JPH0765108B2 - Iron loss reduction method of unidirectional silicon steel sheet by electron beam irradiation - Google Patents

Iron loss reduction method of unidirectional silicon steel sheet by electron beam irradiation

Info

Publication number
JPH0765108B2
JPH0765108B2 JP2056332A JP5633290A JPH0765108B2 JP H0765108 B2 JPH0765108 B2 JP H0765108B2 JP 2056332 A JP2056332 A JP 2056332A JP 5633290 A JP5633290 A JP 5633290A JP H0765108 B2 JPH0765108 B2 JP H0765108B2
Authority
JP
Japan
Prior art keywords
steel sheet
iron loss
electron beam
silicon steel
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2056332A
Other languages
Japanese (ja)
Other versions
JPH03260020A (en
Inventor
征夫 井口
Original Assignee
川崎製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎製鉄株式会社 filed Critical 川崎製鉄株式会社
Priority to JP2056332A priority Critical patent/JPH0765108B2/en
Publication of JPH03260020A publication Critical patent/JPH03260020A/en
Publication of JPH0765108B2 publication Critical patent/JPH0765108B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、鉄損の低い一方向性珪素鋼板の製造方法に
関し、とくに鋼板表面上の被膜を地鉄に圧入することに
よって磁区の細分化をはかり、鉄損を低減しようとする
ものである。
Description: TECHNICAL FIELD The present invention relates to a method for producing a unidirectional silicon steel sheet having a low iron loss, and in particular, subdividing a magnetic domain by press-fitting a coating on the surface of the steel sheet into base iron. It is intended to reduce iron loss by measuring.

(従来の技術) 一方向性珪素鋼板は製品の2次再結晶粒をゴス方位に高
度に集積させ、また鋼板表面上にはフォルステライト質
被膜を形成し、さらにその上に熱膨張係数の小さい絶縁
被膜を被成したもので、厳格な制御を必要とする複雑、
多岐にわたる工程を経て製造される。
(Prior Art) In a unidirectional silicon steel sheet, secondary recrystallized grains of a product are highly integrated in a Goss orientation, and a forsterite coating is formed on the surface of the steel sheet, and a thermal expansion coefficient is small on the forsterite coating. It is an insulating coating, and requires complicated control,
It is manufactured through various processes.

このような一方向性珪素鋼板は、主として変圧器その他
電気機器の鉄心として使用されており、磁気特性として
製品の磁束密度(B10値で代表される)が高く、鉄損
(W17/50値で代表される)が低いこと、さらに表面性
状が良好な絶縁被膜を有することが要求されている。
Such a unidirectional silicon steel sheet is mainly used as an iron core of a transformer or other electric equipment, and has a high magnetic flux density (represented by a B 10 value) of a product as a magnetic property, and an iron loss (W 17/50). (Represented by value) is low, and further, it is required to have an insulating coating having good surface properties.

とくにエネルギー危機を境にして電力損失の低減を至上
とする要請が著しく強まり、変圧器用鉄心材料としての
鉄損のより低い一方向性珪素鋼板の必要性は増々重要な
ものとなってきている。
In particular, the demand for reduction of power loss has been remarkably increased at the border of the energy crisis, and the need for a unidirectional silicon steel sheet having a lower iron loss as an iron core material for a transformer is becoming more and more important.

さて一方向性珪素鋼板の鉄損改善の歴史は、ゴス方位2
次再結晶集合組織の改善の歴史であると言っても過言で
はない。このような2次再結晶粒を制御する方法とし
て、AlN,MnS及びMnSe等の1次再結晶粒成長抑制剤、い
わゆるインヒビターを用いてゴス方位2次再結晶粒を優
先成長させる方法が実施されている。
Now, the history of iron loss improvement in unidirectional silicon steel sheet is Goss orientation 2
It is no exaggeration to say that this is the history of improvement in secondary recrystallization texture. As a method for controlling such secondary recrystallized grains, a method for preferentially growing secondary recrystallized grains of Goss orientation using a primary recrystallized grain growth inhibitor such as AlN, MnS and MnSe, a so-called inhibitor is implemented. ing.

一方これら2次再結晶集合組織を制御する方法とは全く
異なる方法、すなわち鋼板表面にレーザー照射{市山
正:鉄と鋼,69(1983),P.895、特公昭57−2252号、同5
7−53419号、同58−24605号、同58−24606号各公報参
照}又はプラズマ照射{特開昭62−96617号、同62−151
511号、同62−151516号および同62−151517号各公報参
照}により局部微小歪を導入して磁区を細分化し、もっ
て鉄損を低下する画期的な方法が提案された。しかしな
がらこれらの方法により得られた鋼板は、高温域まで加
熱すると微小歪が消失するため、高温の歪取り焼鈍を施
す巻鉄心トランス用材料には使用できないという欠点が
ある。
On the other hand, a method completely different from the method for controlling these secondary recrystallization textures, that is, laser irradiation on the surface of a steel sheet {Tadashi Ichiyama: Iron and Steel, 69 (1983), P.895, JP-B-57-2252, ibid. Five
7-53419, 58-24605, 58-24606, respectively} or plasma irradiation {Japanese Patent Laid-Open No. 62-96617, 62-151
No. 511, No. 62-151516, and No. 62-151517), an epoch-making method has been proposed in which local microstrain is introduced to subdivide magnetic domains and thereby reduce iron loss. However, the steel sheet obtained by these methods has a drawback that it cannot be used as a material for a wound core transformer that is subjected to high temperature strain relief annealing because minute strain disappears when heated to a high temperature range.

このような高温の歪取り焼鈍を施しても鉄損が劣化しな
い方法が提案されている。例えば、仕上焼鈍板の表面に
溝もしくはセレーションを形成する方法(特公昭50−35
679号、特開昭59−28525号及び同59−197520号各公報参
照)、仕上焼鈍板の表面に微再結晶粒領域を形成する方
法(特開昭56−130454号公報参照)、フォルステライト
質被膜に異厚或いは欠損領域を形成する方法(特開昭60
−92479号、同60−92480号、同60−92481号及び同60−2
58479号各公報参照)、地鉄中、フォルステライト質被
膜中又は張力絶縁被膜中に異組成領域を形成する方法
(特開昭60−103124号及び同60−103182号各公報参
照)、等である。
A method has been proposed in which iron loss does not deteriorate even if such high temperature strain relief annealing is performed. For example, a method of forming grooves or serrations on the surface of a finish annealed plate (Japanese Patent Publication No. 50-35).
679, JP-A-59-28525 and JP-A-59-197520), a method of forming fine recrystallized grain regions on the surface of a finish annealed plate (see JP-A-56-130454), forsterite Method of forming a different thickness or defective region in a porous coating
-92479, 60-92480, 60-92481 and 60-2
58479), a method of forming a different composition region in a base iron, a forsterite coating or a tension insulating coating (see JP-A-60-103124 and 60-103182). is there.

しかしながらこれらの方法はいずれも工程が複雑となる
わりには鉄損の低減効果は少なく、また製造コストが高
いこともあって、工業的に採用されるには至っていな
い。
However, all of these methods have not been industrially adopted because the effect of reducing iron loss is small in spite of the complicated process and the manufacturing cost is high.

そこで発明者は、電子ビームを利用して、鋼板表面の被
膜を地鉄に圧入して磁区の細分化をはかることによっ
て、歪取り焼鈍を施しても磁区細分化の効果が消失しな
い手法を開発し、先に特願平1−27578号明細書にて提
案した。
Therefore, the inventor has developed a method in which the effect of magnetic domain subdivision does not disappear even if strain relief annealing is performed by press-fitting the coating film on the surface of the steel plate into the base metal by using electron beams to subdivide the magnetic domains. However, it was previously proposed in the specification of Japanese Patent Application No. 1-257578.

(発明が解決しようとする課題) この発明は、上記した、電子ビームによって鋼板表面の
被膜を地鉄に圧入する処理の改善に係り、この処理をよ
り有効かつ確実に行う方途について提案することを目的
とする。
(Problems to be Solved by the Invention) The present invention relates to an improvement in the above-described process of press-fitting a coating film on the surface of a steel sheet into a base metal by an electron beam, and proposes a method of more effectively and surely performing this process. To aim.

(課題を解決するための手段) この発明は、仕上焼鈍を経た一方向性珪素鋼板につき、
高電圧および小電流にて発生させた電子ビームを鋼板の
圧延方向を横切る向きに走査し、鋼板表面上の被膜を局
所的に地鉄に圧入して微小圧入領域を形成するに当た
り、 該電子ビームの走査を20μs以下の間隔で間欠的に停止
し、この走査の停止中に電子ビームを点状に照射し、微
小圧入領域を点線状に導入することを特徴とする電子ビ
ーム照射による一方向性けい素鋼板の鉄損低減方法であ
る。
(Means for Solving the Problem) The present invention relates to a unidirectional silicon steel sheet that has undergone finish annealing.
An electron beam generated by a high voltage and a small current is scanned in a direction transverse to the rolling direction of the steel sheet, and the coating on the surface of the steel sheet is locally pressed into the base metal to form a minute press-fit region. Scanning is intermittently stopped at intervals of 20 μs or less, the electron beam is irradiated in spots while this scanning is stopped, and a minute press-fitting area is introduced in a dotted line. Unidirectionality by electron beam irradiation. This is a method for reducing iron loss of silicon steel sheets.

ここで微小圧入領域は、鋼板表面の圧入部が地鉄を通っ
て鋼板裏面の被膜にまで及ぶものであることが有利で、
このような微小圧入領域を導入した鋼板の裏面には鋼板
表面の圧入部に対応した微小な凸部が形成されることに
なる。
Here, the micro press-fitting region is advantageous in that the press-fitting portion of the steel plate surface extends to the coating on the back surface of the steel plate through the base iron,
On the back surface of the steel sheet having such a minute press-fitted region introduced, minute protrusions corresponding to the press-fitted portions on the steel sheet surface are formed.

またこの発明で対象とする一方向性珪素鋼板は、その表
面上にフォルステライト被膜をそなえているか、さらに
フォルステライト被膜上に絶縁被膜を形成したものも適
合する。
The unidirectional silicon steel sheet targeted by the present invention is also suitable if it has a forsterite coating on its surface or has an insulating coating formed on the forsterite coating.

なおフォルステライト被膜および絶縁被膜を微小領域に
おいて鋼板の幅方向へ地鉄内部の奥深くまで圧入して得
た微小圧入領域に起因した磁区細分化による鉄損改善効
果を歪取り焼鈍によっても消失させないためには、高電
圧および小電流の電子ビーム(以下EBと示す)を使用し
てはじめて可能になる。すなわち、特に高電圧および小
電流のEBを使用した場合には、他の方法レーザー、プラ
ズマ、メカニカルな手法等)にくらべ、深さ方向への透
過力が強く、しかも最も狭い幅で浸透するため、下地被
膜および絶縁被膜を消失することなく、地鉄へ押込める
ことが可能となる。
In addition, in order to prevent the loss of iron loss improvement effect due to the magnetic domain refinement due to the fine press-fitting region obtained by press-fitting the forsterite coating and the insulating coating in the microregion in the width direction of the steel plate deeply inside the base steel, even by strain relief annealing. For the first time, it becomes possible only by using a high voltage and small current electron beam (hereinafter referred to as EB). That is, when EB with high voltage and small current is used, the penetrating power in the depth direction is stronger than that of other methods such as laser, plasma, mechanical method, etc., and it penetrates in the narrowest width. In addition, it is possible to push the base coating and the insulating coating into the base metal without disappearing.

さらにこの発明の素材である含珪素鋼としては、従来公
知の成分組成のものいずれもが適合するが、代表組成を
掲げると次のとおりである。
Further, as the silicon-containing steel which is the material of the present invention, any of the conventionally known component compositions are suitable, and the representative compositions are as follows.

C:0.01〜0.10% Cは、熱間圧延、冷間圧延中の組織の均一微細化のみな
らず、ゴス方位の発達に有用な元素であり、少なくとも
0.01%以上の添加が好ましい。しかしながら0.10%を超
えて含有されるとかえってゴス方位に乱れが生じるので
上限は0.10%程度が好ましい。
C: 0.01 to 0.10% C is an element useful not only for uniform refinement of the structure during hot rolling and cold rolling but also for development of Goss orientation, and at least
Addition of 0.01% or more is preferable. However, if the content exceeds 0.10%, the Goss orientation is rather disordered, so the upper limit is preferably about 0.10%.

Si:2.0〜4.5% Siは、鋼板の比抵抗を高め鉄損の低減に有効に寄与する
が、4.5%を上回ると冷延性が損なわれ、一方2.0%に満
たないと比抵抗が低下するだけでなく、2次再結晶・純
化のために行われる最終高温焼鈍中にα−γ変態によっ
て結晶方位のランダムを生じ、十分な鉄損改善効果が得
られないので、Si量は2.0〜4.5%程度とするのが好まし
い。Mn:0.02〜0.12% Mnは、熱間脆化を防止するため少なくとも0.02%程度を
必要とするが、あまりに多すぎると磁気特性を劣化させ
るので上限は0.12%程度に定めるのが好ましい。
Si: 2.0 to 4.5% Si increases the resistivity of the steel sheet and effectively contributes to the reduction of iron loss, but if it exceeds 4.5%, the cold ductility is impaired, while if it is less than 2.0%, the resistivity decreases. However, during the final high temperature annealing performed for secondary recrystallization and purification, the α-γ transformation causes random crystallographic orientation, and a sufficient iron loss improving effect cannot be obtained. Therefore, the Si content is 2.0 to 4.5%. It is preferably about the same. Mn: 0.02 to 0.12% Mn needs to be at least about 0.02% in order to prevent hot embrittlement, but if it is too much, the magnetic properties deteriorate, so the upper limit is preferably set to about 0.12%.

インヒビターとしては、いわゆるMnS,MnSe系とAIN系と
がある。MnS,MnSe系の場合は、 Se,Sのうちから選ばれる少なくとも1種:0.005〜0.06% Se,Sはいずれも、方向性けい素鋼板の2次再結晶を制御
するインヒビターとして有力な元素である。抑制力確保
の観点からは、少なくとも0.005%程度を必要とする
が、0.06%を超えるとその効果が損なわれるので、その
下限、上限はそれぞれ0.01%,0.06%程度とするのが好
ましい。
As the inhibitor, there are so-called MnS, MnSe type and AIN type. In the case of MnS and MnSe, at least one selected from Se and S: 0.005 to 0.06% Se and S are all effective elements as inhibitors that control the secondary recrystallization of grain-oriented silicon steel sheets. is there. From the viewpoint of securing the suppression power, at least about 0.005% is required, but if it exceeds 0.06%, the effect is impaired, so the lower and upper limits are preferably set to about 0.01% and 0.06%, respectively.

AlN系の場合は、 Al:0.005〜0.10%,N:0.004〜0.015% AlおよびNの範囲についても、上述したMnS,MnSe系の場
合と同様な理由により、上記の範囲に定めた。ここに上
記したMnS,MnSe系およびAlN系はそれぞれ併用が可能で
である。
In the case of the AlN type, Al: 0.005 to 0.10%, N: 0.004 to 0.015% The range of Al and N is set to the above range for the same reason as in the case of the above-mentioned MnS and MnSe type. The above-mentioned MnS, MnSe-based and AlN-based can be used together.

インヒビター成分としては上記したS,Se,Alの他、Cu,S
n,Cr、Ge,Sb,Mo,Te,BiおよびPなども有利に適合するの
で、それぞれ少量併せて含有させることもできる。ここ
に上記成分の好適添加範囲はそれぞれ、Cu,Sn,Cr:0.01
〜0.15%、Ge,Sb,Mo,Te,Bi:0.005〜0.1%、P:0.01〜0.2
%であり、これらの各インヒビター成分についても、単
独使用および複合使用いずれもが可能である。
As the inhibitor component, in addition to the above S, Se, Al, Cu, S
Since n, Cr, Ge, Sb, Mo, Te, Bi, P, etc. are also advantageously suited, a small amount of each can be included. Here, the preferred addition range of each of the above components is Cu, Sn, Cr: 0.01
~ 0.15%, Ge, Sb, Mo, Te, Bi: 0.005-0.1%, P: 0.01-0.2
%, And each of these inhibitor components can be used alone or in combination.

(作 用) 次にこの発明について実験例に基いて詳細に述べる。(Operation) Next, the present invention will be described in detail based on experimental examples.

C:0.068wt%(以下単に%と示す),Si:3.48%,Mn:0.079
%,Se:0.020%,Sb:0.026%,Mo:0.013%を含み残部実質
的にFeよりなる珪素鋼スラブを、1360℃で加熱後、熱間
圧延して2.4mm厚の熱延板とした後、980℃で120分の中
間焼鈍をはさむ2回の冷間圧延を施して0.20mm厚の最終
冷延板とした。ついで825℃の湿水素中で脱炭1次再結
晶焼鈍を施した後、鋼板表面上にMgOを主成分とする焼
鈍分離剤をスラリー塗布し、その後850℃で50時間の2
次再結晶焼鈍を行ってゴス方位2次再結晶粒を優先成長
させた後、1200℃の乾水素中で5時間の純化焼鈍を施し
た。次いで鋼板表面上にリン酸塩とコロイダルシリカを
主成分とする絶縁被膜を被成した後、150kV,1.2mAで発
生させた0.12mmφのEBを、下記の〜の条件に従って
圧延方向と直角方向に走査して照射し、かつこの照射を
圧延方向へ8mmの距離間隔で施し、その後800℃で3時間
の歪取り焼鈍を行った。また比較としてEB照射を施さな
い場合についても、同様の実験を行った。
C: 0.068wt% (hereinafter simply referred to as%), Si: 3.48%, Mn: 0.079
%, Se: 0.020%, Sb: 0.026%, Mo: 0.013%, the balance is a silicon steel slab consisting essentially of Fe, heated at 1360 ° C, and hot-rolled to a hot-rolled sheet with a thickness of 2.4 mm. After that, cold rolling was performed twice with intermediate annealing at 980 ° C. for 120 minutes to obtain a final cold-rolled sheet having a thickness of 0.20 mm. Then, after decarburizing primary recrystallization annealing in wet hydrogen at 825 ° C, an annealing separator containing MgO as a main component is slurry-coated on the surface of the steel sheet, and then at 850 ° C for 50 hours for 2 hours.
After performing secondary recrystallization annealing to preferentially grow Goss-oriented secondary recrystallized grains, purification annealing was performed in dry hydrogen at 1200 ° C. for 5 hours. Next, after forming an insulating coating mainly composed of phosphate and colloidal silica on the steel plate surface, 0.12 mmφ EB generated at 150 kV, 1.2 mA was applied in the direction perpendicular to the rolling direction according to the following conditions. Irradiation was performed by scanning, and this irradiation was performed in the rolling direction at intervals of 8 mm, and then strain relief annealing was performed at 800 ° C. for 3 hours. As a comparison, the same experiment was performed even when EB irradiation was not performed.

記 走査速度:15m/minで鋼板の両面を走査して線状の微小
圧入領域を形成 走査速度:5m/minで鋼板の両面を走査して線状の微小
圧入領域を形成 走査速度:10m/minで、30μs走査するごとに100μs
停止し、点状の微小圧入領域を鋼板の両面に300μm間
隔で直線状に形成 走査速度:7m/minで、10μs走査するごとに100μs停
止し、点状の微小圧入領域を鋼板の両面に300μm間隔
で直線状に形成 走査速度:12m/minで、30μs走査するごとに100μs
停止し、点状の微小圧入領域を鋼板の片面に250μm間
隔でジグザグ状に形成 走査速度:8m/minで、15μs走査するごとに100μs停
止し、点状の微小圧入領域を鋼板の片面に250μm間隔
でジグザグ状に形成 かくして得られた歪取り焼鈍後の鋼板の磁気特性を、第
1表に示す。
Note: Scanning speed: 15 m / min to scan both sides of the steel plate to form a linear micro press-fit area Scan speed: 5 m / min to scan both sides of the steel plate to form a linear micro press-fit area Scan speed: 10 m / 100 μs for every 30 μs scanning at min
Stop and form point-like micro-press-fit areas linearly on both sides of the steel plate at intervals of 300 μm Scanning speed: 7 m / min, stop for 100 μs every 10 μs scan, and point-like micro-press-fit areas 300 μm on both sides of the steel plate Formed linearly at intervals Scanning speed: 12 m / min, 100 μs every 30 μs scanning
Stopping and forming dot-like micro press-fitting areas on one side of the steel plate in zigzag at 250 μm intervals Scanning speed: 8 m / min, stopping for 100 μs every 15 μs scanning, and dot-like micro press-fitting areas 250 μm on one side of steel plate Table 1 shows the magnetic properties of the thus-obtained strain-relief annealed steel sheets formed in zigzag at intervals.

同表から明らかなように、EBを照射しない鋼板に比べEB
を照射した鋼板は、鉄損W17/50が0.07〜0.15W/Kgと大
幅に向上する。これは鋼板表面のフォルステライト質被
膜および絶縁被膜が地鉄(ゴス方位を有する2次再結晶
粒)へ微小領域において深さ方向に圧入されたことによ
って、歪取り焼鈍を施しても有効な磁区細分化核として
作用し、磁区細分化が可能となったことによる。
As is clear from the table, EB is higher than that of the steel plate not irradiated with EB.
The iron loss W 17/50 of the steel sheet irradiated with is significantly improved to 0.07 to 0.15 W / Kg. This is because the forsterite coating and the insulating coating on the surface of the steel sheet were pressed into the base iron (secondary recrystallized grains having Goss orientation) in the depth direction in the minute region, and thus effective magnetic domains were obtained even after strain relief annealing. It acts as a subdivision nucleus, and it is possible to subdivide magnetic domains.

また鉄損の向上は、EBの照射条件によって異なることも
わかる。EBの走査を間欠的に停止した照射条件〜
は、走査を連続する照射条件およびに比較して鉄損
値が向上した。特に、照射条件およびに従う鋼板に
おける鉄損の向上は、W17/50が0.14〜0.15W/kgと極め
て大きい。
It can also be seen that the improvement in iron loss depends on the EB irradiation conditions. Irradiation condition with intermittent EB scanning ~
Improved the iron loss value compared with and under continuous scanning. In particular, the improvement of the iron loss in the steel sheet according to the irradiation conditions and is extremely large with W 17/50 of 0.14 to 0.15 W / kg.

照射条件およびは、照射条件〜およびと比較
して、EB走査の停止から次の停止までの時間間隔(以
下、停止時間間隔という)が短時間であるところに特徴
があり、EB走査の停止時間間隔を短時間とすることによ
って、EB走査の停止位置以外の地鉄マトリックスの損傷
を少なくできるため、効果的な鉄損の向上が可能になる
ものと考えられる。
Irradiation conditions and are characterized in that the time interval from the stop of an EB scan to the next stop (hereinafter referred to as the stop time interval) is short compared to the irradiation conditions ~, and the stop time of the EB scan It is considered that by shortening the interval, damage to the base metal matrix other than the stop position of the EB scanning can be reduced, so that it is possible to effectively improve the iron loss.

次に上記したEB照射条件においてEB走査の停止間隔を
変化させたときの停止時間間隔と鉄損との関係について
調べた結果を、第1図に示す。なおその他の条件は、上
記した実験と同様である。
Next, FIG. 1 shows the result of examination on the relationship between the stop time interval and the iron loss when the EB scan stop interval was changed under the above-mentioned EB irradiation conditions. The other conditions are the same as those in the above experiment.

同図から、EB走査の停止時間間隔を20μs以下の短時間
とすると、鉄損向上度をW17/50で0.15W/kgと極めて大
きくすることができる。
From the figure, when the EB scan stop time interval is set to a short time of 20 μs or less, the iron loss improvement rate at W 17/50 can be extremely increased to 0.15 W / kg.

ここでEB走査を所定時間間隔で停止させてEBを点状に照
射するには、容量の大きなアンプを採用することによっ
てEBの偏向電圧を変化させればよいが、停止時間間隔を
5μs以下の短時間にすることは難しい。そこで偏向コ
イル回路中にスピードアップコンデンサーを付加すれば
停止時間間隔を10μs以下の短時間にすることが可能で
あるが、その際EBの偏向電圧の立上がり形状はオーバー
シュートさせないで徐々に立上がるように、スピードア
ップコンデンサー容量を選択することが重要である。
Here, in order to stop the EB scanning at a predetermined time interval and irradiate the EB in a spot-like manner, the deflection voltage of the EB may be changed by adopting an amplifier having a large capacity, but the stop time interval is 5 μs or less. It is difficult to make it short. Therefore, if a speed-up capacitor is added to the deflection coil circuit, the stop time interval can be shortened to 10 μs or less. At that time, the rising shape of the deflection voltage of EB should gradually rise without overshooting. In addition, it is important to choose the speed-up capacitor capacity.

なお珪素鋼板の板厚方向(深さ方向)におけるEBの透過
力は、通常X線が大量発生する65kV以上の加速電圧にお
いて増大するため、この発明の効果を最大限に生かすに
は加速電圧を高く(65〜500kV)、加速電流を小さく
(0.001〜5mA)設定して用いることが重要であり、それ
により珪素鋼板の板厚方向への透過力が強くなる。さら
に磁区細分化を効率よく行うため、小径のEBを用いるこ
とによって照射領域を0.5mmφ以下の大きさにすること
が好ましい。さらにこのEB照射した後、その上に絶縁被
膜を施して、EB照射痕跡上の絶縁性をより強くしてもよ
いが、コストアップとなるため、通常は施さなくても充
分絶縁効果を発揮できる。
Since the EB penetrating force in the plate thickness direction (depth direction) of a silicon steel plate increases at an acceleration voltage of 65 kV or more where a large amount of X-rays are usually generated, the acceleration voltage should be set to maximize the effect of the present invention. It is important to use with high (65 to 500 kV) and small accelerating current (0.001 to 5 mA), which increases the penetrating power of the silicon steel sheet in the plate thickness direction. Further, in order to efficiently subdivide the magnetic domains, it is preferable to make the irradiation region have a size of 0.5 mmφ or less by using EB having a small diameter. Furthermore, after this EB irradiation, an insulating coating may be applied on top of this to increase the insulation on the EB irradiation trace, but this will increase the cost, so it is possible to exhibit a sufficient insulating effect even if it is not usually applied. .

さらにこの発明に伴う鋼板は、積鉄心や巻鉄心に供する
ことが可能であるが、積鉄心材に供する場合は巻鉄心材
に比較して細い微小歪の導入が必要なので、EB照射条件
は電流を小さく、走査間距離を広くすることが好まし
い。一方巻鉄心材に供する場合のEB照射条件は、歪取り
焼鈍を施しても特性の劣化がないように、電流を若干大
きく、走査間距離を狭くして鋼板表面での微小歪の導入
を促進することが好ましい。
Further, the steel sheet according to the present invention can be used for a laminated iron core or a wound iron core, but when it is used for a laminated iron core material, it is necessary to introduce a fine microstrain as compared with a wound iron core material, so that the EB irradiation condition is current. Is preferably small and the inter-scan distance is wide. On the other hand, the EB irradiation condition when used for wound core materials is that the current is slightly increased and the inter-scan distance is narrowed to promote the introduction of minute strain on the steel plate surface so that the characteristics do not deteriorate even if strain relief annealing is performed. Preferably.

(実施例) 実施例1 (A) C:0.069%、Si:3.39%、Al:0.029%、S:0.030
%、Cu:0.1%、Sn:0.05%又は (B) C:0.042%、Si:3.29%、Mn:0.068%、Se:0.020
%、Sb:0.026%、Mo:0.016%をそれぞれ含有し残部実質
的にFeよりなる珪素鋼のフォルステライト質被膜付仕上
焼鈍板(0.20mm厚)に、EB装置を用いて圧延方向と直角
方向へEBを走査する際所定の時間間隔で停止し、EB照射
を行った。なおEB照射条件は、加速電圧:150kV,加速電
流:1.0mA,ビーム径:0.11mm,ビームスポットの中心間距
離:300μmおよび走査間距離:9mmで行い、15μs走査す
るごとに110μs間停止させた。
(Example) Example 1 (A) C: 0.069%, Si: 3.39%, Al: 0.029%, S: 0.030
%, Cu: 0.1%, Sn: 0.05% or (B) C: 0.042%, Si: 3.29%, Mn: 0.068%, Se: 0.020
%, Sb: 0.026%, Mo: 0.016%, and the balance is made of Fe, and the balance is made of Fe. Forsterite film-coated finished annealed sheet (0.20 mm thick), using the EB equipment, the direction perpendicular to the rolling direction. The EB irradiation was performed by stopping at a predetermined time interval when scanning the EB. The EB irradiation conditions were accelerating voltage: 150 kV, accelerating current: 1.0 mA, beam diameter: 0.11 mm, beam spot center distance: 300 μm and scanning distance: 9 mm, and stopped for 110 μs every 15 μs scanning. .

処理後の製品に800℃で2時間の歪取り焼鈍を施したと
ころ、その磁気特性は次に示すとおりであった。
When the treated product was subjected to strain relief annealing at 800 ° C. for 2 hours, its magnetic properties were as shown below.

(A) B10=1.95T、W17/50=0.73W/kg (B) B10=1.92T、W17/50=0.57W/kg (発明の効果) この発明によれば、歪取り焼鈍によっても鉄損の劣化し
ない一方向性珪素鋼板およびこの珪素鋼板を安定して製
造する方法を提供できる。
(A) B 10 = 1.95T, W 17/50 = 0.73W / kg (B) B 10 = 1.92T, W 17/50 = 0.57W / kg ( Effect of the Invention) According to the present invention, stress relief annealing It is possible to provide a unidirectional silicon steel sheet in which iron loss does not deteriorate and a method for stably producing the silicon steel sheet.

【図面の簡単な説明】[Brief description of drawings]

第1図はEB走査の停止時間間隔と鉄損向上度との関係を
示すグラフである。
FIG. 1 is a graph showing the relationship between the EB scan stop time interval and the iron loss improvement degree.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】仕上焼鈍を経た一方向性珪素鋼板につき、
高電圧および小電流にて発生させた電子ビームを鋼板の
圧延方向を横切る向きに走査し、鋼板表面上の被膜を局
所的に地鉄に圧入して微小圧入領域を形成するに当た
り、 該電子ビームの走査を20μs以下の間隔で間欠的に停止
し、この走査の停止中に電子ビームを点状に照射し、微
小圧入領域を点線状に導入することを特徴とする電子ビ
ーム照射による一方向性けい素鋼板の鉄損低減方法。
1. A unidirectional silicon steel sheet that has been subjected to finish annealing,
An electron beam generated by a high voltage and a small current is scanned in a direction transverse to the rolling direction of the steel sheet, and the coating on the surface of the steel sheet is locally pressed into the base metal to form a minute press-fit region. Scanning is intermittently stopped at intervals of 20 μs or less, the electron beam is irradiated in spots while this scanning is stopped, and a minute press-fitting area is introduced in a dotted line. Unidirectionality by electron beam irradiation. A method for reducing iron loss in silicon steel sheets.
JP2056332A 1990-03-09 1990-03-09 Iron loss reduction method of unidirectional silicon steel sheet by electron beam irradiation Expired - Lifetime JPH0765108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2056332A JPH0765108B2 (en) 1990-03-09 1990-03-09 Iron loss reduction method of unidirectional silicon steel sheet by electron beam irradiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2056332A JPH0765108B2 (en) 1990-03-09 1990-03-09 Iron loss reduction method of unidirectional silicon steel sheet by electron beam irradiation

Publications (2)

Publication Number Publication Date
JPH03260020A JPH03260020A (en) 1991-11-20
JPH0765108B2 true JPH0765108B2 (en) 1995-07-12

Family

ID=13024248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2056332A Expired - Lifetime JPH0765108B2 (en) 1990-03-09 1990-03-09 Iron loss reduction method of unidirectional silicon steel sheet by electron beam irradiation

Country Status (1)

Country Link
JP (1) JPH0765108B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012172191A (en) * 2011-02-21 2012-09-10 Jfe Steel Corp Production method for grain-oriented magnetic steel sheet
JP2013159847A (en) * 2012-02-08 2013-08-19 Jfe Steel Corp Grain-oriented magnetic steel sheet and method of manufacturing the same
KR20140061546A (en) * 2011-09-28 2014-05-21 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet and manufacturing method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5919617B2 (en) * 2010-08-06 2016-05-18 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
JP5998424B2 (en) * 2010-08-06 2016-09-28 Jfeスチール株式会社 Oriented electrical steel sheet
JP5593942B2 (en) * 2010-08-06 2014-09-24 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
JP6007501B2 (en) * 2012-02-08 2016-10-12 Jfeスチール株式会社 Oriented electrical steel sheet
CN103710500B (en) * 2013-12-12 2016-05-11 江苏苏讯新材料科技有限公司 A kind of crown plug and composite steel-plastic belt mixing shove charge annealing process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012172191A (en) * 2011-02-21 2012-09-10 Jfe Steel Corp Production method for grain-oriented magnetic steel sheet
KR20140061546A (en) * 2011-09-28 2014-05-21 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet and manufacturing method thereof
JP2013159847A (en) * 2012-02-08 2013-08-19 Jfe Steel Corp Grain-oriented magnetic steel sheet and method of manufacturing the same

Also Published As

Publication number Publication date
JPH03260020A (en) 1991-11-20

Similar Documents

Publication Publication Date Title
JP6319605B2 (en) Manufacturing method of low iron loss grain oriented electrical steel sheet
KR101421387B1 (en) Grain oriented electrical steel sheet and method for manufacturing the same
JP3023242B2 (en) Method for producing low iron loss unidirectional silicon steel sheet with excellent noise characteristics
JP3399991B2 (en) Method for producing low iron loss unidirectional silicon steel sheet
JP6116796B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP3726289B2 (en) Oriented electrical steel sheet with low iron loss
JPH0765108B2 (en) Iron loss reduction method of unidirectional silicon steel sheet by electron beam irradiation
JPH062042A (en) Production of grain-oriented silicon steel sheet with low iron loss for laminated iron core
JP4331900B2 (en) Oriented electrical steel sheet and method and apparatus for manufacturing the same
JPH07320922A (en) One directional electromagnetic steel sheet at low iron loss
JP2638180B2 (en) Low iron loss unidirectional silicon steel sheet and method for producing the same
JPH0765109B2 (en) Iron loss reduction method of unidirectional silicon steel sheet by electron beam irradiation
JPH05179355A (en) Production of low-iron loss unidirectionally oriented silicon steel sheet
EP0611829B1 (en) Method of producing low iron loss grain-oriented silicon steel sheet having low-noise and superior shape characteristics
JPH11124629A (en) Grain oriented silicon steel sheet reduced in iron loss and noise
JPH0543945A (en) Manufacture of low iron loss grain-oriented silicon steel sheet
JPH0432517A (en) Production of grain-oriented silicon steel sheet reduced in iron loss
JPH05311241A (en) Manufacture of low core loss grain-oriented silicon steel sheet and irradiation device for electron beam
JPH0543944A (en) Manufacture of low iron loss grain-oriented silicon steel sheet
JPH03287725A (en) Production of grain-oriented silicon steel sheet reduced in iron loss
JPH0551645A (en) Manufacture of low core loss grain-oriented silicon steel sheet
JPH07320921A (en) Directional electromagnetic steel sheet at low iron loss
JPH0565543A (en) Manufacture of low iron loss unidirectional silicon steel sheet having uniform characteristic in transverse direction without deteriorating magnetic characteristic even in the case of applying strain-removal annealing
JPH04214819A (en) Manufacture of low core loss grain-oriented silicon steel sheet free from deterioration in magnetic property even if stress relieving annealing is executed and continuous manufacturing equipment train for low core loss grain-oriented silicon steel sheet
JPH04231415A (en) Production of grain-oriented silicon steel sheet reduced in iron loss