JPH06136449A - Production of low iron loss grain-oriented silicon steel sheet - Google Patents

Production of low iron loss grain-oriented silicon steel sheet

Info

Publication number
JPH06136449A
JPH06136449A JP28616292A JP28616292A JPH06136449A JP H06136449 A JPH06136449 A JP H06136449A JP 28616292 A JP28616292 A JP 28616292A JP 28616292 A JP28616292 A JP 28616292A JP H06136449 A JPH06136449 A JP H06136449A
Authority
JP
Japan
Prior art keywords
steel sheet
silicon steel
electron beam
iron loss
oriented silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28616292A
Other languages
Japanese (ja)
Other versions
JP3399991B2 (en
Inventor
Masao Iguchi
征夫 井口
Kazuhiro Suzuki
一弘 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP28616292A priority Critical patent/JP3399991B2/en
Publication of JPH06136449A publication Critical patent/JPH06136449A/en
Application granted granted Critical
Publication of JP3399991B2 publication Critical patent/JP3399991B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To produce a grain-oriented silicon steel sheet low in iron loss by irradiating the surface of a grain-oriented silicon steel sheet subjected to finish annealing and thereafter coated with an insulated film with electron beams under specified conditions. CONSTITUTION:The surface of a grain-oriented silicon steel sheet subjected to finish annealing and thereafter coated with an insulating film is applied with continuous or intermittent irradiation by electron beams in such manner that the irradiating width in the rolling direction is regulated to 0.2 to 1.0mm and they stretch zigzag in a direction crossed with the rolling direction with an inclination of <=30 deg.C to the crossed direction at intervals of 2 to 20mm in the rolling direction. At this time, preferably, the electron beam irradiation is executed at 2 to 9J/cm<2> energy density, and it is force-fitted into the film to a depth of about 0.01 to 5mum. As for the generating conditions of the electron beams, preferably, the electron beams with about 0.1 to 0.5mm phi irradiating diameter are applied at spot central intervals of about 50 to 500mum by about 60 to 500KV pressurizing voltage and about <=5mA accelerating flow. In this way, effective domain fractionation can be executed without destroying the film on the steel surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、電子ビームの照射を
利用する低鉄損一方向性珪素鋼板の製造方法において、
磁区細分化効果の安定化のほか、特に積鉄芯とした際の
磁歪(以下単に磁歪と示す)、トランスとして使用した
際の騒音(以下単に騒音と示す)及び鋼板形状の改善を
図ったもので、この一方向性珪素鋼板は、トランスや電
気機器の鉄心用材料として有利に使用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a low iron loss unidirectional silicon steel sheet using electron beam irradiation,
In addition to stabilizing the magnetic domain subdivision effect, the improvement of the magnetostriction when used as a laminated iron core (hereinafter simply referred to as magnetostriction), the noise when used as a transformer (hereinafter simply referred to as noise), and the shape of steel plate Then, this unidirectional silicon steel sheet is advantageously used as a material for an iron core of a transformer or electric equipment.

【0002】一方向性珪素鋼板は製品の2次再結晶粒を
ゴス方位に高度に集積させること、その鋼板表面上にフ
ォルステライト被膜を被成し、さらにその上に熱膨張係
数の小さい絶縁被膜を被成して鋼板に張力を付与するこ
と、などにより磁気特性の向上を計るもので、厳格な制
御を必要とする複雑、多岐にわたる工程を経て製造され
ている。このような一方向性珪素鋼板は、主として変圧
器、その他電気機器の鉄心として使用されており、磁気
特性として製品の磁束密度(B8 値で代表される) が高
く、鉄損(W17/50 値で代表される) が低いこと、さら
に表面性状が良好な絶縁被膜を被成していることなどが
要求されている。とくにエネルギー危機を境にして電力
損失の低減を至上とする要請が著しく強まり、変圧器用
鉄心材料としての鉄損のより低い一方向性珪素鋼板の必
要性はますます高まってきている。そして、この一方向
性珪素鋼板の鉄損改善の歴史は、ゴス方位2次再結晶集
合組織の改善の歴史であると云っても過言ではない。
In a unidirectional silicon steel sheet, secondary recrystallized grains of a product are highly integrated in a Goss orientation, a forsterite coating is formed on the surface of the steel sheet, and an insulating coating having a small thermal expansion coefficient is further formed on the forsterite coating. It is intended to improve the magnetic properties by, for example, applying a tension to the steel sheet by applying the above method, and is manufactured through complicated and various processes that require strict control. Such unidirectional silicon steel sheet is mainly used as an iron core of transformers and other electric devices, and has a high magnetic flux density (represented by B 8 value) of the product as a magnetic property, and an iron loss (W 17 / (Represented by 50 values) is low, and an insulating film with good surface properties is applied. In particular, the demand for reduction of power loss has been remarkably strengthened at the border of the energy crisis, and the need for unidirectional silicon steel sheet with lower iron loss as an iron core material for transformers has been increasing more and more. It is no exaggeration to say that the history of improving iron loss of this unidirectional silicon steel sheet is the history of improving the Goss-oriented secondary recrystallization texture.

【0003】[0003]

【従来の技術】2次再結晶粒を制御する方法として、Al
N ,MnS 及び MnSe 等の1次再結晶粒成長抑制剤、いわ
ゆるインヒビターを用いてゴス方位2次再結晶粒を優先
成長させる方法が実施されている。
2. Description of the Related Art As a method for controlling secondary recrystallized grains, Al
A method of preferentially growing secondary recrystallized Goss grains using a primary recrystallized grain growth inhibitor such as N 2, MnS and MnSe, a so-called inhibitor, has been implemented.

【0004】一方、上記の2次再結晶集合組織を制御す
る冶金的手段とは異なる鉄損改善技術も種々開発されて
いる。すなわち、市山 正:鉄と鋼、69(1983), P. 89
5、特公昭57−2252号公報、特公昭57−53419 号公報、
特公昭58−26405 号公報、及び特公昭58−26406 号公報
などにはレーザーを、又特開昭62−96617 号公報、特開
昭62−151511号公報、特開昭62−151516号公報、及び特
開昭62−151517号公報などにはプラズマを、それぞれ鋼
板表面に照射することにより、鋼板に局部微小歪を導入
して磁区を細分化し、鉄損を低下させる画期的な方法が
提案開示されている。しかしながら、これらの方法はい
ずれもエネルギー効率が5〜20%とひくいため、鉄損の
低下にはコスト増を余儀なくされる不利があった。
On the other hand, various iron loss improving techniques different from the metallurgical means for controlling the secondary recrystallization texture have been developed. That is, Tadashi Ichiyama: Iron and Steel, 69 (1983), P. 89.
5, JP-B-57-2252, JP-B-57-53419,
Japanese Patent Publication No. 58-26405 and Japanese Patent Publication No. 58-26406 disclose lasers, and JP-A-62-96617, JP-A-62-151511, and JP-A-62-151516. JP-A-62-151517 and the like propose an epoch-making method of irradiating plasma on the surface of a steel sheet to introduce local microstrain into the steel sheet to subdivide magnetic domains and reduce iron loss. It is disclosed. However, all of these methods have an energy efficiency as low as 5 to 20%, so that there is a disadvantage in that cost reduction is inevitable in reducing iron loss.

【0005】[0005]

【発明が解決しようとする課題】そこで発明者らは、エ
ネルギー効率が高い磁区細分化の手法について、特開昭
63−186826号、特開平2−118022号及び同2−277780号
各公報にて提案した。すなわち鋼板の表面に、高電圧及
び小電流で発生した電子ビームを圧延方向と交わる鋼板
の幅方向へ局所的に断続照射し、被膜を地鉄に圧入する
方法である。しかしながらこれらの方法は磁気特性の向
上は達成されるものの、磁歪、騒音及び鋼板形状のばら
つきが大きく、製品としての品質を備える鋼板の安定生
産が難しいところに問題を残していた。これは電子ビー
ムの鋼板表面から内部への侵入深さが、レーザー等の他
の手法と比較して深いためと考えられる。
Therefore, the inventors of the present invention have proposed a technique for domain division into domains having high energy efficiency.
63-186826, JP-A-2-118022 and JP-A-2-277780. That is, it is a method of locally and intermittently irradiating the surface of a steel sheet with an electron beam generated by a high voltage and a small current in the width direction of the steel sheet intersecting the rolling direction, and press-fitting the coating into the base metal. However, although these methods achieve improvement in magnetic properties, they have a problem that it is difficult to stably produce a steel sheet having quality as a product because of large variations in magnetostriction, noise and steel sheet shape. It is considered that this is because the penetration depth of the electron beam from the surface of the steel sheet to the inside is deeper than in other methods such as laser.

【0006】一方電子ビーム照射による磁区細分化に関
し、米国特許第4199733 号及び同4195750 号各明細書に
は、積鉄芯用では60J/in2 以上のエネルギー密度で、
及び巻鉄芯用では150 〜4000J/in2 のエネルギー密度
で行うことが開示されているが、電子ビームの侵入深さ
に関しての配慮はなく、またエネルギー密度は電子ビー
ム照射装置の種類や照射法によって変化するため、製品
の安定生産は難しい。この発明は、上記の問題を解消
し、高品質の製品を安定に製造する方法について提案す
ることを目的とする。
On the other hand, regarding the magnetic domain subdivision by electron beam irradiation, US Pat. Nos. 4,1997,33 and 4,195,750 each describe an energy density of 60 J / in 2 or more for a laminated iron core.
It is disclosed that the energy density of 150 to 4000 J / in 2 is used for wound iron cores, but no consideration is given to the penetration depth of the electron beam, and the energy density depends on the type of electron beam irradiation device and the irradiation method. The stable production of products is difficult because it changes depending on the situation. An object of the present invention is to solve the above problems and propose a method for stably producing a high quality product.

【0007】[0007]

【課題を解決するための手段】この発明は、仕上焼鈍を
施した後に絶縁被膜を被成した一方向性珪素鋼板の表面
に、電子ビームによって、圧延方向の照射幅が0.2 〜1.
0mm で圧延方向と交差する方向へ、該交差方向に対して
30°以下の傾きを成してジグザグ状に延びる連続あるい
は断続照射を、2〜20mmの間隔で行うことを特徴とする
低鉄損一方向性珪素鋼板の製造方法である。また、実施
に当たり、エネルギー密度:2〜9J/cm2 の電子ビー
ムを用いることが有利である。
According to the present invention, the irradiation width in the rolling direction of the unidirectional silicon steel sheet coated with an insulating film after finishing annealing is 0.2 to 1.
In the direction intersecting the rolling direction at 0 mm, with respect to the intersecting direction
A method for producing a low iron loss unidirectional silicon steel sheet, characterized in that continuous or intermittent irradiation extending in a zigzag shape with an inclination of 30 ° or less is performed at intervals of 2 to 20 mm. Further, in practice, it is advantageous to use an electron beam having an energy density of 2 to 9 J / cm 2 .

【0008】さて図1に、この発明に直接使用する電子
ビーム照射装置を示す。同図における番号1は排気口1
a,1bを備え真空槽を形成するするためのケーシング、
好ましくは10-2Torr以下の高真空としたケーシング1内
において、高圧インシュレータ2、電子を放出する電子
銃3及び電子銃3より放出された電子を加速するために
電子銃3と対向して配置したアノード4にて電子ビーム
5の射出を行う。さらに6は上記の電子線発生部を常に
高真空に維持するためのコラム弁、7は電子ビーム5を
集束するための集束コイル、そして8は集束コイル7に
て集束させた電子ビーム5の進行方向を変化させて鋼板
9の所定領域への照射を担う偏向コイルである。この偏
向コイル8によって、図2(b) に示すように、電子ビー
ムを0.2 〜1.0mm の照射幅内で圧延方向と交わる方向
へ、該交差方向に対して30°以下の傾きを成してジグザ
グ状に延びる断続照射あるいは連続照射を実現する。こ
の照射によって、鋼板上の被膜を破壊することなく、有
効な磁区細分化が可能となる。
FIG. 1 shows an electron beam irradiation apparatus used directly in the present invention. Number 1 in the figure is exhaust port 1
a casing for forming a vacuum chamber including a and 1b,
A high pressure insulator 2, an electron gun 3 for emitting electrons and an electron gun 3 arranged to face the electron gun 3 for accelerating the electrons emitted from the electron gun 3 in a casing 1 having a high vacuum of preferably 10 −2 Torr or less. The electron beam 5 is emitted from the anode 4. Further, 6 is a column valve for always maintaining the electron beam generating section in a high vacuum, 7 is a focusing coil for focusing the electron beam 5, and 8 is a traveling direction of the electron beam 5 focused by the focusing coil 7. It is a deflection coil that changes the direction and irradiates a predetermined area of the steel sheet 9. By this deflection coil 8, as shown in FIG. 2 (b), the electron beam is tilted within the irradiation width of 0.2 to 1.0 mm in a direction intersecting with the rolling direction at an angle of 30 ° or less with respect to the intersecting direction. Achieve intermittent irradiation or continuous irradiation that extends in a zigzag shape. This irradiation enables effective magnetic domain subdivision without destroying the coating on the steel sheet.

【0009】このときの電子ビーム照射はエネルギー密
度:2〜9J/cm2 で行うことが好ましい。そして、被
膜は 0.01 〜5μm の深さまで圧入することが好まし
く、このための電子ビームの発生条件は、加速電圧を60
kVから500kV 、加速電流を5mA以下とすることが好適で
あり、さらに照射径が0.1 〜 0.5mmφの電子ビームをス
ポット中心間隔:50〜500 μm であるいは連続して照射
することが好ましい。
The electron beam irradiation at this time is preferably performed at an energy density of 2 to 9 J / cm 2 . And it is preferable to press fit the film to a depth of 0.01 to 5 μm, and the electron beam generation condition for this is that the acceleration voltage is 60
It is preferable to set kV to 500 kV and an acceleration current to 5 mA or less, and it is preferable to further irradiate an electron beam having an irradiation diameter of 0.1 to 0.5 mmφ with a spot center interval of 50 to 500 μm or continuously.

【0010】また、この発明の方法を適用するに当た
り、一方向性珪素鋼板の成分組成は、従来公知の成分組
成のものいずれもが適合するが、代表組成をあげると以
下のとおりである。 C:0.01〜0.10wt% 熱間圧延、冷間圧延中の組織の均一微細化のみならず、
ゴス方位の発達に有用な元素であり、少なくとも 0.01
wt%以上の添加が好ましい。しかしながら0.10wt%を超
えて含有するとかえってゴス方位に乱れが生じるので上
限は0.10wt%が好ましい。 Si : 2.0〜4.5 wt% 鋼板の比抵抗を高め鉄損の低減に有効に寄与するが、2.
0 wt%に満たないと比抵抗が低下するだけでなく、2次
再結晶・純化のために行なわれる最終高温焼鈍中にα−
γ変態によって結晶方位のランダム化を生じ、十分な鉄
損改善効果が得られず、また 4.5wt%を超えると冷延性
が損なわれる。したがって、下限を 2.0wt%、上限を
4.5wt%とすることが好ましい。 Mn : 0.02 〜0.12wt% 熱間脆化を防止するため少なくとも0.02wt%を必要とす
るが、あまり多すぎると磁気特性を劣化させるので、上
限は0.12wt%が好ましい。
In applying the method of the present invention, the component composition of the grain-oriented silicon steel sheet may be any conventionally known component composition, and the representative compositions are as follows. C: 0.01 to 0.10 wt% Not only the refinement of the structure during hot rolling and cold rolling but also
It is an element useful for the development of Goss orientation, and at least 0.01
Addition of wt% or more is preferable. However, if the content exceeds 0.10 wt%, the Goss orientation is rather disturbed, so the upper limit is preferably 0.10 wt%. Si: 2.0 to 4.5 wt% Increases the specific resistance of steel sheet and effectively contributes to the reduction of iron loss.
If it is less than 0 wt%, not only the resistivity decreases but also α- during the final high-temperature annealing for secondary recrystallization and purification.
The gamma transformation causes the crystal orientation to be randomized, so that a sufficient iron loss improving effect cannot be obtained, and if it exceeds 4.5 wt%, cold ductility is impaired. Therefore, the lower limit is 2.0 wt% and the upper limit is
It is preferably 4.5% by weight. Mn: 0.02 to 0.12 wt% At least 0.02 wt% is required to prevent hot embrittlement, but if it is too much, the magnetic properties deteriorate, so the upper limit is preferably 0.12 wt%.

【0011】インヒビターとしては、大別して MnS, Mn
Se系と AlN系とがある。MnS, MnSe系の場合は、S: 0.
005〜0.06 wt %及びSe : 0.005〜0.06 wt %のうちか
ら選ばれる少なくとも1種S,Seはいずれも方向性珪素
鋼板の2次再結晶を制御するインヒビターとして有力な
元素である。ともに抑制力確保の観点からは、少なくと
も 0.005wt%程度を必要とするが、0.06wt%を超えると
その効果が損なわれるので、その下限を0.005wt %、上
限を 0.06 wt%とすることが好ましい。AlN 系の場合
は、 Al:0.005 〜0.10wt%及びN: 0.004 〜0.015 wt% Al及びNの範囲についても、上述した MnS系、MnSe系の
場合と同様の理由により上記の範囲とすることが好まし
い。
The inhibitors are roughly classified into MnS and Mn.
There are Se series and AlN series. In case of MnS and MnSe system, S: 0.
At least one of S and Se selected from 005 to 0.06 wt% and Se: 0.005 to 0.06 wt% is an effective element as an inhibitor for controlling the secondary recrystallization of grain-oriented silicon steel sheet. Both require at least about 0.005 wt% from the viewpoint of securing suppression, but if it exceeds 0.06 wt%, the effect is impaired, so it is preferable to set the lower limit to 0.005 wt% and the upper limit to 0.06 wt%. . In the case of AlN system, Al: 0.005 to 0.10 wt% and N: 0.004 to 0.015 wt% Al and N range may be set to the above range for the same reason as in the case of MnS system and MnSe system described above. preferable.

【0012】インヒビター成分としては上記したS,S
e, Alの他に、Cr, Mo, Cu, Sn, Ge,Sb, Te, Bi及びPな
どについても有利に適合するもので、それぞれ少量併せ
て含有させることもよい。ここに上記成分の好適添加範
囲はそれぞれ、Cr, Cu, Sn :0.01wt%以上、0.50wt%以
下、Mo, Ge, Sb, Te, Bi : 0.005wt%以上、0.1 wt%以
下、P:0.01wt%以上、0.2 wt%以下であり、これら各
インヒビター成分についても単独使用及び複合使用いず
れの場合もが適合する。
As the inhibitor component, S and S described above are used.
In addition to e and Al, Cr, Mo, Cu, Sn, Ge, Sb, Te, Bi and P are also suitable, and a small amount of each may be contained. The preferred ranges of addition of the above components are Cr, Cu, Sn: 0.01 wt% or more and 0.50 wt% or less, Mo, Ge, Sb, Te, Bi: 0.005 wt% or more, 0.1 wt% or less, P: 0.01 The content is not less than wt% and not more than 0.2 wt%, and these inhibitor components are suitable for both single use and combined use.

【0013】[0013]

【作用】次にこの発明を実験例に基づいて述べる。 C:0.079 wt%, Si:3.36wt%, Mn:0.08wt%, Mo:
0.012wt%, sol.Al: 0.025wt%, Se: 0.019wt%、お
よびSb: 0.025wt%を含有する珪素鋼スラブを、1360℃
で3時間加熱後、熱間圧延して 2.2mm厚の熱延板とした
後、1050℃で2分間の中間焼鈍をはさむ2回の冷間圧延
を施して0.23mm厚の最終冷延板とした。次いで 840℃の
湿水素中で脱炭・1次再結晶焼鈍を施した後、鋼板表面
上に MgOを主成分とする焼鈍分離剤をスラリー塗布し、
その後10℃/hで昇温して 850℃で15時間の焼鈍を行なっ
た後、その後12℃/hで1180℃まで昇温して2次再結晶焼
鈍を行ってゴス方位2次再結晶粒を優先成長させた後、
1220℃の乾水素中で5時間の純化焼鈍を施した。次いで
鋼板表面上にリン酸塩とコロイダルシリカを主成分とす
る絶縁被膜を被成した。その後図1に示した装置を用い
て、電子ビーム(電圧:150 kV,電流:0.9 mA,エネル
ギー密度:7.1J/cm2)を鋼板の圧延方向と直交する方向
に走査間隔:6mmおよび走査速度:700cm/s で照射する
処理を、図2(a) に示す直線状(照射幅:0.20mm)およ
び同図(b) に示すジグザグ状(照射幅:0.35mm)でそれ
ぞれ行った。なお、ジグザグ状の照射は、同図(b) に示
すように、電子ビームの走査を、その圧延方向と交差す
る方向の変位Lを0.2 mmと一定にする一方、圧延方向の
変位Hを0.2 mm以下の範囲で変化させ、交差方向に対す
る傾斜角θを変化した。また比較のため、磁区細分化処
理を施さない試料も作製した。
Next, the present invention will be described based on experimental examples. C: 0.079 wt%, Si: 3.36 wt%, Mn: 0.08 wt%, Mo:
Silicon steel slab containing 0.012wt%, sol.Al: 0.025wt%, Se: 0.019wt%, and Sb: 0.025wt% at 1360 ℃
After 3 hours of heating, it is hot-rolled to a hot-rolled sheet with a thickness of 2.2 mm, and then cold-rolled twice with intermediate annealing at 1050 ° C for 2 minutes to obtain a final cold-rolled sheet with a thickness of 0.23 mm. did. Then, after decarburizing and primary recrystallization annealing in wet hydrogen at 840 ° C, an annealing separator containing MgO as a main component is applied as a slurry on the surface of the steel sheet,
After that, the temperature was raised at 10 ° C / h and annealed at 850 ° C for 15 hours, and then the temperature was raised to 1180 ° C at 12 ° C / h to carry out the secondary recrystallization annealing to obtain the goth-oriented secondary recrystallized grains. After preferential growth,
Purification annealing was performed for 5 hours in dry hydrogen at 1220 ° C. Next, an insulating coating containing phosphate and colloidal silica as main components was formed on the surface of the steel sheet. Then, using the apparatus shown in FIG. 1, an electron beam (voltage: 150 kV, current: 0.9 mA, energy density: 7.1 J / cm 2 ) was applied in a direction orthogonal to the rolling direction of the steel sheet at a scanning interval of 6 mm and a scanning speed. Irradiation at 700 cm / s was performed linearly (irradiation width: 0.20 mm) shown in FIG. 2 (a) and zigzag (irradiation width: 0.35 mm) shown in FIG. 2 (b). In the zigzag irradiation, as shown in FIG. 6B, the displacement L in the direction intersecting the rolling direction of the electron beam is kept constant at 0.2 mm while the displacement H in the rolling direction is 0.2 mm. The tilt angle θ with respect to the intersecting direction was changed by changing the tilt angle within the range of mm or less. For comparison, a sample not subjected to magnetic domain refinement treatment was also prepared.

【0014】かくして得られた鋼板の、磁気特性および
鋼板形状について調べた結果を図3に示す。同図から、
傾斜角θが30°以下でジグザグ状の照射を行った鋼板
で、鉄損の向上量が大きく、傾斜角θが30°をこえると
鉄損向上量が小さくなることがわかる。同様に、磁束密
度の変化量も傾斜角θの増加とともに、小さくなる。一
方、照射前後の鋼板のC方向(圧延方向に直角方向)の
変形量であるC反り量は、傾斜角θが大きくなるに従っ
て小さくなり、形状の優れた鋼板が得られる。
The results of examining the magnetic properties and the shape of the steel sheet thus obtained are shown in FIG. From the figure,
It can be seen that the iron loss improvement amount is large for the steel sheet that is zigzag-irradiated when the inclination angle θ is 30 ° or less, and the iron loss improvement amount decreases when the inclination angle θ exceeds 30 °. Similarly, the amount of change in magnetic flux density also decreases as the tilt angle θ increases. On the other hand, the amount of C warpage, which is the amount of deformation of the steel sheet before and after irradiation in the C direction (direction orthogonal to the rolling direction), decreases as the tilt angle θ increases, and a steel sheet having an excellent shape can be obtained.

【0015】上記と同様に得られた鋼板について、磁気
特性、磁歪、騒音及び鋼板形状について調べた結果を表
1に示す。なお、ジグザグ状照射における傾斜角θは1
1.3°とした。ここで、磁歪は、励磁VA(通常VA/kgで
表示する)で評価し、騒音はdbで評価するが、このとき
の評価は通常1.7T/50Hzときの値で示す。これらの評価
は、以下に示す実験及び実施例においても同様である。
Table 1 shows the results of examining the magnetic properties, magnetostriction, noise and steel plate shape of the steel plate obtained in the same manner as above. The tilt angle θ in zigzag irradiation is 1
It was 1.3 °. Here, magnetostriction is evaluated by excitation VA (normally expressed in VA / kg) and noise is evaluated by db, and the evaluation at this time is usually shown by the value at 1.7 T / 50 Hz. These evaluations are the same in the experiments and examples shown below.

【0016】[0016]

【表1】 [Table 1]

【0017】表1から明らかなように、磁区細分化処理
を施した試料はともに、施さない試料に比較して特に鉄
損の向上が著しいが、電子ビームを直線状に照射した場
合は同ジグザグ状に照射した場合と比較して、磁歪、騒
音及び鋼板形状における劣化が著しいことがわかる。
As is clear from Table 1, both the samples subjected to the magnetic domain refinement treatment showed a remarkable improvement in the iron loss as compared with the samples not subjected to the magnetic domain refinement treatment, but the same zigzag pattern was observed when the electron beam was linearly irradiated. It can be seen that the magnetostriction, noise, and deterioration in the shape of the steel sheet are remarkable as compared with the case of irradiating in a uniform shape.

【0018】さらに発明者らは、電子ビームのエネルギ
ー密度に関する実験も行った。すなわち表1に結果を示
した実験と同様にして得た絶縁被膜付きの鋼板に、図1
に示した装置を用いて、電子ビーム(電圧:150 〜225
kV,電流:0.5 〜1.50mA,ビーム径:0.2 〜0.3mm φ)
を鋼板の圧延方向と直交する方向に走査間隔:6mm及び
照射幅:0.35〜0.80mmでジグザグ状に照射する処理を、
エネルギー密度を1〜30J/cm2 に変化させて行った。
また比較のため、磁区細分化処理を施さない試料も作製
した。かくして得られた鋼板の、磁気特性、磁歪、騒音
及び鋼板形状について調べた結果を、図4にそれぞれ示
す。
Further, the inventors also conducted an experiment on the energy density of the electron beam. That is, the steel sheet with an insulating coating obtained in the same manner as the experiment whose results are shown in Table 1 is
Electron beam (voltage: 150-225
kV, current: 0.5 to 1.50mA, beam diameter: 0.2 to 0.3mm φ)
Irradiating in a zigzag pattern with a scanning interval of 6 mm and an irradiation width of 0.35 to 0.80 mm in a direction orthogonal to the rolling direction of the steel sheet,
The energy density was changed from 1 to 30 J / cm 2 .
For comparison, a sample not subjected to magnetic domain refinement treatment was also prepared. The results of examining the magnetic properties, magnetostriction, noise, and steel plate shape of the steel plate thus obtained are shown in FIG. 4, respectively.

【0019】同図から明らかなように、エネルギー密度
を9.0 J/cm2 以下とすることで磁気特性、磁歪、騒音
及び鋼板形状は全て向上するが、鉄損は2.0 J/cm2
満になると劣化した。従ってエネルギー密度を2.0 〜9.
0 J/cm2 の範囲とすることによって、磁気特性、磁
歪、騒音及び鋼板形状の全てをより改善することができ
る。
As is clear from the figure, when the energy density is 9.0 J / cm 2 or less, the magnetic properties, magnetostriction, noise and steel plate shape are all improved, but the iron loss is less than 2.0 J / cm 2. Deteriorated. Therefore, the energy density is 2.0 to 9.
By setting the range to 0 J / cm 2 , all of the magnetic characteristics, magnetostriction, noise and steel plate shape can be further improved.

【0020】電子ビーム照射によって、特に磁歪、騒音
及び鋼板形状の劣化として現れる短所は、電子ビームが
エネルギー効率が高くかつビームを細く絞れるために、
電子ビームを照射した鋼板中に微小歪が深く分散される
ことに起因している。そこで電子ビーム照射をジグザグ
状にかつエネルギー密度:2.0 〜9.0 J/cm2 で行うこ
とによって、180 ゜磁区を細分化させうる磁壁の核の発
生頻度を増加させることが可能である。これによってす
でに公知の米国特許第4199733 号および同4195750 号明
細書の開示よりも低いエネルギー密度で充分に磁区細分
化させることができる。さらにこの発明ではこのような
エネルギー密度を与えることによって、磁気特性の向上
に加えて、磁歪、騒音および鋼板形状の向上を図ること
が初めて可能となったものである。したがって上記の米
国特許では磁気特性の向上は図れるが、磁歪、騒音およ
び鋼板形状に問題があり、製品を製造することが不可能
であった。
Disadvantages caused by electron beam irradiation, in particular, are magnetostriction, noise, and deterioration of the shape of the steel sheet, because electron beams have high energy efficiency and the beam can be narrowed down.
This is because the minute strain is deeply dispersed in the steel sheet irradiated with the electron beam. Therefore, by performing electron beam irradiation in a zigzag manner and at an energy density of 2.0 to 9.0 J / cm 2 , it is possible to increase the frequency of occurrence of domain wall nuclei that can subdivide 180 ° magnetic domains. As a result, the magnetic domains can be sufficiently subdivided at a lower energy density than that disclosed in the already-known US Pat. Nos. 4,1997,33 and 4,195,750. Further, in the present invention, by providing such an energy density, it is possible for the first time to improve not only magnetic characteristics but also magnetostriction, noise and steel plate shape. Therefore, although the above-mentioned U.S. patents can improve the magnetic characteristics, they have problems in magnetostriction, noise, and the shape of the steel sheet, and it has been impossible to manufacture a product.

【0021】[0021]

【実施例】【Example】

(A) C:0.042 wt%, Si:3.48wt%, Mn:0.073 wt%,
Mo:0.012 wt%, Se:0.020 wt%およびSb : 0.022wt% (B) C:0.020wt %, Cu:0.2 wt %,Sn:0.08wt%および
Al: 0.024wt% をそれぞれ含有する珪素鋼スラブを、1380℃で4時間加
熱後、熱間圧延して 2.2mm厚の熱延板とした後、1050℃
で2分間の中間焼鈍をはさむ2回の冷間圧延を施して0.
23mm厚の最終冷延板とした。ついで 840℃の湿水素中で
脱炭・1次再結晶焼鈍を施した後、鋼板表面上に MgOを
主成分とする焼鈍分離剤をスラリー塗布し、その後850
℃で20h の焼鈍を行い、次いで8℃/hで1180℃まで昇温
してゴス方位2次再結晶粒を優先成長させた後、1220℃
の乾水素中で8時間の純化焼鈍を施した。次いで鋼板表
面上にリン酸塩とコロイダルシリカを主成分とする絶縁
被膜を被成した。その後図1に示した装置を用いて、電
子ビーム〔電圧:150 kV,電流:1.6 mA、ビーム径:0.
25mmφ(ナイフエッジ法による), 真空度:5×10-4To
rr〕を鋼板の圧延方向と直交する方向に照射幅:0.5mm
及び走査間隔:6mmで、上記傾斜角θが15.6°となるジ
グザグ状に照射する処理を、エネルギー密度:6.3 J/
cm2 で行った。かくして得られた製品の磁気特性、磁
歪、騒音及び鋼板形状について調べた結果を表2に示
す。
(A) C: 0.042 wt%, Si: 3.48 wt%, Mn: 0.073 wt%,
Mo: 0.012 wt%, Se: 0.020 wt% and Sb: 0.022 wt% (B) C: 0.020 wt%, Cu: 0.2 wt%, Sn: 0.08 wt% and
A silicon steel slab containing Al: 0.024wt% was heated at 1380 ℃ for 4 hours and hot-rolled to a hot rolled sheet with a thickness of 2.2mm.
It was cold rolled twice with an intermediate anneal of 2 min.
The final cold rolled sheet had a thickness of 23 mm. Then, after decarburizing and primary recrystallization annealing in wet hydrogen at 840 ° C, an annealing separator containing MgO as a main component is slurry-coated on the surface of the steel sheet, and then 850
After annealing at 20 ℃ for 20h, the temperature is raised to 1180 ℃ at 8 ℃ / h to preferentially grow Goss-oriented secondary recrystallized grains, and then at 1220 ℃.
Purified annealing was performed for 8 hours in the dry hydrogen. Next, an insulating coating containing phosphate and colloidal silica as main components was formed on the surface of the steel sheet. Then, using the apparatus shown in FIG. 1, an electron beam [voltage: 150 kV, current: 1.6 mA, beam diameter: 0.
25mmφ (by knife edge method), vacuum degree: 5 × 10 -4 To
rr] in the direction orthogonal to the rolling direction of the steel sheet, irradiation width: 0.5 mm
And the scanning interval: 6 mm, the irradiation with a zigzag shape with the inclination angle θ of 15.6 ° is performed at an energy density of 6.3 J /
done in cm 2 . Table 2 shows the results of examining the magnetic properties, magnetostriction, noise and steel plate shape of the product thus obtained.

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【発明の効果】この発明によれば、磁気特性の良好な、
特に鉄損の低い一方向性珪素鋼板を、磁歪、騒音及び鋼
板形状の劣化をまねくことなしに製造することができ、
優れた製品を安定して提供し得る。
According to the present invention, good magnetic characteristics,
In particular, a unidirectional silicon steel sheet with a low iron loss can be produced without causing magnetostriction, noise and deterioration of the steel sheet shape,
An excellent product can be stably provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の方法に使用する電子ビーム照射装置
を示す模式図である。
FIG. 1 is a schematic diagram showing an electron beam irradiation apparatus used in the method of the present invention.

【図2】電子ビームの照射要領を示す模式図である。FIG. 2 is a schematic diagram showing an electron beam irradiation procedure.

【図3】電子ビームのジグザグ状照射における傾斜角θ
と磁気特性および鋼板形状との関係を示すグラフであ
る。
FIG. 3 is a tilt angle θ in zigzag irradiation of an electron beam
6 is a graph showing the relationship between the magnetic properties and the steel plate shape.

【図4】電子ビームのエネルギー密度と鉄損、磁歪、騒
音及び鋼板形状との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between electron beam energy density and iron loss, magnetostriction, noise, and steel plate shape.

【符号の説明】[Explanation of symbols]

1 ケーシング 1a 排気口 1b 排気口 2 高圧インシュレータ 3 電子銃 4 アノード 5 電子ビーム 6 コラム弁 7 集束コイル 8 偏向コイル 9 鋼板 1 Casing 1a Exhaust port 1b Exhaust port 2 High-pressure insulator 3 Electron gun 4 Anode 5 Electron beam 6 Column valve 7 Focusing coil 8 Deflection coil 9 Steel plate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 仕上焼鈍を施した後に絶縁被膜を被成し
た一方向性珪素鋼板の表面に、電子ビームによって、圧
延方向の照射幅が0.2 〜1.0mm で圧延方向と交差する方
向へ、該交差方向に対して30°以下の傾きを成してジグ
ザグ状に延びる連続あるいは断続照射を、圧延方向に2
〜20mmの間隔で行うことを特徴とする、低鉄損一方向性
珪素鋼板の製造方法。
1. A surface of a unidirectional silicon steel sheet coated with an insulating film after finish annealing is irradiated with an electron beam in a direction crossing the rolling direction at an irradiation width of 0.2 to 1.0 mm in the rolling direction. Continuous or intermittent irradiation that extends in a zigzag shape with an inclination of 30 ° or less with respect to the crossing direction
A method for producing a low iron loss unidirectional silicon steel sheet, which is performed at intervals of ~ 20 mm.
【請求項2】 電子ビームにエネルギー密度:2〜9J
/cm2 のものを用いる、請求項1に記載の方法。
2. An electron beam having an energy density of 2 to 9 J
The method according to claim 1, wherein a material having a density of / cm 2 is used.
JP28616292A 1992-10-23 1992-10-23 Method for producing low iron loss unidirectional silicon steel sheet Expired - Fee Related JP3399991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28616292A JP3399991B2 (en) 1992-10-23 1992-10-23 Method for producing low iron loss unidirectional silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28616292A JP3399991B2 (en) 1992-10-23 1992-10-23 Method for producing low iron loss unidirectional silicon steel sheet

Publications (2)

Publication Number Publication Date
JPH06136449A true JPH06136449A (en) 1994-05-17
JP3399991B2 JP3399991B2 (en) 2003-04-28

Family

ID=17700745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28616292A Expired - Fee Related JP3399991B2 (en) 1992-10-23 1992-10-23 Method for producing low iron loss unidirectional silicon steel sheet

Country Status (1)

Country Link
JP (1) JP3399991B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6444050B1 (en) * 1996-10-21 2002-09-03 Kawasaki Steel Corporation Grain-oriented electromagnetic steel sheet
WO2012017655A1 (en) * 2010-08-06 2012-02-09 Jfeスチール株式会社 Oriented electromagnetic steel plate and production method for same
JP2012035288A (en) * 2010-08-05 2012-02-23 Jfe Steel Corp Electron beam irradiation method
JP2012036449A (en) * 2010-08-06 2012-02-23 Jfe Steel Corp Method for manufacturing grain-oriented electrical steel sheet
JP2013087299A (en) * 2011-10-13 2013-05-13 Jfe Steel Corp Method for producing grain-oriented electromagnetic steel sheet
WO2013099160A1 (en) * 2011-12-26 2013-07-04 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet
JP2013159833A (en) * 2012-02-06 2013-08-19 Jfe Steel Corp Method and apparatus for improving iron loss of directional electromagnetic steel plate
JP2013159850A (en) * 2012-02-08 2013-08-19 Jfe Steel Corp Grain-oriented magnetic steel sheet and method for producing the same
WO2013161863A1 (en) * 2012-04-27 2013-10-31 新日鐵住金株式会社 Grain-oriented electrical steel sheet and manufacturing method therefor
JP2018035412A (en) * 2016-09-01 2018-03-08 新日鐵住金株式会社 Method for producing grain oriented silicon steel sheet, and grain oriented silicon steel sheet
US10147527B2 (en) 2011-12-28 2018-12-04 Jfe Steel Corporation Grain-oriented electrical steel sheet and method for manufacturing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5593942B2 (en) 2010-08-06 2014-09-24 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6444050B1 (en) * 1996-10-21 2002-09-03 Kawasaki Steel Corporation Grain-oriented electromagnetic steel sheet
JP2012035288A (en) * 2010-08-05 2012-02-23 Jfe Steel Corp Electron beam irradiation method
US9330839B2 (en) 2010-08-06 2016-05-03 Jfe Steel Corporation Grain oriented electrical steel sheet and method for manufacturing the same
WO2012017655A1 (en) * 2010-08-06 2012-02-09 Jfeスチール株式会社 Oriented electromagnetic steel plate and production method for same
JP2012052230A (en) * 2010-08-06 2012-03-15 Jfe Steel Corp Oriented magnetic steel plate and production method for the same
JP2012036449A (en) * 2010-08-06 2012-02-23 Jfe Steel Corp Method for manufacturing grain-oriented electrical steel sheet
JP2013087299A (en) * 2011-10-13 2013-05-13 Jfe Steel Corp Method for producing grain-oriented electromagnetic steel sheet
WO2013099160A1 (en) * 2011-12-26 2013-07-04 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet
CN104024451A (en) * 2011-12-26 2014-09-03 杰富意钢铁株式会社 Grain-Oriented Electromagnetic Steel Sheet
US9875832B2 (en) 2011-12-26 2018-01-23 Jfe Steel Corporation Grain-oriented electrical steel sheet
US10147527B2 (en) 2011-12-28 2018-12-04 Jfe Steel Corporation Grain-oriented electrical steel sheet and method for manufacturing same
JP2013159833A (en) * 2012-02-06 2013-08-19 Jfe Steel Corp Method and apparatus for improving iron loss of directional electromagnetic steel plate
JP2013159850A (en) * 2012-02-08 2013-08-19 Jfe Steel Corp Grain-oriented magnetic steel sheet and method for producing the same
WO2013161863A1 (en) * 2012-04-27 2013-10-31 新日鐵住金株式会社 Grain-oriented electrical steel sheet and manufacturing method therefor
CN104203486A (en) * 2012-04-27 2014-12-10 新日铁住金株式会社 Oriented electromagnetic steel sheet and manufacturing method therefor
CN104203486B (en) * 2012-04-27 2016-08-24 新日铁住金株式会社 Grain-oriented magnetic steel sheet and manufacture method thereof
US10131018B2 (en) 2012-04-27 2018-11-20 Nippon Steel & Sumitomo Metal Corporation Grain-oriented magnetic steel sheet and method of producing the same
JP2018035412A (en) * 2016-09-01 2018-03-08 新日鐵住金株式会社 Method for producing grain oriented silicon steel sheet, and grain oriented silicon steel sheet

Also Published As

Publication number Publication date
JP3399991B2 (en) 2003-04-28

Similar Documents

Publication Publication Date Title
KR101421387B1 (en) Grain oriented electrical steel sheet and method for manufacturing the same
JP3023242B2 (en) Method for producing low iron loss unidirectional silicon steel sheet with excellent noise characteristics
JPWO2016056501A1 (en) Low iron loss grain-oriented electrical steel sheet and manufacturing method thereof
JP2012177149A (en) Grain-oriented silicon steel sheet, and method for manufacturing the same
US11387025B2 (en) Grain-oriented electrical steel sheet and production method therefor
JP3399991B2 (en) Method for producing low iron loss unidirectional silicon steel sheet
JP6116796B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP3726289B2 (en) Oriented electrical steel sheet with low iron loss
JPH062042A (en) Production of grain-oriented silicon steel sheet with low iron loss for laminated iron core
KR0134088B1 (en) Low iron loss grain oriented silicon steel sheets &amp; method of producing the same
JP6465048B2 (en) Method for producing grain-oriented electrical steel sheet
JPH07320922A (en) One directional electromagnetic steel sheet at low iron loss
JPH0765108B2 (en) Iron loss reduction method of unidirectional silicon steel sheet by electron beam irradiation
JPH05179355A (en) Production of low-iron loss unidirectionally oriented silicon steel sheet
JP2638180B2 (en) Low iron loss unidirectional silicon steel sheet and method for producing the same
JPH11124629A (en) Grain oriented silicon steel sheet reduced in iron loss and noise
JPH0543945A (en) Manufacture of low iron loss grain-oriented silicon steel sheet
JPH05311241A (en) Manufacture of low core loss grain-oriented silicon steel sheet and irradiation device for electron beam
JPH0543944A (en) Manufacture of low iron loss grain-oriented silicon steel sheet
JPH0432517A (en) Production of grain-oriented silicon steel sheet reduced in iron loss
JPH0551645A (en) Manufacture of low core loss grain-oriented silicon steel sheet
JPH0565543A (en) Manufacture of low iron loss unidirectional silicon steel sheet having uniform characteristic in transverse direction without deteriorating magnetic characteristic even in the case of applying strain-removal annealing
JPH0765109B2 (en) Iron loss reduction method of unidirectional silicon steel sheet by electron beam irradiation
JPH10183312A (en) Grain oriented silicon steel sheet low in core loss and excellent in strain resisting characteristic and execution characteristic, and manufacture therefor
JPH03287725A (en) Production of grain-oriented silicon steel sheet reduced in iron loss

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees