JP2638180B2 - Low iron loss unidirectional silicon steel sheet and method for producing the same - Google Patents

Low iron loss unidirectional silicon steel sheet and method for producing the same

Info

Publication number
JP2638180B2
JP2638180B2 JP1027578A JP2757889A JP2638180B2 JP 2638180 B2 JP2638180 B2 JP 2638180B2 JP 1027578 A JP1027578 A JP 1027578A JP 2757889 A JP2757889 A JP 2757889A JP 2638180 B2 JP2638180 B2 JP 2638180B2
Authority
JP
Japan
Prior art keywords
steel sheet
coating
silicon steel
unidirectional silicon
press
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1027578A
Other languages
Japanese (ja)
Other versions
JPH02277780A (en
Inventor
征夫 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1027578A priority Critical patent/JP2638180B2/en
Priority to US07/423,851 priority patent/US5146063A/en
Priority to DE89310893T priority patent/DE68909000T2/en
Priority to EP89310893A priority patent/EP0367467B1/en
Priority to CA002001213A priority patent/CA2001213C/en
Priority to KR1019890015458A priority patent/KR0134088B1/en
Publication of JPH02277780A publication Critical patent/JPH02277780A/en
Priority to US07/636,913 priority patent/US5223048A/en
Application granted granted Critical
Publication of JP2638180B2 publication Critical patent/JP2638180B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Welding Or Cutting Using Electron Beams (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、鉄損の低い一方向性珪素鋼板に関し、と
くに鋼板表面上の被膜を地鉄に圧入することによって磁
区の細分化をはかり、鉄損を低減しようとするものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) The present invention relates to a unidirectional silicon steel sheet having a low iron loss, in particular, by subdividing magnetic domains by press-fitting a coating on a steel sheet surface into ground iron, It is intended to reduce iron loss.

(従来の技術) 一方向性珪素鋼板の製品の2次再結晶粒をゴス方位に
高度に集積させ、また鋼板表面上にはフォルステライト
質被膜を形成し、さらにその上に熱膨張係数の小さい絶
縁被膜を被成したもので、厳格な制御を必要とする複
雑、多岐にわたる工程を経て製造される。
(Prior Art) Secondary recrystallized grains of a product of a unidirectional silicon steel sheet are highly integrated in a Goss orientation, and a forsterite coating is formed on the surface of the steel sheet, and the thermal expansion coefficient is small thereon. It is coated with an insulating film, and is manufactured through complicated and various processes that require strict control.

このように一方向性珪素鋼板は、主として変圧器、そ
の他電気機器の鉄心として使用されており、磁気特性と
して製品の磁束密度(B10値で代表される)が高く、鉄
損(W17/50値で代表される)が低いこと、さらに表面
性状が良好な絶縁被膜を有することが要求されている。
The grain oriented silicon steel sheet as mainly transformers, are used as the iron core and other electrical equipment, (represented by 10 values B) flux density of the product as the magnetic properties are high, the iron loss (W 17 / (Represented by 50 values) and an insulating coating having good surface properties.

とくにエネルギー危機を境にして電力損失の低減を至
上とする要請が著しく強まり、変圧器用鉄心材料として
の鉄損より低い一方向性珪素鋼板の必要性は増々重量な
ものとなってきている。
In particular, there has been a remarkable demand for reducing power loss after the energy crisis, and the necessity of a unidirectional silicon steel sheet having a lower core loss than that of a core material for transformers has been increasing.

さて一方向性珪素鋼板の鉄損改善の歴史は、ゴス方位
2次再結晶集合組織の改善の歴史であると言っても過言
ではない。このような2次再結晶粒を制御する方法とし
て、AIN,MnS及びMnSe等の1次再結晶粒成長抑制剤、い
わゆるインヒビターを用いてゴス方位2次再結晶粒を優
先成長させる方法が実施されている。
By the way, it is not an exaggeration to say that the history of the iron loss improvement of the unidirectional silicon steel sheet is the history of the improvement of the Goss orientation secondary recrystallization texture. As a method of controlling such secondary recrystallized grains, a method of preferentially growing the Goss orientation secondary recrystallized grains using a primary recrystallized grain growth inhibitor such as AIN, MnS and MnSe, a so-called inhibitor, has been implemented. ing.

一方これら2次再結晶集合組織を制御する方法とは全
く異なる方法、すなわち鋼板表面にレーザー照射{市山
正:鉄と鋼,69(1983),P.895、特公昭57−2252号、
同57−53419号、各公報参照}又はプラズマ照射{特開
昭62−96617号、同62−151511号、同62−151516号およ
び同62−151517号各公報参照}により局部微小歪を導入
して磁区を細分化し、もって鉄損を低下する画期的な方
法が提案された。しかしながらこれらの方法により得ら
れた鋼板は、高温域まで加熱すると微小歪が消失するた
め、高温の歪取り焼鈍を施す巻鉄心トランス用材料には
使用できないという欠点がある。
On the other hand, a method completely different from the method of controlling these secondary recrystallization textures, that is, laser irradiation on the surface of the steel sheet. Tadashi Ichiyama: Iron and Steel, 69 (1983), P.895, Japanese Patent Publication No. 57-2252,
No. 57-53419, refer to the respective publications or plasma irradiation {refer to JP-A Nos. 62-96617, 62-151511, 62-151516 and 62-151517, and introduce local micro-strains. Innovative methods have been proposed to subdivide magnetic domains and thereby reduce iron loss. However, the steel sheet obtained by these methods has a drawback that it cannot be used as a material for a wound iron core transformer subjected to high-temperature strain relief annealing because the micro strain disappears when heated to a high temperature range.

このような高温の歪取り焼鈍を施しても鉄損が劣化し
ない方法が提案されている。例えば、仕上焼鈍板の表面
に溝もしくはセレーションを形成する方法(特公昭50−
35679号、特開昭59−28525号及び同59−197520号公報参
照)、仕上焼鈍板の表面に微再結晶粒領域を形成する方
法(特開昭56−130454号公報参照)、フォルステライト
質被膜に異厚或いは欠損領域を形成する方法(特開昭60
−92479号、同60−92480号、同60−92481号及び同60−2
58479号各公報参照)、地鉄中、フォルステライト質被
膜中又は張力絶縁被膜中に異組成領域を形成する方法
(特開昭60−103124号及び同60−103182号各公報参
照)、等である。
A method has been proposed in which iron loss does not deteriorate even when such high-temperature strain relief annealing is performed. For example, a method of forming grooves or serrations on the surface of a finish-annealed plate (Japanese Patent Publication No.
No. 35679, JP-A-59-28525 and JP-A-59-197520), a method of forming a fine recrystallized grain region on the surface of a finish-annealed plate (see JP-A-56-130454), A method of forming a different thickness or defective area in a coating (Japanese Patent Application Laid-Open
-92479, 60-92480, 60-92481 and 60-2
58479), a method of forming a heterogeneous composition region in ground iron, a forsterite coating or a tension insulating coating (see JP-A-60-103124 and JP-A-60-103182). is there.

しかしながらこれらの方法はいずれも工程が複雑とな
るわりには鉄損の低減効果は少なく、また製造コストが
高いこともあって、工業的に採用されるには至っていな
い。
However, all of these methods have not been industrially adopted, because the effect of reducing iron loss is small in spite of the complicated steps and the production cost is high.

(発明が解決しようとする課題) この発明は、磁区細分化によって低減された鉄損が歪
取り焼鈍を施しても劣化することのない、そして安定し
た製造が可能な低鉄損一方向性珪素鋼板、さらにこの鋼
板を有利に製造する方法ついて提案することを目的とす
る。
(Problems to be Solved by the Invention) The present invention relates to a low iron loss unidirectional silicon in which iron loss reduced by domain refining does not deteriorate even when subjected to strain relief annealing, and can be manufactured stably. It is an object of the invention to propose a steel sheet and a method for advantageously producing this steel sheet.

(課題を解決するための手段) この発明は、仕上焼鈍を施したフォルステライト質被
膜付、又はフォルステライト質被膜上にさらに絶縁被膜
を形成した一方向性珪素鋼板にして、鋼板表面のフォル
ステライト質被膜、又はフォルステライト質被膜及び絶
縁被膜が地鉄に圧入された微小圧入領域を、鋼板の圧延
方向と直交する向きへ局所的に導入してなる低鉄損一方
向性珪素鋼板である。
(Means for Solving the Problems) The present invention provides a unidirectional silicon steel sheet having a forsterite coating subjected to finish annealing or an insulating coating further formed on the forsterite coating to form a forsterite on the steel sheet surface. A low iron loss unidirectional silicon steel sheet obtained by locally introducing a micro-pressed region in which a porous coating or a forsterite-based coating and an insulating coating are pressed into the base iron in a direction orthogonal to the rolling direction of the steel sheet.

とくに微小圧入領域は、鋼板表面の圧入部が地鉄を通
って鋼板裏面の被膜にまで及ぶものであることが有利
で、このような微小圧入領域を導入した鋼板の裏面には
鋼板表面の圧入部に対応した微小な凸部が形成されるこ
とになる。
In particular, it is advantageous that the press-fitted area on the steel sheet surface extends through the ground iron to the coating on the backside of the steel sheet. A minute convex portion corresponding to the portion is formed.

またこの発明に従う鋼板は仕上焼鈍を一方向性珪素鋼
板につき、その正面上、加速電圧:100〜500kVおよび加
速電流:0.005〜10mAにて発生させた電子ビームを、圧延
方向と直交する向きへ局所的に照射し、鋼板表面上に被
膜を地鉄に圧入するか、さらに地鉄を鋼板裏面の被膜に
圧入することによって有利に製造するこができる。
Further, the steel sheet according to the present invention is subjected to finish annealing of a unidirectional silicon steel sheet, and on the front thereof, an electron beam generated at an acceleration voltage of 100 to 500 kV and an acceleration current of 0.005 to 10 mA in a direction perpendicular to the rolling direction. It can be advantageously produced by irradiating the steel sheet and press-fitting the coating on the surface of the steel sheet into the base steel, or by pressing the base iron into the coating on the back surface of the steel sheet.

さらに電子ビームの照射径および照射間隔を変化さ
せ、微小圧入領域同士の間隔を挟めることによって、磁
区細分化を促進することができる。
Further, by changing the irradiation diameter and the irradiation interval of the electron beam so as to sandwich the space between the minute press-fitted regions, it is possible to promote magnetic domain subdivision.

(作 用) 次にこの発明について実施例に基いて詳細に述べる。(Operation) Next, the present invention will be described in detail based on embodiments.

C:0.043wt%(以下単に%と示す),Si:3.45%,Mn:0.0
68%,Se:0.022%,Sb:0.025%,Mo:0.013%を含有する珪
素鋼スラブを1380℃で4時間加熱後、熱間圧延して2.2m
m厚の熱延板とした後、980℃で120分の中間焼鈍をはさ
む2回の冷間圧延を施して0.20mmの最終冷延板とした。
ついで820℃の湿水素中で脱炭1次再結晶焼鈍を施した
後、鋼板表面上にMgOを主成分とする焼鈍分離剤をスラ
リー塗布し、その後850℃で50時間の2次再結晶焼鈍を
行ってゴス方位2次再結晶粒を優先成長させた後、1200
℃の乾水素中で5時間の純化焼鈍を施し試料(A)とし
た。また試料(A)の一部は、鋼板表面上にリン酸塩と
コロイダルシリカを主成分とする絶縁被膜を被成し試料
(B)とした。その後試料(A)および(B)に次の
(1)〜(3)の手段にて圧延方向と直角方向にのびる
微小圧入領域又は微小歪を8mm間隔で導入した。
C: 0.043wt% (hereinafter simply referred to as%), Si: 3.45%, Mn: 0.0
A silicon steel slab containing 68%, Se: 0.022%, Sb: 0.025%, Mo: 0.013% is heated at 1380 ° C for 4 hours, and then hot-rolled to 2.2m.
After forming a hot-rolled sheet having a thickness of m, the sheet was twice cold-rolled with intermediate annealing at 980 ° C for 120 minutes to obtain a final cold-rolled sheet of 0.20 mm.
Then, after decarburizing primary recrystallization annealing in wet hydrogen at 820 ° C., an annealing separator containing MgO as a main component is applied to the surface of the steel sheet by slurry, and then, secondary recrystallization annealing at 850 ° C. for 50 hours is performed. And then preferentially grow Goss orientation secondary recrystallized grains.
The sample was subjected to purification annealing in dry hydrogen at 5 ° C. for 5 hours to obtain a sample (A). A part of the sample (A) was formed as a sample (B) by forming an insulating coating mainly containing phosphate and colloidal silica on the surface of the steel sheet. Thereafter, minute press-fit regions or minute strains extending in a direction perpendicular to the rolling direction were introduced into the samples (A) and (B) at intervals of 8 mm by the following means (1) to (3).

(1)ナイフ (2)YAGレーザー照射 (照射条件:スポット当りのエネルギー4×10-3J,スポ
ット直径0.15mm,スポットの中心間隔0.3mm,走査間隔8m
m) (3)電子ビーム(以下EBと示す)照射 (照射条件:加速電圧100kV,電流0.7mA,スポット直径1.
0mm,スポットの中心間隔0.3mm,走査間隔8mm) (4)EB照射 (照射条件:加速電圧100kV,電流0.3mA,スポット直径0.
15mm,スポットの中心間隔0.3mm,走査間隔8mm) 上記の処理を行った後各試料に800℃で2時間の歪取
り焼鈍を施した。歪取り焼鈍後の試料の磁気特性を、第
1表に示す。
(1) Knife (2) YAG laser irradiation (Irradiation conditions: energy per spot 4 × 10 -3 J, spot diameter 0.15 mm, spot center interval 0.3 mm, scan interval 8 m
m) (3) Electron beam (hereinafter referred to as EB) irradiation (irradiation conditions: acceleration voltage 100 kV, current 0.7 mA, spot diameter 1.
(4 mm) EB irradiation (irradiation conditions: acceleration voltage 100 kV, current 0.3 mA, spot diameter 0.
(15 mm, spot center interval 0.3 mm, scanning interval 8 mm) After performing the above treatment, each sample was subjected to strain relief annealing at 800 ° C. for 2 hours. Table 1 shows the magnetic properties of the sample after the strain relief annealing.

また比較のため無処理材(歪導入なし,歪取り焼鈍あ
り)の特性も同表に併記した。
For comparison, the properties of the untreated material (without strain introduction and with strain relief annealing) are also shown in the table.

同表から明らかなように、試料(A),(B)共に
(3)および(4)の条件での処理において鉄損が0.05
〜0.08W/kgと大幅に向上していることがわかる。
As is clear from the table, both samples (A) and (B) had an iron loss of 0.05 in the treatment under the conditions (3) and (4).
It can be seen that it is greatly improved to ~ 0.08 W / kg.

なお条件(4)が処理した鋼板はその裏面に微小な凸
部がみとめられたところから、微小圧入領域が鋼板の裏
面にまで導入されていた。
In addition, in the steel sheet treated under the condition (4), a minute press-fitting region was introduced to the back surface of the steel sheet from a place where a minute projection was found on the back surface.

さて処理条件(3)で処理した試料の鉄損が他のもの
に比して向上する理由は、第1図(a)に示すように、
鋼板表面のフォルステライト質被膜1および絶縁被膜2
が地鉄3(ゴス方位を有する2次再結晶)へ微小領域に
おいて深さ方向に圧入されたことによって、歪取り焼鈍
を施しても有効な磁区細分化核として作用し、磁区細分
化が可能となったことによる。
Now, the reason why the iron loss of the sample treated under the treatment condition (3) is improved as compared with the other ones is as shown in FIG.
Forsterite coating 1 and insulating coating 2 on steel sheet surface
Is pressed into the ground iron 3 (secondary recrystallized with Goss orientation) in the microscopic direction in the minute direction, so that it acts as an effective magnetic domain refining nucleus even when subjected to strain relief annealing, enabling magnetic domain refining. Because it became.

また処理条件(4)で処理した試料の鉄損が他のもの
に比して大幅に向上する理由は、第1図(b)に示すよ
うに微小圧入領域がさらに他の地鉄の奥深くにまで侵入
し鋼板裏面上の被膜にまで及んでいるため、より強固な
磁区細分化核として作用するわけである。
The reason why the iron loss of the sample treated under the treatment condition (4) is greatly improved as compared with the other ones is that, as shown in FIG. Since it penetrates to the coating on the back surface of the steel sheet, it acts as a stronger magnetic domain refinement nucleus.

なお下地被膜および絶縁被膜を微小領域において鋼板
の幅方向へ地鉄内部の奥深くまで圧入するためには、高
電圧および低電流のEBを使用してはじめて可能になる。
すなわち、特に高電圧および低電流のEBを使用した場合
には、第2図に示すように、他の方法(レーザー、プラ
ズマ、メカニカルな手方法)にくらべ、深さ方向への透
過力が強く、しかも最も狭い幅で浸透するため、下地被
膜および絶縁被膜を消失することなく、地鉄へ押込める
ことが可能となる。
In addition, in order to press the base coat and the insulating coat deep in the steel plate in the width direction of the steel sheet in the minute region, it becomes possible only by using high voltage and low current EB.
That is, particularly when high voltage and low current EBs are used, as shown in FIG. 2, the penetration force in the depth direction is stronger than other methods (laser, plasma, mechanical method). In addition, since it penetrates in the narrowest width, it can be pushed into the base steel without losing the base coat and the insulating coat.

さらにEBの照射条件に関して行った実験について説明
する。
Further, an experiment performed on EB irradiation conditions will be described.

C:0.042%、Si:3.42%,Mn:0.072%,Se:0.021%,Sb:0.
023%,Mo:0.013%を含有する珪素鋼スラブを1370℃で4
時間加熱後、熱間圧延して2.2mm厚の熱延板とした後、9
80℃で120分の中間焼鈍をはさむ2回の冷間圧延を施し
て0.20mmの最終冷延板とした。ついで820℃の湿水素中
で脱炭1次再結晶焼鈍を施した後、鋼板表面上にMgOを
主成分とする焼鈍分離剤をスラリー塗布し、その後850
℃で50時間の2次再結晶焼鈍を行ってゴス方位2次再結
晶粒を優先成長させた後、1200℃の乾水素中で5時間の
純化焼鈍を施し試料(A)とした。また試料(A)の一
部は、鋼板表面上にリン酸塩とコロイダルシリカを主成
分とする絶縁被膜を被成し試料(B)とした。その後試
料(A)および(B)に次の(1)〜(3)の手段にて
圧延方向と直角方向にのびる微小圧入領域を8mm間隔で
導入した。
C: 0.042%, Si: 3.42%, Mn: 0.072%, Se: 0.021%, Sb: 0.
A silicon steel slab containing 023% and Mo: 0.013%
After heating for 2 hours, hot rolling was performed to form a 2.2 mm thick hot rolled sheet, and then 9
Cold rolling was performed twice with intermediate annealing at 80 ° C. for 120 minutes to obtain a final cold-rolled sheet of 0.20 mm. Then, after decarburizing primary recrystallization annealing in wet hydrogen at 820 ° C., an annealing separating agent containing MgO as a main component is slurry-coated on the surface of the steel sheet, and then 850 ° C.
After performing secondary recrystallization annealing at 50 ° C. for 50 hours to grow secondary recrystallized grains in the Goss orientation preferentially, purification annealing was performed in dry hydrogen at 1200 ° C. for 5 hours to obtain a sample (A). A part of the sample (A) was formed as a sample (B) by forming an insulating coating mainly containing phosphate and colloidal silica on the surface of the steel sheet. Thereafter, minute press-fit regions extending in the direction perpendicular to the rolling direction were introduced into the samples (A) and (B) at intervals of 8 mm by the following means (1) to (3).

(1)EB照射 (照射条件:加速電圧150kV,電流1.5mA,スポット直径0.
12mm,スポットの中心間隔0.3mm,走査間隔8mm) 鋼板表面上へのEB照射は第3図(a)に示すように、
各スポットでの照射径およびスポット間の照射間隔とも
に均一とした。なお同図(b)は各スポットでのEBの強
さを三角形の高さとして、また同図(c)は横軸にEB走
査時間を縦軸にEB走査一の変位をそれぞれ示す。
(1) EB irradiation (irradiation conditions: acceleration voltage 150 kV, current 1.5 mA, spot diameter 0.
EB irradiation on the steel sheet surface is as shown in Fig. 3 (a), 12mm, spot center interval 0.3mm, scanning interval 8mm.
The irradiation diameter at each spot and the irradiation interval between the spots were made uniform. FIG. 3B shows the intensity of the EB at each spot as the height of a triangle, and FIG. 3C shows the EB scanning time on the horizontal axis and the displacement of one EB scanning on the vertical axis.

(2)EB照射 (照射条件:加速電圧150kV,電流1.5mAまたは0.75mA,ス
ポット直径0.12mmまたは0.80mm,スポットの中心間隔0.3
mm,走査間隔8mm) 鋼板表面上へのEB照射は、電流を1.5mAと0.75mAとに
交互に変化させながら行って照射径および照射間隔を変
化させ、第4図(a)に示すような照射痕を付与した。
なお同図(b)および(c)は第3図と同様にそれぞれ
EB強さおよびEBの走査時間の変化に対するEBの照射位置
の変化を示す。
(2) EB irradiation (irradiation conditions: acceleration voltage 150 kV, current 1.5 mA or 0.75 mA, spot diameter 0.12 mm or 0.80 mm, spot center interval 0.3
mm, scanning interval 8 mm) The EB irradiation on the steel sheet surface is performed while changing the current alternately between 1.5 mA and 0.75 mA to change the irradiation diameter and the irradiation interval, as shown in FIG. Irradiation marks were applied.
FIGS. 3 (b) and 3 (c) are similar to FIG.
5 shows changes in the EB irradiation position with respect to changes in EB intensity and EB scanning time.

(3)EB照射 (照射条件:加速電圧150kV,電流1.5mAまたは0.75mA,ス
ポット直径0.12mmまたは0.80mm,スポットの中心間隔0.3
mm,走査間隔8mm) 鋼板表面上へのEB照射は、電流を1.5mAと0.75mAとに
交互に変化させながら行って照射径および照射間隔を変
化させ、第5図(a)に示すような照射痕を付与した。
なお同図(b)および(c)は第3図と同様にそれぞれ
EB強さおよびEBの時間変化に対するEBの照射位置の変化
を示す。
(3) EB irradiation (irradiation conditions: acceleration voltage 150 kV, current 1.5 mA or 0.75 mA, spot diameter 0.12 mm or 0.80 mm, spot center interval 0.3
mm, scanning interval 8mm) The EB irradiation on the steel sheet surface is performed while changing the current alternately between 1.5mA and 0.75mA to change the irradiation diameter and the irradiation interval, as shown in Fig. 5 (a). Irradiation marks were applied.
FIGS. 3 (b) and 3 (c) are similar to FIG.
The change of the irradiation position of EB with respect to the EB intensity and the time change of EB is shown.

上記の処理を行った後各試料に800℃で2時間の歪取
り焼鈍を施した。歪取り焼鈍後の試料の磁気特性を、第
2表に示す。
After performing the above treatment, each sample was subjected to strain relief annealing at 800 ° C. for 2 hours. Table 2 shows the magnetic properties of the sample after the strain relief annealing.

また比較のため無処理材(微小圧入領域の導入なし,
歪取り焼鈍あり)の特性も同表に併記した。
In addition, for comparison, untreated material (without introduction of micro press-in area,
The characteristics of “with strain relief annealing” are also shown in the table.

同表から明らかなように、試料(A),(B)共にEB
による処理において、比較材に比べ鉄損が0.05〜0.11W/
kg向上し、とくに(2)および(3)の処理は鉄損が0.
10〜0.11W/kgと大幅に向上していることがわかる。さら
に製品の占積率は96.6〜96.8%と良好であった。
As is clear from the table, both samples (A) and (B)
Iron loss is 0.05 ~ 0.11W /
kg, and especially in the treatments (2) and (3), iron loss is reduced to 0.
It can be seen that it is significantly improved from 10 to 0.11 W / kg. Furthermore, the space factor of the product was good, 96.6-96.8%.

また珪素鋼板の板厚方向応(深さ方向)におけるEBの
透過力は、通常X線が大量発生するために使用されない
65kV以上の加速電圧において増大すること、特に100kV
以上で透過力が著しい増大を示すことも見出した。通
常、溶接用に使用されているEBの加速電圧は安全面から
60kV以下に制限されるため、その透過力はきわめて小さ
く、したがって従来この効果を見出すこともできず、ま
た利用もできなかった。そこでこの発明の効果を最大限
に生かすには加速電圧を高く(100〜500kV)、加速電流
を小さく(0.001〜5mA)設定して用いることが重要であ
り、それにより珪素鋼板の板厚方向への透過力が強くな
る。さらに、磁区細分化を効率よく行うため細いEBを用
いることによって照射領域を0.5mmφ以下の大きさにす
ることが好ましい。さらにこのEB照射した後その上に絶
縁被膜を施して、EB照射痕跡上の絶縁性をより強くして
もよいが、コストアップとなるため、通常は施さなくて
も充分絶縁効果を発揮できる。
In addition, the transmission power of EB in the thickness direction (depth direction) of a silicon steel sheet is not usually used because a large amount of X-rays are generated.
Increase at accelerating voltages above 65kV, especially 100kV
From the above, it was also found that the permeability increased remarkably. Normally, the acceleration voltage of EB used for welding is
Since it is limited to 60 kV or less, its permeation power is extremely small, so that this effect could not be conventionally found or used. Therefore, in order to make the most of the effects of the present invention, it is important to use a high acceleration voltage (100 to 500 kV) and a small acceleration current (0.001 to 5 mA). Is increased. Further, in order to efficiently perform magnetic domain subdivision, it is preferable that the irradiation region is made to have a size of 0.5 mmφ or less by using a thin EB. Furthermore, after the EB irradiation, an insulating film may be applied thereon to further enhance the insulating properties on the EB irradiation traces, but the cost is increased, so that the insulating effect can be sufficiently exhibited without the EB irradiation.

さらにこの発明に伴う鋼板は上述のように、積鉄心や
巻鉄心に供することが可能であるが、積鉄心材に供する
場合は巻鉄心材に比較して細い微小圧入領域の導入が必
要なので、EB照射条件は電流を小さく、走査間隔を広く
することが好ましい。一方巻鉄心材に供する場合のEB照
射条件は、歪取り焼鈍を施しても特性の劣化がないよう
に、電流を若干大きく、走査間隔を狭くして鋼板表面で
の微小歪の導入を促進することが好ましい。
Further, as described above, the steel sheet according to the present invention can be used for a laminated iron core or a wound iron core, but when providing a laminated iron core material, it is necessary to introduce a fine press-in area smaller than the wound iron core material. It is preferable that the EB irradiation conditions are such that the current is small and the scanning interval is wide. On the other hand, the EB irradiation condition when used for wound iron core material is to slightly increase the current and narrow the scanning interval to promote the introduction of micro-strain on the steel sheet surface so that the characteristics are not deteriorated even after performing the strain relief annealing. Is preferred.

(実施例) 実施例1 (A)C:0.043%、Si:3.36%,Se:0.02%、Sb:0.025
%、Mo:0.013%又は(B)C:0.063%、Si:3.42%、Al:
0.025%、S:0.023%、Cu:0.05%、Sn:0.1%をそれぞれ
含有した珪素鋼のフォルステライト質被膜付仕上焼鈍板
(0.20mm厚)およびさらにその表面上に絶縁被膜を塗布
した鋼板に、EB装置を用いて圧延方向と直角方向へのび
るEB照射を行った。なおEB照射条件は加速電圧:100kV,
加速電流:0.5mA,スポット直径:0.1mm,スポットの中心間
隔:0.3mmおよび走査間隔:8mmで行い、微小圧入領域は鋼
板裏面上の被膜にまでは導入しなかった。
(Examples) Example 1 (A) C: 0.043%, Si: 3.36%, Se: 0.02%, Sb: 0.025
%, Mo: 0.013% or (B) C: 0.063%, Si: 3.42%, Al:
Finished annealed sheet (0.20 mm thick) of silicon steel containing 0.025%, S: 0.023%, Cu: 0.05%, and Sn: 0.1% each with a forsterite coating and a steel sheet coated with an insulating coating on its surface Then, EB irradiation extending in a direction perpendicular to the rolling direction was performed using an EB apparatus. The EB irradiation conditions were as follows: acceleration voltage: 100 kV,
The acceleration current was 0.5 mA, the spot diameter was 0.1 mm, the center interval between the spots was 0.3 mm, and the scanning interval was 8 mm. The minute press-fit area was not introduced into the coating on the back surface of the steel sheet.

処理後の製品に800℃で2時間の歪取り焼鈍を施した
ところ、その磁気特性は第3表に示すように、比較材
(微小圧入領域の導入なし、歪取り焼鈍あり)に比べて
鉄損がW17/50値で0.08〜0.1w/kg程度低減されていた。
The treated product was subjected to strain relief annealing at 800 ° C for 2 hours. As shown in Table 3, the magnetic properties of the treated product were lower than those of the comparative material (without introduction of a small press-in area and with strain relief annealing). The loss was reduced by about 0.08 to 0.1 w / kg in W17 / 50 value.

実施例2 (A)C:0.042%、Si:3.38%,Se:0.023%、Sb:0.026
%、Mo:0.012%又は(B)C:0.061%、Si:3.44%、Al:
0.026%、S:0.028%、Cu:0.08%、Sn:0.15%をそれぞれ
含有した珪素鋼のフォルステライト質被膜付仕上焼鈍板
(0.20mm厚)およびさらにその表面上に絶縁被膜を塗布
した鋼板に、EB装置を用いて圧延方向と直角方向へのび
るEB照射を行った。なおEB照射条件は、第5図に従う走
査にて加速電圧:150kV,加速電流:1.5mA,スポット直径:
0.1mmまたは0.7mm,スポットの中心間隔:0.3mmおよび走
査間隔:8mmで行い、微小圧入領域は鋼板裏面上の被膜に
までは導入した。
Example 2 (A) C: 0.042%, Si: 3.38%, Se: 0.023%, Sb: 0.026%
%, Mo: 0.012% or (B) C: 0.061%, Si: 3.44%, Al:
For annealed sheets (0.20 mm thick) of silicon steel with a forsterite coating containing 0.026%, S: 0.028%, Cu: 0.08%, and Sn: 0.15%, respectively, and a steel sheet coated with an insulating coating on its surface Then, EB irradiation extending in a direction perpendicular to the rolling direction was performed using an EB apparatus. The EB irradiation conditions were as follows: scanning voltage according to FIG. 5, acceleration voltage: 150 kV, acceleration current: 1.5 mA, spot diameter:
The distance was 0.1 mm or 0.7 mm, the center interval of the spots was 0.3 mm, and the scanning interval was 8 mm. The minute press-fit area was introduced to the coating on the back surface of the steel sheet.

次いで処理後の製品に800℃で2時間の歪取り焼鈍を
施したところ、その磁気特性は第4表に示すように、比
較材(微小圧入領域の導入なし、歪取り焼鈍あり)に比
べて鉄損がW17/50値で0.10〜0.14w/kg程度低減されて
いた。
Next, the treated product was subjected to a strain relief annealing at 800 ° C. for 2 hours. As shown in Table 4, the magnetic properties of the treated product were lower than those of the comparative material (without introduction of a small press-in area and with strain relief annealing). Iron loss was reduced by about 0.10 to 0.14 w / kg in W17 / 50 value.

実施例3 C:0.068%、Si:3.39%,Mn:0.082%、Se:0.019%、Al:
0.023%、Sb:0.022%およびMo:0.012%を含有する珪素
鋼熱延板を1050℃の中間焼鈍をはさむ2回の冷間圧延に
より、0.23mm厚の最終冷延板としたのち、840℃で脱炭
処理後、850℃から1050℃まで10℃/hで昇温してゴス方
位2次再結晶粒を発達させた後1230℃で乾H2中で鈍化焼
鈍を行った。その後さらにその上にリン酸塩とコロイダ
ルシリカを主成分とする絶縁被膜を塗布した後、圧延方
向と直角方向に第5表に示す高電圧・低電流のEB照射を
行った。そのときの製品の磁気特性をまとめて示すが、
一部の試料(表中に*で示す)を除いた全ての製品は80
0℃で2時間の歪取り焼鈍を行った。なおこのときの電
子ビームのスポット径は0.10〜0.12mmおよび走査間隔は
7mmで行った。
Example 3 C: 0.068%, Si: 3.39%, Mn: 0.082%, Se: 0.019%, Al:
A hot rolled silicon steel sheet containing 0.023%, Sb: 0.022% and Mo: 0.012% was subjected to two cold rolling steps with intermediate annealing at 1050 ° C to form a final cold-rolled sheet having a thickness of 0.23mm, and then 840 ° C. After decarburizing, the temperature was raised from 850 ° C. to 1050 ° C. at 10 ° C./h to develop secondary recrystallized Goss grains, followed by annealing at 1230 ° C. in dry H 2 . Thereafter, an insulating coating mainly composed of phosphate and colloidal silica was further applied thereon, and high-voltage / low-current EB irradiation shown in Table 5 was performed in a direction perpendicular to the rolling direction. The magnetic properties of the product at that time are shown together,
80 for all products except some samples (indicated by * in the table)
The strain relief annealing was performed at 0 ° C. for 2 hours. The spot diameter of the electron beam at this time is 0.10 to 0.12 mm and the scanning interval is
Performed at 7 mm.

実施例4 C:0.044%、Si:3.45%、Mn:0.073%、Se:0.020%、S
b:0.026%、Mo:0.014%を含有した珪素鋼熱延板を950℃
の中間焼鈍をはさむ2回の冷間圧延により0.20mm厚の最
終冷延板としたのち、800℃で脱炭・1次再結晶焼鈍を
行った後、850℃で50時間の2次再結晶焼鈍を行ってゴ
ス方位2次再結晶粒を発達させた後、1180℃で8時間乾
H2中で鈍化焼鈍を行った。その後、表面にリン酸塩とコ
ロイダルシリカを主成分とする絶縁被膜を塗布したの
ち、圧延方向に直角方向に(a)330kV,0.5mA,(b)64
0kV,0.4mAでのEB照射を行った後、800℃で3時間の歪取
り焼鈍を行った。なお電子ビームのスポット径は0.08mm
および走査間隔は7mmであった。このときの製品の磁気
特性は (a)B10=1.92T,W1717/50=0.74W/kg, (b)B10=1.92T,W1717/50=0.72W/kg, であり、同様の工程を経てEB照射を行わない製品(B10
=1.92T,W17/50=0.92W/kg)に比較して、20〜22%の鉄
損の大幅な向上を示した。
Example 4 C: 0.044%, Si: 3.45%, Mn: 0.073%, Se: 0.020%, S
b: 0.026%, Mo: 0.014% containing hot rolled silicon steel sheet at 950 ° C
The final cold rolled sheet with a thickness of 0.20 mm was formed by cold rolling twice with intermediary annealing, followed by decarburization and primary recrystallization annealing at 800 ° C, followed by secondary recrystallization at 850 ° C for 50 hours. After annealing to develop secondary recrystallized Goss grains, dry at 1180 ° C for 8 hours.
It was slowed annealing in H 2. After that, an insulating coating mainly composed of phosphate and colloidal silica is applied to the surface, and then (a) 330 kV, 0.5 mA, (b) 64
After EB irradiation at 0 kV and 0.4 mA, strain relief annealing was performed at 800 ° C. for 3 hours. The spot diameter of the electron beam is 0.08mm
And the scan interval was 7 mm. The magnetic properties of the product at this time are (a) B 10 = 1.92 T, W17 17/50 = 0.74 W / kg, (b) B 10 = 1.92 T, W17 17/50 = 0.72 W / kg, Products that do not undergo EB irradiation after the process (B 10
= 1.92T, W 17/50 = 0.92W / kg) showed a significant improvement in iron loss by 20 to 22%.

実施例5 C:0.042%、Si:3.32%、Mn:0.068%、Se:0.019%、S
b:0.022%、Mo:0.011%を含有した珪素鋼スラブを1350
℃で4時間加熱後、熱間圧延を施して2.4mm厚とした
後、980℃での中間焼鈍をはさんで2回の冷間圧延を施
して0.20mm厚の最終冷延板とした。その後820℃の湿水
素中で脱炭を兼ねる1次再結晶焼鈍を行った後850℃で5
0時間の2次再結晶焼鈍、ひきつづき1200℃で5時間の
乾H2中で鈍化焼鈍を行った。その後鋼板表面上の酸化物
を除去し、電解研磨により中心線平均粗さ(Ra)で0.08
μmに仕上げた後、イオンプレーティング(HCD法)に
よりTiNを1.0μm厚で被成した。さらにその上にリン酸
塩とコロイダルシリカを主成分とする絶縁被膜を被成し
た後、圧延方向に直角方向に高電圧・低電流のEB(条
件:225kV,0.5mA)を照射した。なお電子ビームスポット
径は0.11mmおよび走査間隔は6mmで行った。
Example 5 C: 0.042%, Si: 3.32%, Mn: 0.068%, Se: 0.019%, S
b: 0.022%, Mo: 0.011% silicon steel slab containing 1350
After heating at 4 ° C. for 4 hours, hot rolling was performed to a thickness of 2.4 mm, and then intermediate rolling at 980 ° C. was performed, followed by cold rolling twice to obtain a final cold rolled sheet having a thickness of 0.20 mm. After that, primary recrystallization annealing, which also serves as decarburization, was performed in 820 ° C wet hydrogen.
Secondary recrystallization annealing was performed for 0 hours, followed by annealing in dry H 2 at 1200 ° C. for 5 hours. After that, the oxide on the steel sheet surface was removed, and the center line average roughness (R a ) was 0.08 by electrolytic polishing.
After finishing to a thickness of μm, TiN was formed in a thickness of 1.0 μm by ion plating (HCD method). Further, an insulating coating mainly composed of phosphate and colloidal silica was formed thereon, and then irradiated with high-voltage / low-current EB (condition: 225 kV, 0.5 mA) in a direction perpendicular to the rolling direction. The electron beam spot diameter was 0.11 mm and the scanning interval was 6 mm.

このときの製品の磁気特性は B10=1.93T,W1717/50=0.62W/kg であり、同様の工程を経てEB照射を行わない通常の製品
板(B10=1.93T,W17/50=0.92W/kg)に比較して33%の
大幅な向上を示した。
Magnetic properties of the product at this time is B 10 = 1.93T, W17 17/50 = a 0.62 W / kg, normal product plate is not performed EB irradiation through the same steps (B 10 = 1.93T, W 17 / 50 = 0.92 W / kg), which is a significant improvement of 33%.

(発明の効果) この発明によれば、歪取り焼鈍によって鉄損の劣化し
ない一方向成珪素鋼板およびこの珪素鋼板を安定して製
造する方法を提供できる。
(Effects of the Invention) According to the present invention, it is possible to provide a unidirectionally formed silicon steel sheet in which iron loss is not deteriorated by strain relief annealing and a method for stably manufacturing the silicon steel sheet.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)および(b)はこの発明の磁気特性向上の
メカニズムを示す模式図、 第2図は珪素鋼板に対する種々の方法による深さ方向の
透過力と幅方向の大きさを示す模式図である。 第3〜5図(a)はEB照射痕を示す模式図、 第3〜5図(b)はEB強さを示す模式図、 第3〜5図(c)はEB走査位置と時間の変化を示す模式
図である。 1……フォルステライト下地被膜 2……絶縁被膜 3……地鉄
1 (a) and 1 (b) are schematic diagrams showing a mechanism for improving the magnetic properties of the present invention, and FIG. 2 is a schematic diagram showing the penetration force in the depth direction and the size in the width direction of a silicon steel sheet by various methods. FIG. FIGS. 3 to 5A are schematic diagrams showing EB irradiation traces, FIGS. 3 to 5B are schematic diagrams showing EB intensity, and FIGS. 3 to 5C are changes in EB scanning position and time. FIG. 1 ... forsterite undercoating 2 ... insulation coating 3 ... ground iron

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】仕上焼鈍を施したフォルステライト質被膜
付の一方向性珪素鋼板にして、鋼板表面のフォルステラ
イト質被膜が地鉄に圧入された微小圧入領域を、鋼板の
圧延方向と直交する向きへ局所的に導入してなる低鉄損
一方向性珪素鋼板。
1. A unidirectional silicon steel sheet with a forsterite coating which has been subjected to finish annealing, wherein a micro-press-fitted region in which the forsterite coating on the steel sheet surface is pressed into the ground iron is perpendicular to the rolling direction of the steel sheet. Low iron loss unidirectional silicon steel sheet locally introduced in the direction.
【請求項2】仕上焼鈍を施したフォルステライト質被膜
上にさらに絶縁被膜を形成した一方向性珪素鋼板にし
て、鋼板表面のフォルステライト質被膜及び絶縁被膜が
地鉄に圧入された微小圧入領域を、鋼板の圧延方向と直
交する向きへ局所的に導入してなる低鉄損一方向性珪素
鋼板。
2. A small press-fit region in which a forsterite coating and an insulating coating on the surface of a steel plate are press-fitted into a base iron by forming a unidirectional silicon steel sheet having an insulating coating further formed on a forsterite coating subjected to finish annealing. , A low iron loss unidirectional silicon steel sheet locally introduced in a direction perpendicular to the rolling direction of the steel sheet.
【請求項3】微小圧入領域は、鋼板表面の圧入部が地鉄
を通って鋼板裏面上の被膜にまで及ぶものである請求項
1または2に記載の低鉄損一方向性珪素鋼板。
3. The low iron loss unidirectional silicon steel sheet according to claim 1, wherein the minute press-fitting region is such that a press-fit portion on the surface of the steel sheet extends through the ground iron to a coating on the back surface of the steel sheet.
【請求項4】仕上焼鈍を経た一方向性珪素鋼板につき、
その表面上に、加速電圧:100〜500kVおよび加速電流:0.
005〜10mAにて発生させた電子ビームを、圧延方向と直
交する向きへ局所的に照射し、鋼板表面上の被膜を地鉄
に圧入することを特徴とする低鉄損一方向性珪素鋼板の
製造方法。
4. A unidirectional silicon steel sheet having undergone finish annealing,
On its surface, acceleration voltage: 100-500 kV and acceleration current: 0.
An electron beam generated at 005 to 10 mA is locally irradiated in a direction perpendicular to the rolling direction, and the coating on the steel sheet surface is pressed into ground iron to reduce the iron loss of the unidirectional silicon steel sheet. Production method.
【請求項5】仕上焼鈍を経た一方向性珪素鋼板につき、
その表面上に、加速電圧:100〜500kVおよび加速電流:0.
005〜10mAにて発生させた電子ビームを、圧延方向と直
交する向きへ局所的に照射し、鋼板表面上の被膜を地鉄
に圧入するとともに、地鉄を鋼板裏面上の被膜に圧入す
ることを特徴とする低鉄損一方向性珪素鋼板の製造方
法。
5. A unidirectional silicon steel sheet having been subjected to finish annealing,
On its surface, acceleration voltage: 100-500 kV and acceleration current: 0.
Locally irradiate the electron beam generated at 005 to 10 mA in the direction perpendicular to the rolling direction, and press-fit the coating on the steel sheet surface to the base steel, and press-fit the base steel to the coating on the back surface of the steel sheet. A method for producing a low iron loss unidirectional silicon steel sheet, comprising:
【請求項6】電子ビームの照射径および照射間隔を変化
させることを特徴とする請求項4または5に記載の製造
方法。
6. The method according to claim 4, wherein the irradiation diameter and the irradiation interval of the electron beam are changed.
JP1027578A 1988-10-26 1989-02-08 Low iron loss unidirectional silicon steel sheet and method for producing the same Expired - Fee Related JP2638180B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP1027578A JP2638180B2 (en) 1988-10-26 1989-02-08 Low iron loss unidirectional silicon steel sheet and method for producing the same
US07/423,851 US5146063A (en) 1988-10-26 1989-10-18 Low iron loss grain oriented silicon steel sheets and method of producing the same
EP89310893A EP0367467B1 (en) 1988-10-26 1989-10-23 Low iron loss grain oriented silicon steel sheets and method of producing the same
CA002001213A CA2001213C (en) 1988-10-26 1989-10-23 Low iron loss grain oriented silicon steel sheets and method of producing the same
DE89310893T DE68909000T2 (en) 1988-10-26 1989-10-23 Grain-oriented silicon steel sheets with low wattage losses and method for producing the same.
KR1019890015458A KR0134088B1 (en) 1988-10-26 1989-10-26 Low iron loss grain oriented silicon steel sheets & method of producing the same
US07/636,913 US5223048A (en) 1988-10-26 1991-01-02 Low iron loss grain oriented silicon steel sheets and method of producing the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP26831988 1988-10-26
JP63-268319 1988-10-26
JP1-11819 1989-01-23
JP1181989 1989-01-23
JP1027578A JP2638180B2 (en) 1988-10-26 1989-02-08 Low iron loss unidirectional silicon steel sheet and method for producing the same

Publications (2)

Publication Number Publication Date
JPH02277780A JPH02277780A (en) 1990-11-14
JP2638180B2 true JP2638180B2 (en) 1997-08-06

Family

ID=27279596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1027578A Expired - Fee Related JP2638180B2 (en) 1988-10-26 1989-02-08 Low iron loss unidirectional silicon steel sheet and method for producing the same

Country Status (1)

Country Link
JP (1) JP2638180B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5593942B2 (en) * 2010-08-06 2014-09-24 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
MX353179B (en) * 2010-08-06 2018-01-05 Jfe Steel Corp Grain-oriented electrical steel sheet, and method for producing same.
CN103827326B (en) 2011-09-28 2016-05-11 杰富意钢铁株式会社 Orientation electromagnetic steel plate and manufacture method thereof
JP6007501B2 (en) * 2012-02-08 2016-10-12 Jfeスチール株式会社 Oriented electrical steel sheet
US9543903B2 (en) 2012-10-22 2017-01-10 Qualcomm Incorporated Amplifiers with noise splitting
JP5668795B2 (en) 2013-06-19 2015-02-12 Jfeスチール株式会社 Oriented electrical steel sheet and transformer core using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58144424A (en) * 1982-02-19 1983-08-27 Kawasaki Steel Corp Manufacture of directional electromagnetic steel sheet having low iron loss
JPH0672266B2 (en) * 1987-01-28 1994-09-14 川崎製鉄株式会社 Method for manufacturing ultra low iron loss unidirectional silicon steel sheet
JPS63130747A (en) * 1986-11-20 1988-06-02 Kawasaki Steel Corp Grain oriented silicon steel sheet having excellent magnetic characteristic and its production

Also Published As

Publication number Publication date
JPH02277780A (en) 1990-11-14

Similar Documents

Publication Publication Date Title
KR101421387B1 (en) Grain oriented electrical steel sheet and method for manufacturing the same
JPWO2016056501A1 (en) Low iron loss grain-oriented electrical steel sheet and manufacturing method thereof
JPS63186826A (en) Production of grain-orientated silicon steel plate having super low iron loss
KR100259990B1 (en) Low-iron-loss grain oriented electromagnetic steel sheet and method of manufacturing the same
US4897131A (en) Grain-oriented electrical steel sheet having improved glass film properties and low watt loss
JP6116796B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP3399991B2 (en) Method for producing low iron loss unidirectional silicon steel sheet
JPH0657857B2 (en) Method for manufacturing low iron loss grain-oriented electrical steel sheet
KR0134088B1 (en) Low iron loss grain oriented silicon steel sheets & method of producing the same
JP2638180B2 (en) Low iron loss unidirectional silicon steel sheet and method for producing the same
JPH07268474A (en) Grain oriented silicon steel sheet with low iron loss
JPH062042A (en) Production of grain-oriented silicon steel sheet with low iron loss for laminated iron core
US5223048A (en) Low iron loss grain oriented silicon steel sheets and method of producing the same
JPH07320922A (en) One directional electromagnetic steel sheet at low iron loss
US20200325555A1 (en) Low-iron-loss grain-oriented electrical steel sheet and production method for same
JPH0765108B2 (en) Iron loss reduction method of unidirectional silicon steel sheet by electron beam irradiation
JPH11124629A (en) Grain oriented silicon steel sheet reduced in iron loss and noise
JPH05179355A (en) Production of low-iron loss unidirectionally oriented silicon steel sheet
JPH0432517A (en) Production of grain-oriented silicon steel sheet reduced in iron loss
JPH01147074A (en) Grain-oriented silicon steel sheet free from deterioration in property due to stress relief annealing
JP2638180C (en)
JPH04231415A (en) Production of grain-oriented silicon steel sheet reduced in iron loss
JPH03287725A (en) Production of grain-oriented silicon steel sheet reduced in iron loss
JPH0543945A (en) Manufacture of low iron loss grain-oriented silicon steel sheet
JPH0565543A (en) Manufacture of low iron loss unidirectional silicon steel sheet having uniform characteristic in transverse direction without deteriorating magnetic characteristic even in the case of applying strain-removal annealing

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees