9 is a diagram showing a state in which regions where the driving force for crystal grain growth is increased are discretely provided on the surface of the steel sheet.

【図10】結晶粒成長の駆動力を増加させた領域を、鋼
板表面に規則的に設けた状態を示した図である。
FIG. 10 is a diagram showing a state in which regions where the driving force for crystal grain growth is increased are regularly provided on the surface of the steel sheet.

【図11】結晶粒成長の駆動力を増加させた領域を、鋼
板表面に規則的に設けた状態の別例を示した図である。
FIG. 11 is a diagram showing another example of a state in which regions where the driving force for crystal grain growth is increased are regularly provided on the surface of the steel sheet.

【図12】結晶粒成長の駆動力を増加させた領域を、鋼
板の幅方向に連続して線状に設けた状態を示した図であ
る。
FIG. 12 is a diagram showing a state in which a region where the driving force for crystal grain growth is increased is linearly provided continuously in the width direction of the steel sheet.

【図13】局所通電加熱処理および局所放電加熱処理を
施すための装置の概念図である。
FIG. 13 shows a local electric current heating process and a local electric discharge heating process.
It is a conceptual diagram of the apparatus for performing.

【図14】表面に小突起を多数有するロールの外観図で
ある。
FIG. 14 is an external view of a roll having many small protrusions on the surface.
is there.

【図15】表面に線状突起を有するロールの外観図であ
る。
FIG. 15 is an external view of a roll having linear protrusions on its surface.

【符号の説明】[Explanation of symbols]

1 処理時間を定めるゲートパルス 2 高電圧電源 3 電極 4 粒成長の駆動力の増加処理領域 5 対電極 6 鋼板 7 小突起 8 線状突起 9 圧延方向 10 粒成長の駆動力増加処理の圧延方向への繰り返し処
理間隔 11 粒成長の駆動力増加処理の圧延直角方向への繰り返
し処理間隔
1 Gate pulse that determines processing time 2 High voltage power supply 3 Electrode 4 Area for increasing driving force for grain growth 5 Counter electrode 6 Steel plate 7 Small projection 8 Linear projection 9 Rolling direction 10 Rolling direction for increasing driving force for grain growth Repetitive treatment interval 11 Repeating treatment interval in the direction perpendicular to the rolling of grain growth driving force increasing treatment

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−59045(JP,A) 特開 平4−202644(JP,A) 特開 平2−30740(JP,A) 特開 平8−73940(JP,A) 特開 昭60−59044(JP,A) 特開 平6−220541(JP,A) 特開 平8−269571(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 303 C21D 8/12 C22C 38/04 H01F 1/147 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-60-59045 (JP, A) JP-A-4-202644 (JP, A) JP-A-2-30740 (JP, A) JP-A-8- 73940 (JP, A) JP 60-59044 (JP, A) JP 6-220541 (JP, A) JP 8-269571 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C22C 38/00 303 C21D 8/12 C22C 38/04 H01F 1/147

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Si:1.5 〜7.0 wt%、 Mn:0.03〜2.5 wt% を含有し、かつC, SおよびNの不純物としての混入を
それぞれ C:0.003 wt%以下、 S:0.002 wt%以下、 N:0.002 wt%以下 に抑制し、残部はFeおよび不可避的不純物の組成になる
電磁鋼板であって、鋼板を構成する結晶粒のうち、鋼板
の表面から裏面まで貫通し、かつ鋼板表面における結晶
粒径が3mm以下である結晶粒の個数比率が65%以上、98
%以下であり、しかも鋼板表面に磁区細分化処理が施さ
れていることを特徴とする、鉄損特性、耐歪特性および
実機での磁気特性に優れた方向性電磁鋼板。
1. Si: 1.5 to 7.0 wt%, Mn: 0.03 to 2.5 wt%, and contamination of C, S and N as impurities is C: 0.003 wt% or less and S: 0.002 wt% or less, respectively. , N: 0.002 wt% or less, with the balance being Fe and unavoidable impurities composition, which is a magnetic steel sheet, of the crystal grains constituting the steel sheet , the steel sheet
Of penetrating from the surface to the back surface, and the crystal grain number ratio crystal <br/> grain size in the steel sheet surface is less than 3mm is at least 65%, 98
% Or less, and the surface of the steel sheet is subjected to magnetic domain refinement treatment, which is a grain-oriented electrical steel sheet excellent in iron loss characteristics , strain resistance characteristics and magnetic characteristics in an actual machine.
【請求項2】 請求項1において、鋼板の表面から裏面
まで貫通している結晶粒の鋼板表面における結晶粒径の
平均値が8mm以上、50mm以下であることを特徴とする、
鉄損特性、耐歪特性および実機での磁気特性に優れた方
向性電磁鋼板。
2. The steel sheet according to claim 1, wherein the steel sheet has a front surface to a back surface.
The average value of the crystal grain size in the crystal grains of the steel sheet surface which penetrates to at least 8 mm, and wherein the at 50mm or less,
A grain-oriented electrical steel sheet with excellent iron loss characteristics , strain resistance characteristics, and magnetic characteristics in actual machines.
【請求項3】 請求項1または2において、鋼板の表面
から裏面まで貫通し、かつ鋼板表面における結晶粒径が
3mm以下である結晶粒自然に発生した結晶粒と人為
的に生成させ規則配置させた結晶粒からなることを特徴
とする、鉄損特性、耐歪特性および実機での磁気特性に
優れた方向性電磁鋼板。
3. The surface of a steel sheet according to claim 1,
Passing from to the back, and the crystal grains the crystal grain size in the steel sheet surface is less than 3mm, characterized in that it consists of naturally occurring crystal grains and artificially produced were regularly arranged crystal grains, core loss A grain-oriented electrical steel sheet with excellent characteristics , strain resistance, and magnetic characteristics in an actual machine.
【請求項4】 請求項1,2または3において、磁区細
分化処理が、 (1)鋼板表面に深さ:50μm以下で幅:350μm
以下の溝を圧延方向に繰り返し設けること、 (2)鋼板表層部に線状の局所歪を導入した領域を圧延
方向に繰り返し設けること、 (3)鋼板金属表面と非金属被膜との界面を平均粗さR
aで0.3μm以下に平滑化すること、 (4)フォルステライト被膜の形成を抑制、またはフォ
ルステライト被膜を除去したのち、ハロゲン化合物の水
溶液中で鋼板表面を電解処理して、結晶粒界段差を調整
する結晶方位強調処理を施すことのいずれかである、鉄
損特性、耐歪特性および実機での磁気特性に優れた方向
性電磁鋼板。
4. The magnetic domain refining process according to claim 1, 2, or 3, wherein (1) the steel plate surface has a depth of 50 μm or less and a width of 350 μm.
The following grooves are repeatedly provided in the rolling direction, (2) the region where a linear local strain is introduced in the steel sheet surface layer portion is repeatedly provided in the rolling direction, (3) the interface between the steel sheet metal surface and the non-metal coating is averaged. Roughness R
smoothing to 0.3 μm or less with a, (4) suppressing formation of forsterite coating, or
After removing the rusterite film, water containing a halogen compound is used.
Electrolyte the steel plate surface in the solution to adjust the grain boundary step
A grain-oriented electrical steel sheet excellent in iron loss characteristics, strain resistance characteristics, and magnetic characteristics in an actual machine, which is obtained by performing a crystal orientation enhancement treatment.
【請求項5】 請求項4において、鋼板を構成する結晶
粒のうち、鋼板の表面から裏面まで貫通している結晶粒
で、鋼板表面における結晶粒径が3mmを超える大きさ
の結晶粒の平均粒径をD(mm)としたとき、 (1)圧延方向に繰り返し設ける溝について、鋼板の単
位面積当たりの溝の合計容積比V(単位:mm)が次式
(1)の関係を満足する範囲とするか、 log10V≦−2.3−0.01×D ―――(1) (2)圧延方向に繰り返し設ける線状の局所歪につい
て、鋼板の単位面積当たりの局所歪の合計領域比S(単
位:無次元)が次式(2)の関係を満足する範囲とする
か、 log10S≦−0.7+0.005×D ―――(2) (3)鋼板金属表面と非金属被膜との界面の平均粗さR
aについて、このRaが次式(3)の関係を満足する範
囲とするか、 Ra≦0.3−0.1×log10D ―――(3) (4)フォルステライト被膜の形成を抑制、またはフォ
ルステライト被膜を除去したのち、ハロゲン化合物の水
溶液中で鋼板表面を電解処理して、結晶粒界段差を調整
する結晶方位強調処理について、その粒界平均段差BS
が次式(4)の関係を満足する範囲とする BS≦3.0−log10D ―――(4) ことを特徴とする、鉄損特性、耐歪特性および実機での
磁気特性に優れた方向性電磁鋼板。
5. The average grain size of the crystal grains forming the steel sheet according to claim 4, wherein the crystal grain size penetrates from the front surface to the back surface of the steel sheet and the crystal grain size on the steel sheet surface exceeds 3 mm. When the particle size is D (mm), (1) For the groove repeatedly provided in the rolling direction, the total volume ratio V (unit: mm) of the groove per unit area of the steel plate satisfies the relationship of the following expression (1). Range or log 10 V ≦ −2.3-0.01 × D (1) (2) Regarding linear local strain repeatedly provided in the rolling direction, total local strain per unit area of steel sheet The area ratio S (unit: dimensionless) is set to a range that satisfies the relationship of the following expression (2), or log 10 S ≦ −0.7 + 0.005 × D (2) (3) With the steel plate metal surface Average roughness R of the interface with the non-metal coating
Regarding a, the Ra is set to a range that satisfies the relation of the following expression (3), or Ra ≦ 0.3-0.1 × log 10 D --- (3) (4) Suppression of formation of forsterite film , Or
After removing the rusterite film, water containing a halogen compound is used.
Electrolyte the steel plate surface in the solution to adjust the grain boundary step
The crystal orientation emphasizing treatment of, its grain boundary average step BS
Is excellent in iron loss characteristics, strain resistance characteristics, and magnetic characteristics in an actual machine, which is BS ≦ 3.0-log 10 D-(4) within a range satisfying the following expression (4). Grain oriented electrical steel sheet.
JP23549897A 1996-10-21 1997-08-18 Grain-oriented electrical steel sheets with excellent iron loss, distortion resistance and magnetic properties in actual machines Expired - Fee Related JP3482833B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP23549897A JP3482833B2 (en) 1996-10-21 1997-08-18 Grain-oriented electrical steel sheets with excellent iron loss, distortion resistance and magnetic properties in actual machines
DE69706388T DE69706388T2 (en) 1996-10-21 1997-10-20 Grain-oriented electromagnetic steel sheet
EP97118194A EP0837148B1 (en) 1996-10-21 1997-10-20 Grain-oriented electromagnetic steel sheet
US08/953,920 US6083326A (en) 1996-10-21 1997-10-20 Grain-oriented electromagnetic steel sheet
KR1019970054015A KR100424126B1 (en) 1996-10-21 1997-10-21 Grain-oriented electromagnetic steel sheet
CN97126080A CN1099474C (en) 1996-10-21 1997-10-21 Iron loss low, strain characteristic resistant and practical characteristic good grain orientation electromagnet steel plate and its manufacture method
BR9705106A BR9705106A (en) 1996-10-21 1997-10-21 Electromagnetic steel sheet with oriented granulation
US09/557,230 US6444050B1 (en) 1996-10-21 2000-04-24 Grain-oriented electromagnetic steel sheet
US10/163,522 US6929704B2 (en) 1996-10-21 2002-06-06 Grain-oriented electromagnetic steel sheet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP27813596 1996-10-21
JP8-278135 1996-10-21
JP23549897A JP3482833B2 (en) 1996-10-21 1997-08-18 Grain-oriented electrical steel sheets with excellent iron loss, distortion resistance and magnetic properties in actual machines

Publications (2)

Publication Number Publication Date
JPH10183313A JPH10183313A (en) 1998-07-14
JP3482833B2 true JP3482833B2 (en) 2004-01-06

Family

ID=26532165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23549897A Expired - Fee Related JP3482833B2 (en) 1996-10-21 1997-08-18 Grain-oriented electrical steel sheets with excellent iron loss, distortion resistance and magnetic properties in actual machines

Country Status (1)

Country Link
JP (1) JP3482833B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5600991B2 (en) * 2010-03-29 2014-10-08 新日鐵住金株式会社 Method for producing grain-oriented electrical steel sheet
JP5533133B2 (en) * 2010-03-30 2014-06-25 Jfeスチール株式会社 Directional electrical steel sheet cutting apparatus and method
JP5919617B2 (en) * 2010-08-06 2016-05-18 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
JP5928362B2 (en) * 2013-02-01 2016-06-01 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet and primary recrystallized steel sheet for producing grain-oriented electrical steel sheet
KR101762339B1 (en) * 2015-12-22 2017-07-27 주식회사 포스코 Grain oriented electrical steel sheet, and method for manufacturing grain oriented electrical steel sheet
US11578377B2 (en) 2017-05-12 2023-02-14 Jfe Steel Corporation Grain-oriented electrical steel sheet and method for producing the same
KR102177044B1 (en) * 2018-11-30 2020-11-10 주식회사 포스코 Grain oriented electrical steel sheet and manufacturing method of the same
EP4234731A4 (en) 2020-10-26 2024-04-03 Nippon Steel Corp Wound core
JPWO2022092114A1 (en) 2020-10-26 2022-05-05

Also Published As

Publication number Publication date
JPH10183313A (en) 1998-07-14

Similar Documents

Publication Publication Date Title
US6929704B2 (en) Grain-oriented electromagnetic steel sheet
JP3470475B2 (en) Grain-oriented electrical steel sheet with extremely low iron loss and its manufacturing method
JP3023242B2 (en) Method for producing low iron loss unidirectional silicon steel sheet with excellent noise characteristics
WO2016056501A1 (en) Low-core-loss grain-oriented electromagnetic steel sheet and method for manufacturing same
JP2012177149A (en) Grain-oriented silicon steel sheet, and method for manufacturing the same
JP3482833B2 (en) Grain-oriented electrical steel sheets with excellent iron loss, distortion resistance and magnetic properties in actual machines
JP3644130B2 (en) Method for producing grain-oriented electrical steel sheet
JP3357578B2 (en) Grain-oriented electrical steel sheet with extremely low iron loss and method for producing the same
JP2001107145A (en) Method for producing grain-oriented silicon steel sheet excellent in magnetic property
JP3357601B2 (en) Grain-oriented electrical steel sheet with extremely low iron loss and its manufacturing method
JP3383555B2 (en) Grain-oriented electrical steel sheet with low iron loss and excellent strain resistance and actual machine properties, and method for producing the same
JP7197069B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JPH10121135A (en) Production of grain oriented silicon steel sheet with minimal iron loss and high magnetic flux density
JP4192399B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP3386742B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP3948284B2 (en) Method for producing grain-oriented electrical steel sheet
KR930011405B1 (en) Method of manufacturing an oriented silicon steel sheet having improved magnetic flux density
JP3928275B2 (en) Electrical steel sheet
JP3386727B2 (en) Method for producing low iron loss unidirectional silicon steel sheet having low coercive force
JP2002241906A (en) Grain-oriented silicon steel sheet having excellent coating film characteristic and magnetic property
JP2003342642A (en) Process for manufacturing grain-oriented electrical steel sheet showing excellent magnetic properties and coating film properties
JP3885428B2 (en) Method for producing grain-oriented electrical steel sheet
JPWO2020158893A1 (en) Directional electromagnetic steel sheet and iron core using it
JP2002194445A (en) Method for manufacturing grain-oriented electrical steel sheet having high magnetic flux density and excellent film characteristic
JPS6331527B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees