JPH10183313A - Oriented silicon steel sheet having low core loss and having excellent strain resistance and machine mounting property - Google Patents

Oriented silicon steel sheet having low core loss and having excellent strain resistance and machine mounting property

Info

Publication number
JPH10183313A
JPH10183313A JP9235498A JP23549897A JPH10183313A JP H10183313 A JPH10183313 A JP H10183313A JP 9235498 A JP9235498 A JP 9235498A JP 23549897 A JP23549897 A JP 23549897A JP H10183313 A JPH10183313 A JP H10183313A
Authority
JP
Japan
Prior art keywords
steel sheet
grain
crystal
crystal grains
grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9235498A
Other languages
Japanese (ja)
Other versions
JP3482833B2 (en
Inventor
Michiro Komatsubara
道郎 小松原
Toshito Takamiya
俊人 高宮
Kunihiro Senda
邦浩 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP23549897A priority Critical patent/JP3482833B2/en
Priority to US08/953,920 priority patent/US6083326A/en
Priority to DE69706388T priority patent/DE69706388T2/en
Priority to EP97118194A priority patent/EP0837148B1/en
Priority to KR1019970054015A priority patent/KR100424126B1/en
Priority to CN97126080A priority patent/CN1099474C/en
Priority to BR9705106A priority patent/BR9705106A/en
Publication of JPH10183313A publication Critical patent/JPH10183313A/en
Priority to US09/557,230 priority patent/US6444050B1/en
Priority to US10/163,522 priority patent/US6929704B2/en
Application granted granted Critical
Publication of JP3482833B2 publication Critical patent/JP3482833B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a silicon steel sheet having a low core loss and having an excellent strain resistance and a machine mounting property by specifying the number ratio of a prescribed grain size of crystal grain in the surface of a steel sheet among crystal grains piercing in the direction of the plate thickness and moreover applying a magnetic domain subdividing treatment. SOLUTION: The important crystal grain in the steel sheet is pierced in the direction of the plate thickness. Many magnetic poles are formed in crystal boundaries with pierced grains like these and a large magnetostatic energy is increased. It is essential that the number ratio of the crystal grain of <=3mm in grain size is specified to be >=65% but <=98% with respect to the distribution of the pierced grain. Further, it is profitable to apply the magnetic domain subdividing treatment in order to more reduce the core loss. As the concrete method, any of such methods is executed that grooves having a prescribed depth and width are repeatedly provided in the rolling direction on the surface of the steel sheet, that linear local strain including zones are repeatedly provided in the surface layer part, that the boundary between the metallic surface and non-metallic coating of the steel sheet is smoothed and that the crystal orientation emphasizing treatment is applied on the metallic surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、変圧器や発電機
の鉄心に利用される方向性電磁鋼板、中でも鉄損が低
く、耐歪特性および実機特性に優れた方向性電磁鋼板に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grain-oriented electrical steel sheet used for an iron core of a transformer or a generator, and more particularly to a grain-oriented electrical steel sheet having low iron loss and excellent in distortion resistance and actual machine characteristics. .

【0002】[0002]

【従来の技術】Siを含有し、かつ結晶方位が(110)
〔001〕方位や(100)〔001〕方位に配向した
方向性電磁鋼板は、優れた軟磁気特性を有することから
商用周波数域での各種鉄心材料として広く使用されてい
る。この種電磁鋼板に要求される特性としては、特に鉄
損(一般に50Hzの周波数で 1.7Tに磁化させた時の損失
であるW17/50(W/kg)で表される)が低いことが重要で
ある。
2. Description of the Related Art Si is contained and the crystal orientation is (110).
Oriented electrical steel sheets oriented in the [001] or (100) [001] orientation are widely used as various core materials in the commercial frequency range because of their excellent soft magnetic properties. The characteristics required for this type of electrical steel sheet are particularly low iron loss (generally expressed as W 17/50 (W / kg), which is the loss when magnetized to 1.7 T at a frequency of 50 Hz). is important.

【0003】鉄損を低減する方法としては、渦電流損の
低減に有効なSiを含有させて電気抵抗を高める方法、鋼
板板厚を薄くする方法、結晶粒径を小さくする方法、お
よびヒステリシス損の低減に有効な結晶粒の方位を揃え
る方法等がある。このうちSiを含有させて電気抵抗を高
める方法は、Siを過度に含有させると飽和磁束密度の低
下を招き、鉄心のサイズ拡大の原因ともなるので、限界
があり、また鋼板板厚を薄くする方法も極端な製造コス
トの増大を招くことから限界があった。
[0003] As a method of reducing iron loss, a method of increasing electric resistance by containing Si effective for reducing eddy current loss, a method of reducing the thickness of a steel sheet, a method of reducing a crystal grain size, and a method of reducing hysteresis loss There is a method of aligning the orientation of crystal grains which is effective for reducing the crystallinity. Among them, the method of increasing the electric resistance by containing Si causes a decrease in the saturation magnetic flux density when excessively containing Si, which causes an increase in the size of the iron core, so there is a limit, and the thickness of the steel sheet is reduced. The method is also limited because it causes an extreme increase in manufacturing cost.

【0004】従って、鉄損低減のための技術開発は、結
晶方位の集積度向上(これは、一般に 800 A/mの磁化力
における磁束密度B8 (T)で表される)と結晶粒径の
低減に注力されたが、結晶方位の集積度を向上させると
必然的に結晶粒径が大きくなり鉄損が劣化するという二
律背反性が存在するため、最小の鉄損値を得るために
は、最適な結晶方位集積度すなわち最適なB8 値に調整
することが必要であった。
Therefore, the technical development for reducing iron loss is to improve the degree of integration of crystal orientation (this is generally represented by the magnetic flux density B 8 (T) at a magnetization force of 800 A / m) and the crystal grain size. Although there was a trade-off that increasing the degree of integration of the crystal orientation inevitably increases the crystal grain size and deteriorates iron loss, in order to obtain the minimum iron loss value, It was necessary to adjust the degree of integration of the crystal orientation, that is, the optimum B 8 value.

【0005】しかしながら、近年、プラズマジェットや
レーザー光を照射して人工的に磁区幅を細分化する技術
が開発され、鉄損低減のために結晶粒径を細粒化する必
要性がなくなったことから、結晶方位の集積度を高めて
鉄損を低減する方法が主流となり、磁束密度(B8 )が
1.93〜2.00Tという材料まで開発されるようになってき
た。
However, in recent years, a technique for artificially subdividing the magnetic domain width by irradiating a plasma jet or a laser beam has been developed, and the necessity of reducing the crystal grain size to reduce iron loss has been eliminated. Therefore, the mainstream method is to reduce the core loss by increasing the degree of integration of the crystal orientation, and the magnetic flux density (B 8 )
Materials up to 1.93-2.00T have been developed.

【0006】また、磁区細分化処理として、線状溝の形
成や線状歪の導入を始めとして、鋼板金属表面と非金属
被膜との界面の粗度を低減したり、金属表面に結晶方位
強調処理を施す方法が開発され、これらの磁区細分化処
理によって材料の鉄損特性は大幅に向上した。
In addition, as a magnetic domain refining treatment, the roughness of the interface between the metal surface of the steel sheet and the non-metallic film is reduced, including the formation of linear grooves and the introduction of linear strain, and the crystal orientation is enhanced on the metal surface. A method for performing the treatment has been developed, and the iron loss characteristics of the material have been greatly improved by the magnetic domain refining treatment.

【0007】ところで、結晶方位の集積度を高めるため
には、2次再結晶を完全に制御することが必要となって
くる。2次再結晶は、インヒビターと呼ばれるAlNやMn
Se、MnSなどの析出物を鋼中に微細に分散析出させて結
晶粒の正常成長を抑制し、ゴス方位と呼ばれる特定の好
ましい方位((110)〔001〕方位およびその近傍
方位)の粒のみを大きく成長させる技術であり、インヒ
ビターとしてはこの他にもSb,Sn,Biなどの粒界偏析型
元素をサブインヒビターとして用いている。こうした技
術と結晶粒の集合組織を制御する技術が結合して上記の
ような優れた磁束密度を有する電磁鋼板の製造技術が完
成された。
Incidentally, in order to increase the degree of integration of the crystal orientation, it is necessary to completely control the secondary recrystallization. Secondary recrystallization is performed by using an inhibitor called AlN or Mn.
Precipitates such as Se and MnS are finely dispersed and precipitated in steel to suppress normal growth of crystal grains, and only grains having a specific preferred orientation ((110) [001] orientation and its neighboring orientation) called Goss orientation It is a technique for growing GaN greatly, and other inhibitors such as grain boundary segregation elements such as Sb, Sn, and Bi are used as sub-inhibitors. These techniques and the technique of controlling the texture of crystal grains are combined to complete the technique of manufacturing an electromagnetic steel sheet having the above-described excellent magnetic flux density.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、このよ
うな優れた軟磁気特性を有する方向性電磁鋼板を用いて
変圧器を製造した場合、実機として所期した特性が得ら
れない場合が多々発生するようになった。特に剪断加工
の後、歪取焼鈍を行わない状態で使用する積変圧器の場
合に材料特性と変圧器特性とのギャップがとりわけ大き
かった。
However, when a transformer is manufactured by using a grain-oriented electrical steel sheet having such excellent soft magnetic properties, there are many cases where desired properties cannot be obtained as an actual machine. It became so. In particular, in the case of a product transformer used without performing strain relief annealing after shearing, the gap between the material characteristics and the transformer characteristics was particularly large.

【0009】従来においても、磁束密度の高い方向性電
磁鋼板を使用して積変圧器を製造した場合に所期した実
機特性が得られないという問題が発生し、種々調査が行
われてきたが、これは磁束密度の高い材料を用いた場合
の特有の現象として、変圧器のT結合部に磁束の流れ方
向から逸脱する方向への好ましからざる磁束の廻り込み
が生じ、不要な損失が生じるため所定の鉄損低減効果が
得られないとの説明がなされ、改善の余地がないものと
されてきた。しかしながら、磁束密度がさらに向上した
昨今の材料を用いた場合における実機特性の劣化量は甚
だしく、材料開発の利益すら享受できない状況にある。
Conventionally, when a product transformer was manufactured using a grain-oriented electrical steel sheet having a high magnetic flux density, there was a problem that desired characteristics of an actual machine could not be obtained, and various investigations have been made. This is a unique phenomenon when a material having a high magnetic flux density is used. Unwanted magnetic flux wraps around the T-junction of the transformer in a direction deviating from the flow direction of the magnetic flux, causing unnecessary loss. It has been described that a predetermined iron loss reduction effect cannot be obtained, and it has been said that there is no room for improvement. However, when a modern material having a further improved magnetic flux density is used, the amount of deterioration of the characteristics of the actual machine is so great that even the benefits of material development cannot be enjoyed.

【0010】また、磁束密度の向上に伴い、剪断加工や
積み加工時に加える歪によって鉄損特性が大きく劣化す
る現象が認められた。これについては未だ研究の途中で
あり、現状では材料のハンドリングに注意して歪の付加
をできるだけ抑制するしか現実的な対応策がない状態で
ある。
[0010] In addition, it has been observed that with the improvement of the magnetic flux density, the iron loss characteristic is greatly degraded by the strain applied during the shearing or laminating. This is still in the midst of research, and at present, there is no realistic countermeasure that can be applied to the handling of materials and the addition of distortion is suppressed as much as possible.

【0011】さらに、前述した種々の磁区細分化技術に
よって、材料の鉄損特性は確かに向上したが、実際に開
発した材料を用いて実機を製作した場合、特に高磁場で
実機を使用した場合に、所望の特性が得られないという
問題が生じている。
[0011] Furthermore, although the iron loss characteristics of the material are certainly improved by the various magnetic domain refining techniques described above, when the actual machine is manufactured using the actually developed material, particularly when the actual machine is used in a high magnetic field. In addition, there is a problem that desired characteristics cannot be obtained.

【0012】この発明は、2次再結晶粒の結晶方位が高
度に集積した材料において、材料の鉄損から推定される
レベルに対し実機特性が大きく劣化する原因、および加
工工程において付加される歪に対する感受性が高い原因
を解明し、かような特性劣化を生じることがなく、しか
も特性の一層の向上を図った方向性電磁鋼板を提案する
ことを目的とする。
According to the present invention, in a material in which the crystal orientation of secondary recrystallized grains is highly integrated, the characteristics of the actual machine are greatly degraded with respect to the level estimated from the iron loss of the material, and the strain added in the processing step. It is an object of the present invention to elucidate the cause of high susceptibility to heat and to propose a grain-oriented electrical steel sheet which does not cause such deterioration of characteristics and further improves characteristics.

【0013】[0013]

【課題を解決するための手段】以下、この発明の解明経
緯について説明する。さて、方向性電磁鋼板の高磁束密
度化の方法は、従来から良く知られていて、インヒビタ
ー元素としてAl,Sb,Sn,Biなどの添加が有効であるこ
とが知られている。例えば、特公昭46-23820号公報に
は、AlとSを含有する方向性電磁鋼板によってB10とし
て 1.981Tの値が、また特公昭62-56923号公報には、イ
ンヒビターとしてAl,Se,SbおよびBiを含有する方向性
電磁鋼板によってB8 として1.95Tの値が報告されてい
る。
The details of the invention will be described below. A method for increasing the magnetic flux density of a grain-oriented electrical steel sheet is well known in the art, and it is known that the addition of Al, Sb, Sn, Bi, or the like as an inhibitor element is effective. For example, in JP-B-46-23820, the value of 1.981T as B 10 by a directional electromagnetic steel sheet containing Al and S, but also in JP-B-62-56923, Al as an inhibitor, Se, Sb value of 1.95T is reported as B 8 and the grain-oriented electrical steel sheet containing Bi.

【0014】これらの方向性電磁鋼板の磁気特性はすば
らしいものである。しかしながら、これらの高磁束密度
電磁鋼板を用いて変圧器を製作した場合、特性の劣化が
著しく、実機の鉄損として所望の値が得られない場合が
多かった。この原因は、材料の結晶の高集積度に起因
し、従来から仕方のないものとされてきたことは前述し
たとおりである。
The magnetic properties of these grain-oriented electrical steel sheets are excellent. However, when a transformer is manufactured using these high magnetic flux density electromagnetic steel sheets, the characteristics are significantly deteriorated, and a desired value of iron loss of an actual machine is often not obtained. The cause of this is the high degree of integration of the crystal of the material, and as described above, it has been regarded as inevitable in the past.

【0015】そこで、発明者らは、高磁束密度材料を使
用した積み変圧器のT結合部における磁束の廻り込みに
及ぼす各種要因について調査した。その結果、特性劣化
の原因が、従来から言われてきた結晶方位の集積度が高
いことによるだけでなく、この他に結晶粒径の影響があ
ることを新たに見出した。また、加工工程で導入される
歪の特性劣化に及ぼす影響に関して、以下のことを新規
に知見した。
[0015] The present inventors have investigated various factors affecting the wraparound of the magnetic flux at the T junction of the stacked transformer using the high magnetic flux density material. As a result, the inventors have newly found that the cause of the characteristic deterioration is not only the high degree of integration of the crystal orientation, which has been conventionally known, but also the influence of the crystal grain size. In addition, regarding the effect of the strain introduced in the processing step on the characteristic deterioration, the following was newly found.

【0016】すなわち、結晶方位の集積度が高い場合、
鋼板表面に現われる磁極は結晶粒表面よりも結晶粒界に
現われる磁極の方が圧倒的に大きい。磁区の細分化によ
る鉄損の低減は、磁極の発生によって増加した静磁エネ
ルギーを磁区細分化により低下する機構によって達成さ
れるのであるが、高磁束密度方向性電磁鋼板の場合、粒
界に現われる磁極による効果がそれゆえ大部分となる。
しかしながら、この材料の場合、必然的に結晶粒径が大
きくなっているので結晶粒界間の距離が大きく、同一量
の磁極が結晶粒界に現われていても静磁エネルギーの増
加量は結晶粒径の小さな材料よりも小さい。また、材料
の鉄損を最小にすべく磁区細分化処理を施した材料で
は、これにひとたび歪が付加された場合、エネルギーバ
ランスが容易に崩れて磁区細分化効果が失われ、磁区幅
が増加する。これが、高磁束密度電磁鋼板において歪感
受性が高い理由である。
That is, when the degree of integration of the crystal orientation is high,
The magnetic poles appearing on the surface of the steel sheet are much larger at the magnetic poles appearing at the crystal grain boundaries than at the crystal grain surfaces. Reduction of iron loss due to magnetic domain subdivision is achieved by a mechanism that reduces the magnetostatic energy increased by the generation of magnetic poles by magnetic domain subdivision, but appears in grain boundaries in the case of high magnetic flux density oriented magnetic steel sheets The effect of the magnetic pole is therefore predominant.
However, in the case of this material, since the crystal grain size is inevitably large, the distance between the crystal grain boundaries is large, and even if the same amount of magnetic poles appear at the crystal grain boundaries, the amount of increase in the magnetostatic energy is small. Smaller than small diameter materials. Also, in a material that has been subjected to magnetic domain refining to minimize iron loss in the material, once strain is applied to the material, the energy balance easily collapses, the magnetic domain refining effect is lost, and the magnetic domain width increases. I do. This is the reason why the high magnetic flux density magnetic steel sheet has high strain sensitivity.

【0017】以下、上記の知見を得るに至った実験につ
いて述べる。 C:0.08wt%、Si:3.35wt%、Mn:0.07wt%、Al:0.02
5 wt%、Se:0.020 wt%、Sb:0.040 wt%およびN:0.
008 wt%を含み、残余は不可避的不純物とFeからなる方
向性電磁鋼用の熱延板を、1000℃、30秒間の熱延板焼鈍
後、酸洗し、ついで圧下率:30%の冷間圧延を施したの
ち、中間焼鈍として1050℃で1分間の熱処理を施してか
ら、再び酸洗し、 150〜200 ℃の温間で圧下率:85%の
圧延を施して最終厚み:0.22mmの鋼板とした。ついで脱
脂処理を施した後、磁区細分化処理として鋼板表面に、
深さ:25μm、幅:50μm で、板幅方向から10°傾いた
方向に、長手方向への繰り返しピッチ:3mmの条件で線
状溝を設けた。その後、 850℃で2分間の脱炭・1次再
結晶焼鈍を施したのち、鋼板を2分割し、一方はそのま
ま従来材として用い、他方については、鋼板表面に 1.5
mm径のサイズで点状に、板幅方向に20mm、長手方向に30
mmのピッチで40〜45 Ws のエネルギー投与(1000〜1200
℃の推定温度)条件下の放電処理により瞬間的な加熱処
理を施した。その後、鋼板表面に、TiO2:10wt%および
Sr(OH)2:2wt%を添加したMgOを焼鈍分離剤として塗
布した後、コイルに巻取り、最終仕上げ焼鈍に供した。
最終仕上げ焼鈍は、 850℃までN2 中、1150℃までH2
とN2 の混合雰囲気中での2次再結晶を目的とした処理
と、引き続き1150℃からH2 中で5時間保持する純化を
目的とした処理を同時に行った。最終仕上げ焼鈍後は、
未反応の焼鈍分離剤を除去した後、50%のコロイダルシ
リカとりん酸マグネシウムからなる張力コートを塗布
し、製品とした。
An experiment which has led to the above findings will be described below. C: 0.08 wt%, Si: 3.35 wt%, Mn: 0.07 wt%, Al: 0.02
5 wt%, Se: 0.020 wt%, Sb: 0.040 wt% and N: 0.
008 wt%, with the balance being unavoidable impurities and Fe, the hot-rolled steel sheet for directional magnetic steel was annealed at 1000 ° C for 30 seconds, pickled, and then cooled with a rolling reduction of 30%. After rolling, heat treatment is performed at 1050 ° C. for 1 minute as intermediate annealing, pickling is again performed, and rolling is performed at a rolling reduction of 85% at a temperature of 150 to 200 ° C. to obtain a final thickness of 0.22 mm. Steel plate. Then, after degreasing, the surface of the steel sheet as a magnetic domain refining process,
A linear groove having a depth of 25 μm and a width of 50 μm was provided in a direction inclined at 10 ° from the width direction of the plate under a condition of a repetition pitch in the longitudinal direction: 3 mm. Then, after decarburization and primary recrystallization annealing at 850 ° C for 2 minutes, the steel sheet is divided into two parts, one of which is used as it is as a conventional material, and the other is
20 mm in the width direction and 30 in the longitudinal direction
40-45 Ws energy delivery at 1000 mm pitch (1000-1200
An instantaneous heat treatment was performed by a discharge treatment under the condition of (estimated temperature of ° C.). After that, TiO 2 : 10wt% and
After applying MgO to which Sr (OH) 2 : 2 wt% was added as an annealing separator, it was wound around a coil and subjected to final finish annealing.
Final finish annealing in N 2 up to 850 ° C, H 2 up to 1150 ° C
A treatment for the purpose of secondary recrystallization in a mixed atmosphere of N 2 and N 2 and a treatment for the purpose of purifying the mixture by holding it at 1150 ° C. in H 2 for 5 hours were simultaneously performed. After final finishing annealing,
After removing the unreacted annealing separating agent, a tension coat composed of 50% colloidal silica and magnesium phosphate was applied to obtain a product.

【0018】各製品の磁気特性を測定した後、スリット
加工、剪断加工、積み加工によりモデル変圧器を作成し
て変圧器の特性を測定し、その後鋼板をマクロエッチし
て結晶粒径を測定した。また、上記のスリット加工、剪
断加工、積み加工に際しては細心の注意を払い歪の付加
を極力抑制したが、歪付与の効果を実験的に評価するた
め、これらの加工時に50mm径の球体を有するキャスター
を5kgの荷重で押し付けて意図時に歪を付加する実験も
併せて行った。得られた結果を整理して表1に示す。
After measuring the magnetic characteristics of each product, a model transformer was prepared by slitting, shearing, and stacking, and the characteristics of the transformer were measured. Thereafter, the steel plate was macro-etched to measure the crystal grain size. . In addition, during the above-mentioned slitting, shearing, and laminating, the addition of distortion was suppressed as much as possible with the utmost care, but in order to experimentally evaluate the effect of imparting distortion, a sphere having a diameter of 50 mm was used during these processing. An experiment was also performed in which a caster was pressed with a load of 5 kg to add distortion when intended. Table 1 summarizes the obtained results.

【0019】[0019]

【表1】 [Table 1]

【0020】表1から明らかなように、脱炭・1次再結
晶焼鈍後、 1.5mm径のサイズで点状に瞬間的な高温処理
を施したのち2次再結晶させた製品(記号(a), (b))で
は、モデル変圧器の鉄損は極めて良好であり、製品の鉄
損に対する変圧器の鉄損の比(以後、実機化因子と呼称
する)は低かったのに対し、このような処理を行わない
製品(記号(c), (d))では、モデル変圧器の鉄損は大き
く劣化し、特に加工工程においてキャスターを用いて歪
を付加した場合には実機化因子が大きく、変圧器の鉄損
の劣化程度は極めて大、すなわち歪感受性が大きいこと
が判明した。
As is clear from Table 1, after decarburization and primary recrystallization annealing, a point-shaped instantaneous high-temperature treatment with a diameter of 1.5 mm was performed, followed by secondary recrystallization of the product (symbol (a ) and (b)), the iron loss of the model transformer was extremely good, and the ratio of the iron loss of the transformer to the iron loss of the product (hereinafter referred to as the realization factor) was low. For products that do not perform such treatments (symbols (c) and (d)), the core loss of the model transformer is greatly deteriorated. It was found that the degree of deterioration of the core loss of the transformer was extremely large, that is, the strain sensitivity was large.

【0021】上記のような結果が得られた理由を解明す
べく、鋼板のマクロエッチによる結晶粒の状態とモデル
変圧器の磁束分布の状態について詳細に調査したとこ
ろ、脱炭焼鈍板に 1.5mm径の点状の瞬間的高温熱処理を
施したのち2次再結晶させた製品(a), (b)では、かかる
処理を施した場所において 0.5〜2.5 mm径のサイズの微
細な結晶粒が鋼板の厚み方向を貫通して形成されていた
のに対し、このような処理を施さなかった製品(c), (d)
では、大部分が鋼板面内において20〜70mmの粒径の粗大
粒からなるものであった。
In order to clarify the reason why the above results were obtained, the state of the crystal grains by the macro-etching of the steel sheet and the state of the magnetic flux distribution of the model transformer were examined in detail. In the products (a) and (b), which were subjected to instantaneous high-temperature heat treatment in the form of spots having a diameter and then subjected to secondary recrystallization, fine crystal grains with a diameter of 0.5 to 2.5 mm (C), (d)
Most of the samples consisted of coarse grains having a grain size of 20 to 70 mm in the plane of the steel sheet.

【0022】また、このようにして人為的に生成させた
微細結晶粒の結晶方位を測定したところ、ランダム方位
となっており、通常の2次再結晶粒の方位であるゴス方
位から15°以上もずれていた。ちなみに、脱炭焼鈍板に
1.5mm径の点状の瞬間的高温熱処理を施したのち2次再
結晶させた場合(製品(a), (b))と同様の方法で、板幅
方向における間隔:10mmピッチ、圧延方向における間
隔:15mmピッチで鋼板に人為的に微細粒を生成させた例
を図1に示し、また図2の(100)極点図には、その
方位を、自然発生した微細粒のそれと比較して示す。図
1には、自然に発生した微細粒も散見されるが、瞬間的
な高温熱処理を施した位置には確実に微細粒が生成して
いる。また、図2に示したとおり、人為的に生成させた
微細粒の方位はランダムに分布しているのに対し、自然
に発生した微細粒のそれはゴス方位に極めて近いことが
判る。
Further, when the crystal orientation of the fine crystal grains artificially generated in this way was measured, the crystal orientation was found to be random, which was 15 ° or more from the Goss orientation, which is the orientation of the normal secondary recrystallized grains. Was also off. By the way, for decarburized annealing plate
In the same manner as in the case where a point-shaped instantaneous high-temperature heat treatment of 1.5 mm diameter is performed and then secondary recrystallization (products (a), (b)), the interval in the sheet width direction: 10 mm pitch, in the rolling direction FIG. 1 shows an example in which fine grains are artificially formed on a steel plate at a pitch of 15 mm, and the orientation is shown in the (100) pole figure of FIG. 2 in comparison with that of naturally occurring fine grains. . In FIG. 1, spontaneously generated fine particles are scattered, but fine particles are surely generated at the position where the instantaneous high-temperature heat treatment is performed. Also, as shown in FIG. 2, it can be seen that the orientation of the artificially generated fine grains is randomly distributed, whereas that of the naturally occurring fine grains is very close to the Goss orientation.

【0023】次に、上記2種類の製品の板厚方向に貫通
する結晶粒について、粒径分布を測定した結果を表2に
示す。ここで、各結晶粒の粒径は、その面積に相当する
円の直径で計算し、また平均結晶粒径の計算は一定面積
内に存在する結晶粒の個数を数え、1個当たりの平均面
積を求め、その面積に相当する円の直径で表した。
Next, the results of measuring the particle size distribution of the crystal grains penetrating in the thickness direction of the above two types of products are shown in Table 2. Here, the grain size of each crystal grain is calculated by the diameter of a circle corresponding to the area, and the average crystal grain size is calculated by counting the number of crystal grains existing in a certain area, and calculating the average area per one grain. Was calculated and expressed by the diameter of a circle corresponding to the area.

【0024】[0024]

【表2】 [Table 2]

【0025】表2から、実機化因子が大きく、変圧器特
性が劣った製品(c), (d)は、2.5 mm以下の微細粒の個数
が約30%であり、15〜70mmのサイズの結晶粒が約60%を
占めることが判る。これに対し、実機化因子の低い、変
圧器の鉄損特性に優れた製品である (a)や(b) は 2.5mm
以下の微細粒の個数比率が約90%であり、15〜70mmのサ
イズの結晶粒の個数比率は8%と極めて低いことが判
る。
From Table 2, it can be seen that the products (c) and (d), which have a large realization factor and poor transformer characteristics, have about 30% of fine particles of 2.5 mm or less, and have a size of 15 to 70 mm. It can be seen that the crystal grains account for about 60%. In contrast, (a) and (b), which have low transformer factor and excellent iron loss characteristics of transformers, are 2.5mm
It can be seen that the number ratio of the following fine grains is about 90%, and the number ratio of crystal grains having a size of 15 to 70 mm is as extremely low as 8%.

【0026】このように、実機化因子の値が異なる2種
類の材料においては、微細結晶粒の個数比率に大きな差
異があることが判明したが、このような微細粒の存在に
よって如何なる機構で実機化因子および歪感受性の低下
すなわち耐歪特性の向上効果が得られたかについて、次
に調査した。まず、モデル変圧器におけるT部接合部の
磁束の流れを調査したところ、微細粒の存在によって磁
束の廻り込みが抑制されていることが判った。すなわ
ち、粗大結晶粒の方位の集積度の向上にも拘わらず、粗
大結晶粒の中に存在する微細な結晶粒が磁束の廻り込み
を抑制していることが新たに判明した。それ故、高磁束
密度の材料であるにも拘わらず、実機化因子が低く抑制
されたわけである。
As described above, it was found that there was a large difference in the number ratio of fine crystal grains between the two types of materials having different values of the realization factor. Next, it was investigated whether the effect of reducing the strain factor and the strain sensitivity, that is, the effect of improving the strain resistance characteristics, was obtained. First, when the flow of the magnetic flux at the junction of the T section in the model transformer was investigated, it was found that the presence of the fine particles suppressed the flow of the magnetic flux. That is, it has been newly found that the fine crystal grains existing in the coarse crystal grains suppress the wraparound of the magnetic flux, despite the improvement of the degree of integration of the orientation of the coarse crystal grains. Therefore, despite the fact that it is a material having a high magnetic flux density, the factor of realization was suppressed low.

【0027】次に、耐歪特性に対する効果について検討
を加えた。鋼板内に歪が付加された場合、歪に起因する
鋼板の磁気的エネルギーが増加し、相対的に静磁エネル
ギーの比率が低下するため、磁区の細分化効果は減殺さ
れる。これに対抗するには、弾性エネルギーや静磁エネ
ルギーなど磁区細分化に寄与する種類のエネルギーを、
付加された歪によるエネルギー増加分よりも少なくとも
優る量だけ、予め鋼板内に与えておくことが有効であ
る。かようなエネルギー付与方法としては、張力付与が
あり、その他にも静磁エネルギー増加手法がある。この
うち、張力付与については、現状よりも強い張力を付与
できるコーティングは見当たらず、コーティング厚みを
増加する手段では占積率の低下を招き、変圧器特性が劣
化する。
Next, the effect on the distortion resistance was examined. When strain is applied to the steel sheet, the magnetic energy of the steel sheet caused by the strain increases, and the ratio of the magnetostatic energy relatively decreases, so that the effect of subdividing the magnetic domains is reduced. To counter this, the types of energy that contribute to magnetic domain refinement, such as elastic energy and magnetostatic energy,
It is effective to provide the steel sheet with an amount at least superior to the increase in energy due to the applied strain in advance. As such an energy applying method, there is a method of applying tension, and there is also a method of increasing magnetostatic energy. Among them, regarding the application of tension, there is no coating that can apply a higher tension than the current state, and the means for increasing the coating thickness causes a decrease in the space factor and deteriorates the transformer characteristics.

【0028】そこで、静磁エネルギーについて考察する
と、磁束密度が向上し鋼板の結晶粒の方位の集積度が向
上すると、前述したような理由で結晶粒界に磁極が集積
し、しかも結晶粒径が粗大化に伴う結晶粒界の間隔の増
大のため、静磁エネルギーの大きさは激減する。しかし
ながら、人為的に生成させた微細粒は、その方位がゴス
方位から大きく(通常15°以上)ずれているため、かよ
うな微細粒を粗大結晶粒の中に存在させることによって
静磁エネルギーを増加させることが可能となり、これに
伴い製品の耐歪特性が向上するのである。
Considering the magnetostatic energy, when the magnetic flux density is improved and the degree of integration of the crystal grain orientation of the steel sheet is improved, the magnetic poles are accumulated at the crystal grain boundaries for the above-described reason, and the crystal grain size is reduced. The magnitude of the magnetostatic energy is drastically reduced due to an increase in the interval between crystal grain boundaries accompanying the coarsening. However, since the orientation of the artificially generated fine grains is largely deviated from the Goss orientation (usually 15 ° or more), the presence of such fine grains in the coarse crystal grains reduces the magnetostatic energy. It is possible to increase the resistance, and the strain resistance of the product is improved accordingly.

【0029】この効果を、最大限発揮させるためには、
微細粒の粒径が板厚を貫通していることが重要である。
というのは、微細粒が板厚を貫通していないと、板厚垂
直方向に射影される粒界面積が小さく、結晶粒界上に発
生する磁極の量も少ないため、静磁エネルギーを高める
効果が弱いからであり、また磁束の廻り込みを抑制する
効果も同様に劣るため、実機化因子も増大することにな
るからである。
In order to maximize this effect,
It is important that the grain size of the fine grains penetrate the plate thickness.
This is because if the fine grains do not penetrate the plate thickness, the grain boundary area projected in the direction perpendicular to the plate thickness is small, and the amount of magnetic poles generated on the crystal grain boundaries is small, so the effect of increasing the magnetostatic energy Is also weak, and the effect of suppressing the wraparound of the magnetic flux is similarly inferior, so that the factor of realization increases.

【0030】次に、鋼板板厚を貫通する結晶粒全体に占
める3mm以下の微細結晶粒の個数比率の割合と耐歪特性
をも含めた実機化因子との関係について調査した結果
を、図3に示す。同図に示したとおり、微細粒の個数比
率が65〜98%の間、特に75〜98%の間で実機化因子が低
くかつ耐歪特性(歪付与加工時における実機化因子で評
価)も向上している。
Next, FIG. 3 shows the results of an investigation on the relationship between the ratio of the number ratio of fine crystal grains of 3 mm or less to the entire crystal grains penetrating the steel sheet thickness and the factor of realization including distortion resistance. Shown in As shown in the figure, when the number ratio of fine grains is between 65 and 98%, particularly between 75 and 98%, the realization factor is low and the strain resistance characteristics (evaluated by the realization factor at the time of strain imparting processing) are also high. Has improved.

【0031】次に、板厚を貫通する全結晶粒についてそ
の平均粒径として適正な値を実験により求めた。すなわ
ち、磁束密度の向上に伴って粗大結晶粒はますます粗大
化していくが、これに応じて微細結晶粒の個数比率は数
値上増加していく。しかしながら、微細結晶粒間の距離
も同一の微細粒個数比率では粗大結晶粒の増大の応じて
実質的には増加していくことになるので、微細粒の存在
による静磁エネルギーの増加効果はさほど期待できない
ことになる。従って、平均結晶粒径として好ましい上限
値が存在することになる。図4に、この点について実験
した結果を示す。同図から明らかなように、板厚を貫通
する全結晶粒の平均結晶粒径が8〜50mmの範囲におい
て、とりわけ優れた実機化因子と耐歪特性の向上効果が
得られている。
Next, an appropriate value as an average particle size of all the crystal grains penetrating the plate thickness was obtained by an experiment. That is, as the magnetic flux density increases, the coarse crystal grains become more and more coarse, and the number ratio of the fine crystal grains numerically increases accordingly. However, since the distance between fine crystal grains substantially increases with the increase in coarse crystal grains at the same fine particle number ratio, the effect of increasing the magnetostatic energy due to the presence of fine grains is not so large. You can't expect it. Therefore, a preferable upper limit exists as the average crystal grain size. FIG. 4 shows the results of an experiment conducted on this point. As is apparent from the figure, when the average crystal grain diameter of all the crystal grains penetrating the plate thickness is in the range of 8 to 50 mm, particularly excellent realization factor and the effect of improving the strain resistance are obtained.

【0032】以上、板厚を貫通する微細粒の生成によっ
て、実機化因子の増加が抑制される機構および耐歪特性
が向上する機構について説明した。次に、このような効
果を得るために必要な微細粒の生成に必要な製造条件に
ついて検討した結果について述べる。
As described above, the mechanism for suppressing the increase in the factor of realization and the mechanism for improving the strain resistance characteristics by the generation of fine grains penetrating the plate thickness have been described. Next, the results of examining the manufacturing conditions necessary for producing the fine particles required for obtaining such effects will be described.

【0033】種々の実験の結果、上記の効果を有する微
細粒の生成には、2次再結晶前に、局所的に異常粒成長
の促進のための駆動力を高めておくことが必要で、特に
一定量の歪を鋼板内部に存在させることが有効であるこ
とが判明した。2次再結晶は特定方位の結晶粒が、その
他の1次再結晶粒を急激に蚕食して成長する現象であ
る。近年、この2次再結晶粒の核生成および成長には1
次再結晶粒の集合組織による選択性が強く作用している
ことが明らかになりつつあり、ゴス方位およびその近傍
以外の方位を有する結晶粒の核生成および成長は容易で
ないと言われている。
As a result of various experiments, it is necessary to locally increase the driving force for promoting abnormal grain growth before secondary recrystallization in order to produce fine grains having the above-mentioned effects. In particular, it has been found that it is effective to cause a certain amount of strain to exist inside the steel sheet. Secondary recrystallization is a phenomenon in which a crystal grain of a specific orientation grows rapidly by eating other primary recrystallized grains. In recent years, nucleation and growth of secondary recrystallized grains have
It is becoming clear that the selectivity due to the texture of the secondary recrystallized grains is acting strongly, and it is said that nucleation and growth of crystal grains having a Goss orientation and an orientation other than the vicinity thereof are not easy.

【0034】しかしながら、発明者らの研究によれば、
鋼板内部の一定領域に異常粒成長の駆動力を高める処
理、例えば一定量の歪を導入する処理を施すことによ
り、一般の結晶粒の核生成および成長の駆動力を高める
ことが可能となり、ゴス方位から大きくずれた方位の結
晶粒が早期に成長することができるようになる。ここで
いう異常粒成長とは、極めて少数の結晶粒が圧倒的多数
の他の結晶粒を蚕食して急激に成長する現象の一般的な
呼称であり、2次再結晶が1次再結晶集合組織に依存す
る特定の方位を有する少数の結晶粒のみが急激に成長す
る現象である点において、両者は明瞭に異なる。
However, according to the study of the inventors,
By performing a process for increasing the driving force for abnormal grain growth in a certain region inside the steel sheet, for example, a process for introducing a certain amount of strain, it becomes possible to increase the driving force for nucleation and growth of general crystal grains. Crystal grains having an orientation greatly deviated from the orientation can be grown at an early stage. The abnormal grain growth referred to here is a general term for a phenomenon in which a very small number of crystal grains overwhelm a large number of other crystal grains and grow rapidly, and secondary recrystallization is a primary recrystallization aggregate. They are distinctly different in that only a small number of crystal grains having a specific orientation depending on the structure grow rapidly.

【0035】また、発明者らの研究によると、駆動力を
高める処理に起因する異常粒成長はあくまでもその領域
内のみであり、この領域の外では1次再結晶粒の集合組
織による選択性が強く働き、当該結晶粒はもはや、それ
以上成長することができないことも究明された。このよ
うな現象は、この発明の目的にとって非常に都合の良い
性質である。以下、この点について述べる。
According to the study of the inventors, the abnormal grain growth caused by the treatment for increasing the driving force is only in that region, and the selectivity due to the texture of the primary recrystallized grains is outside this region. It was also determined that the crystal worked hard and could no longer grow anymore. Such a phenomenon is a very advantageous property for the purposes of the present invention. Hereinafter, this point will be described.

【0036】まず、第1に、鋼板内に歪を導入する場
合、歪の大きさと歪導入領域の大きさのみを制御すれ
ば、微細粒のサイズを制御することが可能となる。例え
ば、前述の実験に示したように、鋼板を貫通する微細粒
の適正サイズは円相当径で評価して3mm以下であるの
で、2次再結晶前に鋼板内部に存在させる歪導入領域に
ついても3mm以下に制御すれば、微細粒の大きさを適切
に制御できるのである。
First, when strain is introduced into a steel sheet, the size of the fine grains can be controlled by controlling only the magnitude of the strain and the size of the strain-introduced region. For example, as shown in the above-mentioned experiment, the appropriate size of the fine grains penetrating the steel sheet is 3 mm or less as evaluated by the equivalent circle diameter. If the size is controlled to 3 mm or less, the size of the fine particles can be appropriately controlled.

【0037】第2に、このようにして人為的に生成した
微細粒は、通常の粗大な2次再結晶粒の方位であるゴス
方位((110)〔001〕方位)から大きくずれてい
るので、粗大な2次再結晶粒と微細粒との結晶粒界に磁
極が高密度に生成し、前述した良好な耐歪特性と強い実
機化因子抑制効果が得られることになる。なお、方向性
電磁鋼板の製造過程においても自然発生的にかような微
細粒が生成されることがあるが、自然に発生した微細粒
は上記と同様の作用を有しているとはいえ、その発生過
程は、自然発生した他の里希有との成長競争に負けた粒
であり、本質的には2次再結晶粒であるとこに変わりは
なく、ゴス方位に極めて近いので、結晶粒界にはさほど
高密度の磁極は生成せず、従って耐歪特性改善作用はお
よび実機化因子抑制作用も弱い。
Second, since the fine grains artificially generated in this manner are largely displaced from the Goss orientation ((110) [001] orientation) which is the orientation of ordinary coarse secondary recrystallized grains. In addition, magnetic poles are generated at a high density at the crystal grain boundary between the coarse secondary recrystallized grains and the fine grains, so that the above-mentioned good strain resistance and strong effect of suppressing the factor of realization can be obtained. In addition, such fine particles may be spontaneously generated in the manufacturing process of the grain-oriented electrical steel sheet, but the naturally generated fine particles have the same action as above, The generation process is a grain that lost the growth competition with other spontaneously generated Sato Yuki. It is essentially a secondary recrystallized grain, and is very close to the Goss orientation. In this case, a magnetic pole having a very high density is not generated, and therefore, the effect of improving the strain resistance and the effect of suppressing the factor for realization are weak.

【0038】第3に、人為的に生成させるので、製品に
おける最も好ましい位置に微細粒を生成させることが可
能となる。なお、人為的に生成させた微細粒は、前述し
たとおりゴス方位から大きくずれていて、結晶方位とし
ては劣るので、製品内に高密度に存在させてはならな
い。すなわち、できるだけ離散的に存在させることが好
ましく、粗大な結晶粒の内部に孤立した状態で存在して
いることが理想的である。このような状態は、予め歪導
入領域を局所的かつ離散的に形成させることによって容
易に実現できる。また、粗大な結晶粒の内部であれば、
数個の微細粒が集合した状態は有利に適合する。
Third, since the particles are artificially generated, it is possible to generate fine particles at the most preferable positions in the product. Note that the artificially generated fine grains are greatly deviated from the Goss orientation as described above, and have poor crystal orientations, and therefore must not be present at high density in the product. In other words, it is preferable that they exist as discretely as possible, and ideally they exist in an isolated state inside coarse crystal grains. Such a state can be easily realized by previously forming the strain introduction region locally and discretely. Also, if it is inside a coarse crystal grain,
A state in which several fine grains are assembled is advantageously adapted.

【0039】次に、脱炭・1次再結晶焼鈍後の鋼板に瞬
間的高温熱処理を施すことによって、人為的にこのよう
な微細粒が得られた機構について検討した結果について
述べる。さて、鋼板に瞬間的に高温熱処理を施した位置
の結晶組織の、2次再結晶焼鈍途中の過程における変化
について詳細に調査した。その結果、高温熱処理直後に
おいては、結晶粒径や析出インヒビターなどの結晶学的
変化はさほど大きくなく、無視できるほどであった。し
かしながら、2次再結晶焼鈍の極めて早い段階におい
て、一つの1次再結晶粒が周囲の1次再結晶粒の 1.5倍
から 3.0倍に粗大化していることが観察された。このよ
うな結晶粒の粗大化が生じる温度は、2次再結晶が起き
る通常の温度よりもはるかに低い温度であり、しかもそ
の後、板厚方向に貫通するまでに成長する時間も極めて
短い。板厚方向に貫通した後は、高温熱処理した領域内
までは同様に速やかに成長するが、その後は鋼板の昇温
をさらに継続しても成長は遅々としていて、この結晶粒
の成長はほぼ停止状態となる。
Next, a description will be given of the results of a study on the mechanism by which such fine grains were artificially obtained by subjecting a steel sheet after decarburization and primary recrystallization annealing to instantaneous high-temperature heat treatment. The change in the crystal structure at the position where the steel sheet was instantaneously subjected to the high-temperature heat treatment during the secondary recrystallization annealing was examined in detail. As a result, immediately after the high-temperature heat treatment, the crystallographic changes such as the crystal grain size and the precipitation inhibitor were not so large and were negligible. However, at the very early stage of the secondary recrystallization annealing, it was observed that one primary recrystallized grain was coarsened to 1.5 to 3.0 times the surrounding primary recrystallized grains. The temperature at which such coarsening of the crystal grains occurs is much lower than the normal temperature at which secondary recrystallization occurs, and the growth time until the crystal grains penetrate in the thickness direction is very short. After penetrating in the sheet thickness direction, it grows up to the high-temperature heat-treated region in the same manner, but thereafter, even if the temperature of the steel sheet is further increased, the growth is slow, and the growth of the crystal grains is almost complete. It will be stopped.

【0040】さらに、昇温を続けるに伴い、高温熱処理
を施していない非処理部の領域において、通常の2次再
結晶の核が生成し、成長が進行することになる。しかし
ながら、高温熱処理を施した領域に早い段階から成長し
た結晶粒は、後から発生した通常の2次再結晶によって
は蚕食されず、結局、製品内に微細結晶粒として残存す
ることになる。
Further, as the temperature is increased, normal secondary recrystallization nuclei are generated in the non-processed area not subjected to the high-temperature heat treatment, and the growth proceeds. However, the crystal grains grown from the early stage in the region subjected to the high-temperature heat treatment are not eaten by the subsequent secondary recrystallization, and eventually remain as fine crystal grains in the product.

【0041】このような現象は以下の機構により起こる
ことが、発明者らにより解明された。すなわち、高温熱
処理を施した領域においては、各1次再結晶粒の内部に
歪が一定量以上導入されており、最終仕上げ焼鈍の昇温
過程において、その歪の一部は失われていくが、高密度
の転位が各結晶粒内に残存している。この残存する転位
が、異常粒成長における結晶成長の駆動力を高める作用
を及ぼす。異常粒成長の駆動力が十分高くなると、1次
再結晶集合組織による結晶方位の選択性に打ち勝って、
一般の方位の結晶粒が核生成および粒成長を始めるよう
になる。この現象は、異常粒成長の駆動力が大きいため
に発生するものであるから、非処理部の領域で起こる通
常の2次再結晶の核生成や粒成長よりも格段に低い温度
で起こる。しかしながら、異常粒成長の駆動力を高めた
領域の外では、結晶成長の方位選択性が非常に強いた
め、成長することができない。
The inventors have found that such a phenomenon occurs by the following mechanism. That is, in the region subjected to the high-temperature heat treatment, a certain amount or more of strain is introduced into each primary recrystallized grain, and a part of the strain is lost in the temperature rise process of the final finish annealing. In addition, high-density dislocations remain in each crystal grain. The remaining dislocations have the effect of increasing the driving force for crystal growth in abnormal grain growth. When the driving force of abnormal grain growth becomes sufficiently high, it overcomes the selectivity of the crystal orientation by the primary recrystallization texture,
The crystal grains of the general orientation start nucleation and grain growth. Since this phenomenon occurs because of a large driving force for abnormal grain growth, it occurs at a temperature much lower than the normal secondary recrystallization nucleation and grain growth occurring in the non-processed region. However, the crystal cannot be grown outside the region where the driving force for abnormal grain growth is increased, because the orientation selectivity of crystal growth is very strong.

【0042】このように、高温熱処理領域において異常
粒成長する結晶粒方位は、結晶方位選択性が相対的に弱
いため、ランダム方位となることが特徴であるが、あく
までも異常粒成長の一種であるので、1次再結晶粒の正
常粒成長に対する成長の抑制力の存在は不可欠であり、
強いインヒビター作用を必要とする。すなわち、薬剤を
塗布したり、高温長時間の熱処理による従来からの方法
は、析出インヒビターを粗大化させ抑制力を低下させる
ので、異常粒成長が起こり難くなり、正常粒成長による
多数の微細粒の発生を惹起させる結果となるので不適切
であり、この発明の方法とは本質的に異なり、忌避され
るべき方法である。
As described above, the crystal grain orientation in which abnormal grain growth occurs in the high-temperature heat treatment region is characterized by a random orientation because the crystal orientation selectivity is relatively weak, but it is a type of abnormal grain growth. Therefore, the existence of the growth suppressing power for the normal grain growth of the primary recrystallized grains is indispensable,
Requires strong inhibitor action. That is, the conventional method of applying a chemical or performing a heat treatment at a high temperature for a long time causes the precipitation inhibitor to be coarsened and the suppressing power is reduced, so that abnormal grain growth is unlikely to occur, and a large number of fine grains due to normal grain growth are hardly generated. It is unsuitable because it results in an outbreak and is inherently different from the method of the present invention and should be avoided.

【0043】上述したように人為的に微細粒を生成させ
るためには、微細粒の成長を意図する領域内において、
結晶方位選択性を越えるレベルまで異常粒成長の駆動力
を高めることが必須条件であることを既に述べた。ここ
に異常粒成長の駆動力としては、(1) 歪の存在、(2) 1
次再結晶粒の微細化および(3) インヒビターの抑制力の
強化による結晶粒径に対するスーパーヒート化の増大等
が挙げられるが、(3) の方法はランダム方位の粒の発生
の制御が困難であり、しばしばゴス方位に近い結晶方位
の粒が成長し、微細粒の生成を意図する領域を越えて粗
大に成長するため、微細粒のサイズ制御が極めて困難と
なる。従って、上記結晶成長のための駆動力を高める方
法としては、(1) 歪を存在させること、または (2)1次
再結晶粒のサイズを小さくすることが有利な方法であ
り、特に歪を存在させる方法が最も有利な技術であるこ
とが、種々の実験から判明した。
As described above, in order to artificially generate fine grains, in a region where growth of the fine grains is intended,
It has already been mentioned that it is an essential condition to increase the driving force for abnormal grain growth to a level exceeding the crystal orientation selectivity. Here, the driving forces for abnormal grain growth include (1) the presence of strain, and (2) 1
Increasing the superheat to the crystal grain size by refinement of the secondary recrystallized grains and (3) strengthening the inhibitory force of the inhibitor, etc. can be mentioned, but the method (3) makes it difficult to control the generation of grains with random orientation. In some cases, grains having a crystal orientation close to the Goss orientation often grow and grow coarsely beyond a region where fine grains are intended to be formed, so that it is extremely difficult to control the size of the fine grains. Therefore, as a method of increasing the driving force for the crystal growth, it is advantageous to (1) make the strain exist or (2) reduce the size of the primary recrystallized grains. Various experiments have shown that the method of presence is the most advantageous technique.

【0044】例えば、前述した瞬間的な高温熱処理にお
いては、調査の結果、加熱処理が瞬間的であるため、高
温度であっても結晶粒径の増加や析出インヒビターの粗
大化といった結晶学的な変化が小さく、熱歪を多量に存
在させることが、結晶成長の駆動力を高めるのに有利に
作用していたことが判明した。つまり、急激な昇温と降
温により、結晶学的な組織変化を抑えて物理的な歪のみ
を鋼板内に導入できたことが有利に作用したものであ
る。ただし、若干の結晶粒径の増加や析出インヒビター
の粗大化は、これが、異常粒成長の核生成数の増加を抑
制する性質があり、領域内に生成する微細粒の個数を単
一なものに制限する作用があるので、結晶成長の駆動力
を低減させない限りにおいては好ましいと考えられる。
For example, in the above-mentioned instantaneous high-temperature heat treatment, as a result of investigation, since the heat treatment is instantaneous, even at a high temperature, crystallographic phenomena such as an increase in the crystal grain size and a coarsening of the precipitation inhibitor occur. It has been found that the small change and the presence of a large amount of thermal strain advantageously act to increase the driving force for crystal growth. In other words, the rapid increase and decrease in temperature advantageously suppresses the crystallographic change in structure and introduces only physical strain into the steel sheet. However, a slight increase in the crystal grain size and coarsening of the precipitation inhibitor have the property of suppressing the increase in the number of nuclei generated during abnormal grain growth, thereby reducing the number of fine grains generated in a single region. Since it has a restricting action, it is considered preferable unless the driving force for crystal growth is reduced.

【0045】上述した熱処理以外にも、結晶学的な組織
変化を抑えて物理的な歪を鋼板内に導入する方法は種々
考えられるが、発明者らが数多くの実験から最も有利な
方法として開発したものは、表面に小突起を有する鋼板
よりも硬い物体を鋼板表面に押圧する方法、高電圧を印
加し鋼板表面と局所的に通電または放電する方法、およ
びパルスレーザーを局所的に印加する方法等である。
In addition to the above-described heat treatment, various methods for introducing a physical strain into a steel sheet while suppressing crystallographic structure change can be considered, but the present inventors have developed from many experiments as the most advantageous method. The method of pressing an object harder than the steel sheet having small projections on the surface of the steel sheet, the method of applying a high voltage to locally energize or discharge the steel sheet surface, and the method of locally applying a pulsed laser And so on.

【0046】また、結晶成長の駆動力を高めるための他
の方法である、1次再結晶粒の微粒化方法としては、実
験の結果、鋼板表面から局所的に浸炭させ、熱処理にお
けるα−γ変態を利用して局所的に微粒化する方法がと
りわけ効果的であった。さらに、インヒビターの抑制力
を強化する方法としては、局所的に鋼板表面から浸窒さ
せ、窒化珪素や窒化アルミを生成させて抑制力を局所的
に増大させる方法が、効果の安定性は低いものの有効で
あった。
As another method for increasing the driving force for crystal growth, a method for atomizing primary recrystallized grains is as follows. The method of locally atomizing using transformation was particularly effective. Furthermore, as a method of strengthening the inhibitory force of the inhibitor, a method of locally increasing the inhibitory force by locally nitriding the steel sheet surface to generate silicon nitride or aluminum nitride, although the effect stability is low, Was effective.

【0047】ところで、前述したように、近年、方向性
電磁鋼板の鉄損を低減する技術として、プラズマジェッ
トやレーザー光を照射して局所的に線状歪を導入した
り、鋼板表面に線状溝を設けて、人工的に磁区幅を細分
化する技術が開発された。この発明においても、このよ
うな磁区細分化技術を併せて活用すれば、より一層の特
性改善が期待できる。そこで、発明者らは、この磁区細
分化技術の点を含めて、さらに実機特性の改善を図るべ
く鋭意研究を進めたところ、材料特性を実機特性に有効
に反映させるためには、これらの磁区細分化および微細
粒の制御因子を結晶粒径に応じて所定の範囲に制御する
ことが重要であることを見出した。以下、これについて
述べる。
As described above, in recent years, as a technique for reducing iron loss of a grain-oriented electrical steel sheet, a linear strain is locally introduced by irradiating a plasma jet or a laser beam, or a linear A technique for artificially subdividing the magnetic domain width by providing grooves has been developed. Also in the present invention, further improvement in characteristics can be expected if such a magnetic domain segmentation technique is also utilized. Therefore, the inventors conducted intensive research to further improve the characteristics of the actual device, including the magnetic domain segmentation technology, and found that these magnetic domains could be effectively reflected in the characteristics of the actual device. It has been found that it is important to control the control factors for the subdivision and the fine grains within a predetermined range according to the crystal grain size. Hereinafter, this will be described.

【0048】方向性電磁鋼板は、主として変圧器の鉄心
材料として作用されるが、このとき用いられる磁束密度
の領域は、機器の設計によって多様である。一般に高磁
束密度の材料であればあるほど、高磁束密度での使用が
有利となるため高磁束密度領域での実機の特性に優れて
いることが要求される。前述したように、高磁束密度の
方向性電磁鋼板は、材料の磁気特性に較べ実機特性が劣
化することがよく知られている。ここで、電磁鋼板を構
成する結晶粒径は、材料特性が高磁束密度化すると必然
的に粗大化するが、結晶粒径に応じて、溝の深さ、もし
くは局所的歪の領域などを変えることにより、有利に実
機化因子を低減できる、すなわち材料特性を実機特性に
反映できることが判明した。この実験について下記に述
べる。
The grain-oriented electrical steel sheet is mainly used as an iron core material of a transformer, and the range of the magnetic flux density used at this time varies depending on the design of equipment. In general, the higher the magnetic flux density of a material, the more advantageous it is in use at a high magnetic flux density. As described above, it is well known that the characteristics of a grain-oriented electrical steel sheet having a high magnetic flux density are deteriorated in actual machine characteristics as compared with the magnetic properties of the material. Here, the crystal grain size of the magnetic steel sheet is inevitably coarsened when the material properties are increased in magnetic flux density, but the depth of the groove or the region of local strain is changed according to the crystal grain size. As a result, it has been found that the factor for realization can be advantageously reduced, that is, the material characteristics can be reflected on the characteristics of the real device. This experiment is described below.

【0049】C:0.08wt%、Si:3.40wt%、Mn:0.07wt
%、Al:0.025 wt%、Se:0.018 wt%、Sb:0.040 wt
%、Ni:0.12wt%、Bi:0.004 wt%およびN:0.008 wt
%を含有し(Bi含有鋼)、残部はFeおよび不可避的不純
物の組成になる方向性電磁鋼用熱延板を、 750℃、3秒
間の炭化物調整のための熱延焼鈍後、酸洗し、ついで圧
下率:30%の冷間圧延を施したのち、中間焼鈍として10
50℃で45秒間の均熱と40℃/sの急冷からな熱処理を施し
てから、再び酸洗し、ついで 150〜200 ℃の温間で圧下
率:87%の圧延を施して最終板厚:0.22mmの鋼板とし
た。また、C:0.05wt%、Si:3.20wt%、Mn:0.15wt
%、Al:0.014 wt%、S:0.008 wt%、Sb:0.005 wt
%、B:0.0005wt%およびN:0.007 wt%を含有し(B
含有鋼)、残部はFeおよび不可避的不純物の組成になる
方向性電磁鋼用熱延板を、800 ℃、30秒間の熱延板焼鈍
後、酸洗し、ついで 170℃の温間で圧下率:87%圧延を
施して最終板厚:0.34mmの鋼板とした。
C: 0.08 wt%, Si: 3.40 wt%, Mn: 0.07 wt
%, Al: 0.025 wt%, Se: 0.018 wt%, Sb: 0.040 wt%
%, Ni: 0.12 wt%, Bi: 0.004 wt% and N: 0.008 wt%
% (Bi-containing steel), the remainder being the composition of Fe and unavoidable impurities, hot-rolled sheet for directional electromagnetic steel, hot-rolled at 750 ° C for 3 seconds to adjust carbides, and then pickled. Then, after cold rolling at a rolling reduction of 30%, an intermediate annealing of 10% was performed.
After heat treatment at 50 ° C for 45 seconds and rapid cooling at 40 ° C / s, pickling is performed again, then rolling is performed at a rolling rate of 87% at a warming temperature of 150 to 200 ° C to obtain a final thickness. : A steel sheet of 0.22 mm was used. Also, C: 0.05wt%, Si: 3.20wt%, Mn: 0.15wt
%, Al: 0.014 wt%, S: 0.008 wt%, Sb: 0.005 wt%
%, B: 0.0005 wt% and N: 0.007 wt% (B
Steel), the remainder is a hot-rolled steel sheet for directional magnetic steel that has a composition of Fe and unavoidable impurities, after hot-rolled sheet annealing at 800 ° C for 30 seconds, pickling, and then rolling reduction at a warm temperature of 170 ° C. : 87% rolling to obtain a steel sheet having a final thickness of 0.34 mm.

【0050】次に、これらの鋼板を脱脂処理した後、Bi
含有鋼およびB含有鋼ともに、a)〜g) の記号の小コ
イルに各7分割し、それぞれ以下の処理を施した。 a) のコイルは、磁区細分化処理として、鋼板表面に深
さ:25μm で幅:250μm の線状溝を、板幅方向から10
゜傾いた方向に、長手方向への繰り返しピッチ:3mmの
条件で設け、その後 850℃で2分間の脱炭・1次再結晶
焼鈍を施したのち、鋼板表面に、Bi含有鋼の場合は 1.5
mm径のサイズで点状に板幅方向に30mm、長手方向に60mm
のピッチといった疎な分布で、65 Ws のエネルギー投与
条件下の放電処理により、数ミリ秒間の瞬間的な加熱処
理を施し、一方B含有鋼の場合は1.5 mm径のサイズで点
状に板幅方向に15mm、長手方向に30mmのピッチといった
密な分布で、65 Ws のエネルギー投与条件下の放電処理
により、数ミリ秒間の瞬間的な加熱処理を施した。
Next, after degreasing these steel sheets, Bi
Both the steel containing steel and the steel containing B were divided into 7 small coils each having the symbols a) to g), and were subjected to the following treatments. In the coil of a), a linear groove having a depth of 25 μm and a width of 250 μm is formed on the surface of the steel sheet as a magnetic domain refining process by 10 mm from the plate width direction.
設 け Provided in the inclined direction under the condition of a repetition pitch of 3 mm in the longitudinal direction, followed by decarburization and primary recrystallization annealing at 850 ° C for 2 minutes.
30 mm in the width direction and 60 mm in the longitudinal direction
With a sparse distribution, such as a pitch, an instantaneous heat treatment is applied for several milliseconds by a discharge treatment under the conditions of 65 Ws energy application, while the B-containing steel has a dot width of 1.5 mm in diameter. An instantaneous heat treatment for several milliseconds was performed by a discharge treatment under a 65 Ws energy administration condition with a dense distribution of 15 mm in the direction and 30 mm in the longitudinal direction.

【0051】b) のコイルは、磁区細分化処理として、
鋼板表面に深さ:10μm で幅:50μm の線状溝を、板幅
方向から10゜傾いた方向に、長手方向への繰り返しピッ
チ:3mmの条件で設け、その後 850℃で2分間の脱炭・
1次再結晶焼鈍を施した後、鋼板表面に、Bi含有鋼の場
合は 1.5mm径のサイズで点状に板幅方向に30mm、長手方
向に60mmのピッチといった疎な分布で、65 Ws のエネル
ギー投与条件下の放電処理により、数ミリ秒間の瞬間的
な加熱処理を施し、一方B含有鋼の場合は1.5mm径のサ
イズで点状に板幅方向に15mm、長手方向に30mmのピッチ
といった密な分布で、65 Ws のエネルギー投与条件下の
放電処理により、数ミリ秒間の瞬間的な加熱処理を施し
た。
The coil of b) is subjected to magnetic domain refining processing.
A linear groove with a depth of 10μm and a width of 50μm is provided on the surface of the steel plate at a pitch of 3mm in the longitudinal direction in a direction inclined 10 ° from the width direction of the plate, and then decarburized at 850 ° C for 2 minutes.・
After the primary recrystallization annealing, the surface of the steel sheet has a sparse distribution such as a 1.5 mm diameter in the case of Bi-containing steel and a pitch of 30 mm in the width direction of the sheet and 60 mm in the longitudinal direction. By the electric discharge treatment under the energy administration condition, an instantaneous heat treatment is applied for several milliseconds, while in the case of B-containing steel, the diameter is 1.5 mm, the dot width is 15 mm in the plate width direction, and the pitch is 30 mm in the longitudinal direction. An instantaneous heat treatment was applied for several milliseconds by a discharge treatment under a tightly distributed energy supply condition of 65 Ws.

【0052】c) 〜e) のコイルは、850 ℃で2分間の
脱炭・次再結晶焼鈍を施したのち、鋼板表面に、Bi含有
鋼の場合は 1.5mm径のサイズで点状に板幅方向に30mm、
長手方向に60mmのピッチといった疎な分布で、65 Ws の
エネルギー投与条件下の放電処理により、数ミリ秒間の
瞬間的な加熱処理を施し、一方B含有鋼の場合は1.5mm
径のサイズで点状に板幅方向に15mm、長手方向に30mmの
ピッチといった密な分布で、65 Ws のエネルギー投与条
件下の放電処理により、数ミリ秒間の瞬間的な加熱処理
を施した。
The coils (c) to (e) are subjected to decarburization and subsequent recrystallization annealing at 850 ° C. for 2 minutes, and then, on the steel sheet surface, in the case of Bi-containing steel, a 1.5 mm diameter spot-like sheet is formed. 30mm in width direction,
With a sparse distribution such as a pitch of 60 mm in the longitudinal direction, an instantaneous heat treatment is applied for several milliseconds by a discharge treatment under the energy administration condition of 65 Ws, while 1.5 mm for B-containing steel.
An instantaneous heat treatment was applied for several milliseconds by a discharge treatment under the condition of 65 Ws energy administration, with a dense distribution of 15 mm in the width direction of the plate and a pitch of 30 mm in the longitudinal direction.

【0053】f) のコイルは、850 ℃で2分間の脱炭・
1次再結晶焼鈍を施したのち、鋼板表面に、Bi含有鋼の
場合は 1.5mm径のサイで点状に板幅方向に15mm、長手方
向に30mmのピッチといった密な分布で、65 Ws のエネル
ギー投与条件下の放電処理により、数ミリ秒間の瞬間的
な加熱処理を施し、一方B含有鋼の場合は 1.5mm径のサ
イズで点状に板幅方向に30mm、長手方向に60mmのピッチ
といった疎な分布で、65 Ws のエネルギー投与条件下の
放電処理により、数ミリ秒間の瞬間的な加熱処理を施し
た。
The coil of f) is decarburized at 850 ° C. for 2 minutes.
After the primary recrystallization annealing, the surface of the steel sheet has a dense distribution of 15 mm in the width direction and 15 mm in the longitudinal direction with a 1.5 mm diameter die in the case of Bi-containing steel. By electric discharge treatment under energy administration condition, instantaneous heat treatment is applied for several milliseconds, while in the case of B-containing steel, the diameter of 1.5 mm is 30 mm in the dot width direction and 30 mm in the longitudinal direction with a pitch of 60 mm in the longitudinal direction. With a sparse distribution, an instantaneous heat treatment for several milliseconds was performed by a discharge treatment under 65 Ws energy dosing conditions.

【0054】g) のコイルは、比較材として、単に 850
℃で2分間の脱炭・1次再結晶焼鈍を施した。
The coil of g) was used as a comparative material only for 850
Decarburization and primary recrystallization annealing were performed at 2 ° C. for 2 minutes.

【0055】ついで、a) 〜g) のコイルはいずれも、
表面にTiO2:10wt%およびSr(OH)2:2wt%を添加したM
gOを焼鈍分離剤として塗布したのち、コイル状に巻取
り、最終仕上げ焼鈍に供した。最終仕上げ焼鈍は、 850
℃までN2中、1150℃までH2とN2の混合雰囲気中での2次
再結晶を目的とした処理と、引き続き1150℃からH2で5
時間保持する純化を目的とする処理を同時に行った。最
終仕上げ焼鈍後、未反応焼鈍分離剤を除去した後、50wt
%のコロイダルシリカとリン酸マグネシウムからなる張
力コートを塗布し、製品とした。
Next, all of the coils a) to g)
M with TiO 2 : 10 wt% and Sr (OH) 2 : 2 wt% added to the surface
After applying gO as an annealing separator, it was wound into a coil and subjected to final finishing annealing. Final finish annealing is 850
Among ° C. until N 2, and treatment for secondary recrystallization in a mixed atmosphere of H 2 and N 2 up to 1150 ° C., from subsequently 1150 ° C. in H 2 5
The processing for the purpose of purifying for keeping the time was simultaneously performed. After the final finish annealing, after removing the unreacted annealing separator, 50wt
% Of colloidal silica and magnesium phosphate was applied to obtain a product.

【0056】ただし、c) のコイルについては、磁区細
分化処理として、0.5mm 幅のプラズマジェット(PJ)
を鋼板幅方向に線状に、圧延方向への繰り返し間隔:10
mmで照射し、局所的な線状歪領域を設けてから、製品と
した。また、d) のコイルについては、磁区細分化処理
として、1.5mm 幅のプラズマジェット(PJ)を鋼板幅
方向に線状に、圧延方向への繰り返し間隔:3mmで照射
し、局所的な線状歪領域を設けてから、製品とした。
However, for the coil of c), a 0.5 mm width plasma jet (PJ)
In the width direction of the steel sheet, repeated in the rolling direction: 10
Irradiated in mm and provided a local linear strain region, and then a product was obtained. As for the coil d), a 1.5 mm-wide plasma jet (PJ) is irradiated linearly in the width direction of the steel sheet at a repetition interval of 3 mm in the rolling direction as a magnetic domain refining treatment, and a local linear shape is formed. After providing the strain region, the product was obtained.

【0057】かくして得られた各製品板から試料を切り
出し、、高磁場においてよく使用されるBi含有鋼のため
にW18/50 の鉄損値を、また低磁場においてよく使用さ
れるB含有鋼のためにW15/50 の鉄損値をそれぞれ測定
した。また、各製品を用い、スリット加工、剪断加工お
よび積み加工によりモデル変圧器を作成して、W15/50
およびW18/50 の値を測定し、その後鋼板をマクロエェ
チして結晶粒径を測定した。なお、上記のスリット加
工、剪断加工および積み加工に際しては、細心の注意を
払い歪の付加を極力抑制した。得られた結果を整理して
表3に示す。
Samples were cut from each of the product sheets obtained in this manner , and the iron loss values of W 18/50 for Bi-containing steels often used in high magnetic fields and the B-containing steels often used in low magnetic fields were used. For each test, the iron loss value of W 15/50 was measured. In addition, using each product, a model transformer was created by slitting, shearing, and stacking, and the W15 / 50
And W 18/50 were measured, and then the steel sheet was macro-etched to measure the crystal grain size. In addition, in the above-mentioned slitting, shearing and laminating, great care was taken to minimize the addition of distortion. Table 3 summarizes the obtained results.

【0058】[0058]

【表3】 [Table 3]

【0059】表3から明らかなように、高磁場での鉄損
18/50 の低いことが要請されるB 8 の値が高いBi含有
鋼においては、微細粒の個数比率が高い方(f)が鉄損
や実機化因子に優れており、また、微細粒の個数比率が
低い場合においても、溝を浅くしたり(b)、PJの照
射領域の間隔を長くする(c)こととの複合効果で高磁
場における鉄損や実機化因子は低減することができる。
また逆に、低磁場での鉄損W15/50 の低いことが要請さ
れるB8 の低いB含有鋼においては、微細粒の個数比率
が低い方(f)が鉄損に優れており、また、微細粒の個
数比率が高い場合においても、溝を深くしたり(a)、
PJの照射間隔を短くする(d)こととの複合効果で低
磁場における鉄損や実機化因子を低減できることが判
る。
As is clear from Table 3, iron loss at high magnetic field
W18/50B that is required to be low 8High Bi content
In steel, the higher the number ratio of fine grains (f), the lower the iron loss
And the factor of realization is excellent.
Even if it is low, the groove may be made shallower (b),
High magnetic properties due to the combined effect of extending the interval between the irradiation regions (c)
Iron loss and factor of realization in the field can be reduced.
Conversely, iron loss W in a low magnetic field15/50Requested to be low
B8In B-containing steels with low
(F) is excellent in iron loss, and
Even when the number ratio is high, the groove may be deepened (a),
Reduced due to the combined effect of shortening the PJ irradiation interval (d)
It is found that iron loss and the factor of realization in the magnetic field can be reduced.
You.

【0060】ところで、材料の磁場特性はほぼ結晶粒径
に依存し、高磁場での特性が良い高磁束密度材料ほど結
晶粒径は大きくなる。しかしながら、粗大な結晶粒のな
かに存在するこの発明の特徴をなす3mm以下の微細粒は
材料の磁束密度に大きな影響を及ぼさないので、除外し
て考える必要がある。そこで、材料の磁束密度の特性を
代表する粒径として、鋼板を構成する結晶粒のうち、3
mm以下の結晶粒を除外した残余すなわち粒径が3mmを超
える結晶粒の平均粒径:D(mm)を用い、高磁場特性の指
標とした。
By the way, the magnetic field characteristics of a material depend substantially on the crystal grain size, and the higher the magnetic flux density of the material, the better the characteristics in a high magnetic field, the larger the crystal grain size. However, fine grains of 3 mm or less, which characterize the present invention, present in coarse crystal grains do not greatly affect the magnetic flux density of the material, and thus need to be excluded. Therefore, among the crystal grains constituting the steel sheet, 3
The remainder excluding crystal grains of mm or less, that is, the average grain diameter of crystal grains having a grain size of more than 3 mm: D (mm) was used as an index of high magnetic field characteristics.

【0061】上記に基づき、良好な実機化因子を得るた
めの1) 鋼板の単位面積における溝の適正な体積密度の
範囲、2) 鋼板の単位面積における局所的歪付与の領域
の適正な密度の範囲、3) 鋼板金属表面の適正な粗度の
範囲、および4) 結晶方位強調処理における結晶粒界段
差(BS; Boundary Step) の適正な領域が、Dの値に
応じてどのように変化するかを実験により求めた。得ら
れた結果を、図5、図6、図7および図8に示す。
Based on the above, 1) the range of the appropriate volume density of the groove in the unit area of the steel sheet, and 2) the appropriate density of the area of the local strain application in the unit area of the steel sheet to obtain a good factor of realization. Range, 3) range of appropriate roughness of steel sheet metal surface, and 4) how appropriate region of grain boundary step (BS: Boundary Step) in crystal orientation enhancement process changes according to the value of D Was determined by experiment. The obtained results are shown in FIG. 5, FIG. 6, FIG. 7, and FIG.

【0062】ここで、Vは、一定面積の鋼板表面に存在
する溝の体積(mm3)を鋼板の面積(mm2)で割った値、す
なわち単位鋼板面積あたりの溝の容積比(mm)であり、S
は、一定面積の鋼板表面に存在する局所的歪を付与した
領域(mm2) を鋼板に表面で割った値、すなわち単位鋼板
面積あたりの局所的歪の合計領域比S(無次元数)であ
り、Raは、鋼板の非金属被膜を除去した後の金属表面の
平均粗度 (μm)であり、BSは、結晶方位強調処理を行
った際の結晶粒界の場所で生じる鋼板面の段差(μm)の
平均値である。また、鋼板を構成する結晶粒のうち3mm
以下の粒を除いた平均値である上述のDの値を用い、B
m = 0.2× logD+1.4 の式からBm を算出し、算出し
たBmに対する変圧器の鉄損を測定して実機化因子を求
めた。
Here, V is a value obtained by dividing the volume (mm 3 ) of the groove existing on the surface of the steel plate having a certain area by the area (mm 2 ) of the steel plate, that is, the volume ratio of the groove per unit steel plate area (mm). And S
Is the value obtained by dividing the area (mm 2 ) with local strain present on the surface of the steel sheet of a certain area by the surface of the steel sheet, that is, the total area ratio S (dimensionless number) of local strain per unit steel sheet area. Yes, Ra is the average roughness (μm) of the metal surface after removing the non-metallic coating on the steel sheet, and BS is the step of the steel sheet surface generated at the location of the crystal grain boundary when the crystal orientation enhancement process is performed. (μm). Also, 3mm of the crystal grains constituting the steel sheet
Using the above value of D, which is the average value excluding the following grains,
Bm was calculated from the equation: m = 0.2 × logD + 1.4, and the iron loss of the transformer with respect to the calculated Bm was measured to determine the factor for realization.

【0063】図5、図6、図7および図8から明らかな
ように、3mmを超える結晶粒の平均粒径Dに応じて、
(1) 鋼板表面積に対する溝の体積比V(単位:mm)を、
次式(1) の関係を満足する範囲とするか、 log10V≦−2.3 −0.01×D --- (1) (2) 鋼板表面積に対する局所歪付与の領域比Sを、次式
(2) の関係を満足する範囲とするか、 log10S≦−0.7 + 0.005×D --- (2) (3) 鋼板金属表面と非金属被膜との界面の平均粗さRa
を、次式(3) の関係を満足する範囲とするか、 Ra ≦ 0.3− 0.1× log10D --- (3) (4) 鋼板金属表面に施される結晶方位強調処理につい
て、その粒界平均段差BSが次式(4) の関係を満足する
範囲とする BS≦ 3.0− log10D --- (4) ことにより、方向性電磁鋼板の実機化因子をさらに向上
させることができた。
As is clear from FIGS. 5, 6, 7 and 8, according to the average grain size D of the crystal grains exceeding 3 mm,
(1) The volume ratio V (unit: mm) of the groove to the steel sheet surface area is
The range of satisfying the relationship of the following formula (1) or log 10 V ≦ −2.3 −0.01 × D --- (1) (2)
Make sure that the range of (2) is satisfied, or log 10 S ≦ −0.7 + 0.005 × D --- (2) (3) Average roughness Ra of the interface between the metal surface of the steel sheet and the non-metallic coating
Is within the range satisfying the relationship of the following formula (3), or Ra ≦ 0.3− 0.1 × log 10 D --- (3) (4) By setting BS ≦ 3.0−log 10 D −− (4) so that the field average step BS satisfies the relationship of the following formula (4), the factor for realizing grain-oriented electrical steel sheets could be further improved. .

【0064】上述したとおり、微細粒の形成技術と磁区
細分化技術とを組み合わせると、製品の鉄損値を低下さ
せ得るだけでなく、高磁束密度化に伴う2次再結晶粒の
粗大化に起因した実機化因子の増大を効果的に抑制し
て、変圧器の特性を製品特性の向上に見合った性能に向
上させることができる。この発明は、上述した多数の実
験・調査を基にして鋭意研究を重ねた末に完成されたも
のである。
As described above, the combination of the fine grain formation technique and the magnetic domain refining technique not only can reduce the iron loss value of the product, but also can reduce the secondary recrystallized grains due to the high magnetic flux density. It is possible to effectively suppress the increase in the factor of actualization due to the factor, and to improve the characteristics of the transformer to the performance corresponding to the improvement of the product characteristics. The present invention has been completed after intensive studies based on the numerous experiments and investigations described above.

【0065】すなわち、この発明の要旨構成は次のとお
りである。 1. Si:1.5 〜7.0 wt%、Mn:0.03〜2.5 wt%を含有
し、かつC, SおよびNの不純物としての混入をそれぞ
れC:0.003 wt%以下、S:0.002 wt%以下、N:0.00
2 wt%以下に抑制した電磁鋼板であって、鋼板を構成す
る結晶粒のうち、板厚方向に貫通している結晶粒の鋼板
表面における粒径が3mm以下である結晶粒の個数比率が
65%以上、98%以下であり、しかも鋼板表面に磁区細分
化処理が施されていることを特徴とする、鉄損が低く、
耐歪特性および実機特性に優れた方向性電磁鋼板。
That is, the gist configuration of the present invention is as follows. 1. Si: 1.5 to 7.0 wt%, Mn: 0.03 to 2.5 wt%, and contamination of C, S and N as impurities, C: 0.003 wt% or less, S: 0.002 wt% or less, N: 0.00
The electromagnetic steel sheet is controlled to 2 wt% or less, and among the crystal grains constituting the steel sheet, the number ratio of the crystal grains having a grain diameter of 3 mm or less on the steel sheet surface of the crystal grains penetrating in the thickness direction is reduced.
It is 65% or more and 98% or less, and has a low iron loss characterized by magnetic domain refinement treatment on the surface of the steel sheet.
Grain-oriented electrical steel sheet with excellent strain resistance and actual machine characteristics.

【0066】2.上記1において、板厚方向に貫通して
いる結晶粒の鋼板表面における粒径の平均値が8mm以
上、50mm以下であることを特徴とする、鉄損が低く、耐
歪特性および実機特性に優れた方向性電磁鋼板。
2. In the above item 1, the average value of the grain size of the crystal grains penetrating in the sheet thickness direction on the surface of the steel sheet is not less than 8 mm and not more than 50 mm. The iron loss is low, and the strain resistance and the actual machine characteristics are excellent. Oriented magnetic steel sheet.

【0067】3.上記1または2において、板厚方向に
貫通し、かつ鋼板表面における粒径が3mm以下である結
晶粒として、人為的に規則配置させたものを含むことを
特徴とする、鉄損が低く、耐歪特性および実機特性に優
れた方向性電磁鋼板。
3. In the above item 1 or 2, a crystal grain penetrating in the sheet thickness direction and having a grain size of 3 mm or less on the surface of the steel sheet includes a crystal grain which is artificially regularly arranged, and has a low iron loss and a low iron loss. Grain-oriented electrical steel sheet with excellent distortion characteristics and actual machine characteristics.

【0068】4.上記1,2または3において、磁区細
分化処理が、(1) 鋼板表面に深さ:50μm 以下で幅:35
0 μm 以下の溝を圧延方向に繰り返し設けること、(2)
鋼板表層部に線状の局所的歪含有領域を圧延方向に繰り
返し設けること、(3) 鋼板金属表面と非金属被膜との界
面が平均粗さRaで 0.3μm 以下に平滑化すること、(4)
鋼板金属表面に結晶方位強調処理を施すことのいずれか
である、鉄損が低く、耐歪特性および実機特性に優れた
方向性電磁鋼板。
4. In the above 1, 2 or 3, the magnetic domain refining treatment is performed by: (1) Depth: 50 μm or less and width: 35
Repeatedly providing grooves of 0 μm or less in the rolling direction, (2)
(3) smoothing the interface between the metal surface of the steel sheet and the non-metallic coating to an average roughness Ra of 0.3 μm or less in the surface direction of the steel sheet in the rolling direction; )
A grain-oriented electrical steel sheet with low iron loss, which is one of applying a crystal orientation enhancement treatment to the metal surface of the steel sheet, and having excellent distortion resistance characteristics and actual machine characteristics.

【0069】5.上記4において、鋼板を構成する結晶
粒のうち、板厚方向に貫通している結晶粒で粒径が3mm
を超える大きさの結晶粒の平均粒径をD(mm)としたと
き、(1) 圧延方向に繰り返し設ける溝について、鋼板の
単位面積当たりの溝の合計容積比V(単位:mm)が次式
(1) の関係を満足する範囲とするか、 log10V≦−2.3 −0.01×D --- (1) (2) 圧延方向に繰り返し設ける線状の局所歪について、
鋼板の単位面積当たりの局所歪の合計領域比S(単位:
無次元)が次式(2) の関係を満足する範囲とするか、 log10S≦−0.7 + 0.005×D --- (2) (3) 鋼板金属表面と非金属被膜との界面の平均粗さRaに
ついて、このRaが次式(3) の関係を満足する範囲とする
か、 Ra ≦ 0.3− 0.1× log10D --- (3) (4) 鋼板金属表面に施される結晶方位強調処理につい
て、その粒界平均段差BSが次式(4) の関係を満足する
範囲とする BS≦ 3.0− log10D --- (4) ことを特徴とする、鉄損が低く、耐歪特性および実機特
性に優れた方向性電磁鋼板。
5. In the above item 4, among the crystal grains constituting the steel sheet, the crystal grains penetrate in the thickness direction and have a grain size of 3 mm.
When the average grain size of the crystal grains having a size exceeding D is defined as D (mm), (1) The total volume ratio V (unit: mm) of the grooves per unit area of the steel sheet is as follows for the grooves repeatedly provided in the rolling direction. formula
To make the range satisfying the relationship of (1), or log 10 V ≦ −2.3 −0.01 × D --- (1) (2)
Total area ratio S of local strain per unit area of steel sheet (unit:
(Dimensionless) is within the range satisfying the relationship of the following formula (2), or log 10 S ≦ −0.7 + 0.005 × D --- (2) (3) Average of the interface between the metal surface of the steel sheet and the nonmetal coating Regarding the roughness Ra, make sure this Ra satisfies the relationship of the following formula (3), or Ra ≦ 0.3− 0.1 × log 10 D --- (3) (4) The crystal orientation given to the steel sheet metal surface In the emphasis processing, the grain boundary average step BS is set to a range that satisfies the relationship of the following equation (4): BS ≦ 3.0−log 10 D (4) Grain-oriented electrical steel sheet with excellent characteristics and actual machine characteristics.

【0070】[0070]

【発明の実施の形態】以下、この発明について具体的に
説明する。まず、この発明の電磁鋼板について、その成
分組成を上記の範囲に限定した理由について説明する。 Si:1.5 〜7.0 wt% Siは、製品の電気抵抗を高め鉄損を低減するのに有効な
成分であり、このために1.5 wt%以上を含有させるが、
7.0wt%を超えると硬度が高くなり製造や加工が困難に
なるので、 1.5〜7.0 wt%の範囲に限定した。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below. First, the reason why the component composition of the magnetic steel sheet of the present invention is limited to the above range will be described. Si: 1.5 to 7.0 wt% Si is an effective component to increase the electrical resistance of the product and reduce iron loss. For this reason, 1.5 wt% or more is contained.
If the content exceeds 7.0 wt%, the hardness becomes high and the production and processing become difficult. Therefore, the content is limited to the range of 1.5 to 7.0 wt%.

【0071】Mn:0.03〜2.5 wt% Mnも、Siと同様、電気抵抗を高める働きがあり、また製
造時熱間加工を容易にする作用があるので、少なくとも
0.03wt%を含有させる必要があるが、2.5 wt%を超える
と熱処理時γ変態を誘起して磁気特性を劣化させるの
で、0.03〜2.5 wt%の範囲で含有させるものとした。
Mn: 0.03 to 2.5 wt% Mn, like Si, has a function of increasing electric resistance and a function of facilitating hot working during production.
Although it is necessary to contain 0.03 wt%, if it exceeds 2.5 wt%, γ transformation is induced at the time of heat treatment to deteriorate magnetic properties. Therefore, the content is set in the range of 0.03 to 2.5 wt%.

【0072】C:0.003 wt%以下、S:0.002 wt%以
下、N:0.002 wt%以下 C,SおよびNはいずれも、磁気特性上有害な作用があ
り、特に鉄損を劣化させるので、それぞれC:0.003 wt
%以下、S:0.002 wt%以下、N:0.002 wt%以下に抑
制するものとした。
C: 0.003 wt% or less, S: 0.002 wt% or less, N: 0.002 wt% or less Each of C, S and N has a harmful effect on magnetic properties, and particularly degrades iron loss. C: 0.003 wt
%, S: 0.002 wt% or less, N: 0.002 wt% or less.

【0073】なお、電磁鋼板の製造に際しては、鋼中
に、上記した元素の他、2次再結晶を誘起するためのイ
ンヒビター成分を含有させることが不可欠で、これらの
インヒビター成分としては、Al,B,Bi,Sb, Mo, Te,
Se, S, Sn, P, Ge, As, Nb,Cr, Ti, Cu, Pb, Znおよ
びIn等が有利に適合し、これらの元素を単独または複合
して含有させることできる。
In the production of an electrical steel sheet, it is essential that the steel contains an inhibitor component for inducing secondary recrystallization, in addition to the above-mentioned elements, and these inhibitor components include Al, B, Bi, Sb, Mo, Te,
Se, S, Sn, P, Ge, As, Nb, Cr, Ti, Cu, Pb, Zn, In and the like are advantageously suitable, and these elements can be contained alone or in combination.

【0074】次に、鋼板を構成する結晶粒についての限
定理由について説明する。この発明において重要な結晶
粒は、板厚方向に貫通しているものである。というの
は、かような貫通粒は、結晶粒界に多くの磁極を生成さ
せ、大きな静磁エネルギーの増加が見込めるからであ
る。ここに、各結晶粒の粒径は、鋼板表面における結晶
粒の面積と同一の面積を有する円の直径(円相当径)で
もって表わす。また、平均結晶粒径は、一定面積中に含
まれるかかる結晶粒の個数で該面積を除し、この値の円
相当径で表わすものとする。
Next, the reasons for limiting the crystal grains constituting the steel sheet will be described. The important crystal grains in the present invention penetrate in the thickness direction. This is because such penetrating grains generate many magnetic poles at the grain boundaries, and a large increase in magnetostatic energy can be expected. Here, the particle size of each crystal grain is represented by the diameter of a circle having the same area as the area of the crystal grain on the steel sheet surface (equivalent circle diameter). The average crystal grain size is represented by the circle equivalent diameter of the value obtained by dividing the area by the number of such crystal grains contained in a certain area.

【0075】さて、この発明で所期した耐歪特性に優
れ、かつ実機特性に優れた方向性電磁鋼板を得るために
は、かかる貫通粒の分布に関し、粒径が3mm以下の結晶
粒の個数比率を65%以上、98%以下とすることが必須要
件となる。というのは、3mm以下の微細結晶粒の個数比
率が65%未満では、微細粒の存在による静磁エネルギー
増加作用が得られず、耐歪特性の劣化や実機化因子の増
大を招き、変圧器の鉄損が劣化するからであり、一方、
3mm以下の微細粒の個数比率が98%を超えると、製品の
磁束密度が低下し、鉄損が劣化するからである。なお、
微細粒の個数比率については、75%以上で特に著しい実
機化因子の低減ならびに耐歪特性の向上効果が認められ
る。
Now, in order to obtain a grain-oriented electrical steel sheet having excellent anti-strain properties expected in the present invention and excellent actual machine properties, it is necessary to consider the distribution of the penetrating grains and the number of crystal grains having a grain size of 3 mm or less. It is an essential requirement that the ratio be 65% or more and 98% or less. If the number ratio of the fine crystal grains of 3 mm or less is less than 65%, the effect of increasing the magnetostatic energy due to the presence of the fine grains cannot be obtained, resulting in deterioration of the strain resistance characteristics and increase of the factor for realization, and This is because the iron loss of
If the number ratio of the fine particles having a size of 3 mm or less exceeds 98%, the magnetic flux density of the product decreases, and iron loss deteriorates. In addition,
With respect to the number ratio of the fine grains, when it is 75% or more, a particularly remarkable effect of reducing the factor of realization and improving the strain resistance is recognized.

【0076】また、かかる3mm以下の微細粒の結晶粒
は、自然に発生する微細な結晶利用することもできる
が、それに加えて、粒界に存在する磁極が鋼板中に均等
に分布し、静磁エネルギーの分布が一様となるように、
人為的に規則的に配置させることがより好ましい。これ
により、磁束の流れが均一になり、渦電流損が局部的に
異常に増大するといった鉄損の増加現象が抑制される。
The fine crystal grains having a size of 3 mm or less may be fine crystals that are naturally generated. In addition, the magnetic poles existing at the grain boundaries are uniformly distributed in the steel sheet, and the static To make the distribution of magnetic energy uniform,
It is more preferable to arrange them artificially and regularly. Thereby, the flow of the magnetic flux becomes uniform, and an increase phenomenon of iron loss such as an abnormal increase of eddy current loss locally is suppressed.

【0077】従って、上記のような微細粒を発生させる
ための各種処理を行う領域は、鋼板面内において、図9
に示すように離散的に分布させることが有効であるが、
特に均一に分散させた方が、磁束密度を低下させるなど
の害が少なく、また歪感受性が低下するといった効果も
増加するので、各種処理領域を鋼板面内に確率的に分散
させて存在させるのではなく、図10や図11に示すよう
に、人為的に規則配置させることが当然のことながら最
も優れた効果を得ることになる。この点、例えば図12に
示すような、線状に長く伸びた人工的結晶粒を生成させ
た場合は、製品の磁束密度の大幅な劣化を招き、鉄損は
逆に増加する。ここに、微細粒を離散的に存在させる間
隔として5mm以上とすることが好ましい。
Therefore, the area where various processes for generating fine grains as described above are performed is within the plane of the steel sheet as shown in FIG.
It is effective to distribute discretely as shown in
In particular, the more uniformly dispersed, the less the harm such as lowering the magnetic flux density, and the more the effect of lowering the strain sensitivity is also increased. Instead, as shown in FIG. 10 and FIG. 11, it is natural to obtain the most excellent effect by artificially arranging them regularly. In this regard, for example, when artificial crystal grains elongated linearly as shown in FIG. 12 are generated, the magnetic flux density of the product is significantly deteriorated, and the iron loss increases. Here, it is preferable that the interval at which fine particles are discretely present is 5 mm or more.

【0078】さらに、鋼板の平均結晶粒径については、
8mm以上、50mm以下とすることが好ましい。というの
は、平均粒径が8mm未満の場合、結晶方位の集積度の低
下ひいては磁束密度の低下を生じる場合があるため、安
定して優れた鉄損値を得ることが難しく、逆に平均粒径
が50mmを超えると、実機化因子が劣化したり、耐歪特性
が劣化する場合が多くなるからである。
Further, regarding the average grain size of the steel sheet,
It is preferable that the thickness be 8 mm or more and 50 mm or less. If the average grain size is less than 8 mm, the degree of integration of the crystal orientation and the magnetic flux density may decrease, so it is difficult to obtain a stable and excellent iron loss value. If the diameter is more than 50 mm, the factor for realization of the device or the distortion resistance is likely to deteriorate.

【0079】以上のようにして、鋼中に、3mm以下の微
細粒を15mm以上の粗大粒と混在させることにより、磁束
密度が高く、かつ鉄損が低く、しかも耐歪特性および実
機特性にも優れた方向性電磁鋼板を得ることができる
が、鉄損特性の一層の低減のためには、さらに磁区細分
化処理を施すことが有利である。そこで、この発明で
は、磁区細分化技術として、線状歪の付与、線状溝の形
成、表面平滑化処理および結晶方位強調処理等を併用す
ることにしたのである。
As described above, by mixing fine grains of 3 mm or less with coarse grains of 15 mm or more in steel, the magnetic flux density is high, the iron loss is low, and the distortion resistance and the actual machine characteristics are also improved. Although an excellent grain-oriented electrical steel sheet can be obtained, it is advantageous to further perform a magnetic domain refining treatment in order to further reduce iron loss characteristics. Therefore, in the present invention, the application of linear strain, the formation of linear grooves, the surface smoothing process, the crystal orientation enhancement process, and the like are used in combination as the magnetic domain refinement technology.

【0080】ところで、発明者らの研究によれば、上記
したような磁区細分化技術はいずれも、鋼板の結晶粒の
大きさ特に粒径が3mmを超える大きさの結晶粒の平均粒
径と強い相関があり、該結晶粒の平均粒径に応じて好適
な範囲があることが究明された。すなわち、鋼板を構成
する結晶粒のうち、板厚方向に貫通している結晶粒で粒
径が3mmを超える大きさの結晶粒の平均粒径をD(mm)
としたとき、(1) 圧延方向に繰り返し設ける溝につい
て、鋼板の単位面積当たりの溝の合計容積比V(単位:
mm)が次式(1) の関係を満足する範囲とするか、 log10V≦−2.3 −0.01×D --- (1) (2) 圧延方向に繰り返し設ける線状の局所歪について、
鋼板の単位面積当たりの局所歪の合計領域比S(単位:
無次元)が次式(2) の関係を満足する範囲とするか、 log10S≦−0.7 + 0.005×D --- (2) (3) 鋼板金属表面と非金属被膜との界面の平均粗さRaに
ついて、このRaが次式(3) の関係を満足する範囲とする
か、 Ra ≦ 0.3− 0.1× log10D --- (3) (4) 鋼板金属表面に施される結晶方位強調処理につい
て、その粒界平均段差BSが次式(4) の関係を満足する
範囲とする BS≦ 3.0− log10D --- (4) ことが好ましく、かくして鉄損特性のみならず、耐歪特
性および実機特性のより有利な向上が実現されるのであ
る。
According to the research conducted by the inventors, any of the above-described magnetic domain refining techniques can reduce the average grain size of the crystal grains of the steel sheet, particularly the crystal grains having a grain size exceeding 3 mm. There was a strong correlation, and it was determined that there was a suitable range according to the average particle size of the crystal grains. That is, among the crystal grains constituting the steel sheet, the average grain size of the crystal grains penetrating in the thickness direction and having a grain size exceeding 3 mm is represented by D (mm).
(1) With respect to the grooves repeatedly provided in the rolling direction, the total volume ratio V of the grooves per unit area of the steel sheet (unit:
mm) is within the range satisfying the relationship of the following equation (1), or log 10 V ≦ −2.3 −0.01 × D --- (1) (2) Regarding linear local strain repeatedly provided in the rolling direction,
Total area ratio S of local strain per unit area of steel sheet (unit:
(Dimensionless) is within the range satisfying the relationship of the following formula (2), or log 10 S ≦ −0.7 + 0.005 × D --- (2) (3) Average of the interface between the metal surface of the steel sheet and the nonmetal coating Regarding the roughness Ra, make sure this Ra satisfies the relationship of the following formula (3), or Ra ≦ 0.3− 0.1 × log 10 D --- (3) (4) The crystal orientation given to the steel sheet metal surface For the emphasis processing, it is preferable that the grain boundary average step BS be in a range satisfying the relationship of the following equation (4): BS ≦ 3.0−log 10 D --- (4) More advantageous improvements in the distortion characteristics and the actual device characteristics are realized.

【0081】ここで、V(単位:mm)は、溝断面積×溝
の長さ×溝の本数に相当する合計容積(mm3)を、対象と
する鋼板の表面積(mm2)で割った値であり、S(単位:
無次元)は、線状の局所歪の幅×長さ×本数に相当する
局所歪領域の合計面積(mm2)を、対象とする鋼板の表面
積(mm2)で割った値であり、Raは、鋼板の金属表面の中
心線平均粗さを測定した値(μm ) であり、BSせ、結
晶方位強調処理を鋼板表面に施した時に、結晶粒界に生
じる段差の平均値(μm)である。
Here, V (unit: mm) is obtained by dividing the total volume (mm 3 ) corresponding to the groove cross-sectional area × the groove length × the number of grooves by the surface area (mm 2 ) of the target steel sheet. And S (unit:
Dimensionless) is the total area of the local strain areas corresponding to the width × length × number of linear local distortion (mm 2), a value obtained by dividing by the surface area of the steel sheet of interest (mm 2), Ra Is the value (μm) obtained by measuring the center line average roughness of the metal surface of the steel sheet. is there.

【0082】なお、溝の形成方法としては、鋼板表面を
エッチングする方法や歯車ロールを押し当てて溝を形成
する方法が、また局所歪の導入方法としては、回転体に
よる押圧、レーザー照射およびプラズマジェット照射な
ど、従来公知の方法いずれもが適合する。また、鋼板金
属表面と非金属被膜との界面の平滑化方法としては、フ
ォルステライト被膜の形成を抑制したり、フォルステラ
イト被膜を除去したのち、酸洗、研磨、化学研磨または
研削などの手法によって鋼板表面の粗度を低減する方法
いずれもが適合する。さらに、結晶方位強調処理とは、
フォルステライト被膜の形成を抑制したり、フォルステ
ライト被膜を除去したのち、ハロゲン化合物の水溶液中
で鋼板表面を電解処理し、特性の結晶方位の面のみを優
先的に残存させる方法であり、この発明ではこの方法も
有利に適合する。
The grooves may be formed by etching the surface of the steel sheet or by pressing a gear roll to form the grooves. The local strain may be introduced by pressing with a rotating body, laser irradiation, or plasma. Any conventionally known method such as jet irradiation is suitable. In addition, as a method of smoothing the interface between the metal surface of the steel sheet and the non-metallic film, the formation of the forsterite film is suppressed, or the forsterite film is removed, and then pickling, polishing, chemical polishing or grinding is performed. Any method for reducing the roughness of the steel sheet surface is suitable. Furthermore, the crystal orientation enhancement process
This method is to suppress the formation of a forsterite film or remove the forsterite film, and then electrolytically treat the steel sheet surface in an aqueous solution of a halogen compound to preferentially leave only the crystal orientation plane of the characteristic. This method is also advantageously adapted.

【0083】次に、この発明の製造方法について説明す
る。さて、所望の好適成分組成に調整された鋼片は、公
知の熱延方法によって熱延鋼板とした後、必要に応じて
熱延板焼鈍を施し、1回または中間焼鈍を挟む2回以上
の冷間圧延によって最終板厚とする。この最終冷間圧延
では、その圧下率の調整によって2次再結晶時に成長す
る結晶の方位を制御するのであるが、圧下率が80%未満
では方位の劣る結晶粒が多数再結晶しがちで高い磁束密
度が得らない場合があり、一方95%を超えると2次再結
晶粒の核生成の確率が極端に低下し、2次再結晶が不安
定になる傾向にあるので、最終冷間圧延の圧下率は80〜
95%とすることが好ましい。
Next, the manufacturing method of the present invention will be described. By the way, the steel slab adjusted to the desired suitable component composition is made into a hot-rolled steel sheet by a known hot-rolling method, and then subjected to hot-rolled sheet annealing as necessary, and one or two or more times of intermediate annealing The final thickness is obtained by cold rolling. In this final cold rolling, the orientation of the crystal grown during the secondary recrystallization is controlled by adjusting the rolling reduction. If the rolling reduction is less than 80%, a large number of crystal grains with poor orientation tend to recrystallize. The magnetic flux density may not be obtained. On the other hand, if it exceeds 95%, the probability of nucleation of secondary recrystallized grains is extremely reduced, and secondary recrystallization tends to be unstable. The rolling reduction is 80 ~
Preferably it is 95%.

【0084】なお、上記の圧延に際し、公知の温間圧延
やパス間時効処理を組み合わせることは、磁束密度をさ
らに向上させる上で有利である。また、熱延板焼鈍や中
間焼鈍において弱脱炭処理を施すことも可能である。さ
らに、磁区細分化処理として、線状溝を利用する場合に
は、この最終冷延後に鋼板表面に線状の溝を設けること
が好ましい。
It is to be noted that, in the above-mentioned rolling, the combination of known warm rolling and inter-pass aging treatment is advantageous in further improving the magnetic flux density. It is also possible to perform a weak decarburization treatment in hot-rolled sheet annealing or intermediate annealing. Further, when a linear groove is used as the magnetic domain refining process, it is preferable to provide a linear groove on the steel sheet surface after the final cold rolling.

【0085】ついで、1次再結晶焼鈍を施すが、この時
必要に応じて同時に脱炭処理も兼備させC量を所定の値
以下まで低減する。この1次再結晶焼鈍途中から2次再
結晶開始までの間において、この発明の最も肝要な技術
として、結晶成長の駆動力を増加させる領域を鋼板内部
に局所的に設ける。ここに、板厚方向への結晶成長は比
較的容易に起こるので、かかる領域が鋼板板厚方向にお
いて、必ずしも板厚全体にわたって設けられている必要
はなく、板厚方向においてその一部の領域に設けられて
いても、その効果においては同等である。ただし、この
領域の鋼板表面への射影領域としては、円相当径にて0.
05mm以上3.0 mm以下とすることが必要である。というの
は、0.05mm未満ではしばしば後から発生する通常の2次
再結晶粒によって最終的に蚕食され消滅する例が多くな
り、一方 3.0mmを超えると生成する微細粒の大きさも
3.0mmを超えるので磁束密度の低下を招き、鉄損が増大
するからである。
Next, primary recrystallization annealing is performed. At this time, if necessary, a decarburizing treatment is simultaneously performed to reduce the C content to a predetermined value or less. Between the middle of the primary recrystallization annealing and the start of the secondary recrystallization, as the most important technique of the present invention, a region for increasing the driving force for crystal growth is locally provided in the steel plate. Here, since crystal growth in the thickness direction occurs relatively easily, such a region does not necessarily need to be provided over the entire thickness in the thickness direction of the steel sheet, and may be provided in a partial region in the thickness direction. Even if provided, the effects are equivalent. However, the projected area of this area on the steel sheet surface is 0.
It is necessary to set it between 05 mm and 3.0 mm. The reason for this is that when the thickness is less than 0.05 mm, the number of cases often eventually disappeared and disappeared by the usual secondary recrystallized grains that frequently occur later, while the size of the fine grains generated when the thickness exceeded 3.0 mm was also reduced.
If it exceeds 3.0 mm, the magnetic flux density will be reduced, and iron loss will increase.

【0086】このような処理を施す領域については、3.
0 mm以下の狭小な領域であることが必要で、例えば長く
伸びた領域に処理した場合には、処理領域に方位の劣る
結晶粒が生成し、材料の磁束密度の大幅な劣化をきた
し、鉄損の増加を招く。
For the area to be subjected to such processing, see 3.
It is necessary to be a narrow area of 0 mm or less.For example, when processing is performed on a long elongated area, crystal grains with inferior orientation are generated in the processed area, causing significant deterioration of the magnetic flux density of the material, It causes an increase in loss.

【0087】このような領域を設ける製造工程上の時期
としては、1次再結晶開始前では新たな1次再結晶粒の
生成によって、このような領域が消滅するので効果がな
く、一方2次再結晶開始後では微細粒が領域内で核生成
−粒成長する間もなく2次再結晶粒によって蚕食される
ので、やはり効果が失われる。
In the manufacturing process for providing such a region, before the start of the primary recrystallization, the generation of new primary recrystallized grains eliminates such a region, so that there is no effect. After the start of recrystallization, the fine grains are eaten by the secondary recrystallized grains immediately after nucleation and grain growth in the region, so that the effect is also lost.

【0088】結晶成長の駆動力を増加させるための方法
としては、前述したとおり(1) 歪を導入する方法、(2)
1次再結晶粒を微細化する方法、(3) インヒビターの抑
制力の強化による方法等があるが、このうち(1), (2)の
方法が優れており、その中でも (1)の方法が人為的に微
細粒を発生させ制御する上で特に優れている。また、鋼
板に導入する歪量としては、0.005 未満の場合、微細粒
の生成が起こらない場合もあって作用が不安定となり、
一方0.70を超えると、同一位置に多数の微細粒が生成す
る傾向が強く、努力の割にその効果が薄くなるので、導
入歪量は 0.005〜0.70の範囲とすることが好ましい。
As described above, the methods for increasing the driving force for crystal growth include (1) a method of introducing strain, and (2)
There are methods to refine primary recrystallized grains and (3) methods to enhance inhibitory power, among which methods (1) and (2) are superior, and among them, method (1) Is particularly excellent in artificially generating and controlling fine grains. When the amount of strain introduced into the steel sheet is less than 0.005, the action becomes unstable because the generation of fine grains may not occur,
On the other hand, if it exceeds 0.70, a large number of fine grains tend to be formed at the same position, and the effect is reduced in spite of the effort. Therefore, the amount of introduced strain is preferably in the range of 0.005 to 0.70.

【0089】工業的に、このような結晶成長の駆動力を
増加させた領域を高能率でかつ安定して設ける方法とし
て、特に優れた方法は、図13に示すような、表面に小突
起を有する物体で、鋼板よりも硬い物体を鋼板表面に押
圧する方法や、図14に示すような、鋼板表面と電極との
間に高電圧を印加し局所的に通電または放電する方法、
さらには高温のスポットレーザーを瞬間的に照射する方
法やパルスレーザーを局所的に照射する方法等である。
ここで、高温のスポットレーザーとは、炭酸ガスレーザ
ーなどのような連続発振するが大容量であるレーザーで
あり、鋼板表面の局所を数百ミリ秒以下の短時間のみ照
射し、加熱するものである。また、パルスレーザーと
は、Qスイッチ等を用いて、短時間、高密度の光束化と
したもので、極めて強力な衝撃力を鋼板の局所に付与す
ることができるものである。
As a method for industrially providing a region having an increased driving force for crystal growth with high efficiency and stability, a particularly excellent method is to form small projections on the surface as shown in FIG. In the object having, a method of pressing an object harder than the steel sheet against the steel sheet surface, a method of applying a high voltage between the steel sheet surface and the electrode and locally energizing or discharging, as shown in FIG.
Further, there are a method of instantaneously irradiating a high-temperature spot laser and a method of locally irradiating a pulse laser.
Here, a high-temperature spot laser is a laser that continuously oscillates but has a large capacity, such as a carbon dioxide laser, and irradiates a local portion of the steel sheet surface for a short time of several hundred milliseconds or less and heats it. is there. In addition, the pulse laser is a laser beam that is made into a high-density light flux in a short time by using a Q switch or the like, and can apply an extremely strong impact force locally to the steel sheet.

【0090】上記したようにして、結晶成長の駆動力を
増加させた領域を人為的に設けた後は、必要に応じて焼
鈍分離剤を塗布したのち、最終仕上げ焼鈍を施して2次
再結晶させる。最終仕上げ焼鈍は、1200℃前後の高温ま
で昇温し、純化焼鈍とフォルステライト質の下地被膜を
形成させてもよい。その後、鋼板表面に絶縁コーティン
グを塗布して製品とするが、コーティング塗布前に鋼板
表面を鏡面化したり、結晶方位強調処理を施しても良
い。また、絶縁コーティングとして張力コーティングを
用いてもよい。
After the region where the driving force for crystal growth is increased is artificially provided as described above, an annealing separator is applied as necessary, and then a final finish annealing is performed to perform secondary recrystallization. Let it. In the final finish annealing, the temperature may be raised to a high temperature of about 1200 ° C. to form a purification annealing and a forsterite-based undercoating. Thereafter, an insulating coating is applied to the surface of the steel sheet to obtain a product. Before coating, the surface of the steel sheet may be mirror-finished or a crystal orientation enhancement process may be performed. Further, a tension coating may be used as the insulating coating.

【0091】ここに、磁区細分化処理として、プラズマ
ジェットやレーザー照射を利用する場合には、2次再結
晶後の鋼板表面に所定の処理を施せば良い。また、この
段階で、突起ロールによって線状の溝領域を設けること
もできる。また、界面平滑化処理や結晶方位強調処理を
利用する場合には、フォルステライト被膜の形成を抑制
したり、フォルステライト被膜を除去したのち所定の処
理を施し、その後に絶縁コーティングを施せば良い。
Here, when plasma jet or laser irradiation is used as the magnetic domain refining treatment, a predetermined treatment may be applied to the steel sheet surface after the secondary recrystallization. Also, at this stage, a linear groove region can be provided by a projection roll. When an interface smoothing process or a crystal orientation enhancement process is used, formation of a forsterite film may be suppressed, or a predetermined process may be performed after removing the forsterite film, and then an insulating coating may be applied.

【0092】上述した製造方法によって、鉄損が低く、
耐歪特性および実機特性に優れた高磁束密度の方向性電
磁鋼板を得ることができ、特に3mm以下の微細粒を15mm
以上の粗大粒と共に混在させることにより、磁束密度が
高く、鉄損が低い製品とし、かつ実機の鉄損が極めて低
く優れた変圧器を組み立てることができる。
By the above-described manufacturing method, iron loss is low,
It is possible to obtain grain-oriented electrical steel sheets with high magnetic flux density and excellent strain resistance and actual machine characteristics.
By coexisting with the above coarse particles, it is possible to assemble a transformer having a high magnetic flux density and a low iron loss, and having an extremely low iron loss of an actual machine.

【0093】[0093]

【実施例】【Example】

実施例1 C:0.08wt%、Si:3.35wt%、Mn:0.07wt%、Al:0.02
wt%、Sb:0.05wt%およびN:0.008 wt%を含み、残部
はFeおよび不可避的不純物からなる鋼スラブを、1410℃
に加熱した後、常法により 2.2mm厚の熱延鋼板とした。
ついで、1000℃, 30秒の熱延板焼鈍後、酸洗し、 1.5mm
厚に冷間圧延した。その後、1080℃で50秒間の中間処理
を施したのち、 220℃の鋼板温度での温間圧延により0.
22mmの最終板厚とした。ついで、脱脂処理後、 850℃で
2分間の脱炭焼鈍を施したのち、鋼板を2分割し、一方
はそのままMgOを主成分とする焼鈍分離剤を塗布した
(比較例)。また残る一方には、図14に示した装置を用
いて、鋼板表面に 1.5mmのサイズの領域に1 kV で瞬時
の放電処理を施し、かかる瞬時の高温熱処理により、粒
成長の駆動力増加処理を施した。そして、かような領域
を、図11に示されるパターンで、コイル長手方向のピッ
チ:10mm、幅方向のピッチ:15mmで繰り返し設けたの
ち、同じくMgOを主成分とする焼鈍分離剤を塗布した
(発明例)。
Example 1 C: 0.08 wt%, Si: 3.35 wt%, Mn: 0.07 wt%, Al: 0.02
wt%, Sb: 0.05 wt% and N: 0.008 wt%, the balance being Fe and unavoidable impurities.
Then, a 2.2 mm thick hot-rolled steel sheet was obtained by a conventional method.
Then, after annealing the hot rolled sheet at 1000 ° C for 30 seconds,
It was cold rolled to a thickness. After that, an intermediate treatment was performed at 1080 ° C for 50 seconds, followed by warm rolling at a steel sheet temperature of 220 ° C.
The final thickness was 22 mm. Then, after the degreasing treatment, the steel sheet was subjected to decarburizing annealing at 850 ° C. for 2 minutes, and then the steel sheet was divided into two parts, one of which was directly coated with an annealing separator containing MgO as a main component (comparative example). On the other hand, using the device shown in Fig. 14, the surface of the steel sheet is subjected to an instantaneous discharge treatment at 1 kV in a 1.5 mm size region, and the instantaneous high-temperature heat treatment is performed to increase the driving force for grain growth. Was given. Then, such a region was repeatedly provided in the pattern shown in FIG. 11 with a pitch in the coil longitudinal direction: 10 mm and a pitch in the width direction: 15 mm, and then an annealing separator mainly containing MgO was applied ( Invention example).

【0094】ついで、得られたコイルは、最終仕上げ焼
鈍として、N2 中で 850℃まで30℃/hの昇温速度で昇
温し、 850℃に25時間保持した後、25%のN2 と75%の
2の混合雰囲気中にて15℃/hの昇温速度で1200℃ま
で昇温し、さらにH2 中で5時間保持後、降温した。そ
の後、これらのコイルは、未反応焼鈍分離剤を除去した
後、50%コロイダルシリカを含有する張力コーティング
を塗布焼き付け、プラズマジェットで磁区細分化処理を
施して製品とした。ここに、プラズマジェットの照射
は、板幅方向に線状に、照射幅:0.05mm、圧延方向への
繰り返し間隔:5mmの条件で行った。
[0094] Then, the resulting coil, as a final finish annealing, the temperature was raised at a heating rate of 30 ° C. / h up to 850 ° C. in N 2, was held for 25 hours in 850 ° C., of 25% N 2 The temperature was raised to 1200 ° C. at a rate of 15 ° C./h in a mixed atmosphere of H 2 and 75% H 2 , and further kept in H 2 for 5 hours and then lowered. Then, after removing the unreacted annealing separating agent, these coils were coated and baked with a tension coating containing 50% colloidal silica, and subjected to magnetic domain refining treatment with a plasma jet to obtain products. Here, the irradiation with the plasma jet was performed linearly in the plate width direction under the conditions of an irradiation width: 0.05 mm and a repetition interval in the rolling direction: 5 mm.

【0095】これらの鋼板を用い、スリット加工、剪断
加工、積層固定加工を行い、それぞれ脚幅:250 mm、高
さ:900 mm、厚み:300 mmの3相の変圧器を各2台ずつ
製造した。この時、1台はできるだけ歪が加わらないよ
うにして製造し、他の1台は歪付与の効果を実験的に評
価するために、加工時に50mmの径の球体を有するキャス
ターを5kgの荷重で押し付けて意図的に歪を付加して、
製造した。これらの変圧器の鉄損特性と実機化因子の値
について調べた結果を、材料の磁気特性について調査し
た結果と併せて、表4に示す。また、表4には、材料を
マクロエッチして測定した3mm以下の結晶粒の個数比率
と3mmを超える結晶粒の平均粒径Dについての調査結果
も併せて示す。
Using these steel plates, slitting, shearing, and laminating were performed to produce two 3-phase transformers each having a leg width of 250 mm, a height of 900 mm, and a thickness of 300 mm. did. At this time, one unit was manufactured with as little distortion as possible, and the other unit was cast on a caster with a 50 mm diameter sphere at the time of processing with a load of 5 kg in order to experimentally evaluate the effect of imparting distortion. Press and intentionally add distortion,
Manufactured. Table 4 shows the results of the examination of the iron loss characteristics and the values of the factor of realization of these transformers, together with the results of the investigation of the magnetic characteristics of the materials. Table 4 also shows the results of investigation on the number ratio of crystal grains of 3 mm or less measured by macro-etching the material and the average grain size D of crystal grains exceeding 3 mm.

【0096】[0096]

【表4】 [Table 4]

【0097】同表から明らかなように、この発明の方向
性電磁鋼板を用いた変圧器の実機特性は、実機化因子も
低く、耐歪特性も極めて良好で、実際の変圧器の鉄心材
料として極めて優れていた。
As is clear from the table, the transformer using the grain-oriented electrical steel sheet according to the present invention has low actual machine characteristics and a very low distortion resistance, and is used as a core material of an actual transformer. It was extremely good.

【0098】実施例2 C:0.08wt%、Si:3.40wt%、Mn:0.04wt%、Al:0.02
wt%、Cu:0.15wt%、Ni:0.10wt%、Bi:0.005 wt%、
Sb:0.04wt%およびN:0.008 wt%を含有し、残部はFe
および不可避的不純物からなる鋼スラブを、1430℃に加
熱したのち、常法により 2.6mm厚の熱延鋼板とした。つ
いで、 750℃で3秒の均熱処理からなる炭化物調整処理
を施し、酸洗後、冷延圧延によって 1.8mmの中間厚とし
たのち、1125で30秒の均熱処理とミスト水の噴射による
40℃/sの急冷からなる中間焼鈍を施した。
Example 2 C: 0.08 wt%, Si: 3.40 wt%, Mn: 0.04 wt%, Al: 0.02
wt%, Cu: 0.15wt%, Ni: 0.10wt%, Bi: 0.005wt%,
Sb: 0.04 wt% and N: 0.008 wt%, the balance being Fe
After heating the steel slab comprising unavoidable impurities to 1430 ° C., it was made into a hot-rolled steel sheet having a thickness of 2.6 mm by an ordinary method. Next, a carbide adjustment treatment consisting of a soaking treatment at 750 ° C for 3 seconds is performed, and after pickling, cold rolling is performed to make an intermediate thickness of 1.8 mm, followed by a soaking treatment at 1125 for 30 seconds and injection of mist water.
Intermediate annealing consisting of rapid cooling at 40 ° C / s was performed.

【0099】ついで、酸洗後、 230℃の鋼板温度での温
間圧延により0.26mmの最終板厚とした。ついで脱脂処理
後、鋼板を5分割し、一つは 850℃で2分間の脱炭焼鈍
を施した後、MgOを主成分とする焼鈍分離剤を塗布した
(比較例)。また、残る4つは、 850℃で2分間の脱炭
焼鈍を施す際、 850℃に昇温直後に、図13に示した形状
のセラミック製ロールを鋼板の走行速度と同期させて回
転させつつ鋼板を押圧し、図11に示すようなパターン
で、2.0 mmのサイズの局所的な粒成長の駆動力増加処理
をコイル長手方向のピッチ:25mm、幅方向のピッチ:20
mmで鋼板に施した。この時、3つのコイルについては、
脱炭焼鈍の前に鋼板表面に、図15に示す線状突起を有す
るセラミック製ロールを走行するコイルと同期させて回
転させ、2つは深さ:5μm 、幅:100 μm の板幅方向
に延び、圧延方向のピッチ:5mm溝を、また他の1つは
深さ:30μm 、幅:500 μm の板幅方向に延び、圧延方
向のピッチ:2mm溝を形成した。脱炭焼鈍後、これら4
コイルは、比較例と同じく、MgOを主成分とする焼鈍分
離剤を塗布した(発明例)。
Next, after pickling, a final sheet thickness of 0.26 mm was obtained by hot rolling at a steel sheet temperature of 230 ° C. Then, after the degreasing treatment, the steel sheet was divided into five parts, one of which was subjected to decarburization annealing at 850 ° C. for 2 minutes, and then an annealing separator containing MgO as a main component was applied (Comparative Example). The other four are that, when decarburizing annealing is performed at 850 ° C. for 2 minutes, immediately after the temperature is raised to 850 ° C., the ceramic roll having the shape shown in FIG. 13 is rotated in synchronization with the traveling speed of the steel sheet. A steel sheet is pressed and a driving force increasing process for local grain growth of 2.0 mm in a pattern as shown in FIG. 11 is performed. A pitch in the longitudinal direction of the coil: 25 mm, a pitch in the width direction: 20
It was applied to the steel plate in mm. At this time, for the three coils,
Prior to decarburization annealing, a ceramic roll having linear projections as shown in FIG. 15 is rotated on the surface of the steel sheet in synchronization with the running coil, and two of them are in the width direction of 5 μm in depth and 100 μm in width. It was extended in a rolling direction pitch: 5 mm groove, and the other one was formed in a sheet width direction having a depth of 30 μm and a width of 500 μm to form a pitch in the rolling direction: 2 mm. After decarburization annealing, these 4
As in the comparative example, the coil was coated with an annealing separator mainly containing MgO (inventive example).

【0100】これらのコイルは、最終仕上げ焼鈍とし
て、N2 中で 850℃まで30℃/hの昇温速度で昇温し、
ついで25%のN2 と75%のH2 の混合雰囲気中にて15℃
/hの昇温速度で1200℃まで昇温し、さらにH2 中で5
時間保持した後、降温した。その後、これらのコイル
は、未反応焼鈍分離剤を除去した後、50%のコロイダル
シリカを含有する張力コーティングを塗布焼き付け、製
品とした。ただし、深さ:5μm の溝を設けた2つのコ
イルのうち、1つについては張力コーティングを塗布焼
き付け後、 0.1mm径のレーザービームを 0.3mm間隔で板
幅方向に照射し(圧延方向におけるピッチ:10mm)、線
状の局所歪領域を設けた。
These coils were heated in N 2 to 850 ° C. at a rate of 30 ° C./h as final finish annealing.
15 ° C. in a mixed atmosphere of 25% N 2 and 75% H 2
/ At a Atsushi Nobori rate was raised to 1200 ° C. for h, further in H 2 5
After holding for a time, the temperature was lowered. Then, after removing the unreacted annealing separating agent, these coils were coated with a tension coating containing 50% of colloidal silica and baked to obtain products. However, one of the two coils provided with a groove having a depth of 5 μm is coated with a tension coating and baked, and then irradiated with a 0.1 mm diameter laser beam in the width direction at intervals of 0.3 mm (pitch in the rolling direction). : 10 mm), and a linear local strain region was provided.

【0101】これらの鋼板を用い、スリット加工、剪断
加工、積層固定加工を行い、それぞれ脚幅:300 mm、高
さ:1100mm、厚み:250 mmの3相の変圧器を各2台ずつ
製造した。この時、1台はできるだけ歪が加わらないよ
うにして製造し、他の1台は歪付与の効果を実験的に評
価するために、加工時に50mmの径の球体を有するキャス
ターを5kgの荷重で押し付けて意図的に歪を付加して、
製造した。
Using these steel plates, slitting, shearing, and laminating were performed to produce two three-phase transformers each having a leg width of 300 mm, a height of 1100 mm, and a thickness of 250 mm. . At this time, one unit was manufactured with as little distortion as possible, and the other unit was cast on a caster with a 50 mm diameter sphere at the time of processing with a load of 5 kg in order to experimentally evaluate the effect of imparting distortion. Press and intentionally add distortion,
Manufactured.

【0102】これらの変圧器の鉄損特性と実機化因子の
値について調べた結果を、材料の磁気特性について調査
した結果と併せて表5に示す。また、表5には、材料を
マクロエッチして測定した3mm以下の結晶粒の個数比率
と3mmを超える結晶粒の平均粒径Dについての調査結果
も併せて示す。なお、変圧器の鉄損測定のためのBm と
しては、されら製品のD値の平均値=56mmより、Bm =
0.2×log1056 +1.4 =1.75より、Bm =1.75Tにおけ
る値とした。
Table 5 shows the results of the examination of the iron loss characteristics and the values of the factor of realization of these transformers, together with the results of the investigation of the magnetic characteristics of the materials. Table 5 also shows the results of investigation on the number ratio of crystal grains of 3 mm or less and the average grain size D of crystal grains of more than 3 mm measured by macro-etching the material. In addition, as Bm for iron loss measurement of transformer, Bm =
From 0.2 × log 10 56 + 1.4 = 1.75, the value was obtained at Bm = 1.75T.

【0103】[0103]

【表5】 [Table 5]

【0104】同表から明らかなように、粒成長の駆動力
の増加処理を施した発明例は、製品の鉄損が比較例に較
べて大幅に低下しており、また実機化因子も低く変圧器
特性に優れていた。特に、溝の容積を平均粒径Dに対し
て適正な範囲とした場合には、変圧器の実機化因子が最
も小さく、耐歪特性も極めて良好で、実際の変圧器の鉄
心材料として極めて優れていた。
As is evident from the table, in the example of the invention in which the driving force for grain growth was increased, the iron loss of the product was significantly reduced as compared with the comparative example, and the factor of realization was low and the transformer loss was low. It had excellent container characteristics. In particular, when the volume of the groove is set in an appropriate range with respect to the average particle diameter D, the factor for realizing the transformer is the smallest, the distortion resistance is extremely good, and the core material of the actual transformer is extremely excellent. I was

【0105】実施例3 C:0.05wt%、Si:3.15wt%、Mn:0.35wt%、Al:0.01
7 wt%、Sb:0.005 wt%、B:0.0005wt%およびN:0.
008 wt%を含有し、残部はFeおよび不可避的不純物から
なる鋼スラブを、1180℃に加熱したのち、常法により
2.4mm厚の熱延鋼板とした。ついで、 800℃で30秒の熱
延板焼鈍を施し、酸洗後、 195℃の鋼板温度での温間圧
延により0.34mmの最終板厚とした。ついで脱脂処理後、
820℃で2分間の脱炭焼鈍を施した。ついで、この鋼板
を4分割し、1つは、1000℃で3分間の2次再結晶焼鈍
を施したのち、コーティング処理液を塗布・焼き付け、
製品とした(比較例)。また、残る3コイルは、1000
℃,3分間の2次再結晶焼鈍の途中、2次再結晶開始前
の昇温過程において、炉内でスポットレーザーを照射し
て、図10に示すようなパターンで、 2.5mmのサイズの局
所領域について、粒成長の駆動力増加処理を鋼板に施し
た。そして、このような領域を、コイル長手方向のピッ
チ:30mm、幅方向のピッチ:25mmで繰り返し設けた。そ
の後、コーティング処理液を塗布・焼き付け、製品とし
たが、3コイルのうち2つについては、コーティング処
理液塗布前に化学研磨し、鋼板の表面粗さを1つは0.07
μm 、他の1つは0.26μm とした。
Example 3 C: 0.05 wt%, Si: 3.15 wt%, Mn: 0.35 wt%, Al: 0.01
7 wt%, Sb: 0.005 wt%, B: 0.0005 wt% and N: 0.
After heating a steel slab containing 008 wt%, the balance being Fe and unavoidable impurities, to 1180 ° C,
The hot rolled steel sheet was 2.4 mm thick. Subsequently, hot-rolled sheet annealing was performed at 800 ° C. for 30 seconds, and after pickling, a final sheet thickness of 0.34 mm was obtained by hot rolling at a steel sheet temperature of 195 ° C. Then, after degreasing,
Decarburization annealing was performed at 820 ° C. for 2 minutes. Then, the steel sheet was divided into four parts, one of which was subjected to a secondary recrystallization annealing at 1000 ° C. for 3 minutes, and then a coating solution was applied and baked.
A product (comparative example). The remaining three coils are 1000
During the secondary recrystallization annealing at 3 ° C for 3 minutes, a spot laser was irradiated in the furnace during the heating process before the start of the secondary recrystallization, and a local area of 2.5 mm in size was formed as shown in Fig. 10. In the region, the steel plate was subjected to a treatment for increasing the driving force for grain growth. Such a region was repeatedly provided with a pitch in the coil longitudinal direction: 30 mm and a pitch in the width direction: 25 mm. Thereafter, a coating solution was applied and baked to obtain a product. Two of the three coils were chemically polished before the coating solution was applied, and one of the coils had a surface roughness of 0.07.
μm and the other one was 0.26 μm.

【0106】これらの鋼板を用い、スリット加工、剪断
加工、積層固定加工を行い、それぞれ脚幅:200 mm、高
さ:800 mm、厚み:350 mmの3相の変圧器を各2台ずつ
製造した。この時、1台はできるだけ歪が加わらないよ
うにして製造し、他の1台は歪付与の効果を実験的に評
価するために、加工時に50mmの径の球体を有するキャス
ターを5kgの荷重で押し付けて意図的に歪を付加して、
製造した。
Using these steel plates, slitting, shearing, and laminating were performed to produce two 3-phase transformers each having a leg width of 200 mm, a height of 800 mm, and a thickness of 350 mm. did. At this time, one unit was manufactured with as little distortion as possible, and the other unit was cast on a caster with a 50 mm diameter sphere at the time of processing with a load of 5 kg in order to experimentally evaluate the effect of imparting distortion. Press and intentionally add distortion,
Manufactured.

【0107】これらの変圧器の鉄損特性と実機化因子の
値について調べた結果を、材料の磁気特性について調査
した結果と併せて表6に示す。また、表6には、材料を
マクロエッチして測定した3mm以下の結晶粒の個数比率
と3mmを超える結晶粒の平均粒径Dについての調査結果
も併せて示す。なお、変圧器の鉄損測定のためのBm と
しては、されら製品のD値の平均値=10mmより、Bm =
0.2×log1010 +1.4 =1.60より、Bm =1.60Tにおけ
る値とした。
Table 6 shows the results of the investigation on the iron loss characteristics and the values of the factor of realization of these transformers, together with the results of the investigation on the magnetic characteristics of the materials. Table 6 also shows the results of investigation on the number ratio of crystal grains of 3 mm or less and the average grain size D of crystal grains of more than 3 mm measured by macro-etching the material. In addition, as Bm for iron loss measurement of transformer, Bm =
From 0.2 × log 10 10 + 1.4 = 1.60, the value was obtained at Bm = 1.60T.

【0108】[0108]

【表6】 [Table 6]

【0109】同表から明らかなように、この発明に従う
方向性電磁鋼板を用いて組み立てた変圧器の実機特性
は、実機化因子も低く、耐歪特性も極めて良好で、実際
の変圧器の鉄心材料として極めて優れていた。
As is clear from the table, the actual characteristics of the transformer assembled by using the grain-oriented electrical steel sheet according to the present invention have a low actualization factor, extremely good distortion resistance, and an actual core of the transformer. It was extremely excellent as a material.

【0110】実施例4 C:0.08wt%、Si:3.40wt%、Mn:0.09wt%、Al:0.02
wt%、Cu:0.10wt%、Mo:0.010 wt%、Ni:0.2 wt%、
Sb:0.045 wt%およびN:0.008 wt%を含有し、残部は
Feおよび不可避的不純物からなる鋼スラブを、1440℃に
加熱したのち、常法により 2.2mm厚の熱延鋼板とした。
ついで、酸洗後、冷間圧延によって 1.8mmの中間厚とし
たのち、1100で30秒の均熱処理とミスト水の噴射による
40℃/sの急冷からなる中間焼鈍後、酸洗し、さらに 200
℃の鋼板温度での温間圧延により0.22mmの最終板厚とし
た。ついで脱脂処理後、鋼板を6分割し、一つは 850℃
で2分間の脱炭焼鈍を施した後、MgOを主成分とする焼
鈍分離剤を塗布した(比較例)。また、残る5つのコイ
ルは、 850℃で2分間の脱炭焼鈍後、パルスレーザーを
照射し、鋼板表面に 2.0mmのサイズで0.01〜0.08の歪を
有する粒成長の駆動力増加処理を施した領域を、間隔:
2〜30mmで離散的かつ局所的に鋼板に設けた。ついで、
5 コイルのうち3コイルは、比較例と同じく、MgOを主
成分とする焼鈍分離剤を塗布したが、残りの2コイルは
被膜の生成を抑制するためSiO2を主成分とする焼鈍分離
剤を塗布した(発明例)。
Example 4 C: 0.08 wt%, Si: 3.40 wt%, Mn: 0.09 wt%, Al: 0.02
wt%, Cu: 0.10 wt%, Mo: 0.010 wt%, Ni: 0.2 wt%,
Contains Sb: 0.045 wt% and N: 0.008 wt%, with the balance being
A steel slab composed of Fe and unavoidable impurities was heated to 1440 ° C., and then turned into a 2.2 mm-thick hot-rolled steel sheet by an ordinary method.
Then, after pickling, cold-rolled to an intermediate thickness of 1.8 mm, then heat treated at 1100 for 30 seconds and sprayed with mist water
Intermediate annealing consisting of rapid cooling at 40 ° C / s, pickling,
The final sheet thickness was 0.22 mm by warm rolling at a sheet temperature of ° C. Then, after degreasing, the steel plate is divided into six parts, one of which is 850 ° C.
After decarburizing annealing for 2 minutes, an annealing separator containing MgO as a main component was applied (Comparative Example). The remaining five coils were subjected to pulse laser irradiation after decarburizing annealing at 850 ° C. for 2 minutes, and the steel plate surface was subjected to a driving force increasing treatment for grain growth having a size of 2.0 mm and a strain of 0.01 to 0.08. Area, spacing:
It was provided discretely and locally on a steel plate at 2 to 30 mm. Then
As with the comparative example, three of the five coils were coated with an annealing separator containing MgO as a main component, but the remaining two coils were coated with an annealing separator containing SiO 2 as a main component to suppress the formation of a film. It was applied (inventive example).

【0111】これらのコイルは、最終仕上げ焼鈍とし
て、N2 中で 850℃まで30℃/hの昇温速度で昇温し、
ついで25%のN2 と75%のH2 の混合雰囲気中にて15℃
/hの昇温速度で1200℃まで昇温し、さらにH2 中で5
時間保持した後、降温した。その後、これらのコイルに
は、B2O3を含有する張力コーティングを塗布焼き付け、
製品とした。ただし、発明例のうち、SiO2を主成分とす
る焼鈍分離剤を塗布したものは表面酸化物被膜の生成は
認められず、従って、その後に塩化ナトリウム水溶液中
で結晶方位強調処理を施したのちに、上記張力コーティ
ングを塗布焼き付けた。この時、2コイルの一方は、結
集粒界段差の平均値:2.5 μm 、他方は 0.9μm とし
た。また、発明例のうち、MgOを主成分とする焼鈍分離
剤を塗布したものは、鋼板表面に生成したフォルステラ
イト被膜上に上記張力コーティングを塗布焼き付けた
が、かかる張力コーティングを塗布焼き付け後、3コイ
ルのうち、2コイルはプラズマジェットを板幅方向に線
状に照射した。この時、一つは局所歪領域の幅を0.05mm
として、鋼板圧延方向に15mmのピッチで照射(S=3.3
×10-3)したが、他の一つは、局所歪領域の幅を 0.8mm
として、鋼板圧延方向に5mmのピッチで照射(S=1.6
×10-1)した。
These coils were heated to 850 ° C. in N 2 at a rate of 30 ° C./h as final finish annealing.
15 ° C. in a mixed atmosphere of 25% N 2 and 75% H 2
/ At a Atsushi Nobori rate was raised to 1200 ° C. for h, further in H 2 5
After holding for a time, the temperature was lowered. Then, these coils, baking coating tension coating containing B 2 O 3,
The product. However, among the invention examples, those coated with an annealing separator containing SiO 2 as a main component did not show the formation of a surface oxide film, and thus were subjected to a crystal orientation enhancement treatment in an aqueous sodium chloride solution. The above tension coating was applied and baked. At this time, one of the two coils had an average value of the step of the aggregated grain boundary: 2.5 μm, and the other had a density of 0.9 μm. Among the invention examples, those coated with an annealing separator containing MgO as a main component applied and baked the above-mentioned tension coating on the forsterite film formed on the steel plate surface. Of the coils, two coils irradiated the plasma jet linearly in the plate width direction. At this time, one is to set the width of the local strain area to 0.05 mm
Irradiation at a pitch of 15 mm in the steel sheet rolling direction (S = 3.3
× 10 −3 ), but the other is to set the width of the local strain region to 0.8 mm.
Irradiation at a pitch of 5 mm in the rolling direction of the steel sheet (S = 1.6
× 10 -1 ).

【0112】これらの鋼板を用い、スリット加工、剪断
加工、積層固定加工を行い、それぞれ脚幅:300 mm、高
さ:1100mm、厚み:250 mmの3相の変圧器を各2台ずつ
製造した。この時、1台はできるだけ歪が加わらないよ
うにして製造し、他の1台は歪付与の効果を実験的に評
価するために、加工時に50mmの径の球体を有するキャス
ターを5kgの荷重で押し付けて意図的に歪を付加して、
製造した。
Using these steel plates, slitting, shearing, and laminating were performed, and two three-phase transformers each having a leg width of 300 mm, a height of 1100 mm, and a thickness of 250 mm were manufactured. . At this time, one unit was manufactured with as little distortion as possible, and the other unit was cast on a caster with a 50 mm diameter sphere at the time of processing with a load of 5 kg in order to experimentally evaluate the effect of imparting distortion. Press and intentionally add distortion,
Manufactured.

【0113】これらの変圧器の鉄損特性と実機化因子の
値について調べた結果を、材料の磁気特性について調査
した結果と併せて表7に示す。また、表7には、材料を
マクロエッチして測定した3mm以下の結晶粒の個数比率
と3mmを超える結晶粒の平均粒径Dについての調査結果
も併せて示す。なお、変圧器の鉄損測定のためのBm と
しては、されら製品のD値の平均値=100.5 mmより、B
m = 0.2×log10100.5+1.4 =1.80より、Bm =1.80T
における値とした。
Table 7 shows the results of the examination of the iron loss characteristics and the values of the factor of realization of these transformers, together with the results of the examination of the magnetic characteristics of the materials. Table 7 also shows the results of investigation on the number ratio of crystal grains of 3 mm or less and the average grain size D of crystal grains of more than 3 mm measured by macro-etching the material. The Bm for the iron loss measurement of the transformer was calculated from the average value of the D value of the product = 100.5 mm.
From m = 0.2 × log 10 100.5 + 1.4 = 1.80, Bm = 1.80T
The value in.

【0114】[0114]

【表7】 [Table 7]

【0115】同表から明らかなように、この発明に従う
方向性電磁鋼板を用いて組み立てた変圧器の実機特性
は、実機化因子も低く、耐歪特性も極めて良好で、実際
の変圧器の鉄心材料として極めて優れていた。
As is clear from the table, the actual characteristics of the transformer assembled by using the grain-oriented electrical steel sheet according to the present invention have a low actualization factor, extremely good distortion resistance, and an actual core of the transformer. It was extremely excellent as a material.

【0116】実施例5 C:0.08wt%、Si:3.45wt%、Mn:0.07wt%、Al:0.02
wt%、Ge:0.015 wt%、Mo:0.010 wt%、Ni:0.1 wt
%、Sb:0.050 wt%、Cr:0.05wt%およびN:0.008 wt
%を含有し、残部はFeおよび不可避的不純物からなる鋼
スラブを、1400℃に加熱したのち、常法により 2.4mm厚
の熱延鋼板とした。ついで、酸洗後、冷間圧延によって
1.5mmの中間厚としたのち、1100で30秒の均熱処理とミ
スト水の噴射による40℃/sの急冷からなる中間焼鈍後、
酸洗し、さらに 200℃の鋼板温度での温間圧延により0.
17mmの最終板厚とした。ついで脱脂処理後、鋼板を4分
割し、一つは 850℃で2分間の脱炭焼鈍を施した後、Mg
Oを主成分とする焼鈍分離剤を塗布した(比較例1)。
また、他の一つは、脱炭焼鈍の昇温直後に、図15に示し
たような線状突起を有するロールを走行するコイルと同
期させて回転させ、鋼板表面に深さ:30μm 、幅:35μ
m の溝を、圧延方向のピッチ:4mmで設けた(比較例
2)。さらに、他の一つは、脱炭焼鈍の昇温直後に、同
じく図15に示したような線状突起を有するロールを走行
するコイルと同期させながら回転させ、鋼板表面に深
さ:10μm 、幅:80μm 、圧延方向の繰り返し間隔:5
mmで溝を設けた(比較例3)。残る一つは、脱炭焼鈍の
昇温直後に、同じく図15に示したような線状突起を有す
るロールを走行するコイルと同期させながら回転させ、
鋼板表面に深さ:10μm 、幅:80μm 、圧延方向の繰り
返し間隔:5mmで溝を設け、ついで脱炭焼鈍後に、今度
は図13に示したような小突起を有するロールを走行する
コイルと同期させながら回転させ、鋼板表面にサイズ:
1.5 mmで図9に示したようなパターンで、圧延方向に 5
00mmの繰り返し間隔で局所的かつ離散的に、0.03〜0.15
の歪を有する粒成長の駆動力増加処理を施した。つい
で、これらの3コイルにはいずれも、MgOを主成分とす
る焼鈍分離剤を塗布した。
Example 5 C: 0.08 wt%, Si: 3.45 wt%, Mn: 0.07 wt%, Al: 0.02
wt%, Ge: 0.015 wt%, Mo: 0.010 wt%, Ni: 0.1 wt
%, Sb: 0.050 wt%, Cr: 0.05 wt% and N: 0.008 wt%
%, With the balance being Fe and unavoidable impurities, a steel slab was heated to 1400 ° C., and then made into a 2.4 mm-thick hot-rolled steel sheet by an ordinary method. Then, after pickling, cold rolling
After an intermediate thickness of 1.5 mm, after intermediate annealing consisting of soaking at 1100 for 30 seconds and quenching at 40 ° C / s by spraying mist water,
Pickling followed by warm rolling at a steel sheet temperature of 200 ° C.
The final thickness was 17 mm. Then, after degreasing, the steel sheet was divided into four parts, one of which was subjected to decarburizing annealing at 850 ° C for 2 minutes,
An annealing separator containing O as a main component was applied (Comparative Example 1).
The other one is that immediately after the temperature rise in the decarburizing annealing, the roll having the linear projections as shown in FIG. 15 is rotated in synchronization with the running coil, so that the steel plate surface has a depth of 30 μm and a width of 30 μm. : 35μ
m grooves were provided at a pitch of 4 mm in the rolling direction (Comparative Example 2). Further, another one is to rotate the roll having linear projections as shown in FIG. 15 in synchronization with the running coil immediately after the temperature rise of the decarburization annealing, and to make the depth of the steel plate surface: 10 μm, Width: 80μm, rolling direction repetition interval: 5
A groove was provided in mm (Comparative Example 3). The other one is that, immediately after the temperature rise of the decarburizing annealing, the roll having linear projections as shown in FIG. 15 is rotated in synchronization with the running coil,
A groove is formed on the surface of the steel sheet at a depth of 10 μm, a width of 80 μm, and a repetition interval of the rolling direction: 5 mm. After the decarburization annealing, this time is synchronized with a coil running on a roll having small projections as shown in FIG. Rotate while rotating, the size on the steel plate surface:
In the pattern shown in Fig. 9 at 1.5 mm,
0.03 to 0.15 locally and discretely with a repetition interval of 00 mm
A driving force increasing treatment for grain growth having a distortion of was performed. Then, an annealing separator containing MgO as a main component was applied to all three coils.

【0117】これらのコイルは、最終仕上げ焼鈍とし
て、N2 中で 850℃まで30℃/hの昇温速度で昇温し、
850℃に20時間保持したのち、25%のN2 と75%のH2
の混合雰囲気中にて15℃/hの昇温速度で1200℃まで昇
温し、さらにH2 中で5時間保持後、降温した。その
後、これらのコイルには、コロイダルシリカを含有する
張力コーティングを塗布し、平坦化焼鈍を兼ねて 800℃
で焼き付けた。
These coils were heated to 850 ° C. at a rate of 30 ° C./h in N 2 as final finish annealing.
After holding at 850 ° C. for 20 hours, 25% N 2 and 75% H 2
The mixture was heated up to 1200 ° C. at a rate of 15 ° C./h in a mixed atmosphere, and further kept in H 2 for 5 hours and then cooled. After that, a tension coating containing colloidal silica was applied to these coils, and 800 ° C was used for flattening annealing.
Baked in.

【0118】これらの鋼板を用い、スリット加工、剪断
加工、積層固定加工を行い、それぞれ脚幅:300 mm、高
さ:1100mm、厚み:250 mmの3相の変圧器を各2台ずつ
製造した。この時、1台はできるだけ歪が加わらないよ
うにして製造し、他の1台は歪付与の効果を実験的に評
価するために、加工時に50mmの径の球体を有するキャス
ターを5kgの荷重で押し付けて意図的に歪を付加して、
製造した。
Using these steel sheets, slit processing, shearing processing, and lamination fixing processing were performed, and two three-phase transformers each having a leg width of 300 mm, a height of 1100 mm, and a thickness of 250 mm were manufactured. . At this time, one unit was manufactured with as little distortion as possible, and the other unit was cast on a caster with a 50 mm diameter sphere at the time of processing with a load of 5 kg in order to experimentally evaluate the effect of imparting distortion. Press and intentionally add distortion,
Manufactured.

【0119】これらの変圧器の鉄損特性と実機化因子の
値について調べた結果を、材料の磁気特性について調査
した結果と併せて表8に示す。また、表8には、材料を
マクロエッチして測定した3mm以下の結晶粒の個数比率
と3mmを超える結晶粒の平均粒径Dについての調査結果
も併せて示す。
Table 8 shows the results of the investigation on the iron loss characteristics and the values of the factor of realization of these transformers, together with the results of the investigation on the magnetic characteristics of the materials. Table 8 also shows the results of investigation on the number ratio of crystal grains of 3 mm or less measured by macro-etching the material and the average grain size D of crystal grains of more than 3 mm.

【0120】[0120]

【表8】 [Table 8]

【0121】製品のマクロエッチの結果は、比較例1と
比較例3は、通常の結晶組織であったが、比較例2は、
脱炭昇温直後に深さ25μm の溝を設けた場所において、
その直下に溝に沿った細長い結晶粒が生成しており、こ
の粒によって通常の2次再結晶粒が分断されていた。こ
れに対し、発明例では、粒成長促進処理を施した領域に
微細粒が生成しており、変圧器の実機特性は勿論、耐歪
特性にも優れた材料を得ることができた。
The results of macro etching of the products were as follows. Comparative Example 1 and Comparative Example 3 had a normal crystal structure, while Comparative Example 2
Immediately after the decarburization temperature rise, in a place where a groove with a depth of 25 μm
Elongated crystal grains along the groove were formed immediately below the crystal grains, and these grains separated normal secondary recrystallized grains. On the other hand, in the invention example, fine grains were generated in the area subjected to the grain growth promoting treatment, and a material excellent in not only the actual characteristics of the transformer but also the strain resistance was obtained.

【0122】[0122]

【発明の効果】かくして、この発明によれば、製品鋼板
のもつ優れた材料特性を変圧器にそのまま反映させるこ
とができ、その結果、組み立て後においても優れた実機
特性を有する変圧器を得ることができる。
As described above, according to the present invention, the excellent material characteristics of the product steel plate can be directly reflected in the transformer, and as a result, a transformer having excellent actual machine characteristics even after assembly can be obtained. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に従い、人為的に微細粒を生成させた
鋼板の金属組織写真である。
FIG. 1 is a metallographic photograph of a steel sheet in which fine grains are artificially generated according to the present invention.

【図2】人為的に生成させた微細粒と自然に発生した微
細粒の結晶方位を比較して示した(100)極点図であ
る。
FIG. 2 is a (100) pole figure showing a comparison between crystal orientations of artificially generated fine grains and naturally generated fine grains.

【図3】3mm以下の微細粒の個数比率が、鉄損特性に対
する変圧器の鉄損比(実機化因子)および耐歪特性(歪
付与加工時の実機化因子)に及ぼす影響を示したグラフ
である。
FIG. 3 is a graph showing the effect of the number ratio of fine grains of 3 mm or less on the iron loss ratio of transformers to iron loss characteristics (actualization factor) and distortion resistance characteristics (actualization factor during strain imparting processing). It is.

【図4】方向性電磁鋼板における貫通粒の平均粒径と鉄
損特性ならびに変圧器の実機化因子および歪付与加工時
の実機化因子との関係を示したグラフである。
FIG. 4 is a graph showing the relationship between the average grain size of penetrating grains and iron loss characteristics of a grain-oriented electrical steel sheet, the factor for realizing a transformer, and the factor for realizing a strain imparting process.

【図5】圧延方向に繰り返し設ける溝について、最も良
好な実機化因子を得るための鋼板の単位面積当たりの溝
の合計容積比Vを、3mmを超える結晶粒の平均粒径Dと
の関係で示したグラフである。
FIG. 5 shows the relationship between the total volume ratio V of the grooves per unit area of the steel sheet to obtain the best factor of realization of the grooves repeatedly provided in the rolling direction and the average particle diameter D of the crystal grains exceeding 3 mm. It is a graph shown.

【図6】圧延方向に繰り返し設ける線状の局所歪につい
て、最も良好な実機化因子を得るための鋼板の単位面積
当たりの合計局所歪領域Sを、3mmを超える結晶粒の平
均粒径Dとの関係で示したグラフである。
FIG. 6 shows the total local strain area S per unit area of a steel sheet for obtaining the best realization factor for the linear local strain repeatedly provided in the rolling direction, with the average grain size D of crystal grains exceeding 3 mm. 5 is a graph shown by the relationship.

【図7】鋼板金属表面と非金属被膜との界面の粗さにつ
いて、最も良好な実機化因子を得るための平均粗さRa
を、3mmを超える結晶粒の平均粒径Dとの関係で示した
グラフである。
FIG. 7 shows the average roughness Ra for obtaining the best factor for realizing the roughness of the interface between the metal surface of the steel sheet and the nonmetal coating.
3 is a graph showing the relationship between the average particle diameter D of crystal grains exceeding 3 mm.

【図8】鋼板金属表面に施される結晶方位強調処理につ
いて、最も良好な実機化因子を得るための粒界平均段差
BSを、3mmを超える結晶粒の平均粒径Dとの関係で示
したグラフである。
FIG. 8 shows the grain boundary average step BS for obtaining the best factor for realizing the crystal orientation enhancement treatment performed on the metal surface of the steel sheet in relation to the average grain size D of crystal grains exceeding 3 mm. It is a graph.

【図9】結晶粒成長の駆動力を増加させた領域を、鋼板
表面に離散的に設けた状態を示した図である。
FIG. 9 is a diagram showing a state in which regions in which the driving force for crystal grain growth is increased are discretely provided on the surface of the steel sheet.

【図10】結晶粒成長の駆動力を増加させた領域を、鋼
板表面に規則的に設けた状態を示した図である。
FIG. 10 is a diagram showing a state in which regions in which the driving force for crystal grain growth is increased are regularly provided on the surface of the steel sheet.

【図11】結晶粒成長の駆動力を増加させた領域を、鋼
板表面に規則的に設けた状態の別例を示した図である。
FIG. 11 is a diagram showing another example of a state where regions where the driving force for crystal grain growth is increased are regularly provided on the surface of the steel sheet.

【図12】結晶粒成長の駆動力を増加させた領域を、鋼
板の幅方向に連続して線状に設けた状態を示した図であ
る。
FIG. 12 is a diagram showing a state in which a region in which the driving force for crystal grain growth is increased is provided linearly continuously in the width direction of the steel sheet.

【図13】表面に小突起を多数有するロールの外観図で
ある。
FIG. 13 is an external view of a roll having a large number of small protrusions on the surface.

【図14】局所通電加熱処理および局所放電加熱処理を
施すための装置の概念図である。
FIG. 14 is a conceptual diagram of an apparatus for performing a local energization heating process and a local discharge heating process.

【図15】表面に線状突起を有するロールの外観図であ
る。
FIG. 15 is an external view of a roll having linear protrusions on its surface.

【符号の説明】[Explanation of symbols]

1 処理時間を定めるゲートパルス 2 高電圧電源 3 電極 4 粒成長の駆動力の増加処理領域 5 対電極 6 鋼板 7 小突起 8 線状突起 9 圧延方向 10 粒成長の駆動力増加処理の圧延方向への繰り返し処
理間隔 11 粒成長の駆動力増加処理の圧延直角方向への繰り返
し処理間隔
1 Gate pulse to determine processing time 2 High voltage power supply 3 Electrode 4 Driving force increase processing area for grain growth 5 Counter electrode 6 Steel plate 7 Small projection 8 Linear projection 9 Rolling direction 10 To the rolling direction of grain growth driving force increase processing 11 Interval of repetitive processing in the direction perpendicular to the rolling direction of the increase in driving force for grain growth

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】Si:1.5 〜7.0 wt%、 Mn:0.03〜2.5 wt% を含有し、かつC, SおよびNの不純物としての混入を
それぞれ C:0.003 wt%以下、 S:0.002 wt%以下、 N:0.002 wt%以下 に抑制した電磁鋼板であって、鋼板を構成する結晶粒の
うち、板厚方向に貫通している結晶粒の鋼板表面におけ
る粒径が3mm以下である結晶粒の個数比率が65%以上、
98%以下であり、しかも鋼板表面に磁区細分化処理が施
されていることを特徴とする、鉄損が低く、耐歪特性お
よび実機特性に優れた方向性電磁鋼板。
(1) Si: 1.5 to 7.0 wt%, Mn: 0.03 to 2.5 wt%, and contamination of C, S and N as impurities respectively: C: 0.003 wt% or less, S: 0.002 wt% or less N: 0.002 wt% or less of the electrical steel sheets, and among the crystal grains constituting the steel sheet, the number of crystal grains that penetrate in the thickness direction and have a grain size of 3 mm or less on the steel sheet surface. The ratio is over 65%,
A grain-oriented electrical steel sheet having a core loss of 98% or less and having a magnetic domain refinement treatment applied to the surface of the steel sheet, and having a low core loss and excellent distortion resistance and actual machine characteristics.
【請求項2】 請求項1において、板厚方向に貫通して
いる結晶粒の鋼板表面における粒径の平均値が8mm以
上、50mm以下であることを特徴とする、鉄損が低く、耐
歪特性および実機特性に優れた方向性電磁鋼板。
2. The steel sheet according to claim 1, wherein the average value of the grain size of the crystal grains penetrating in the sheet thickness direction on the steel sheet surface is not less than 8 mm and not more than 50 mm. Grain-oriented electrical steel sheet with excellent characteristics and actual machine characteristics.
【請求項3】 請求項1または2において、板厚方向に
貫通し、かつ鋼板表面における粒径が3mm以下である結
晶粒として、人為的に規則配置させたものを含むことを
特徴とする、鉄損が低く、耐歪特性および実機特性に優
れた方向性電磁鋼板。
3. The method according to claim 1, wherein the crystal grains penetrating in the thickness direction and having a grain size of 3 mm or less on the surface of the steel sheet include those which are artificially and regularly arranged. Grain-oriented electrical steel sheet with low iron loss and excellent distortion resistance and actual machine characteristics.
【請求項4】 請求項1,2または3において、磁区細
分化処理が、(1) 鋼板表面に深さ:50μm 以下で幅:35
0 μm 以下の溝を圧延方向に繰り返し設けること、(2)
鋼板表層部に線状の局所的歪含有領域を圧延方向に繰り
返し設けること、(3) 鋼板金属表面と非金属被膜との界
面が平均粗さRaで 0.3μm 以下に平滑化すること、(4)
鋼板金属表面に結晶方位強調処理を施すことのいずれか
である、鉄損が低く、耐歪特性および実機特性に優れた
方向性電磁鋼板。
4. The magnetic domain refining treatment according to claim 1, 2 or 3, wherein (1) a depth: 50 μm or less and a width: 35
Repeatedly providing grooves of 0 μm or less in the rolling direction, (2)
(3) smoothing the interface between the metal surface of the steel sheet and the non-metallic coating to an average roughness Ra of 0.3 μm or less in the surface direction of the steel sheet in the rolling direction; )
A grain-oriented electrical steel sheet with low iron loss, which is one of applying a crystal orientation enhancement treatment to the metal surface of the steel sheet, and having excellent distortion resistance characteristics and actual machine characteristics.
【請求項5】 請求項4において、鋼板を構成する結晶
粒のうち、板厚方向に貫通している結晶粒で粒径が3mm
を超える大きさの結晶粒の平均粒径をD(mm)としたと
き、(1) 圧延方向に繰り返し設ける溝について、鋼板の
単位面積当たりの溝の合計容積比V(単位:mm)が次式
(1) の関係を満足する範囲とするか、 log10V≦−2.3 −0.01×D --- (1) (2) 圧延方向に繰り返し設ける線状の局所歪について、
鋼板の単位面積当たりの局所歪の合計領域比S(単位:
無次元)が次式(2) の関係を満足する範囲とするか、 log10S≦−0.7 + 0.005×D --- (2) (3) 鋼板金属表面と非金属被膜との界面の平均粗さRaに
ついて、このRaが次式(3) の関係を満足する範囲とする
か、 Ra ≦ 0.3− 0.1× log10D --- (3) (4) 鋼板金属表面に施される結晶方位強調処理につい
て、その粒界平均段差BSが次式(4) の関係を満足する
範囲とする BS≦ 3.0− log10D --- (4) ことを特徴とする、鉄損が低く、耐歪特性および実機特
性に優れた方向性電磁鋼板。
5. The steel sheet according to claim 4, wherein, among the crystal grains constituting the steel sheet, the crystal grains penetrate in the thickness direction and have a grain size of 3 mm.
When the average grain size of the crystal grains having a size exceeding D is defined as D (mm), (1) The total volume ratio V (unit: mm) of the grooves per unit area of the steel sheet is as follows for the grooves repeatedly provided in the rolling direction. formula
To make the range satisfying the relationship of (1), or log 10 V ≦ −2.3 −0.01 × D --- (1) (2)
Total area ratio S of local strain per unit area of steel sheet (unit:
(Dimensionless) is within the range satisfying the relationship of the following formula (2), or log 10 S ≦ −0.7 + 0.005 × D --- (2) (3) Average of the interface between the metal surface of the steel sheet and the nonmetal coating Regarding the roughness Ra, make sure this Ra satisfies the relationship of the following formula (3), or Ra ≦ 0.3− 0.1 × log 10 D --- (3) (4) The crystal orientation given to the steel sheet metal surface In the emphasis processing, the grain boundary average step BS is set to a range that satisfies the relationship of the following equation (4): BS ≦ 3.0−log 10 D (4) Grain-oriented electrical steel sheet with excellent characteristics and actual machine characteristics.
JP23549897A 1996-10-21 1997-08-18 Grain-oriented electrical steel sheets with excellent iron loss, distortion resistance and magnetic properties in actual machines Expired - Fee Related JP3482833B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP23549897A JP3482833B2 (en) 1996-10-21 1997-08-18 Grain-oriented electrical steel sheets with excellent iron loss, distortion resistance and magnetic properties in actual machines
DE69706388T DE69706388T2 (en) 1996-10-21 1997-10-20 Grain-oriented electromagnetic steel sheet
EP97118194A EP0837148B1 (en) 1996-10-21 1997-10-20 Grain-oriented electromagnetic steel sheet
US08/953,920 US6083326A (en) 1996-10-21 1997-10-20 Grain-oriented electromagnetic steel sheet
KR1019970054015A KR100424126B1 (en) 1996-10-21 1997-10-21 Grain-oriented electromagnetic steel sheet
CN97126080A CN1099474C (en) 1996-10-21 1997-10-21 Iron loss low, strain characteristic resistant and practical characteristic good grain orientation electromagnet steel plate and its manufacture method
BR9705106A BR9705106A (en) 1996-10-21 1997-10-21 Electromagnetic steel sheet with oriented granulation
US09/557,230 US6444050B1 (en) 1996-10-21 2000-04-24 Grain-oriented electromagnetic steel sheet
US10/163,522 US6929704B2 (en) 1996-10-21 2002-06-06 Grain-oriented electromagnetic steel sheet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP27813596 1996-10-21
JP8-278135 1996-10-21
JP23549897A JP3482833B2 (en) 1996-10-21 1997-08-18 Grain-oriented electrical steel sheets with excellent iron loss, distortion resistance and magnetic properties in actual machines

Publications (2)

Publication Number Publication Date
JPH10183313A true JPH10183313A (en) 1998-07-14
JP3482833B2 JP3482833B2 (en) 2004-01-06

Family

ID=26532165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23549897A Expired - Fee Related JP3482833B2 (en) 1996-10-21 1997-08-18 Grain-oriented electrical steel sheets with excellent iron loss, distortion resistance and magnetic properties in actual machines

Country Status (1)

Country Link
JP (1) JP3482833B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208196A (en) * 2010-03-29 2011-10-20 Nippon Steel Corp Method for manufacturing grain-oriented electromagnetic steel sheet having considerably low iron loss
JP2011208228A (en) * 2010-03-30 2011-10-20 Jfe Steel Corp Device and method for cutting grain oriented silicon steel sheet
WO2012017693A1 (en) * 2010-08-06 2012-02-09 Jfeスチール株式会社 Grain-oriented magnetic steel sheet and process for producing same
JP2014148723A (en) * 2013-02-01 2014-08-21 Jfe Steel Corp Method of manufacturing oriented electromagnetic steel sheet and primary recrystallization steel sheet for manufacturing oriented electromagnetic steel sheet
WO2018207873A1 (en) * 2017-05-12 2018-11-15 Jfeスチール株式会社 Oriented magnetic steel sheet and method for manufacturing same
JP2019508577A (en) * 2015-12-22 2019-03-28 ポスコPosco Directional electrical steel sheet and method of manufacturing directional electrical steel sheet
JP2022513169A (en) * 2018-11-30 2022-02-07 ポスコ Directional electrical steel sheet and its manufacturing method
WO2022092120A1 (en) 2020-10-26 2022-05-05 日本製鉄株式会社 Wound core
WO2022092114A1 (en) 2020-10-26 2022-05-05 日本製鉄株式会社 Wound core

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208196A (en) * 2010-03-29 2011-10-20 Nippon Steel Corp Method for manufacturing grain-oriented electromagnetic steel sheet having considerably low iron loss
JP2011208228A (en) * 2010-03-30 2011-10-20 Jfe Steel Corp Device and method for cutting grain oriented silicon steel sheet
WO2012017693A1 (en) * 2010-08-06 2012-02-09 Jfeスチール株式会社 Grain-oriented magnetic steel sheet and process for producing same
JP2014148723A (en) * 2013-02-01 2014-08-21 Jfe Steel Corp Method of manufacturing oriented electromagnetic steel sheet and primary recrystallization steel sheet for manufacturing oriented electromagnetic steel sheet
US11508501B2 (en) 2015-12-22 2022-11-22 Posco Grain-oriented electrical steel sheet and method for manufacturing grain-oriented electrical steel sheet
JP2019508577A (en) * 2015-12-22 2019-03-28 ポスコPosco Directional electrical steel sheet and method of manufacturing directional electrical steel sheet
WO2018207873A1 (en) * 2017-05-12 2018-11-15 Jfeスチール株式会社 Oriented magnetic steel sheet and method for manufacturing same
CN110651058A (en) * 2017-05-12 2020-01-03 杰富意钢铁株式会社 Grain-oriented electromagnetic steel sheet and method for producing same
CN110651058B (en) * 2017-05-12 2021-09-07 杰富意钢铁株式会社 Grain-oriented electromagnetic steel sheet and method for producing same
JPWO2018207873A1 (en) * 2017-05-12 2019-11-07 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
US11578377B2 (en) 2017-05-12 2023-02-14 Jfe Steel Corporation Grain-oriented electrical steel sheet and method for producing the same
JP2022513169A (en) * 2018-11-30 2022-02-07 ポスコ Directional electrical steel sheet and its manufacturing method
WO2022092120A1 (en) 2020-10-26 2022-05-05 日本製鉄株式会社 Wound core
WO2022092114A1 (en) 2020-10-26 2022-05-05 日本製鉄株式会社 Wound core
KR20230069990A (en) 2020-10-26 2023-05-19 닛폰세이테츠 가부시키가이샤 Cheol Shim Kwon
KR20230070021A (en) 2020-10-26 2023-05-19 닛폰세이테츠 가부시키가이샤 Cheol Shim Kwon

Also Published As

Publication number Publication date
JP3482833B2 (en) 2004-01-06

Similar Documents

Publication Publication Date Title
US6083326A (en) Grain-oriented electromagnetic steel sheet
JP5760504B2 (en) Oriented electrical steel sheet and manufacturing method thereof
KR960010811B1 (en) Process for production of grain oriented electrical steel sheet having excellent magnetic properties
JP3470475B2 (en) Grain-oriented electrical steel sheet with extremely low iron loss and its manufacturing method
JP3023242B2 (en) Method for producing low iron loss unidirectional silicon steel sheet with excellent noise characteristics
WO2015040799A1 (en) Grain-oriented electromagnetic steel sheet, and manufacturing method therefor
JP3537339B2 (en) Grain-oriented electrical steel sheet having excellent film properties and magnetic properties and method for producing the same
EP3144399A1 (en) Method for producing oriented electromagnetic steel sheet
JPH0657857B2 (en) Method for manufacturing low iron loss grain-oriented electrical steel sheet
JP3482833B2 (en) Grain-oriented electrical steel sheets with excellent iron loss, distortion resistance and magnetic properties in actual machines
JP3357578B2 (en) Grain-oriented electrical steel sheet with extremely low iron loss and method for producing the same
JP2001107145A (en) Method for producing grain-oriented silicon steel sheet excellent in magnetic property
WO2023195466A1 (en) Grain-oriented electromagnetic steel sheet and production method for same
JP2000017334A (en) Production of grain-oriented and nonoriented silicon steel sheet having low core loss and high magnetic flux density and continuous annealing equipment
JPH06136449A (en) Production of low iron loss grain-oriented silicon steel sheet
JP3383555B2 (en) Grain-oriented electrical steel sheet with low iron loss and excellent strain resistance and actual machine properties, and method for producing the same
JPH11335738A (en) Production of high magnetic flux density-grain oriented silicon steel sheet extremely low in core loss
JP3386742B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP3928275B2 (en) Electrical steel sheet
JP2003342642A (en) Process for manufacturing grain-oriented electrical steel sheet showing excellent magnetic properties and coating film properties
KR20210107833A (en) Grain-oriented electrical steel sheet and iron core using same
JPH05179355A (en) Production of low-iron loss unidirectionally oriented silicon steel sheet
JP2000104143A (en) Low iron loss grain oriented silicon steel sheet low in coercive force and its production
JP7318675B2 (en) Grain-oriented electrical steel sheet, manufacturing method thereof, and strain introduction device
JPS6331527B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees