JPH07320922A - One directional electromagnetic steel sheet at low iron loss - Google Patents

One directional electromagnetic steel sheet at low iron loss

Info

Publication number
JPH07320922A
JPH07320922A JP6122406A JP12240694A JPH07320922A JP H07320922 A JPH07320922 A JP H07320922A JP 6122406 A JP6122406 A JP 6122406A JP 12240694 A JP12240694 A JP 12240694A JP H07320922 A JPH07320922 A JP H07320922A
Authority
JP
Japan
Prior art keywords
linear
dislocation density
high dislocation
steel sheet
iron loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6122406A
Other languages
Japanese (ja)
Inventor
Masayoshi Ishida
昌義 石田
Kunihiro Senda
邦浩 千田
Keiji Sato
圭司 佐藤
Michiro Komatsubara
道郎 小松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP6122406A priority Critical patent/JPH07320922A/en
Publication of JPH07320922A publication Critical patent/JPH07320922A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To provide the one directional electromagnetic steel sheet in low iron loss further cutting down the iron loss by the formation of linear trenches. CONSTITUTION:Within the title one directional electromagnetic steel sheet in low loss, multiple linear trenches in low iron extending in the intersectional direction with loss, many linear tranches and linear high transpositional density regions the rolling direction are provided at intervals respectively in the rolling directions on the surface of the finish-annealed directional silicon substrate, on the other hand, at least a part of the linear trenches and the high transpositional region are arranged on the position where the linear trenches are out of the formational region.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、変圧器その他の電気
機器の鉄心に用いて好適な低鉄損方向性電磁鋼板に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low iron loss grain oriented electrical steel sheet suitable for use in an iron core of a transformer or other electric equipment.

【0002】方向性電磁鋼板は、主として変圧器の鉄心
材料として用いられ、その磁気特性が良好であることが
要求される。特に鉄心として使用した場合のエネルギー
損失、すなわち鉄損が低いことが重要である。
The grain-oriented electrical steel sheet is mainly used as an iron core material of a transformer and is required to have good magnetic characteristics. In particular, it is important that the energy loss when used as an iron core, that is, the iron loss is low.

【0003】[0003]

【従来の技術】そこで従来、鉄損を低減させるために、
結晶方位を(110)〔001〕方位に高度に揃えるこ
と、Si 含有量を高めて鋼板の電気抵抗を増加させるこ
と、不純物を低減させること、そして板厚を薄くするこ
となど種々の試みがなされてきた。その結果、板厚が0.
23mm以下の鋼板では、鉄損W17/50 (最大磁束密度1.7
Tで50Hzの周波数にて交番磁化したときの鉄損)が0.9
W/kg以下のものが製造されるようになったが、冶金学
的な手法ではこれ以上の大幅な鉄損の改善は期待できな
い。
2. Description of the Related Art Conventionally, in order to reduce iron loss,
Various attempts have been made such that the crystal orientation is highly aligned with the (110) [001] orientation, the Si content is increased to increase the electrical resistance of the steel sheet, the impurities are reduced, and the sheet thickness is reduced. Came. As a result, the plate thickness is 0.
For steel plates of 23 mm or less, iron loss W 17/50 (maximum magnetic flux density 1.7
The iron loss when alternating magnetization is performed at a frequency of 50 Hz at T) is 0.9
Although W / kg or less has been produced, metallurgical methods cannot be expected to further improve iron loss.

【0004】そこで近年、鉄損の大幅な低減を達成する
手段として、人為的に磁区を細分化する方法が種々試み
られている。その中で現在工業化されている方法の1つ
として、特公昭57−2252号公報に開示されてい
る、仕上げ焼鈍済みの鋼板表面にレーザーを照射する方
法がある。この方法により得られた鋼板は、レーザービ
ームのもつ強いエネルギーにより導入された、局所的な
高転位密度域を有する。この高転位密度域は180 °磁区
の細分化をもたらし、鉄損の低い鋼板が得られる。しか
しながら、このようにして得られた鋼板においては歪取
り焼鈍により高転位密度域が消失し鉄損の劣化を来すた
め、歪取り焼鈍を必須とする巻鉄心には用いることがで
きないという欠点があった。
Therefore, in recent years, various methods of artificially subdividing magnetic domains have been attempted as means for achieving a significant reduction in iron loss. Among them, as one of the methods currently industrialized, there is a method disclosed in Japanese Patent Publication No. 57-2252, in which a surface of a steel sheet after finish annealing is irradiated with a laser. The steel sheet obtained by this method has a locally high dislocation density region introduced by the strong energy of the laser beam. This high dislocation density region causes the 180 ° domain to be subdivided, and a steel sheet with low iron loss can be obtained. However, in the steel sheet thus obtained, since the high dislocation density region disappears due to strain relief annealing and the iron loss deteriorates, there is a drawback that it cannot be used in a wound iron core that requires strain relief annealing. there were.

【0005】[0005]

【発明が解決しようとする課題】一方、歪取り焼鈍が可
能な技術として、特公昭62−54873 号公報には、仕上げ
焼鈍済の鋼板に対して、レーザーや機械的手段によって
局所的に絶縁被膜を除去したのち被膜除去部を酸洗する
方法や、ナイフなどにより機械的に直接地鉄まで届くけ
がきを施すなどの手段により、線状の溝を局所的に形成
したのち、この溝をりん酸系の張力付与被膜処理を施す
ことで埋める方法が、また特公昭62−53579 号公報に
は、仕上げ焼鈍済の鋼板に90〜220kgf/mm2 の荷重で地
鉄部分に深さ5μm超の溝を形成したのち、750 ℃以上
の温度で加熱処理する方法が提案されている。さらに、
特公平3−69968 号公報には、最終冷間圧延後の鋼板
に、その圧延方向とほぼ直角な方向に線状の刻み目を導
入する方法が開示されている。
On the other hand, as a technique capable of strain relief annealing, Japanese Patent Publication No. 62-54873 discloses that a steel sheet which has been finish annealed is locally insulated by a laser or mechanical means. After removing the film, the film-removed part is pickled, or by a method such as mechanically scribing directly to the base iron with a knife, etc., a linear groove is locally formed, and then this groove is removed. A method of filling by applying an acid-based tension-imparting coating is also disclosed in Japanese Examined Patent Publication No. 62-53579, in which a steel sheet that has been finish annealed has a depth of more than 5 μm at a load of 90 to 220 kgf / mm 2 . A method has been proposed in which, after forming the groove, heat treatment is performed at a temperature of 750 ° C. or higher. further,
Japanese Patent Publication No. 3-99968 discloses a method of introducing linear notches into a steel sheet after the final cold rolling in a direction substantially perpendicular to the rolling direction.

【0006】これらの方法により得られた鋼板はいずれ
も表面に線状の溝を有し、この溝近傍に生ずる磁極によ
り磁区が細分化されることが1つの原因となって、鉄損
低減が実現されると考えられている。
Each of the steel sheets obtained by these methods has a linear groove on the surface thereof, and one of the causes is that the magnetic domains are subdivided by the magnetic poles formed in the vicinity of the groove, which reduces the iron loss. It is believed to be realized.

【0007】上記方法により歪取り焼鈍が可能な低鉄損
材料が得られるようなったが、その後の詳細な調査の結
果、このような鋼板の鉄損は特公昭57−2252号公報等に
開示された線状の高転位密度域を有する鋼板に比べやや
劣る場合があることが判明した。
Although a low iron loss material capable of strain relief annealing was obtained by the above method, the iron loss of such a steel sheet was disclosed in Japanese Examined Patent Publication No. 57-2252 as a result of a detailed investigation thereafter. It was found that it may be slightly inferior to the steel sheet having a linear high dislocation density region.

【0008】そこで、この発明は線状溝の形成による低
鉄損化をさらに促進した、極めて鉄損の低い方向性電磁
鋼板を提供しようとするものである。
Therefore, the present invention is intended to provide a grain-oriented electrical steel sheet having an extremely low iron loss, which further promotes the reduction of the iron loss due to the formation of the linear groove.

【0009】[0009]

【課題を解決するための手段】発明者らが上記した鉄損
低減効果が劣る原因につき調査したところ、高転位密度
域を導入する手法に比べて、もたらされる磁極量に差の
あることが推定できた。さらに、この推測を基に低鉄損
化の手法について鋭意実験検討を進めた結果、線状溝と
線状の高転位密度域の配置を適正化することによって、
従来に増して鉄損の低減がはかれるとの新たな知見を得
た。
When the inventors investigated the cause of the above-mentioned inferior iron loss reducing effect, it was estimated that there was a difference in the amount of magnetic poles to be introduced compared with the method of introducing a high dislocation density region. did it. Furthermore, based on this assumption, as a result of proceeding with earnest experimental studies on a method of reducing iron loss, by optimizing the arrangement of linear grooves and linear high dislocation density regions,
We have obtained new knowledge that iron loss can be reduced more than ever before.

【0010】この発明は上記知見に立脚するものであ
る。すなわち、この発明は、仕上げ焼鈍済の方向性けい
素鋼板の表面に、その圧延方向と交わる向きに延びる線
状溝および線状の高転位密度域をそれぞれ圧延方向に間
隔を置いて多数有し、該線状溝および高転位密度域を、
高転位密度域の少なくとも一部が線状溝の形成域外にあ
る配置にて、鋼板表面に導入して成ることを特徴とする
鉄損の低い一方向性電磁鋼板である。なお、線状溝およ
び高転位密度域を交差させて導入する場合であっても、
両者が完全に重複しなければよい。
The present invention is based on the above findings. That is, the present invention has a large number of linear grooves and linear high dislocation density regions extending in a direction intersecting the rolling direction at intervals on the surface of the finish-annealed grain-oriented silicon steel sheet with intervals in the rolling direction. , The linear groove and the high dislocation density region,
A unidirectional electrical steel sheet with low iron loss, which is characterized in that at least a part of the high dislocation density region is placed on the surface of the steel plate in an arrangement outside the region where the linear grooves are formed. Even when the linear groove and the high dislocation density region are crossed and introduced,
It is good if the two do not completely overlap.

【0011】また、実施に当たり、線状溝および線状の
高転位密度域の圧延方向と直交する向きに対する傾きが
30°以内であること、さらに線状溝は幅0.03〜0.30mmお
よび深さ0.01〜0.07mm、高転位密度域は幅0.03〜1mmお
よび深さ0.01mm以上であること、が有利に適合する。
Further, in the practice, the inclination of the linear grooves and the linear high dislocation density regions with respect to the direction orthogonal to the rolling direction is
It is advantageously suitable that the width is within 30 °, the linear groove has a width of 0.03 to 0.30 mm and a depth of 0.01 to 0.07 mm, and the high dislocation density region has a width of 0.03 to 1 mm and a depth of 0.01 mm or more.

【0012】[0012]

【作用】まず、この発明の基礎となった研究結果につい
て説明する。インヒビターとしてMnSeおよびAlN を含
む、3.2 wt%けい素鋼の熱間圧延板を、中間焼鈍をはさ
む2回の冷間圧延により0.23mm厚まで圧延し、その後、
次に示す(A) 〜(E) の処理を施した。 (A) グラビアオフセット印刷によるエッチングレジスト
塗布後、電解エッチングを施すことにより、圧延方向と
直交する向きに4mm間隔で幅0.15mm、深さ0.020 mmの線
状の溝を形成したのち脱炭焼鈍、次いで最終仕上焼鈍を
施し、更に上塗りコーティングを施して製品とした。 (B) (A)と同一処理を施して得た製品に対し、圧延方向
と直交する向きに4mm間隔で線状の溝と重ならないよう
にプラズマ炎を照射した。照射部には、幅0.30mmにわた
って線状の高転位密度域が観察された。 (C) (A)と同一処理を施して得た製品に対し、圧延方向
と直交する向きに4mm間隔で線状溝と同一位置となるよ
うにプラズマ炎を照射した。 (D) 溝形成処理をせずに脱炭焼鈍、最終仕上焼鈍、そし
て上塗りコーティングを施して製品とした。 (E) (D)により得た製品に対し、圧延方向と直交する向
きに4mm間隔でプラズマ炎を照射した。照射部には(B)
と同様に幅 0.30mm にわたって線状の高転位密度領域が
観察された。
First, the results of the research on which the present invention is based will be described. A 3.2 wt% silicon steel hot-rolled sheet containing MnSe and AlN as inhibitors was rolled to 0.23 mm thickness by two cold rolling steps with intermediate annealing, and then
The following treatments (A) to (E) were performed. (A) After applying an etching resist by gravure offset printing, electrolytic etching is performed to form linear grooves having a width of 0.15 mm and a depth of 0.020 mm at 4 mm intervals in a direction orthogonal to the rolling direction, followed by decarburization annealing, Next, final finishing annealing was performed, and further topcoat coating was performed to obtain a product. (B) The product obtained by performing the same treatment as in (A) was irradiated with a plasma flame at a distance of 4 mm in a direction orthogonal to the rolling direction so as not to overlap the linear groove. A linear high dislocation density region was observed in the irradiated area over a width of 0.30 mm. (C) The product obtained by performing the same treatment as in (A) was irradiated with a plasma flame so that the product was located at the same position as the linear groove at an interval of 4 mm in a direction orthogonal to the rolling direction. (D) Decarburization annealing without final groove formation, final finish annealing, and topcoat coating were applied to obtain a product. (E) The product obtained in (D) was irradiated with a plasma flame at 4 mm intervals in a direction orthogonal to the rolling direction. (B) on the irradiation part
Similarly, a linear high dislocation density region was observed over a width of 0.30 mm.

【0013】かくして得られた製品板から、幅150 mmお
よび長さ280 mmの試片を採取し、単板磁気試験(SST) に
より磁気特性を測定した。この測定結果を表1に示す。
ここで、W17/50 値は磁束密度 1.7T、周波数50Hz に
おける鉄損測定値であり、B 8 値は磁化力800 A/mに
おける磁束密度を示す。
From the product plate thus obtained, a width of 150 mm was obtained.
And a 280 mm long specimen were sampled and subjected to a single plate magnetic test (SST).
More magnetic properties were measured. The results of this measurement are shown in Table 1.
Where W17/50Values are magnetic flux density 1.7T, frequency 50Hz
Is the measured value of iron loss in B 8The value is a magnetizing force of 800 A / m
The magnetic flux density in

【0014】[0014]

【表1】 [Table 1]

【0015】表1から明らかなように、線状溝と線状溝
の間に高転位密度域を有する材料(B) は溝のみの材料
(A) および高転位密度域のみの材料(E) に比べて低い鉄
損を示した。線状溝と同一位置に高転位密度域を導入し
た材料(C) も溝のみに比べて、やや低鉄損となるが、材
料(B) に比べると鉄損低減量は少なかった。
As is clear from Table 1, the material (B) having a high dislocation density region between linear grooves is a material having only grooves.
The core loss was lower than that of (A) and the material with only high dislocation density (E). Material (C) in which a high dislocation density region was introduced at the same position as the linear groove also had a slightly lower iron loss than the groove alone, but the iron loss reduction amount was less than that of material (B).

【0016】以上のように、鋼板表面に圧延方向と交わ
る向きに延びる線状溝と線状の高転位密度域をともに有
し、かつ、線状溝と高転位密度域が同一位置に重ならな
い方向性電磁鋼板は、従来にも増して低鉄損を示すこと
が明らかとなった。このような材料は歪取焼鈍を要しな
い積鉄心用材料として特に、従来材よりも優れた性能を
示すが、歪取焼鈍を要する巻鉄心用材料として用いられ
た場合にも従来材と同等の性能を発揮する。
As described above, both the linear groove extending in the direction intersecting the rolling direction and the linear high dislocation density region are formed on the surface of the steel sheet, and the linear groove and the high dislocation density region do not overlap at the same position. It has been clarified that the grain-oriented electrical steel sheet exhibits lower iron loss than ever before. Such a material, especially as a material for a laminated core that does not require stress relief annealing, exhibits superior performance to conventional materials, but when used as a material for wound cores that requires stress relief annealing, it is equivalent to the conventional material. Demonstrate performance.

【0017】ここで、高転位密度域が線状溝と同一位置
で重ならずに、溝間に導入した方が低鉄損となるのは、
磁区細分化に有効な磁極量が溝間の方が増すためと考え
られる。
Here, the high dislocation density region does not overlap with the linear groove at the same position, but the iron loss is lower when introduced between the grooves,
It is considered that the amount of magnetic poles effective for subdividing the magnetic domains increases between the grooves.

【0018】また、発明者らの詳細な調査によれば、線
状溝と高転位密度域の導入位置は同一位置でなければ、
低鉄損化の目的は達せられる。すなわち、図1(a) に示
すように、高転位密度部が線状溝の中間に溝と平行に存
在する配置に限らずに、例えば同図(b) に示すように、
線状溝と交差するように高転位密度域を形成しても良
い。
According to a detailed investigation by the inventors, if the introduction positions of the linear groove and the high dislocation density region are not the same position,
The purpose of reducing iron loss can be achieved. That is, as shown in FIG. 1 (a), not only the arrangement in which the high dislocation density portion exists in the middle of the linear groove in parallel with the groove, but as shown in FIG. 1 (b), for example,
A high dislocation density region may be formed so as to intersect the linear groove.

【0019】さらに、図2(a) 〜(i) に示すように、高
転位密度域を線状溝に沿って、あるいは部分的に重複し
て、線状溝に隣接して延びる配置としてもよい。要は、
線状溝および高転位密度域が完全に重複することを避け
れば、低鉄損化に十分な効果がある。図2では、線状溝
の片側、あるいは両側に対称に線状の高転位密度域を形
成した場合を示したが、両側に非対称的に高転位密度域
を形成した場合も同様に有効である。
Further, as shown in FIGS. 2 (a) to 2 (i), the high dislocation density region may be arranged along the linear groove or partially overlapping so as to extend adjacent to the linear groove. Good. In short,
If the linear groove and the high dislocation density region are not completely overlapped, the iron loss can be sufficiently reduced. Although FIG. 2 shows the case where the linear high dislocation density regions are formed symmetrically on one side or both sides of the linear groove, the case where the high dislocation density regions are formed asymmetrically on both sides is also effective. .

【0020】ここに、線状溝に高転位密度域を隣接させ
る場合は、線状溝と間隙を置かずに、しかし完全に重な
ることなく隣接した位置にあることが望ましいが、高転
位密度域の少なくとも一部が線状溝の外側にあれば、低
鉄損化に有効である。また、線状溝との間に間隙が生じ
る場合でも、その間隙が線状溝の幅に比べて小さけれ
ば、同様の効果を有する。この高転位密度域と線状溝と
の間隙は、0.50mmを超えないことが望ましい。高転位密
度域の導入は、線状溝の片側のみであっても十分な磁区
細分化効果を期待できるが、図2(e) 〜(i) に示すよう
に、線状溝の両側に導入すると、さらに大きい効果が期
待できる。
Here, when the high dislocation density region is adjacent to the linear groove, it is desirable that the high dislocation density region is adjacent to the linear groove without leaving a gap but completely overlapping with each other. If at least a part of the above is outside the linear groove, it is effective in reducing iron loss. Even when a gap is formed between the linear groove and the gap, the same effect can be obtained if the gap is smaller than the width of the linear groove. It is desirable that the gap between the high dislocation density region and the linear groove does not exceed 0.50 mm. The introduction of the high dislocation density region can be expected to have a sufficient magnetic domain refining effect even if only on one side of the linear groove, but as shown in FIGS. 2 (e) to (i), it is introduced on both sides of the linear groove. Then, a larger effect can be expected.

【0021】また、高転位密度域はすべての線状溝を対
象にして、その隣接域に形成してもよいが、対象とする
線状溝を選択して線状溝よりも相互間隔を広げて形成し
てもよい。この場合、高転位密度域の圧延方向の平均間
隔は、後述する理由から30mmを超えないことが望まし
い。
The high dislocation density region may be formed in all the linear grooves adjacent to the linear grooves, but the linear grooves to be selected may be selected so that the mutual spacing is wider than that of the linear grooves. You may form it. In this case, it is desirable that the average distance in the rolling direction in the high dislocation density region does not exceed 30 mm for the reason described later.

【0022】なお、高転位密度域は、線状溝に沿って板
幅方向に連続していることが望ましいが、板幅方向で断
続していてもよい。また、線状溝と高転位密度域を形成
する面は、鋼板の同一面であっても表裏反対面であって
も同等の効果が得られることが確認された。
The high dislocation density region is preferably continuous in the plate width direction along the linear groove, but it may be intermittent in the plate width direction. It was also confirmed that the same effect can be obtained whether the surface forming the linear groove and the high dislocation density region is the same surface of the steel sheet or the opposite surface.

【0023】次に、線状溝および高転位密度域につい
て、より具体的に示す。まず、図3および4に、それぞ
れ板厚0.23mmの鋼板に形成した線状溝の幅および深さと
該溝を導入した鋼板の鉄損W17/50 値との関係を示すよ
うに、溝の幅が0.030 mm以上、溝の深さが0.010 〜0.07
0 mmにおいて、0.80W/kg以下の低鉄損が安定して得ら
れることがわかる。なお、溝の幅は 0.30mm を越える場
合にも低鉄損は得られるが、磁束密度が大きく低下する
ため、その適正範囲は0.030 〜0.30mmとする。
Next, the linear groove and the high dislocation density region will be described more specifically. First, as shown in FIGS. 3 and 4, the relationship between the width and depth of the linear groove formed in a steel plate having a plate thickness of 0.23 mm and the iron loss W 17/50 value of the steel plate in which the groove is introduced is shown in FIG. Width 0.030 mm or more, groove depth 0.010 to 0.07
It can be seen that at 0 mm, a low iron loss of 0.80 W / kg or less can be stably obtained. Although a low iron loss can be obtained when the groove width exceeds 0.30 mm, the magnetic flux density is greatly reduced, so the appropriate range is 0.030 to 0.30 mm.

【0024】さらに、図5および6に、それぞれ溝幅
0.20mm 、溝深さ0.020mm としたときの圧延方向と直交
する向きに対する線状溝の傾斜角度と該溝を導入した鋼
板の鉄損W17/50 値、圧延方向における溝間隔とW
17/50 値の関係を、それぞれ示す。これらの図より、0.
80W/kg以下の低鉄損を得るためには、圧延方向の溝間
隔は1〜30mm、溝の傾斜角度は30゜以内で溝を導入する
ことが有利であることがわかる。
Further, in FIGS. 5 and 6, the groove width is shown, respectively.
The inclination angle of the linear groove with respect to the direction orthogonal to the rolling direction when 0.20 mm and the groove depth is 0.020 mm, the iron loss W 17/50 value of the steel sheet into which the groove is introduced, the groove interval in the rolling direction and W
The relationship between the 17/50 values is shown below. From these figures, 0.
In order to obtain a low iron loss of 80 W / kg or less, it is found that it is advantageous to introduce the grooves with a groove interval in the rolling direction of 1 to 30 mm and a groove inclination angle of 30 ° or less.

【0025】また、図7に、上述した実験の条件(A) に
示した処理により、幅0.150mm 、深さ0.020mm の線状溝
を圧延方向と直交する向きに4mm間隔で形成した鋼板
に、プラズマ炎の照射部が溝間の中間に位置するように
照射した際にもたらされた高転位密度域の幅と該処理を
経た鋼板の鉄損W17/50 値との関係を示す。ここで、高
転位密度域の幅は、プラズマ炎照射ノズルのノズル径を
変えることにより変化させ、照射部の磁区構造を走査型
電子顕微鏡により観察することにより、照射部にもたら
された高転位密度域の幅を求めた。なお、深さは全て0.
15mmとした。図7から、高転位密度域の幅が1mmを越え
ると、鉄損は溝のみの場合に比べて、むしろ劣化し、一
方、0.030 mm未満では鉄損低減の効果が小さくなる。し
たがって高転位密度域の幅は0.030 〜1mmとすることが
好ましい。
Further, in FIG. 7, by the treatment shown in the above-mentioned condition (A) of the experiment, a steel plate was formed with linear grooves having a width of 0.150 mm and a depth of 0.020 mm at intervals of 4 mm in the direction orthogonal to the rolling direction. FIG. 3 shows the relationship between the width of the high dislocation density region produced when irradiation is performed so that the irradiated portion of the plasma flame is located in the middle of the groove and the iron loss W 17/50 value of the steel sheet that has undergone the treatment. Here, the width of the high dislocation density region is changed by changing the nozzle diameter of the plasma flame irradiation nozzle, and by observing the magnetic domain structure of the irradiation portion with a scanning electron microscope, the high dislocation density in the irradiation portion is increased. The width of the density range was obtained. The depth is 0.
It was set to 15 mm. From FIG. 7, when the width of the high dislocation density region exceeds 1 mm, the iron loss is rather deteriorated as compared with the case where only the groove is formed, while when it is less than 0.030 mm, the effect of reducing the iron loss becomes small. Therefore, the width of the high dislocation density region is preferably 0.030 to 1 mm.

【0026】次に、図7と同様に高転位密度域を導入す
るに当たり、その幅は0.5mm と一定にした上で深さを種
々に変化し、該深さと得られた鋼板の鉄損W17/50 値と
を調査した。その結果を図8に示すように、高転位密度
域の深さが0.01mm以上において、0.80W/kg以下の低鉄
損が安定して得られることがわかる。
Next, as in the case of FIG. 7, when introducing the high dislocation density region, while keeping the width constant at 0.5 mm, the depth was variously changed, and the depth and the iron loss W of the obtained steel sheet were changed. The 17/50 value was investigated. As shown in FIG. 8, the results show that a low iron loss of 0.80 W / kg or less can be stably obtained when the depth of the high dislocation density region is 0.01 mm or more.

【0027】さらに、図9は図7における高転位密度域
の幅を0.30mmとなるようにした場合の圧延方向の間隔と
鉄損W17/50 との関係を、図10は圧延方向と直交する向
きに対する高転位密度域の傾斜角度とW17/50 値との関
係を示す。なお、これらの実験では、高転位密度域の幅
は0.30mm、圧延方向の間隔は4mmであった。図9および
10から明らかなように、高転位密度域の間隔は1〜30m
m、傾斜角度は30゜以内とすることが望ましい。
Further, FIG. 9 shows the relationship between the spacing in the rolling direction and the iron loss W 17/50 when the width of the high dislocation density region in FIG. 7 is 0.30 mm, and FIG. 10 is orthogonal to the rolling direction. The relationship between the inclination angle of the high dislocation density region and the W 17/50 value with respect to the direction of the rotation is shown. In addition, in these experiments, the width of the high dislocation density region was 0.30 mm, and the interval in the rolling direction was 4 mm. FIG. 9 and
As is clear from 10, the interval in the high dislocation density region is 1 to 30 m.
It is desirable that m and inclination angle be within 30 °.

【0028】この発明の方向性電磁鋼板を製造する方法
は特に限定されないが、得られた製品は上記に示した条
件を全て満たすことが肝要である。従って、以下に示す
製造方法が推奨される。すなわち、方向性電磁鋼板用ス
ラブを熱間圧延し、その後必要に応じて熱延板焼鈍を行
ったのち、1回又は中間焼鈍をはさむ2回以上の冷間圧
延により最終製品板厚とし、その後脱炭焼鈍について最
終仕上げ焼鈍を施したのち、通常上塗コーティングを施
して製品とするに当たり、最終仕上げ焼鈍の前後のいず
れかの工程において、線状溝および高転位密度域を導入
する。
The method for producing the grain-oriented electrical steel sheet of the present invention is not particularly limited, but it is essential that the obtained product satisfies all the above-mentioned conditions. Therefore, the following manufacturing method is recommended. That is, the slab for grain-oriented electrical steel sheets is hot-rolled, then hot-rolled sheet is annealed if necessary, and then the final product sheet thickness is obtained by one or two or more cold rolling steps with intermediate annealing, and then. Regarding decarburization annealing After the final finishing annealing is performed, usually, when a finish coating is applied to obtain a product, a linear groove and a high dislocation density region are introduced in any step before and after the final finishing annealing.

【0029】線状溝の形成は、局所的にエッチング処理
する手法、刃物等でけがく手法、突起つきロールで圧延
する手法等があげられるが、最も望ましいのは最終冷間
圧延後の鋼板に印刷等によりエッチングレジストを付着
させたのち、非付着域に電解エッチング等の処理により
線状溝を形成する方法である。ちなみに、特公昭62-535
79号公報に開示された、仕上焼鈍後の鋼板を歯車型ロー
ルで圧延する方法は、溝と高転位密度域を同時に形成で
きるが、この場合、高転位密度域の幅を1mm以下とする
ことは困難であり、鉄損はむしろ劣化してしまうため望
ましくない。
The linear grooves can be formed by a method of locally etching, a method of scribing with a blade or the like, a method of rolling with a roll having protrusions, etc., but the most desirable method is to finish the steel sheet after the final cold rolling. This is a method in which an etching resist is attached by printing or the like, and then a linear groove is formed in the non-adhesion region by a treatment such as electrolytic etching. By the way, Japanese Examiner Sho 62-535
The method of rolling the steel sheet after finish annealing with a gear type roll disclosed in Japanese Patent Publication No. 79 can form a groove and a high dislocation density region at the same time. In this case, the width of the high dislocation density region should be 1 mm or less. Is difficult and the iron loss is rather deteriorated, which is not desirable.

【0030】また、高転位密度域を形成する方法も特に
限定されないが、工業化の容易性から、例えば特開昭60
-236271 号公報に開示されたプラズマ炎を照射する方法
やレーザー光を照射する方法などが適用可能であるが、
鋼板表面状態の影響をうけにくい点及び絶縁被膜を破壊
せず、再コーティングの必要性がないことから、特開昭
62−96617 号公報に開示したプラズマ炎を放射する方法
が最も推奨される。
The method for forming the high dislocation density region is not particularly limited either, but it can be easily industrialized, for example, as disclosed in JP-A-60.
-The method of irradiating a plasma flame and the method of irradiating a laser beam, which are disclosed in Japanese Patent Publication No. 236271, can be applied.
Since it is not easily affected by the surface condition of the steel sheet, the insulating coating is not destroyed, and there is no need for recoating,
The method of radiating a plasma flame disclosed in Japanese Patent 62-96617 is most recommended.

【0031】さらに、この発明の成分組成範囲は従来公
知のものいずれもが適合するが、代表組成を掲げると次
のとおりである。 C:0.01〜0.10wt%(以下単に%と表す) Cは、熱間圧延、冷間圧延中の組織の均一微細のみなら
ず、ゴス方位の発達に有用な成分であり、少なくとも0.
01%以上の含有が好ましい。しかしながら0.10%を超え
て含有されるとかえってゴス方位に乱れが生じるので上
限は0.10%程度が好ましい。
Further, the component composition range of the present invention is compatible with any of the conventionally known ones, and the representative compositions are as follows. C: 0.01 to 0.10 wt% (hereinafter simply referred to as "%") C is a component useful not only for uniform fineness of the structure during hot rolling and cold rolling but also for development of Goss orientation, and at least 0.
The content of 01% or more is preferable. However, if the content exceeds 0.10%, the Goss orientation is rather disordered, so the upper limit is preferably about 0.10%.

【0032】Si:2.0 〜4.5 % Siは、鋼板の比抵抗を高め鉄損の低減に有効に寄与する
が、4.5 %を上回ると冷延性が損なわれ、一方2.0 %に
満たないと比抵抗が低下するだけでなく、2次再結晶・
純化のために行われる最終高温焼鈍中にα−γ変態によ
って結晶方位のランダム化を生じ、十分な焼鈍改善硬化
が得られないので、Si量は2.0 〜4.5 %程度とするのが
好ましい。
Si: 2.0 to 4.5% Si increases the specific resistance of the steel sheet and effectively contributes to the reduction of iron loss, but if it exceeds 4.5%, the cold ductility is impaired, while if it is less than 2.0%, the specific resistance is reduced. Not only decreases but also secondary recrystallization
Since the crystal orientation is randomized by the α-γ transformation during the final high-temperature annealing performed for purification, and sufficient annealing improvement hardening cannot be obtained, the Si content is preferably set to about 2.0 to 4.5%.

【0033】Mn:0.02〜0.12% Mnは、熱間脆化を防止するため少なくとも0.02%程度を
必要とするが、あまりに多すぎると磁気特性を劣化させ
るので上限は0.12%程度に定めるのが好ましい。
Mn: 0.02 to 0.12% Mn requires at least about 0.02% to prevent hot embrittlement, but if it is too much, it deteriorates the magnetic properties, so the upper limit is preferably set to about 0.12%. .

【0034】インヒビターとしては、いわゆるMnS, MnS
e 系とAlN 系とがある。MnS, MnSe系の場合は、 Se, Sのうちから選ばれる少なくとも1種:0.005 〜0.
06% Se, Sはいずれも、方向性けい素鋼板の2次再結晶を制
御するインヒビターとして有力な成分である。抑制力確
保の観点からは、少なくとも0.005 %程度を必要とする
が、0.06%を超えるとその効果が損なわれるので、その
下限、上限はそれぞれ0.01%, 0.06%程度とするのが好
ましい。
As the inhibitor, so-called MnS, MnS
There are e type and AlN type. In the case of MnS and MnSe, at least one selected from Se and S: 0.005 to 0.
06% Se and S are both effective components as inhibitors that control the secondary recrystallization of grain-oriented silicon steel sheets. From the viewpoint of securing the suppression power, at least about 0.005% is required, but if it exceeds 0.06%, the effect is impaired, so it is preferable to set the lower and upper limits to about 0.01% and 0.06%, respectively.

【0035】AlN 系の場合は、 Al:0.005 〜0.10%, N:0.004 〜0.015 % AlおよびNの範囲についても、上述したMnS, MnSe 系の
場合と同様な理由により、上記の範囲に定めた。ここに
上記したMnS, MnSe 系およびAlN 系はそれぞれ併用が可
能である。
In the case of AlN system, Al: 0.005 to 0.10%, N: 0.004 to 0.015% Al and N ranges are set to the above range for the same reason as in the case of MnS and MnSe systems described above. . The above-mentioned MnS, MnSe and AlN systems can be used together.

【0036】インヒビター成分としては上記したS,S
e, Alの他、Cu, Sn, Cr, Ge, Sb, Mo, Te, BiおよびP
なども有用に適合するので、それぞれ少量併せて含有さ
せることもできる。ここに上記成分の好適添加範囲はそ
れぞれ、Cu, Sn, Cr:0.01〜0.15%、Ge, Sb, Mo, Te,
Bi:0.005 〜0.1 %、P:0.01〜0.2 %であり、これら
の各インヒビター成分についても、単独使用および複合
使用いずれもが可能である。
As the inhibitor component, S and S described above are used.
e, Al, Cu, Sn, Cr, Ge, Sb, Mo, Te, Bi and P
And the like are suitable for use, so that a small amount of each of them can be contained together. Here, the preferred addition ranges of the above components are Cu, Sn, Cr: 0.01 to 0.15%, Ge, Sb, Mo, Te,
Bi: 0.005 to 0.1%, P: 0.01 to 0.2%, and each of these inhibitor components can be used alone or in combination.

【0037】なお、この発明は、形成した線状溝の位置
に応じた適正な配置のもとに、高転位密度域を形成した
場合に大きな効果を奏するため、線状溝の形成と高転位
密度域の形成は独立に行われることが望ましい。
Since the present invention produces a great effect when the high dislocation density region is formed under the proper arrangement according to the position of the formed linear groove, the formation of the linear groove and the high dislocation density are achieved. It is desirable that the formation of the density region is performed independently.

【0038】[0038]

【実施例】【Example】

実施例1 C:0.070 %、Si:3.3 %、Mn:0.069 %, Se:0.018
%, Sb:0.024 %, Al:0.021 %およびN:0.008 %を
含む3.3 wt%けい素鋼の熱間圧延板を、中間焼鈍をはさ
む2回の冷間圧延により0.23mm厚まで圧延したのち、グ
ラビアオフセツト印刷によるエッチングレジストを塗布
し、引き続く電解エッチングおよびアルカリ液中でのレ
ジスト剥離により、幅0.16mmおよび深さ0.018 mmの線状
溝を、圧延方向と直交する向きに対して10°の傾斜角度
にて、圧延方向へ3mm間隔で形成した。その後、脱炭焼
鈍、次いで最終仕上げ焼鈍を施し、更に上塗りコーティ
ングを施した。さらに、得られた鋼板に対して、下記の
(F) 〜(H) の条件に従って、それぞれプラズマ炎を照射
して局所的に高転位密度域(幅:0.4mm および深さ:0.
15mm)を導入した。なお、プラズマ炎は、ノズル穴径0.
35mmのノズルを用いアーク電流7.5 Aの条件下で照射し
た。
Example 1 C: 0.070%, Si: 3.3%, Mn: 0.069%, Se: 0.018
%, Sb: 0.024%, Al: 0.021% and N: 0.008% of a 3.3 wt% silicon steel hot-rolled sheet was rolled to 0.23 mm thickness by two cold-rolling steps with intermediate annealing. Apply an etching resist by gravure offset printing, and then perform electrolytic etching and resist stripping in an alkaline solution to form linear grooves with a width of 0.16 mm and a depth of 0.018 mm at 10 ° with respect to the direction orthogonal to the rolling direction. Formed at 3 mm intervals in the rolling direction at an inclination angle. After that, decarburization annealing was performed, and then final finish annealing was performed, and further topcoat coating was applied. Furthermore, for the obtained steel sheet, the following
In accordance with the conditions of (F) to (H), plasma flame was irradiated to each of the regions, and the high dislocation density region (width: 0.4 mm and depth: 0.
15mm) was introduced. The plasma flame has a nozzle hole diameter of 0.
Irradiation was performed under the conditions of an arc current of 7.5 A using a 35 mm nozzle.

【0039】記 (F) 線状溝と平行でかつ照射部が溝間の中央に位置する
ように、圧延方向と直交する向きに対して10゜の傾斜角
度にて6mm間隔で照射 (G) 線状溝と交差する向きに照射。照射角度と間隔は
(F) と同一 (H) 線状溝と同じ位置に6mm間隔で照射
Note (F) Irradiation at 6 mm intervals at an inclination angle of 10 ° with respect to the direction orthogonal to the rolling direction so that the irradiation portion is located in the center between the grooves and parallel to the linear grooves (G) Irradiate in the direction that intersects the linear groove. Irradiation angle and interval
Same as (F) (H) Irradiate at the same position as linear groove at 6mm intervals

【0040】また、比較として (I) 溝形成処理のみでプラズマ炎照射なし (J) 溝形成処理を行わずに(F) と同一条件でプラズマ炎
照射 の処理を経た材料も作製した。
For comparison, a material was also produced which was subjected to the plasma flame irradiation treatment under the same conditions as (F) without the groove formation treatment (J) and without the plasma flame irradiation treatment (I).

【0041】かくして得られた製品コイルの幅方向か
ら、 150×280mm の試片を各6枚ずつ採取し、歪取焼鈍
を施さずに単板磁気試験器により磁気特性を測定した。
その結果を表2に示す。
From the width direction of the product coil thus obtained, six 150 × 280 mm test pieces were sampled, and the magnetic characteristics were measured by a single plate magnetic tester without strain relief annealing.
The results are shown in Table 2.

【0042】[0042]

【表2】 表2から、溝と重ならない位置に高転位密度域を導入し
た材料は、比較例に比べて鉄損の低減幅が大きいことが
わかった。
[Table 2] From Table 2, it was found that the material in which the high dislocation density region was introduced at the position where it did not overlap the groove had a larger reduction range in iron loss than the comparative example.

【0043】実施例2 C:0.071 %、Si:3.4 %、Mn:0.069 %, Se:0.020
%, Al:0.023 %およびN:0.008 %を含むけい素鋼の
熱間圧延板を常法に従って処理し0.18mm厚の鋼板とし
た。この鋼板に対し、超音波振動子を用いて線状に絶縁
被膜を除去したのち30%HNO3液中で酸洗処理することに
より、圧延方向と直交する向きに延びる、幅0.18mmおよ
び深さ0.015 mmの線状溝を、圧延方向へ4mm間隔で形成
したのち、再度上塗りコーティングを施し、800 ℃×3
min で焼き付けた。さらに、得られた鋼板に対して、下
記の(K) 〜(M) の条件に従って、それぞれプラズマ炎を
照射し、局所的に高転位密度域(幅:0.4mm および深
さ:0.15mm)を導入した。プラズマ炎は、ノズル穴径0.
35mmのノズルを用いてアーク電流7Aの条件下で照射し
た。
Example 2 C: 0.071%, Si: 3.4%, Mn: 0.069%, Se: 0.020
%, Al: 0.023% and N: 0.008%, a hot-rolled sheet of silicon steel was processed by a conventional method into a steel sheet having a thickness of 0.18 mm. This steel sheet was stripped of the insulating coating using an ultrasonic vibrator and then pickled in 30% HNO 3 solution to extend in the direction perpendicular to the rolling direction, with a width of 0.18 mm and a depth of 0.18 mm. After forming 0.015 mm linear grooves at intervals of 4 mm in the rolling direction, overcoating was applied again and 800 ° C x 3
baked at min. Further, according to the following conditions (K) to (M), the obtained steel sheet was irradiated with a plasma flame to locally expose a high dislocation density region (width: 0.4 mm and depth: 0.15 mm). Introduced. The plasma flame has a nozzle hole diameter of 0.
Irradiation was performed under the conditions of an arc current of 7 A using a 35 mm nozzle.

【0044】記 (K) 線状溝と平行でかつ照射部が溝間の中央に位置する
ように4mm間隔で照射 (L) 圧延方向と直交する向きからの傾斜角度15゜となる
ように4mm間隔で照射 (M) 線状溝と同じ位置に4mm間隔で照射 また、比較として (N) 溝形成処理のみでプラズマ点照射なし (O) 溝形成処理を行わず圧延方向と直角な方向に4mm間
隔でプラズマ点照射のみ の処理を経た材料も作製した。
(K) Irradiation at 4 mm intervals parallel to the linear grooves and with the irradiation part located in the center between the grooves (L) 4 mm at an inclination angle of 15 ° from the direction orthogonal to the rolling direction. Irradiate at intervals (M) Irradiate at the same position as the linear groove at 4 mm intervals. Also, as a comparison, (N) Do not irradiate plasma spots only with groove forming processing (O) Do not perform groove forming processing and 4 mm in the direction perpendicular to the rolling direction A material was also prepared that was subjected to plasma point irradiation only at intervals.

【0045】かくして得られた製品コイルから、実施例
1と同様に試片を採取し磁気特性を測定した。その結果
を表3に示す。
From the product coil thus obtained, a sample was sampled in the same manner as in Example 1 and the magnetic characteristics were measured. The results are shown in Table 3.

【表3】 表3から、溝と重ならない位置に高転位密度部を有する
材料は、比較例に比べて鉄損の低減幅が大きいことがわ
かった。
[Table 3] From Table 3, it was found that the material having the high dislocation density portion at the position not overlapping the groove had a larger reduction range of the iron loss than the comparative example.

【0046】実施例3 C:0.073 %、Si:3.3 %、Mn:0.068 %, Se:0.019
%, Al:0.023 %, Sb:0.023 %を含有するけい素鋼ス
ラブを、所定の方法により熱間圧延板および中間焼鈍を
挟む2回の冷間圧延を経て0.23mm厚の最終冷延板とし
た。次いで、この冷延板に線状溝の形状に対応する非塗
布部を残してレジストインキを塗布し、マスキングを施
した。ここで、非塗布部の形状は、板幅方向に対し10°
の角度をなして延びる幅0.20mmの直線状とした。このよ
うな直線からなる非塗布部を、圧延方向の間隙3mmごと
に残した。その後、NaCl浴を用いた電解エッチング処理
により、深さ0.020 mmの線状溝を形成したのち、レジス
ト剤を除去し、脱炭焼鈍および仕上焼鈍を施した後、焼
き付け、そして張力コーティングを塗布、焼き付けた
後、850 ℃で3時間焼鈍を施し線状溝付きの製品板とし
た。さらに、この製品板に、下記の(a) 〜(c) の条件に
従って、局所的に高転位密度域を導入した。
Example 3 C: 0.073%, Si: 3.3%, Mn: 0.068%, Se: 0.019
%, Al: 0.023%, Sb: 0.023% of a silicon steel slab containing a hot-rolled sheet and a final cold-rolled sheet having a thickness of 0.23 mm through two cold-rolling steps with an intermediate annealing by a predetermined method. did. Then, resist ink was applied to this cold-rolled plate, leaving a non-application portion corresponding to the shape of the linear groove, and masking was performed. Here, the shape of the non-coated part is 10 ° with respect to the plate width direction.
The width was set to be a straight line with a width of 0.20 mm. The non-coated portion consisting of such a straight line was left at every 3 mm gap in the rolling direction. After that, by electrolytic etching treatment using a NaCl bath to form a linear groove with a depth of 0.020 mm, the resist agent was removed, decarburization annealing and finish annealing were performed, baking was performed, and a tension coating was applied, After baking, it was annealed at 850 ° C. for 3 hours to obtain a product plate with linear grooves. Further, a high dislocation density region was locally introduced into this product plate according to the following conditions (a) to (c).

【0047】記 (a) 3mm間隔で形成したすべての線状溝の片側に、線状
溝との間に間隙を置かずにかつ線状溝と重ならないよう
に、すなわち3mm間隙でプラズマジェットを照射〔図2
(b) 参照〕 (b) 3mm間隔に形成したすべての線状溝の両側に、溝と
の間に間隙を置かずにかつ線状溝と重ならないように、
プラズマジェットを照射〔図2(f) 参照〕 (c) 3mm間隔に形成した線状溝の1本おきに、その線状
溝の片側に間隙を置かずにかつ線状溝と重ならないよう
に、プラズマジェットを照射〔図2(b) 参照〕 また比較として、 (d) プラズマジェット照射処理を施さない、3mm間隔で
線状溝を形成した製品板 (e) 3mm間隔でプラズマジェット照射処理を施した製品
板 (f) 線状溝形成およびプラズマジェット照射処理のいず
れをも施さない製品板も用意した。
Note (a) A plasma jet is formed on one side of all linear grooves formed at 3 mm intervals so that there is no gap between the linear grooves and it does not overlap the linear grooves, that is, at a 3 mm gap. Irradiation [Fig. 2
(b) Reference] (b) On both sides of all linear grooves formed at 3 mm intervals, without leaving a gap between them and not overlapping with the linear grooves,
Irradiation with a plasma jet [Refer to Fig. 2 (f)] (c) Every other linear groove formed at 3 mm intervals so that there is no gap on one side of the linear groove and it does not overlap with the linear groove. , Plasma jet irradiation [See Fig. 2 (b)] As a comparison, (d) Product plate with linear grooves formed at 3 mm intervals without plasma jet irradiation processing (e) Plasma jet irradiation processing at 3 mm intervals Applied product plate (f) A product plate was also prepared on which neither linear groove formation nor plasma jet irradiation treatment was applied.

【0048】かくして得られた製品コイルから、実施例
1と同様に試片を採取し磁気特性を測定した。その結果
を表4に示す。
From the product coil thus obtained, a sample was sampled in the same manner as in Example 1 and the magnetic characteristics were measured. The results are shown in Table 4.

【0049】[0049]

【表4】 表4から、線状溝の隣接域に線状の高転位密度域を形成
した製品板は、比較材に比べて鉄損が低減されることが
明らかである。
[Table 4] From Table 4, it is clear that the product sheet in which the linear high dislocation density region is formed in the region adjacent to the linear groove has a lower iron loss than the comparative material.

【0050】実施例4 C:0.070 %、Si:3.4 %、Mn:0.068 %, Se:0.019
%, Al:0.023 %, Sb:0.025 %を含有するけい素鋼ス
ラブを、所定の方法により熱間圧延板および中間焼鈍を
挟む2回の冷間圧延を経て0.23mm厚の最終冷延板とし
た。次いで、この鋼板に導入する線状溝の形状に対応す
る非塗布部を残してレジストインキを塗布し、マスキン
グを施した。ここで、非塗布部の形状は、板幅方向に対
し10°の角度をなして延びる幅0.30mmの直線状とした。
このような直線からなる非塗布部を圧延方向に間隔5mm
ごとに残した。次に、NaCl浴を用いた電解エッチング処
理により、深さ0.020 mmの線状溝を形成した後、レジス
ト材を除去し、脱炭焼鈍および仕上げ焼鈍を施した。そ
の後、張力コーティングを塗布、焼き付けた後、850℃
で3時間の焼鈍を施して線状溝付きの製品板とした。さ
らに、この製品板に、下記の(g) 〜(k) の条件に従っ
て、局所的に高転位密度域を導入した。
Example 4 C: 0.070%, Si: 3.4%, Mn: 0.068%, Se: 0.019
%, Al: 0.023%, Sb: 0.025% silicon steel slab containing 0.23mm thick final cold-rolled sheet after hot rolling and two intermediate cold rolling steps with intermediate annealing. did. Next, the resist ink was applied and masking was performed, leaving the non-application portion corresponding to the shape of the linear groove introduced into this steel plate. Here, the shape of the non-application portion was a linear shape having a width of 0.30 mm and extending at an angle of 10 ° with respect to the plate width direction.
The non-coated part consisting of such straight lines has a gap of 5 mm in the rolling direction.
Left for each. Next, after a linear groove having a depth of 0.020 mm was formed by electrolytic etching treatment using a NaCl bath, the resist material was removed, and decarburization annealing and finish annealing were performed. Then, after applying tension coating and baking, 850 ℃
It was annealed for 3 hours to obtain a product plate with linear grooves. Further, a high dislocation density region was locally introduced into this product plate according to the following conditions (g) to (k).

【0051】記 (g) 5mm間隔に形成したすべての線状溝の片側に、線状
溝との間に0.20mmの間隙を置いて、5mm間隔でプラズマ
ジェットを照射〔図2(a) 参照〕 (h) 5mm間隔に形成したすべての線状溝の片側に、溝と
の間に間隙を置かずにかつ線状溝と重ならないようにプ
ラズマジェットを照射〔図2(b) 参照〕 (i) 5mm間隔に形成したすべての線状溝の片側に、溝底
面に0.20mm幅で重なるようにプラズマジェットを照射
〔図2(d) 参照〕 (j) 5mm間隔に形成した隣り合うすべての線状溝対の中
間にプラズマジェットを照射〔図2(e) 参照〕 また、比較として、 (k) 5mm間隔に形成したすべての線状溝の直下にプラズ
マジェットを照射 (l) プラズマジェット照射処理を施さない、5mm間隔で
線状溝を形成 の処理を経た製品も作成した。これら6種の試料から、
エプスタイン試験片を、その長手方向が圧延方向と一致
するように切り出し、それぞれの磁気特性を測定した結
果を表5に示す。
Note (g) Irradiating a plasma jet at 5 mm intervals with a 0.20 mm gap between the linear grooves on one side of all the linear grooves formed at 5 mm intervals [see FIG. 2 (a)]. ] (H) Irradiate a plasma jet on one side of all linear grooves formed at 5 mm intervals so that there is no gap between them and they do not overlap the linear grooves (see Fig. 2 (b)) ( i) Irradiate a plasma jet on one side of all linear grooves formed at 5 mm intervals so that the bottom surface of the groove overlaps with a width of 0.20 mm [see Fig. 2 (d)] (j) All adjacent linear grooves formed at 5 mm intervals Irradiating a plasma jet in the middle of a pair of linear grooves [See Fig. 2 (e)] As a comparison, (k) Irradiating a plasma jet directly under all linear grooves formed at 5 mm intervals (l) Irradiating a plasma jet A product was also prepared which was not processed and was subjected to a process of forming linear grooves at 5 mm intervals. From these 6 samples,
Table 5 shows the results of cutting the Epstein test piece so that its longitudinal direction coincides with the rolling direction and measuring the respective magnetic properties.

【0052】かくして得られた製品コイルから、実施例
1と同様に試片を採取し磁気特性を測定した。その結果
を表5に示す。
Specimens were sampled from the product coil thus obtained in the same manner as in Example 1 and the magnetic characteristics were measured. The results are shown in Table 5.

【0053】[0053]

【表5】 表5から、線状溝の隣接域に線状の高転位密度域を形成
した製品板は、比較材に比べて鉄損が低減されることが
明らかである。
[Table 5] From Table 5, it is clear that the product sheet in which the linear high dislocation density region is formed in the region adjacent to the linear groove has a lower iron loss than the comparative material.

【0054】[0054]

【発明の効果】この発明の鋼板は、その表面に圧延方向
と交わる向きに延びる線状の溝と線状の高転位密度域を
所定の配置で形成することによって、従来材に比べて極
めて低い鉄損を示すため、変圧器特に積鉄心変圧器の効
率向上に大きく寄与する。
EFFECTS OF THE INVENTION The steel sheet of the present invention has a linear groove extending in a direction intersecting with the rolling direction and a linear high dislocation density region in a predetermined arrangement on the surface thereof, so that it is extremely lower than the conventional material. Since it shows iron loss, it greatly contributes to the improvement of the efficiency of transformers, especially core transformers.

【図面の簡単な説明】[Brief description of drawings]

【図1】溝と高転位密度域の導入位置を示す図である。FIG. 1 is a diagram showing introduction positions of grooves and high dislocation density regions.

【図2】溝と高転位密度域の導入位置を示す図である。FIG. 2 is a diagram showing introduction positions of grooves and high dislocation density regions.

【図3】溝幅と鉄損W17/50 の関係を示す図である。FIG. 3 is a diagram showing a relationship between groove width and iron loss W 17/50 .

【図4】溝深さと鉄損W17/50 の関係を示す図である。FIG. 4 is a diagram showing the relationship between groove depth and iron loss W 17/50 .

【図5】溝の傾斜角度と鉄損W17/50 の関係を示す図で
ある。
FIG. 5 is a diagram showing a relationship between a groove inclination angle and iron loss W 17/50 .

【図6】溝間隔と鉄損W17/50 の関係を示す図である。FIG. 6 is a diagram showing a relationship between groove spacing and iron loss W 17/50 .

【図7】溝と高転位密度域が同時に存在する場合の高転
位密度域の幅と鉄損W17/50 の関係を示す図である。
FIG. 7 is a diagram showing the relationship between the width of the high dislocation density region and the iron loss W 17/50 when the groove and the high dislocation density region are present at the same time.

【図8】溝と高転位密度域が同時に存在する場合の高転
位密度域の深さと鉄損W17/50の関係を示す図である。
FIG. 8 is a graph showing the relationship between the depth of the high dislocation density region and the iron loss W 17/50 when the groove and the high dislocation density region are present at the same time.

【図9】溝と高転位密度域が同時に存在する場合の高転
位密度域の間隔と鉄損W17/50の関係を示す図である。
FIG. 9 is a diagram showing a relationship between an interval between high dislocation density regions and iron loss W 17/50 when a groove and a high dislocation density region are present at the same time.

【図10】溝と高転位密度域が同時に存在する場合の高
転位密度域の傾きと鉄損W17/50の関係を示す図であ
る。
FIG. 10 is a diagram showing the relationship between the inclination of the high dislocation density region and the iron loss W 17/50 when the groove and the high dislocation density region are present at the same time.

フロントページの続き (72)発明者 佐藤 圭司 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 小松原 道郎 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内Front Page Continuation (72) Inventor Keiji Sato 1 Kawasaki-cho, Chuo-ku, Chiba, Chiba Prefecture Technical Research Division, Kawasaki Steel Co., Ltd. Technology Research Division, Inc.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 仕上げ焼鈍済の方向性けい素鋼板の表面
に、その圧延方向と交わる向きに延びる線状溝および線
状の高転位密度域をそれぞれ圧延方向に間隔を置いて多
数有し、該線状溝および高転位密度域を、高転位密度域
の少なくとも一部が線状溝の形成域外にある配置にて、
鋼板表面に導入して成ることを特徴とする鉄損の低い一
方向性電磁鋼板。
1. A surface of a finish-annealed grain-oriented silicon steel sheet has a large number of linear grooves extending in a direction intersecting with the rolling direction and linear high dislocation density regions at intervals in the rolling direction, The linear groove and the high dislocation density region are arranged such that at least a part of the high dislocation density region is outside the formation region of the linear groove.
A unidirectional electrical steel sheet with low iron loss, which is introduced on the surface of a steel sheet.
【請求項2】 線状溝および線状の高転位密度域の圧延
方向と直交する向きに対する傾きが30°以内である請求
項1記載の方向性電磁鋼板。
2. The grain-oriented electrical steel sheet according to claim 1, wherein the inclination of the linear groove and the linear high dislocation density region with respect to the direction orthogonal to the rolling direction is within 30 °.
【請求項3】 線状溝は幅0.03〜0.30mmおよび深さ0.01
〜0.07mm、高転位密度域は幅0.03〜1mmおよび深さ0.01
mm以上である請求項1記載の方向性電磁鋼板。
3. The linear groove has a width of 0.03 to 0.30 mm and a depth of 0.01.
~ 0.07mm, high dislocation density range 0.03 ~ 1mm width and 0.01 depth
The grain-oriented electrical steel sheet according to claim 1, having a size of at least mm.
JP6122406A 1994-03-31 1994-06-03 One directional electromagnetic steel sheet at low iron loss Pending JPH07320922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6122406A JPH07320922A (en) 1994-03-31 1994-06-03 One directional electromagnetic steel sheet at low iron loss

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-63179 1994-03-31
JP6317994 1994-03-31
JP6122406A JPH07320922A (en) 1994-03-31 1994-06-03 One directional electromagnetic steel sheet at low iron loss

Publications (1)

Publication Number Publication Date
JPH07320922A true JPH07320922A (en) 1995-12-08

Family

ID=26404267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6122406A Pending JPH07320922A (en) 1994-03-31 1994-06-03 One directional electromagnetic steel sheet at low iron loss

Country Status (1)

Country Link
JP (1) JPH07320922A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09275007A (en) * 1996-04-02 1997-10-21 Nippon Steel Corp Low iron loss directional magnetic steel sheet
JP2008057001A (en) * 2006-08-31 2008-03-13 Jfe Steel Kk Grain-oriented electromagnetic steel sheet
CN104093870A (en) * 2011-12-28 2014-10-08 杰富意钢铁株式会社 Oriented electromagnetic steel plate and manufacturing method therefor
JP2019137883A (en) * 2018-02-08 2019-08-22 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet and method for manufacturing grain-oriented electromagnetic steel sheet
JP2019157152A (en) * 2018-03-07 2019-09-19 Jfeスチール株式会社 Oriented electrical steel sheet
JP2020150089A (en) * 2019-03-12 2020-09-17 日本製鉄株式会社 Iron core, method of manufacturing wound iron core, method of manufacturing laminated iron core and method of manufacturing electromagnetic steel sheet for iron core
JP2020158882A (en) * 2019-03-19 2020-10-01 Jfeスチール株式会社 Grain-oriented electrical steel sheet and method for manufacturing same
JP2021509152A (en) * 2017-12-26 2021-03-18 ポスコPosco Directional electrical steel sheet and its magnetic domain miniaturization method
JP2021535955A (en) * 2018-08-28 2021-12-23 ポスコPosco Directional electrical steel sheet and its magnetic domain miniaturization method
KR20220089310A (en) * 2020-12-21 2022-06-28 주식회사 포스코 Grain oriented electrical steel sheet and method for refining magnetic domains therein
EP4079878A4 (en) * 2019-12-19 2023-05-24 Posco Grain-oriented electrical steel sheet and method for refining magnetic domain thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09275007A (en) * 1996-04-02 1997-10-21 Nippon Steel Corp Low iron loss directional magnetic steel sheet
JP2008057001A (en) * 2006-08-31 2008-03-13 Jfe Steel Kk Grain-oriented electromagnetic steel sheet
CN104093870A (en) * 2011-12-28 2014-10-08 杰富意钢铁株式会社 Oriented electromagnetic steel plate and manufacturing method therefor
US9984800B2 (en) 2011-12-28 2018-05-29 Jfe Steel Corporation Grain-oriented electrical steel sheet and method of manufacturing same
JP2021509152A (en) * 2017-12-26 2021-03-18 ポスコPosco Directional electrical steel sheet and its magnetic domain miniaturization method
JP2019137883A (en) * 2018-02-08 2019-08-22 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet and method for manufacturing grain-oriented electromagnetic steel sheet
JP2019157152A (en) * 2018-03-07 2019-09-19 Jfeスチール株式会社 Oriented electrical steel sheet
JP2021535955A (en) * 2018-08-28 2021-12-23 ポスコPosco Directional electrical steel sheet and its magnetic domain miniaturization method
JP2020150089A (en) * 2019-03-12 2020-09-17 日本製鉄株式会社 Iron core, method of manufacturing wound iron core, method of manufacturing laminated iron core and method of manufacturing electromagnetic steel sheet for iron core
JP2020158882A (en) * 2019-03-19 2020-10-01 Jfeスチール株式会社 Grain-oriented electrical steel sheet and method for manufacturing same
EP4079878A4 (en) * 2019-12-19 2023-05-24 Posco Grain-oriented electrical steel sheet and method for refining magnetic domain thereof
KR20220089310A (en) * 2020-12-21 2022-06-28 주식회사 포스코 Grain oriented electrical steel sheet and method for refining magnetic domains therein
WO2022139334A1 (en) * 2020-12-21 2022-06-30 주식회사 포스코 Grain-oriented electrical steel sheet, and magnetic domain refining method therefor

Similar Documents

Publication Publication Date Title
KR101421387B1 (en) Grain oriented electrical steel sheet and method for manufacturing the same
KR101593346B1 (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JP3023242B2 (en) Method for producing low iron loss unidirectional silicon steel sheet with excellent noise characteristics
CN110651058B (en) Grain-oriented electromagnetic steel sheet and method for producing same
CN108699621B (en) Method for producing grain-oriented electromagnetic steel sheet
KR100259990B1 (en) Low-iron-loss grain oriented electromagnetic steel sheet and method of manufacturing the same
JP2022027234A (en) Directional electromagnetic steel plate
JP3726289B2 (en) Oriented electrical steel sheet with low iron loss
JP5740854B2 (en) Oriented electrical steel sheet
JPH07320922A (en) One directional electromagnetic steel sheet at low iron loss
JP3399991B2 (en) Method for producing low iron loss unidirectional silicon steel sheet
KR0134088B1 (en) Low iron loss grain oriented silicon steel sheets & method of producing the same
JP4331900B2 (en) Oriented electrical steel sheet and method and apparatus for manufacturing the same
JP2020105589A (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JP4192399B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP2638180B2 (en) Low iron loss unidirectional silicon steel sheet and method for producing the same
JPH11124629A (en) Grain oriented silicon steel sheet reduced in iron loss and noise
KR20210107833A (en) Grain-oriented electrical steel sheet and iron core using same
JP3463314B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JPH01147074A (en) Grain-oriented silicon steel sheet free from deterioration in property due to stress relief annealing
JPH07320921A (en) Directional electromagnetic steel sheet at low iron loss
JP3541419B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JPH06100939A (en) Production of low core loss grain-oriented silicon steel sheet
JPH0565543A (en) Manufacture of low iron loss unidirectional silicon steel sheet having uniform characteristic in transverse direction without deteriorating magnetic characteristic even in the case of applying strain-removal annealing
JPH04214819A (en) Manufacture of low core loss grain-oriented silicon steel sheet free from deterioration in magnetic property even if stress relieving annealing is executed and continuous manufacturing equipment train for low core loss grain-oriented silicon steel sheet