JPH0543945A - Manufacture of low iron loss grain-oriented silicon steel sheet - Google Patents

Manufacture of low iron loss grain-oriented silicon steel sheet

Info

Publication number
JPH0543945A
JPH0543945A JP22858791A JP22858791A JPH0543945A JP H0543945 A JPH0543945 A JP H0543945A JP 22858791 A JP22858791 A JP 22858791A JP 22858791 A JP22858791 A JP 22858791A JP H0543945 A JPH0543945 A JP H0543945A
Authority
JP
Japan
Prior art keywords
steel sheet
silicon steel
iron loss
electron beam
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22858791A
Other languages
Japanese (ja)
Inventor
Masao Iguchi
征夫 井口
Kazuhiro Suzuki
一弘 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP22858791A priority Critical patent/JPH0543945A/en
Publication of JPH0543945A publication Critical patent/JPH0543945A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stabilize the effect of fractionating a magnetic domain and particularly to improve the magnetostriction in the case it is formed into a laminated iron core as well as noise and the shape of a steel sheet in the case it is used as a transformer in the method for manufacturing a low iron loss grain-oriented silicon steel sheet utilizing the irradiation of electron beams. CONSTITUTION:The surface of a grain-oriented silicon steel sheet subjected to finish annealing and thereafter coated with an insulated film is subjected to continuous or intermittent irradiation by electron beams of 2 to 9J/cm<2> in such a manner that the irradiating width in the rolling direction is regulated to 0.2 to 1.0mm and it elongates in a direction crossed with the rolling direction in zigzags at intervals of 2 to 20mm in the rolling direction, by which a magnetic domain fractionating core can be introduced without deteriorating magnetostriction, noise and the shape of the steel sheet.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、電子ビームの照射を
利用する低鉄損一方向性珪素鋼板の製造方法において、
磁区細分化効果の安定化のほか、特に積鉄芯とした際の
磁歪(以下単に磁歪と示す)、トランスとして使用した
際の騒音(以下単に騒音と示す)及び鋼板形状の改善を
図ったもので、この一方向性珪素鋼板は、トランスや電
気機器の鉄心用材料として有利に使用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a low iron loss unidirectional silicon steel sheet using electron beam irradiation,
In addition to stabilizing the magnetic domain subdivision effect, especially the magnetostriction when used as a laminated iron core (hereinafter simply referred to as magnetostriction), noise when used as a transformer (hereinafter simply referred to as noise) and steel plate shape Then, this unidirectional silicon steel sheet is advantageously used as a material for an iron core of a transformer or electric equipment.

【0002】一方向性珪素鋼板は製品の2次再結晶粒を
ゴス方位に高度に集積させること、その鋼板表面上にフ
ォルステライト被膜を被成し、さらにその上に熱膨張係
数の小さい絶縁被膜を被成して鋼板に張力を付与するこ
と、などにより磁気特性の向上を計るもので、厳格な制
御を必要とする複雑、多岐にわたる工程を経て製造され
ている。このような一方向性珪素鋼板は、主として変圧
器、その他電気機器の鉄心として使用されており、磁気
特性として製品の磁束密度(B8 値で代表される) が高
く、鉄損(W17/50 値で代表される) が低いこと、さら
に表面性状が良好な絶縁被膜を被成していることなどが
要求されている。とくにエネルギー危機を境にして電力
損失の低減を至上とする要請が著しく強まり、変圧器用
鉄心材料としての鉄損のより低い一方向性珪素鋼板の必
要性はますます高まってきている。そして、この一方向
性珪素鋼板の鉄損改善の歴史は、ゴス方位2次再結晶集
合組織の改善の歴史であると云っても過言ではない。
A unidirectional silicon steel sheet is obtained by highly accumulating secondary recrystallized grains of a product in a Goss orientation, forming a forsterite coating on the surface of the steel sheet, and further forming an insulating coating having a small coefficient of thermal expansion on it. It is intended to improve the magnetic properties by, for example, applying a tension to the steel sheet by coating, and is manufactured through complicated and various processes that require strict control. Such unidirectional silicon steel sheet is mainly used as an iron core of transformers and other electric devices, and has a high magnetic flux density (represented by B 8 value) of the product as a magnetic property, and an iron loss (W 17 / (Represented by 50 values) is low, and an insulating film with good surface properties is applied. In particular, the demand for the reduction of power loss has been remarkably strengthened at the border of the energy crisis, and the need for unidirectional silicon steel sheet with lower iron loss as an iron core material for a transformer is increasing more and more. It is no exaggeration to say that the history of improving the iron loss of this unidirectional silicon steel sheet is the history of improving the goss orientation secondary recrystallization texture.

【0003】[0003]

【従来の技術】2次再結晶粒を制御する方法として、Al
N ,MnS 及び MnSe 等の1次再結晶粒成長抑制剤、いわ
ゆるインヒビターを用いてゴス方位2次再結晶粒を優先
成長させる方法が実施されている。
2. Description of the Related Art As a method for controlling secondary recrystallized grains, Al
A method of preferentially growing secondary recrystallized grains of Goss orientation using a primary recrystallized grain growth inhibitor such as N, MnS, and MnSe, a so-called inhibitor has been implemented.

【0004】一方、上記の2次再結晶集合組織を制御す
る冶金的手段とは異なる鉄損改善技術も種々開発されて
いる。すなわち、市山 正:鉄と鋼、69(1983), P. 89
5、特公昭57−2252号公報、特公昭57−53419 号公報、
特公昭58−26405 号公報、及び特公昭58−26406 号公報
などにはレーザーを、又特開昭62−96617 号公報、特開
昭62−151511号公報、特開昭62−151516号公報、及び特
開昭62−151517号公報などにはプラズマを、それぞれ鋼
板表面に照射することにより、鋼板に局部微小歪を導入
して磁区を細分化し、鉄損を低下させる画期的な方法が
提案開示されている。しかしながら、これらの方法はい
ずれもエネルギー効率が5〜20%とひくいため、鉄損の
低下にはコスト増を余儀なくされる不利があった。
On the other hand, various iron loss improving techniques different from the metallurgical means for controlling the secondary recrystallization texture have been developed. That is, Tadashi Ichiyama: Iron and Steel, 69 (1983), P. 89.
5, JP-B-57-2252, JP-B-57-53419,
A laser is disclosed in JP-B-58-26405 and JP-B-58-26406, and JP-A-62-96617, JP-A-62-151511, JP-A-62-151516, JP-A-62-151517 and the like propose an epoch-making method for reducing the iron loss by irradiating the surface of the steel sheet with plasma to introduce local micro-strain into the steel sheet to subdivide the magnetic domains. It is disclosed. However, the energy efficiency of each of these methods is as low as 5 to 20%, and thus there is a disadvantage that cost reduction is unavoidable for reducing iron loss.

【0005】[0005]

【発明が解決しようとする課題】そこで発明者らは、エ
ネルギー効率が高い磁区細分化の手法について、特開昭
63−186826号、特開平2−118022号及び同2−277780号
各公報にて提案した。すなわち鋼板の表面に、高電圧及
び小電流で発生した電子ビームを圧延方向と交わる鋼板
の幅方向へ局所的に断続照射し、被膜を地鉄に圧入する
方法である。しかしながらこれらの方法は磁気特性の向
上は達成されるものの、磁歪、騒音及び鋼板形状のばら
つきが大きく、製品としての品質を備える鋼板の安定生
産が難しいところに問題を残していた。これは電子ビー
ムの鋼板表面から内部への侵入深さが、レーザー等の他
の手法と比較して深いためと考えられる。
Therefore, the inventors of the present invention have disclosed a method of subdividing a magnetic domain with high energy efficiency, as disclosed in Japanese Patent Laid-Open No.
63-186826, JP-A-2-118022 and JP-A-2-277780. That is, it is a method of locally and intermittently irradiating the surface of a steel sheet with an electron beam generated at a high voltage and a small current in the width direction of the steel sheet intersecting the rolling direction, and press-fitting the coating into the base metal. However, although these methods can improve the magnetic properties, they have a large problem in that it is difficult to stably produce a steel plate having quality as a product because of large variations in magnetostriction, noise and steel plate shape. It is considered that this is because the penetration depth of the electron beam from the steel plate surface to the inside is deeper than that of other methods such as laser.

【0006】一方電子ビーム照射による磁区細分化に関
し、米国特許第4199733 号及び同4195750 号各明細書に
は、積鉄芯用では60J/in2 以上のエネルギー密度で、
及び巻鉄芯用では150 〜4000J/in2 のエネルギー密度
で行うことが開示されているが、電子ビームの侵入深さ
に関しての配慮はなく、またエネルギー密度は電子ビー
ム照射装置の種類や照射法によって変化するため、製品
の安定生産は難しい。この発明は、上記の問題を解消
し、高品質の製品を安定に製造する方法について提案す
ることを目的とする。
On the other hand, regarding the magnetic domain subdivision by electron beam irradiation, US Pat. Nos. 4,1997,33 and 4,195,750 each describe an energy density of 60 J / in 2 or more for a laminated iron core.
Also, it is disclosed that the energy density of 150 to 4000 J / in 2 is used for wound iron cores, but no consideration is given to the penetration depth of the electron beam, and the energy density depends on the type of electron beam irradiation device and the irradiation method. The stable production of the product is difficult because it changes depending on the situation. An object of the present invention is to solve the above problems and propose a method for stably producing a high quality product.

【0007】[0007]

【課題を解決するための手段】この発明は、仕上焼鈍を
施した後に絶縁被膜を被成した一方向性珪素鋼板の表面
に、エネルギー密度:2〜9J/cm2 の電子ビームによ
る、圧延方向の照射幅が0.2 〜1.0mm で圧延方向と交わ
る方向へジグザグ状に延びる連続あるいは断続照射を、
2〜20mmの間隔で行うことを特徴とする低鉄損一方向性
珪素鋼板の製造方法である。
The present invention is directed to the rolling direction of an unidirectional silicon steel sheet, which has been subjected to finish annealing and then covered with an insulating coating, with an electron beam having an energy density of 2 to 9 J / cm 2. Irradiation width of 0.2 to 1.0 mm, which extends continuously or intermittently in a zigzag shape in the direction intersecting the rolling direction.
The method for producing a low iron loss unidirectional silicon steel sheet is characterized in that the step is performed at an interval of 2 to 20 mm.

【0008】さて図1に、この発明に直接使用する電子
ビーム照射装置を示す。同図における番号1は排気口1
a,1bを備え真空槽を形成するするためのケーシング、
好ましくは10-2Torr以下の高真空としたケーシング1内
において、高圧インシュレータ2、電子を放出する電子
銃3及び電子銃3より放出された電子を加速するために
電子銃3と対向して配置したアノード4にて電子ビーム
5の射出を行う。さらに6は上記の電子線発生部を常に
高真空に維持するためのコラム弁、7は電子ビーム5を
集束するための集束コイル、そして8は集束コイル7に
て集束させた電子ビーム5の進行方向を変化させて鋼板
9の所定領域への照射を担う偏向コイルである。この偏
向コイル8によって、図2(b) に示すように、電子ビー
ムを0.2 〜1.0mm の照射幅内で圧延方向と交わる方向へ
ジグザグ状に延びる断続照射あるいは連続照射を実現す
る。
FIG. 1 shows an electron beam irradiation apparatus used directly in the present invention. Number 1 in the figure is exhaust port 1
a casing for forming a vacuum chamber including a and 1b,
A high pressure insulator 2, an electron gun 3 for emitting electrons, and an electron gun 3 arranged to face the electron gun 3 for accelerating the electrons emitted from the electron gun 3 in a casing 1 having a high vacuum of preferably 10 −2 Torr or less. The electron beam 5 is emitted from the anode 4. Further, 6 is a column valve for always maintaining the electron beam generating part in a high vacuum, 7 is a focusing coil for focusing the electron beam 5, and 8 is a traveling direction of the electron beam 5 focused by the focusing coil 7. It is a deflection coil that changes the direction and irradiates a predetermined area of the steel sheet 9. As shown in FIG. 2 (b), this deflection coil 8 realizes intermittent irradiation or continuous irradiation in which the electron beam extends in a zigzag shape in the irradiation width of 0.2 to 1.0 mm in the direction intersecting the rolling direction.

【0009】上記の電子ビーム照射装置を用いて磁区の
細分化をはかるには、電子ビーム照射により、鋼板上の
被膜を破壊することなく、有効な磁区細分化が可能な方
法を提供するものである。このときのEB照射はエネル
ギー密度:2〜9J/cm2 でジグザグ状に連続あるいは
断続照射することによって、磁気特性は勿論、磁歪、騒
音及び鋼板形状を改善することができる。
In order to subdivide magnetic domains using the above electron beam irradiation apparatus, a method is provided which enables effective subdivision of magnetic domains by electron beam irradiation without destroying the coating film on the steel sheet. is there. At this time, the EB irradiation can continuously or intermittently irradiate in a zigzag shape with an energy density of 2 to 9 J / cm 2 , so that not only the magnetic characteristics but also the magnetostriction, noise and steel plate shape can be improved.

【0010】なお被膜は具体的には 0.01 〜5μm の深
さまで圧入することが好ましく、このための電子ビーム
の発生条件は、加速電圧を60kVから500kV 、加速電流を
5mA以下とすることが好適であり、さらに照射径が0.1
〜 0.5mmφの電子ビームをスポット中心間隔:50〜500
μm であるいは連続して照射することが好ましい。
Specifically, it is preferable that the film is press-fitted to a depth of 0.01 to 5 μm, and the conditions for generating the electron beam for this purpose are preferably an accelerating voltage of 60 kV to 500 kV and an accelerating current of 5 mA or less. Yes, and the irradiation diameter is 0.1
〜0.5mmφ electron beam spot center interval: 50〜500
Irradiation in μm or continuously is preferred.

【0011】またこの発明の方法の適用に関し一方向性
珪素鋼板の成分組成については、従来公知の成分組成の
ものいずれもが適合するが、代表組成をあげると以下の
とおりである。 C:0.01〜0.10wt% 熱間圧延、冷間圧延中の組織の均一微細化のみならず、
ゴス方位の発達に有用な元素であり、少なくとも 0.01
wt%以上の添加が好ましい。しかしながら0.10wt%を超
えて含有するとかえってゴス方位に乱れが生じるので上
限は0.10wt%が好ましい。 Si : 2.0〜4.5 wt% 鋼板の比抵抗を高め鉄損の低減に有効に寄与するが、2.
0 wt%に満たないと比抵抗が低下するだけでなく、2次
再結晶・純化のために行なわれる最終高温焼鈍中にα−
γ変態によって結晶方位のランダム化を生じ、十分な鉄
損改善効果が得られず、また 4.5wt%を超えると冷延性
が損なわれる。したがって、下限を 2.0wt%、上限を
4.5wt%とすることが好ましい。 Mn : 0.02 〜0.12wt% 熱間脆化を防止するため少なくとも0.02wt%を必要とす
るが、あまり多すぎると磁気特性を劣化させるので、上
限は0.12wt%が好ましい。
Regarding the composition of the grain-oriented silicon steel sheet in the application of the method of the present invention, any of the conventionally known composition is suitable, and the representative compositions are as follows. C: 0.01 to 0.10 wt% Not only the refinement of the structure during hot rolling and cold rolling but also
It is an element useful for the development of the Goss orientation, and at least 0.01
Addition of wt% or more is preferable. However, if the content exceeds 0.10 wt%, the Goss orientation is rather disturbed, so the upper limit is preferably 0.10 wt%. Si: 2.0 to 4.5 wt% Increases the specific resistance of steel sheet and effectively contributes to the reduction of iron loss.
If it is less than 0 wt%, not only the resistivity decreases, but also α- during the final high temperature annealing for secondary recrystallization and purification.
The gamma transformation causes the crystal orientation to be randomized, so that a sufficient iron loss improving effect cannot be obtained, and if it exceeds 4.5 wt%, cold ductility is impaired. Therefore, the lower limit is 2.0 wt% and the upper limit is
It is preferably 4.5% by weight. Mn: 0.02 to 0.12 wt% At least 0.02 wt% is necessary to prevent hot embrittlement, but if it is too much, the magnetic properties deteriorate, so the upper limit is preferably 0.12 wt%.

【0012】インヒビターとしては、大別して MnS, Mn
Se系と AlN系とがある。MnS, MnSe系の場合は、S: 0.
005〜0.06 wt %及びSe : 0.005〜0.06wt %のうちから
選ばれる少なくとも1種 S,Seはいずれも方向性珪素鋼板の2次再結晶を制御す
るインヒビターとして有力な元素である。ともに抑制力
確保の観点からは、少なくとも 0.005wt%程度を必要と
するが、0.06wt%を超えるとその効果が損なわれるの
で、その下限を0.005wt %、上限を 0.06 wt%とするこ
とが好ましい。AlN 系の場合は、 Al:0.005 〜0.10wt%及びN: 0.004 〜0.015 wt% Al及びNの範囲についても、上述した MnS系、MnSe系の
場合と同様の理由により上記の範囲とすることが好まし
い。
The inhibitors are roughly classified into MnS and Mn.
There are Se series and AlN series. In case of MnS and MnSe system, S: 0.
At least one selected from 005 to 0.06 wt% and Se: 0.005 to 0.06 wt% S and Se are both effective elements as inhibitors for controlling the secondary recrystallization of grain-oriented silicon steel sheet. Both require at least about 0.005 wt% from the viewpoint of securing suppression, but if it exceeds 0.06 wt%, its effect is impaired, so it is preferable to set the lower limit to 0.005 wt% and the upper limit to 0.06 wt%. .. In the case of AlN system, Al: 0.005 to 0.10 wt% and N: 0.004 to 0.015 wt% The range of Al and N may be set to the above range for the same reason as the case of MnS system and MnSe system described above. preferable.

【0013】インヒビター成分としては上記したS,S
e, Alの他に、Cr, Mo, Cu, Sn, Ge, Sb, Te, Bi及びP
などについても有利に適合するもので、それぞれ少量併
せて含有させることもよい。ここに上記成分の好適添加
範囲はそれぞれ、Cr, Cu, Sn:0.01wt%以上、0.50wt%
以下、Mo, Ge, Sb, Te, Bi : 0.005wt%以上、0.1 wt%
以下、P:0.01wt%以上、0.2 wt%以下であり、これら
各インヒビター成分についても単独使用及び複合使用い
ずれの場合もが適合する。
As the inhibitor component, the above-mentioned S, S
In addition to e and Al, Cr, Mo, Cu, Sn, Ge, Sb, Te, Bi and P
It is also suitable for the above, and it may be contained in a small amount. The preferable addition ranges of the above components are Cr, Cu, Sn: 0.01 wt% or more, 0.50 wt% or more, respectively.
Below, Mo, Ge, Sb, Te, Bi: 0.005 wt% or more, 0.1 wt%
Hereinafter, P: 0.01 wt% or more and 0.2 wt% or less, and these inhibitor components are suitable for both single use and combined use.

【0014】[0014]

【作用】次にこの発明を実験例に基づいて述べる。C:
0.082 wt%, Si:3.54wt%, Mn:0.82wt%,Mo: 0.013w
t%, sol.Al: 0.028wt%, Se: 0.021wt%、及びSb:
0.022wt%を含有する珪素鋼スラブを、1380℃で4時間
加熱後、熱間圧延して 2.2mm厚の熱延板とした後、1050
℃で3分間の中間焼鈍をはさむ2回の冷間圧延を施して
0.23mm厚の最終冷延板とした。ついで 840℃の湿水素中
で脱炭・1次再結晶焼鈍を施した後、鋼板表面上に MgO
を主成分とする焼鈍分離剤をスラリー塗布し、その後10
℃/hで昇温して 850℃で50時間の2次再結晶焼鈍を行っ
てゴス方位2次再結晶粒を優先成長させた後、1230℃の
乾水素中で5時間の純化焼鈍を施した。次いで鋼板表面
上にリン酸塩とコロイダルシリカを主成分とする絶縁被
膜を被成した。その後図1に示した装置を用いて、電子
ビーム(電圧:150 kV,電流:1.00mA,エネルギー密
度:6J/cm2)を鋼板の圧延方向と直交する方向に走
査間隔:6mm及び走査速度:670cm/s で照射する処理
を、図2(a) に示す直線状(照射幅:150mm )及び同図
(b) に示すジグザグ状(照射幅:0.35mm)でそれぞれ行
った。また比較のため、磁区細分化処理を施さない試料
も作製した。
Next, the present invention will be described based on experimental examples. C:
0.082 wt%, Si: 3.54 wt%, Mn: 0.82 wt%, Mo: 0.013w
t%, sol.Al: 0.028wt%, Se: 0.021wt%, and Sb:
A silicon steel slab containing 0.022wt% was heated at 1380 ℃ for 4 hours and hot-rolled into a hot rolled sheet with a thickness of 2.2mm.
2 times cold rolling with intermediate annealing for 3 minutes at ℃
The final cold-rolled sheet was 0.23 mm thick. Then, after decarburization and primary recrystallization annealing in wet hydrogen at 840 ° C, MgO was applied on the surface of the steel sheet.
Slurry application of an annealing separator mainly composed of
After performing secondary recrystallization annealing at 850 ° C for 50 hours at 850 ° C / h to grow goth-oriented secondary recrystallized grains preferentially, perform purification annealing for 5 hours in dry hydrogen at 1230 ° C. did. Then, an insulating coating containing phosphate and colloidal silica as main components was formed on the surface of the steel sheet. Then, using the apparatus shown in FIG. 1, an electron beam (voltage: 150 kV, current: 1.00 mA, energy density: 6 J / cm 2 ) was applied in a direction orthogonal to the rolling direction of the steel sheet at a scanning interval of 6 mm and a scanning speed: The irradiation at 670 cm / s is performed in the straight line (irradiation width: 150 mm) shown in Fig. 2 (a) and the same figure.
The zigzag pattern shown in (b) (irradiation width: 0.35 mm) was used. For comparison, a sample not subjected to magnetic domain refinement treatment was also prepared.

【0015】かくして得られた鋼板の、磁気特性、磁
歪、騒音及び鋼板形状について調べた結果を表1に示
す。なお磁歪は、励磁VA(通常VA/kgで表示する)で評
価し、騒音はdbで評価するが、このときの評価は通常1.
7T/50Hzときの値で示す。また鋼板の形状は照射前後の
鋼板のC方向(圧延方向に直角方向)の変形量で評価し
た。これらの評価は、以下に示す実験及び実施例におい
ても同様である。
Table 1 shows the results of examining the magnetic properties, magnetostriction, noise and shape of the steel sheet thus obtained. Magnetostriction is evaluated by excitation VA (normally expressed in VA / kg) and noise is evaluated by db, but the evaluation at this time is usually 1.
The value is shown at 7T / 50Hz. The shape of the steel sheet was evaluated by the amount of deformation of the steel sheet before and after irradiation in the C direction (direction orthogonal to the rolling direction). These evaluations are the same in the experiments and examples shown below.

【0016】 [0016]

【0017】表1から明らかなように、磁区細分
化処理を施した試料はともに、施さない試料に比較して
特に鉄損の向上が著しいが、電子ビームを直線状に照射
した場合は同ジグザグ状に照射した場合と比較して、磁
歪、騒音及び鋼板形状における劣化が著しいことがわか
る。
As is clear from Table 1, both the samples subjected to the magnetic domain refinement treatment showed a remarkable improvement in the iron loss as compared to the samples not subjected to the domain refinement treatment, but when the electron beam was linearly irradiated, the same zigzag pattern was observed. It can be seen that the magnetostriction, noise, and deterioration in the shape of the steel sheet are remarkable as compared with the case of irradiating in the shape of a sheet.

【0018】さらに発明者らは、電子ビームのエネルギ
ー密度に関する実験も行った。すなわち表1に結果を示
した実験と同様にして得た絶縁被膜付きの鋼板に、図1
に示した装置を用いて、電子ビーム(電圧:150 〜225
kV,電流:0.5 〜1.50mA,ビーム径:0.2 〜0.3mm φ)
を鋼板の圧延方向と直交する方向に走査間隔:6mm及び
照射幅:0.35〜0.80mmでジグザグ状に照射する処理を、
エネルギー密度を1〜30J/cm2 に変化させて行った。
また比較のため、磁区細分化処理を施さない試料も作製
した。かくして得られた鋼板の、磁気特性、磁歪、騒音
及び鋼板形状について調べた結果を図3にそれぞれ示
す。
Further, the inventors also conducted experiments on the energy density of the electron beam. That is, a steel plate with an insulating coating obtained in the same manner as the experiment whose results are shown in Table 1 is
Electron beam (voltage: 150-225
kV, current: 0.5 to 1.50mA, beam diameter: 0.2 to 0.3mm φ)
Irradiating in a zigzag pattern with a scanning interval of 6 mm and an irradiation width of 0.35 to 0.80 mm in the direction orthogonal to the rolling direction of the steel sheet,
The energy density was changed from 1 to 30 J / cm 2 .
For comparison, a sample not subjected to magnetic domain refinement treatment was also prepared. The results of examining the magnetic properties, magnetostriction, noise and shape of the steel sheet thus obtained are shown in FIG. 3, respectively.

【0019】同図から明らかなように、エネルギー密度
を9.0 J/cm2 以下とすることで磁気特性、磁歪、騒音
及び鋼板形状は全て向上するが、鉄損は2.0 J/cm2
満になると劣化した。従ってエネルギー密度を2.0 〜9.
0 J/cm2 の範囲とすることによって、磁気特性、磁
歪、騒音及び鋼板形状の全てをより改善することができ
る。
As is clear from the figure, when the energy density is 9.0 J / cm 2 or less, the magnetic properties, magnetostriction, noise and steel plate shape are all improved, but the iron loss is less than 2.0 J / cm 2. Deteriorated. Therefore, the energy density is 2.0 to 9.
By setting the range to 0 J / cm 2 , all of the magnetic characteristics, magnetostriction, noise and steel plate shape can be further improved.

【0020】電子ビーム照射によって、特に磁歪、騒音
及び鋼板形状の劣化として現れる短所は、電子ビームが
エネルギー効率が高くかつビームを細く絞れるために、
電子ビームを照射した鋼板中に微小歪が深く分散される
ことに起因している。そこで電子ビーム照射をジグザグ
状にかつエネルギー密度:2.0 〜9.0 J/cm2 で行うこ
とによって、180 ゜磁区を細分化させうる磁壁の核の発
生頻度を増加させることが可能である。これによってす
でに公知の米国特許第4199733 号および同4195750 号明
細書の開示よりも低いエネルギー密度で充分に磁区細分
化させることができる。さらにこの発明ではこのような
エネルギー密度を与えることによって、磁気特性の向上
に加えて、磁歪、騒音および鋼板形状の向上を図ること
が初めて可能となったものである。したがって上記の米
国特許では磁気特性の向上は図れるが、磁歪、騒音およ
び鋼板形状に問題があり、製品を製造することが不可能
であった。
Disadvantages caused by electron beam irradiation, particularly, are magnetostriction, noise, and deterioration of the shape of the steel sheet, because electron beams have high energy efficiency and can be narrowed down.
This is because the micro strain is deeply dispersed in the steel sheet irradiated with the electron beam. Therefore, by performing electron beam irradiation in a zigzag manner and at an energy density of 2.0 to 9.0 J / cm 2 , it is possible to increase the frequency of generation of domain wall nuclei that can subdivide a 180 ° magnetic domain. As a result, the magnetic domains can be sufficiently subdivided at a lower energy density than that disclosed in the already-known U.S. Pat. Nos. 4,1997,33 and 4,195,750. Further, according to the present invention, by providing such an energy density, it is possible for the first time to improve the magnetic characteristics as well as the magnetostriction, the noise and the shape of the steel plate. Therefore, although the above-mentioned U.S. patents can improve the magnetic characteristics, they have problems with magnetostriction, noise, and the shape of the steel sheet, and it has been impossible to manufacture a product.

【0021】[0021]

【実施例】【Example】

(A) C:0.044 wt%, Si: 3.42 wt%, Mn:0.068 wt
%, Mo:0.012 wt%, Se:0.019 wt%及びSb : 0.023wt
% (B) C:0.068wt %, Si:3.41wt%, Mn:0.082 wt%,
Mo:0.015 wt%, Se:0.025,Cu:0.2 wt %,Sn:0.05wt%
及びAl : 0.021wt% をそれぞれ含有する珪素鋼スラブを、1380℃で4時間加
熱後、熱間圧延して 2.2mm厚の熱延板とした後、1050℃
で3分間の中間焼鈍をはさむ2回の冷間圧延を施して0.
23mm厚の最終冷延板とした。ついで 840℃の湿水素中で
脱炭・1次再結晶焼鈍を施した後、鋼板表面上に MgOを
主成分とする焼鈍分離剤をスラリー塗布し、その後10℃
/hで昇温して 850℃で50時間の2次再結晶焼鈍を行って
ゴス方位2次再結晶粒を優先成長させた後、1230℃の乾
水素中で5時間の純化焼鈍を施した。次いで鋼板表面上
にリン酸塩とコロイダルシリカを主成分とする絶縁被膜
を被成した。その後図1に示した装置を用いて、電子ビ
ーム〔電圧:150 kV,電流:1.0 mA、ビーム径:0.30mm
φ(ナイフエッジ法による), 真空度:5×10-4Torr〕
を鋼板の圧延方向と直交する方向に照射幅:0.5mm 及び
走査間隔:6mmでジグザグ状に照射する処理を、エネル
ギー密度:6.4 J/cm2 で行った。かくして得られた製
品の磁気特性、磁歪、騒音及び鋼板形状について調べた
結果を表2に示す。
(A) C: 0.044 wt%, Si: 3.42 wt%, Mn: 0.068 wt
%, Mo: 0.012 wt%, Se: 0.019 wt% and Sb: 0.023 wt
% (B) C: 0.068 wt%, Si: 3.41 wt%, Mn: 0.082 wt%,
Mo: 0.015 wt%, Se: 0.025, Cu: 0.2 wt%, Sn: 0.05 wt%
And a silicon steel slab containing Al: 0.021 wt% were heated at 1380 ℃ for 4 hours and hot-rolled to a hot rolled sheet with a thickness of 2.2mm.
After performing cold rolling twice with intermediate annealing for 3 minutes at 0.
The final cold rolled sheet had a thickness of 23 mm. Then, after decarburizing and primary recrystallization annealing in wet hydrogen at 840 ° C, an annealing separator containing MgO as the main component is slurry-coated on the surface of the steel sheet, and then 10 ° C.
After performing secondary recrystallization annealing at 850 ° C for 50 hours at a temperature of / h to preferentially grow Goss-oriented secondary recrystallized grains, then perform purification annealing in dry hydrogen at 1230 ° C for 5 hours. .. Then, an insulating coating containing phosphate and colloidal silica as main components was formed on the surface of the steel sheet. Then, using the device shown in Fig. 1, an electron beam [voltage: 150 kV, current: 1.0 mA, beam diameter: 0.30 mm
φ (by knife edge method), vacuum degree: 5 × 10 -4 Torr]
Was irradiated in a zigzag shape with an irradiation width of 0.5 mm and a scanning interval of 6 mm in a direction orthogonal to the rolling direction of the steel sheet at an energy density of 6.4 J / cm 2 . Table 2 shows the results of examining the magnetic properties, magnetostriction, noise and steel plate shape of the product thus obtained.

【0022】 [0022]

【0023】[0023]

【発明の効果】この発明によれば、磁気特性の良好な、
特に鉄損の低い一方向性珪素鋼板を、磁歪、騒音及び鋼
板形状の劣化をまねくことなしに製造することができ、
優れた製品を安定して提供し得る。
According to the present invention, excellent magnetic characteristics,
In particular, a unidirectional silicon steel sheet with a low iron loss can be produced without causing magnetostriction, noise and deterioration of the steel sheet shape,
An excellent product can be stably provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の方法に使用する電子ビーム照射装置
を示す模式図である。
FIG. 1 is a schematic diagram showing an electron beam irradiation apparatus used in the method of the present invention.

【図2】電子ビームの照射要領を示す模式図である。FIG. 2 is a schematic diagram showing an electron beam irradiation procedure.

【図3】電子ビームのエネルギー密度と鉄損、磁歪、騒
音及び鋼板形状との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between electron beam energy density, iron loss, magnetostriction, noise, and steel plate shape.

【符号の説明】 1 ケーシング 1a 排気口 1b 排気口 2 高圧インシュレータ 3 電子銃 4 アノード 5 電子ビーム 6 コラム弁 7 集束コイル 8 偏向コイル 9 鋼板[Explanation of Codes] 1 casing 1a exhaust port 1b exhaust port 2 high pressure insulator 3 electron gun 4 anode 5 electron beam 6 column valve 7 focusing coil 8 deflection coil 9 steel plate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 仕上焼鈍を施した後に絶縁被膜を被成し
た一方向性珪素鋼板の表面に、エネルギー密度:2〜9
J/cm2 の電子ビームによる、圧延方向の照射幅が0.2
〜1.0mm で圧延方向と交わる方向へジグザグ状に延びる
連続あるいは断続照射を、圧延方向に2〜20mmの間隔で
行うことを特徴とする低鉄損一方向性珪素鋼板の製造方
法。
1. An energy density of 2 to 9 is formed on the surface of a unidirectional silicon steel sheet on which an insulating coating is applied after finishing annealing.
Irradiation width in the rolling direction is 0.2 with an electron beam of J / cm 2.
A method for producing a low iron loss unidirectional silicon steel sheet, characterized in that continuous or intermittent irradiation extending in a zigzag shape in a direction intersecting with the rolling direction at an interval of ~ 1.0 mm is carried out at an interval of 2 to 20 mm in the rolling direction.
JP22858791A 1991-08-14 1991-08-14 Manufacture of low iron loss grain-oriented silicon steel sheet Pending JPH0543945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22858791A JPH0543945A (en) 1991-08-14 1991-08-14 Manufacture of low iron loss grain-oriented silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22858791A JPH0543945A (en) 1991-08-14 1991-08-14 Manufacture of low iron loss grain-oriented silicon steel sheet

Publications (1)

Publication Number Publication Date
JPH0543945A true JPH0543945A (en) 1993-02-23

Family

ID=16878704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22858791A Pending JPH0543945A (en) 1991-08-14 1991-08-14 Manufacture of low iron loss grain-oriented silicon steel sheet

Country Status (1)

Country Link
JP (1) JPH0543945A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012036442A (en) * 2010-08-06 2012-02-23 Jfe Steel Corp Oriented electromagnetic steel plate
JP2012177163A (en) * 2011-02-25 2012-09-13 Jfe Steel Corp Method for manufacturing directional magnetic steel sheet
JP2013159847A (en) * 2012-02-08 2013-08-19 Jfe Steel Corp Grain-oriented magnetic steel sheet and method of manufacturing the same
US10062483B2 (en) 2011-12-28 2018-08-28 Jfe Steel Corporation Grain-oriented electrical steel sheet and method for improving iron loss properties thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012036442A (en) * 2010-08-06 2012-02-23 Jfe Steel Corp Oriented electromagnetic steel plate
US9799432B2 (en) 2010-08-06 2017-10-24 Jfe Steel Corporation Grain oriented electrical steel sheet
JP2012177163A (en) * 2011-02-25 2012-09-13 Jfe Steel Corp Method for manufacturing directional magnetic steel sheet
US10062483B2 (en) 2011-12-28 2018-08-28 Jfe Steel Corporation Grain-oriented electrical steel sheet and method for improving iron loss properties thereof
JP2013159847A (en) * 2012-02-08 2013-08-19 Jfe Steel Corp Grain-oriented magnetic steel sheet and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP3023242B2 (en) Method for producing low iron loss unidirectional silicon steel sheet with excellent noise characteristics
KR101421387B1 (en) Grain oriented electrical steel sheet and method for manufacturing the same
JP5594437B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5954421B2 (en) Oriented electrical steel sheet for iron core and method for producing the same
RU2610204C1 (en) Method of making plate of textured electrical steel
JP2012177149A (en) Grain-oriented silicon steel sheet, and method for manufacturing the same
JP3399991B2 (en) Method for producing low iron loss unidirectional silicon steel sheet
JP6116796B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP3726289B2 (en) Oriented electrical steel sheet with low iron loss
JPH062042A (en) Production of grain-oriented silicon steel sheet with low iron loss for laminated iron core
KR0134088B1 (en) Low iron loss grain oriented silicon steel sheets &amp; method of producing the same
JPH07320922A (en) One directional electromagnetic steel sheet at low iron loss
JPH0765108B2 (en) Iron loss reduction method of unidirectional silicon steel sheet by electron beam irradiation
JPH0543945A (en) Manufacture of low iron loss grain-oriented silicon steel sheet
JPH05179355A (en) Production of low-iron loss unidirectionally oriented silicon steel sheet
JP2020105589A (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JP2638180B2 (en) Low iron loss unidirectional silicon steel sheet and method for producing the same
JPH05311241A (en) Manufacture of low core loss grain-oriented silicon steel sheet and irradiation device for electron beam
JPH11124629A (en) Grain oriented silicon steel sheet reduced in iron loss and noise
JPH0551645A (en) Manufacture of low core loss grain-oriented silicon steel sheet
JPH0432517A (en) Production of grain-oriented silicon steel sheet reduced in iron loss
JPH0543944A (en) Manufacture of low iron loss grain-oriented silicon steel sheet
JPH10183312A (en) Grain oriented silicon steel sheet low in core loss and excellent in strain resisting characteristic and execution characteristic, and manufacture therefor
JP7459956B2 (en) grain-oriented electrical steel sheet
JPH0765109B2 (en) Iron loss reduction method of unidirectional silicon steel sheet by electron beam irradiation