JPH10183312A - Grain oriented silicon steel sheet low in core loss and excellent in strain resisting characteristic and execution characteristic, and manufacture therefor - Google Patents

Grain oriented silicon steel sheet low in core loss and excellent in strain resisting characteristic and execution characteristic, and manufacture therefor

Info

Publication number
JPH10183312A
JPH10183312A JP23549797A JP23549797A JPH10183312A JP H10183312 A JPH10183312 A JP H10183312A JP 23549797 A JP23549797 A JP 23549797A JP 23549797 A JP23549797 A JP 23549797A JP H10183312 A JPH10183312 A JP H10183312A
Authority
JP
Japan
Prior art keywords
steel sheet
grain
grains
strain
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23549797A
Other languages
Japanese (ja)
Other versions
JP3383555B2 (en
Inventor
Michiro Komatsubara
道郎 小松原
Toshito Takamiya
俊人 高宮
Kunihiro Senda
邦浩 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP23549797A priority Critical patent/JP3383555B2/en
Priority to US08/953,920 priority patent/US6083326A/en
Priority to EP97118194A priority patent/EP0837148B1/en
Priority to DE69706388T priority patent/DE69706388T2/en
Priority to CN97126080A priority patent/CN1099474C/en
Priority to KR1019970054015A priority patent/KR100424126B1/en
Priority to BR9705106A priority patent/BR9705106A/en
Publication of JPH10183312A publication Critical patent/JPH10183312A/en
Priority to US09/557,230 priority patent/US6444050B1/en
Priority to US10/163,522 priority patent/US6929704B2/en
Application granted granted Critical
Publication of JP3383555B2 publication Critical patent/JP3383555B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a grain oriented silicon steel sheet low in core loss and excellent in strain resisting characteristic and execution characteristic by specifying the ratio of the number of crystal grains with a prescribed grain size on the sheet surface among the crystal grains penetrating in the direction of thickness of the sheet. SOLUTION: The component composition of the objective steel sheet is, by weight, 1.5-7.0 % Si and 0.03-2.5% Mn, and the impurities <=0.003% C and <=0.002% each of S and N. The important crystal grains of such a sheet penetrate in the direction of thickness of the sheet. Such penetrating grains form many magnetic poles on the grain boundaries and increase big stationary magnetic energy. Regarding the distribution of such penetrating grains, it is an indispensable condition that the ratio of the number of crystal grains with grain size <=3mm is >=65% to <=98%. Such fine grains of <=3mm, in addition to those of natural generation are preferably arranged artificially and regularly so that the magnetic poles staying on the grain boundaries may be distributed evenly in the sheet and the static magnetic energy distribution may be uniform.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、変圧器や発電機
の鉄心に利用される方向性電磁鋼板、中でも鉄損が低
く、耐歪特性および実機特性に優れた方向性電磁鋼板お
よびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grain-oriented electrical steel sheet used for an iron core of a transformer or a generator, and more particularly to a grain-oriented electrical steel sheet having a low iron loss and excellent in distortion resistance and actual machine properties, and a method for producing the same. It is about.

【0002】[0002]

【従来の技術】Siを含有し、かつ結晶方位が(110)
〔001〕方位や(100)〔001〕方位に配向した
方向性電磁鋼板は、優れた軟磁気特性を有することから
商用周波数域での各種鉄心材料として広く使用されてい
る。この種電磁鋼板に要求される特性としては、特に鉄
損(一般に50Hzの周波数で 1.7Tに磁化させた時の損失
であるW17/50(W/kg)で表される)が低いことが重要で
ある。
2. Description of the Related Art Si is contained and the crystal orientation is (110).
Oriented electrical steel sheets oriented in the [001] or (100) [001] orientation are widely used as various core materials in the commercial frequency range because of their excellent soft magnetic properties. The characteristics required for this type of electrical steel sheet are particularly low iron loss (generally expressed as W 17/50 (W / kg), which is the loss when magnetized to 1.7 T at a frequency of 50 Hz). is important.

【0003】鉄損を低減する方法としては、渦電流損の
低減に有効なSiを含有させて電気抵抗を高める方法、鋼
板板厚を薄くする方法、結晶粒径を小さくする方法、お
よびヒステリシス損の低減に有効な結晶粒の方位を揃え
る方法等がある。このうちSiを含有させて電気抵抗を高
める方法は、Siを過度に含有させると飽和磁束密度の低
下を招き、鉄心のサイズ拡大の原因ともなるので、限界
があり、また鋼板板厚を薄くする方法も極端な製造コス
トの増大を招くことから限界があった。
[0003] As a method of reducing iron loss, a method of increasing electric resistance by containing Si effective for reducing eddy current loss, a method of reducing the thickness of a steel sheet, a method of reducing a crystal grain size, and a method of reducing hysteresis loss There is a method of aligning the orientation of crystal grains which is effective for reducing the crystallinity. Among them, the method of increasing the electric resistance by containing Si causes a decrease in the saturation magnetic flux density when excessively containing Si, which causes an increase in the size of the iron core, so there is a limit, and the thickness of the steel sheet is reduced. The method is also limited because it causes an extreme increase in manufacturing cost.

【0004】従って、鉄損低減のための技術開発は、結
晶方位の集積度向上(これは、一般に 800 A/mの磁化力
における磁束密度B8 (T)で表される)と結晶粒径の
低減に注力されたが、結晶方位の集積度を向上させると
必然的に結晶粒径が大きくなり鉄損が劣化するという二
律背反性が存在するため、最小の鉄損値を得るために
は、最適な結晶方位集積度すなわち最適なB8 値に調整
することが必要であった。
Therefore, the technical development for reducing iron loss is to improve the degree of integration of crystal orientation (this is generally represented by the magnetic flux density B 8 (T) at a magnetization force of 800 A / m) and the crystal grain size. Although there was a trade-off that increasing the degree of integration of the crystal orientation inevitably increases the crystal grain size and deteriorates iron loss, in order to obtain the minimum iron loss value, It was necessary to adjust the degree of integration of the crystal orientation, that is, the optimum B 8 value.

【0005】しかしながら、近年、プラズマジェットや
レーザー光を照射して人工的に磁区幅を細分化して鉄損
を低減する技術が開発され、鉄損低減のために結晶粒径
を細粒化する必要性がなくなったことから、現在では結
晶方位の集積度を高めて鉄損を低減する方法が主流とな
り、磁束密度(B8 )が1.93〜2.00Tという材料まで開
発されるようになってきた。
However, in recent years, a technique has been developed for irradiating a plasma jet or a laser beam to artificially narrow the magnetic domain width to reduce iron loss, and it is necessary to reduce the crystal grain size to reduce iron loss. Due to the elimination of the properties, the method of reducing the core loss by increasing the degree of integration of the crystal orientation has become the mainstream, and materials having a magnetic flux density (B 8 ) of 1.93 to 2.00 T have been developed.

【0006】ところで、結晶方位の集積度を高めるため
には、2次再結晶を完全に制御することが必要となって
くる。2次再結晶は、インヒビターと呼ばれるAlNやMn
Se、MnSなどの析出物を鋼中に微細に分散析出させて結
晶粒の正常成長を抑制し、ゴス方位と呼ばれる特定の好
ましい方位((110)〔001〕方位およびその近傍
方位)の粒のみを大きく成長させる技術であり、インヒ
ビターとしてはこの他にもSb,Sn,Biなどの粒界偏析型
元素をサブインヒビターとして用いている。こうした技
術と結晶粒の集合組織を制御する技術が結合して上記の
ような優れた磁束密度を有する電磁鋼板の製造技術が完
成された。
Incidentally, in order to increase the degree of integration of the crystal orientation, it is necessary to completely control the secondary recrystallization. Secondary recrystallization is performed by using an inhibitor called AlN or Mn.
Precipitates such as Se and MnS are finely dispersed and precipitated in steel to suppress normal growth of crystal grains, and only grains having a specific preferred orientation ((110) [001] orientation and its neighboring orientation) called Goss orientation It is a technique for growing GaN greatly, and other inhibitors such as grain boundary segregation elements such as Sb, Sn, and Bi are used as sub-inhibitors. These techniques and the technique of controlling the texture of crystal grains are combined to complete the technique of manufacturing an electromagnetic steel sheet having the above-described excellent magnetic flux density.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、このよ
うな優れた軟磁気特性を有する方向性電磁鋼板を用いて
変圧器を製造した場合、実機として所期した特性が得ら
れない場合が多々発生するようになった。特に剪断加工
の後、歪取焼鈍を行わない状態で使用する積変圧器の場
合に材料特性と変圧器特性とのギャップがとりわけ大き
かった。
However, when a transformer is manufactured by using a grain-oriented electrical steel sheet having such excellent soft magnetic properties, there are many cases where desired properties cannot be obtained as an actual machine. It became so. In particular, in the case of a product transformer used without performing strain relief annealing after shearing, the gap between the material characteristics and the transformer characteristics was particularly large.

【0008】従来においても、磁束密度の高い方向性電
磁鋼板を使用して積変圧器を製造した場合に所期した実
機特性が得られないという問題が発生し、種々調査が行
われてきたが、これは磁束密度の高い材料を用いた場合
の特有の現象として、変圧器のT結合部に磁束の流れ方
向から逸脱する方向への好ましからざる磁束の廻り込み
が生じ、不要な損失が生じるため所定の鉄損低減効果が
得られないとの説明がなされ、改善の余地がないものと
されてきた。しかしながら、磁束密度がさらに向上した
昨今の材料を用いた場合における実機特性の劣化量は甚
だしく、材料開発の利益すら享受できない状況にある。
Conventionally, when a product transformer is manufactured by using a grain-oriented electrical steel sheet having a high magnetic flux density, a problem that desired characteristics of an actual machine cannot be obtained has occurred, and various investigations have been made. This is a unique phenomenon when a material having a high magnetic flux density is used. Unwanted magnetic flux wraps around the T-junction of the transformer in a direction deviating from the flow direction of the magnetic flux, causing unnecessary loss. It has been described that a predetermined iron loss reduction effect cannot be obtained, and it has been said that there is no room for improvement. However, when a modern material having a further improved magnetic flux density is used, the amount of deterioration of the characteristics of the actual machine is so great that even the benefits of material development cannot be enjoyed.

【0009】また、磁束密度の向上に伴い、剪断加工や
積み加工時に加える歪によって鉄損特性が大きく劣化す
る現象が認められた。これについては未だ研究の途中で
あり、現状では材料のハンドリングに注意して歪の付加
をできるだけ抑制するしか現実的な対応策がない状態に
ある。
[0009] Further, with the improvement of the magnetic flux density, a phenomenon was observed in which iron loss characteristics were greatly deteriorated by strain applied during shearing and laminating. This is still in the midst of research, and at present there is no realistic countermeasure that can be applied to the handling of materials while suppressing distortion as much as possible.

【0010】この発明は、2次再結晶粒の結晶方位が高
度に集積した材料において、材料の鉄損から推定される
レベルに対し実機特性が大きく劣化する原因、および加
工工程において付加される歪に対する感受性が高い原因
を解明し、かような特性劣化を生じることのない方向性
電磁鋼板を、その有利な製造方法と共に提案することを
目的とする。
According to the present invention, in a material in which the crystal orientation of secondary recrystallized grains is highly integrated, the characteristics of the actual machine are greatly degraded with respect to the level estimated from the iron loss of the material, and the strain added in the processing step. It is an object of the present invention to elucidate the cause of high sensitivity to steel and to propose a grain-oriented electrical steel sheet that does not cause such characteristic deterioration, together with its advantageous production method.

【0011】[0011]

【課題を解決するための手段】以下、この発明の解明経
緯について説明する。さて、方向性電磁鋼板の高磁束密
度化の方法は、従来から良く知られていて、インヒビタ
ー元素としてAl,Sb,Sn,Biなどの添加が有効であるこ
とが知られている。例えば、特公昭46-23820号公報に
は、AlとSを含有する方向性電磁鋼板によってB10とし
て 1.981Tの値が、また特公昭62-56923号公報には、イ
ンヒビターとしてAl,Se,SbおよびBiを含有する方向性
電磁鋼板によってB8 として1.95Tの値が報告されてい
る。
The details of the invention will be described below. A method for increasing the magnetic flux density of a grain-oriented electrical steel sheet is well known in the art, and it is known that the addition of Al, Sb, Sn, Bi, or the like as an inhibitor element is effective. For example, in JP-B-46-23820, the value of 1.981T as B 10 by a directional electromagnetic steel sheet containing Al and S, but also in JP-B-62-56923, Al as an inhibitor, Se, Sb value of 1.95T is reported as B 8 and the grain-oriented electrical steel sheet containing Bi.

【0012】これらの方向性電磁鋼板の磁気特性はすば
らしいものである。しかしながら、これらの高磁束密度
電磁鋼板を用いて変圧器を製作した場合、特性の劣化が
著しく、実機の鉄損として所望の値が得られない場合が
多かった。この原因は、材料の結晶の高集積度に起因
し、従来から仕方のないものとされてきたことは前述し
たとおりである。
The magnetic properties of these grain-oriented electrical steel sheets are excellent. However, when a transformer is manufactured using these high magnetic flux density electromagnetic steel sheets, the characteristics are significantly deteriorated, and a desired value of iron loss of an actual machine is often not obtained. The cause of this is the high degree of integration of the crystal of the material, and as described above, it has been regarded as inevitable in the past.

【0013】そこで、発明者らは、高磁束密度材料を使
用した積み変圧器のT結合部における磁束の廻り込みに
及ぼす各種要因について調査した。その結果、特性劣化
の原因が、従来から言われてきた結晶方位の集積度が高
いことによるだけでなく、この他に結晶粒径の影響があ
ることを新たに見出した。また、加工工程で導入される
歪の特性劣化に及ぼす影響に関して、以下のことを新規
に知見した。
Therefore, the present inventors have investigated various factors affecting the wraparound of the magnetic flux at the T junction of the stacked transformer using a high magnetic flux density material. As a result, the inventors have newly found that the cause of the characteristic deterioration is not only the high degree of integration of the crystal orientation, which has been conventionally known, but also the influence of the crystal grain size. In addition, regarding the effect of the strain introduced in the processing step on the characteristic deterioration, the following was newly found.

【0014】すなわち、結晶方位の集積度が高い場合、
鋼板表面に現われる磁極は結晶粒表面よりも結晶粒界に
現われる磁極の方が圧倒的に大きい。磁区の細分化によ
る鉄損の低減は、磁極の発生によって増加した静磁エネ
ルギーを磁区細分化により低下する機構によって達成さ
れるのであるが、高磁束密度方向性電磁鋼板の場合、粒
界に現われる磁極による効果がそれゆえ大部分となる。
しかしながら、この材料の場合、必然的に結晶粒径が大
きくなっているので結晶粒界間の距離が大きく、同一量
の磁極が結晶粒界に現われていても静磁エネルギーの増
加量は結晶粒径の小さな材料よりも小さい。また、材料
の鉄損を最小にすべく磁区細分化処理を施した材料で
は、これにひとたび歪が付加された場合、エネルギーバ
ランスが容易に崩れて磁区細分化効果が失われ、磁区幅
が増加する。これが、高磁束密度電磁鋼板において歪感
受性が高い理由である。
That is, when the degree of integration of the crystal orientation is high,
The magnetic poles appearing on the surface of the steel sheet are much larger at the magnetic poles appearing at the crystal grain boundaries than at the crystal grain surfaces. Reduction of iron loss due to magnetic domain subdivision is achieved by a mechanism that reduces the magnetostatic energy increased by the generation of magnetic poles by magnetic domain subdivision, but appears in grain boundaries in the case of high magnetic flux density oriented magnetic steel sheets The effect of the magnetic pole is therefore predominant.
However, in the case of this material, since the crystal grain size is inevitably large, the distance between the crystal grain boundaries is large, and even if the same amount of magnetic poles appear at the crystal grain boundaries, the amount of increase in the magnetostatic energy is small. Smaller than small diameter materials. Also, in a material that has been subjected to magnetic domain refining to minimize iron loss in the material, once strain is applied to the material, the energy balance easily collapses, the magnetic domain refining effect is lost, and the magnetic domain width increases. I do. This is the reason why the high magnetic flux density magnetic steel sheet has high strain sensitivity.

【0015】以下、上記の知見を得るに至った実験につ
いて述べる。 C:0.08wt%、Si:3.35wt%、Mn:0.07wt%、Al:0.02
5 wt%、Se:0.020 wt%、Sb:0.040 wt%およびN:0.
008 wt%を含み、残余は不可避的不純物とFeからなる方
向性電磁鋼用の熱延板を、1000℃、30秒間の熱延板焼鈍
後、酸洗し、ついで圧下率:30%の冷間圧延を施したの
ち、中間焼鈍として1050℃で1分間の熱処理を施してか
ら、再び酸洗し、 150〜200 ℃の温間で圧下率:85%の
圧延を施して最終厚み:0.22mmの鋼板とした。ついで脱
脂処理を施した後、磁区細分化処理として鋼板表面に、
深さ:25μm、幅:50μm で、板幅方向から10°傾いた
方向に、長手方向への繰り返しピッチ:3mmの条件で線
状溝を設けた。その後、 850℃で2分間の脱炭・1次再
結晶焼鈍を施したのち、鋼板を2分割し、一方はそのま
ま従来材として用い、他方については、鋼板表面に 1.5
mm径のサイズで点状に、板幅方向に20mm、長手方向に30
mmのピッチで40〜45 Ws のエネルギー投与(1000〜1200
℃の推定温度)条件下の放電処理により瞬間的な加熱処
理を施した。その後、鋼板表面に、TiO2:10wt%および
Sr(OH)2:2wt%を添加したMgOを焼鈍分離剤として塗
布した後、コイルに巻取り、最終仕上げ焼鈍に供した。
最終仕上げ焼鈍は、 850℃までN2 中、1150℃までH2
とN2 の混合雰囲気中での2次再結晶を目的とした処理
と、引き続き1150℃からH2 中で5時間保持する純化を
目的とした処理を同時に行った。最終仕上げ焼鈍後は、
未反応の焼鈍分離剤を除去した後、50%のコロイダルシ
リカとりん酸マグネシウムからなる張力コートを塗布
し、製品とした。
Hereinafter, an experiment which has led to the above knowledge will be described. C: 0.08 wt%, Si: 3.35 wt%, Mn: 0.07 wt%, Al: 0.02
5 wt%, Se: 0.020 wt%, Sb: 0.040 wt% and N: 0.
008 wt%, with the balance being unavoidable impurities and Fe, the hot-rolled steel sheet for directional magnetic steel was annealed at 1000 ° C for 30 seconds, pickled, and then cooled with a rolling reduction of 30%. After rolling, heat treatment is performed at 1050 ° C. for 1 minute as intermediate annealing, pickling is again performed, and rolling is performed at a rolling reduction of 85% at a temperature of 150 to 200 ° C. to obtain a final thickness of 0.22 mm. Steel plate. Then, after degreasing, the surface of the steel sheet as a magnetic domain refining process,
A linear groove having a depth of 25 μm and a width of 50 μm was provided in a direction inclined at 10 ° from the width direction of the plate under a condition of a repetition pitch in the longitudinal direction: 3 mm. Then, after decarburization and primary recrystallization annealing at 850 ° C for 2 minutes, the steel sheet is divided into two parts, one of which is used as it is as a conventional material, and the other is
20 mm in the width direction and 30 in the longitudinal direction
40-45 Ws energy delivery at 1000 mm pitch (1000-1200
An instantaneous heat treatment was performed by a discharge treatment under the condition of (estimated temperature of ° C.). After that, TiO 2 : 10wt% and
After applying MgO to which Sr (OH) 2 : 2 wt% was added as an annealing separator, it was wound around a coil and subjected to final finish annealing.
Final finish annealing in N 2 up to 850 ° C, H 2 up to 1150 ° C
A treatment for the purpose of secondary recrystallization in a mixed atmosphere of N 2 and N 2 and a treatment for the purpose of purifying the mixture by holding it at 1150 ° C. in H 2 for 5 hours were simultaneously performed. After final finishing annealing,
After removing the unreacted annealing separating agent, a tension coat composed of 50% colloidal silica and magnesium phosphate was applied to obtain a product.

【0016】各製品の磁気特性を測定した後、スリット
加工、剪断加工、積み加工によりモデル変圧器を作成し
て変圧器の特性を測定し、その後鋼板をマクロエッチし
て結晶粒径を測定した。また、上記のスリット加工、剪
断加工、積み加工に際しては細心の注意を払い歪の付加
を極力抑制したが、歪付与の効果を実験的に評価するた
め、これらの加工時に50mm径の球体を有するキャスター
を5kgの荷重で押し付けて意図時に歪を付加する実験も
併せて行った。得られた結果を整理して表1に示す。
After measuring the magnetic characteristics of each product, a model transformer was prepared by slitting, shearing, and stacking, and the characteristics of the transformer were measured. Thereafter, the steel plate was macro-etched to measure the crystal grain size. . In addition, during the above-mentioned slitting, shearing, and laminating, the addition of distortion was suppressed as much as possible with the utmost care, but in order to experimentally evaluate the effect of imparting distortion, a sphere having a diameter of 50 mm was used during these processing. An experiment was also performed in which a caster was pressed with a load of 5 kg to add distortion when intended. Table 1 summarizes the obtained results.

【0017】[0017]

【表1】 [Table 1]

【0018】表1から明らかなように、脱炭・1次再結
晶焼鈍後、 1.5mm径のサイズで点状に瞬間的な高温処理
を施したのち2次再結晶させた製品(記号(a), (b))で
は、モデル変圧器の鉄損は極めて良好であり、製品の鉄
損に対する変圧器の鉄損の比(以後、実機化因子と呼称
する)は低かったのに対し、このような処理を行わない
製品(記号(c), (d))では、モデル変圧器の鉄損は大き
く劣化し、特に加工工程においてキャスターを用いて歪
を付加した場合には実機化因子が大きく、変圧器の鉄損
の劣化程度は極めて大、すなわち歪感受性が大きいこと
が判明した。
As is clear from Table 1, after decarburization and primary recrystallization annealing, a point-shaped instantaneous high-temperature treatment with a diameter of 1.5 mm was performed, followed by secondary recrystallization of the product (symbol (a ) and (b)), the iron loss of the model transformer was extremely good, and the ratio of the iron loss of the transformer to the iron loss of the product (hereinafter referred to as the realization factor) was low. For products that do not perform such treatments (symbols (c) and (d)), the core loss of the model transformer is greatly deteriorated. It was found that the degree of deterioration of the core loss of the transformer was extremely large, that is, the strain sensitivity was large.

【0019】上記のような結果が得られた理由を解明す
べく、鋼板のマクロエッチによる結晶粒の状態とモデル
変圧器の磁束分布の状態について詳細に調査したとこ
ろ、脱炭焼鈍板に 1.5mm径の点状の瞬間的高温熱処理を
施したのち2次再結晶させた製品(a), (b)では、かかる
処理を施した場所において 0.5〜2.5 mm径のサイズの微
細な結晶粒が鋼板の厚み方向を貫通して形成されていた
のに対し、このような処理を施さなかった製品(c), (d)
では、大部分が鋼板面内において20〜70mmの粒径の粗大
粒からなるものであった。
In order to elucidate the reason why the above results were obtained, the state of the crystal grains by macro-etching of the steel sheet and the state of the magnetic flux distribution of the model transformer were examined in detail. In the products (a) and (b), which were subjected to instantaneous high-temperature heat treatment in the form of spots having a diameter and then subjected to secondary recrystallization, fine crystal grains with a diameter of 0.5 to 2.5 mm (C), (d)
Most of the samples consisted of coarse grains having a grain size of 20 to 70 mm in the plane of the steel sheet.

【0020】また、このようにして人為的に生成させた
微細結晶粒の結晶方位を測定したところ、ランダム方位
となっており、通常の2次再結晶粒の方位であるゴス方
位から15°以上もずれていた。ちなみに、脱炭焼鈍板に
1.5mm径の点状の瞬間的高温熱処理を施したのち2次再
結晶させた場合(製品(a), (b))と同様の方法で、板幅
方向における間隔:10mmピッチ、圧延方向における間
隔:15mmピッチで鋼板に人為的に微細粒を生成させた例
を図1に示し、また図2の(100)極点図には、その
方位を、自然発生した微細粒のそれと比較して示す。図
1には、自然に発生した微細粒も散見されるが、瞬間的
な高温熱処理を施した位置には確実に微細粒が生成して
いる。また、図2に示したとおり、人為的に生成させた
微細粒の方位はランダムに分布しているのに対し、自然
に発生した微細粒のそれはゴス方位に極めて近いことが
判る。
Further, when the crystal orientation of the fine crystal grains artificially formed in this way was measured, the crystal orientation was found to be a random orientation, which was 15 ° or more from the Goss orientation, which is the orientation of ordinary secondary recrystallized grains. Was also off. By the way, for decarburized annealing plate
In the same manner as in the case where a point-shaped instantaneous high-temperature heat treatment of 1.5 mm diameter is performed and then secondary recrystallization (products (a), (b)), the interval in the sheet width direction: 10 mm pitch, in the rolling direction FIG. 1 shows an example in which fine grains are artificially formed on a steel plate at a pitch of 15 mm, and the orientation is shown in the (100) pole figure of FIG. 2 in comparison with that of naturally occurring fine grains. . In FIG. 1, spontaneously generated fine particles are scattered, but fine particles are surely generated at the position where the instantaneous high-temperature heat treatment is performed. Also, as shown in FIG. 2, it can be seen that the orientation of the artificially generated fine grains is randomly distributed, whereas that of the naturally occurring fine grains is very close to the Goss orientation.

【0021】次に、上記2種類の製品の板厚方向に貫通
する結晶粒について、粒径分布を測定した結果を表2に
示す。ここで、各結晶粒の粒径は、その面積に相当する
円の直径で計算し、また平均結晶粒径の計算は一定面積
内に存在する結晶粒の個数を数え、1個当たりの平均面
積を求め、その面積に相当する円の直径で表した。
Next, the results of measuring the particle size distribution of the crystal grains penetrating in the thickness direction of the above two types of products are shown in Table 2. Here, the grain size of each crystal grain is calculated by the diameter of a circle corresponding to the area, and the average crystal grain size is calculated by counting the number of crystal grains existing in a certain area, and calculating the average area per one grain. Was calculated and expressed by the diameter of a circle corresponding to the area.

【0022】[0022]

【表2】 [Table 2]

【0023】表2から、実機化因子が大きく、変圧器特
性が劣った製品(c), (d)は、2.5 mm以下の微細粒の個数
が約30%であり、15〜70mmのサイズの結晶粒が約60%を
占めることが判る。これに対し、実機化因子の低い、変
圧器の鉄損特性に優れた製品である (a)や(b) は 2.5mm
以下の微細粒の個数比率が約90%であり、15〜70mmのサ
イズの結晶粒の個数比率は8%と極めて低いことが判
る。
From Table 2, it can be seen that the products (c) and (d) having a large realization factor and inferior transformer characteristics have about 30% of fine particles of 2.5 mm or less, and have a size of 15 to 70 mm. It can be seen that the crystal grains account for about 60%. In contrast, (a) and (b), which have low transformer factor and excellent iron loss characteristics of transformers, are 2.5mm
It can be seen that the number ratio of the following fine grains is about 90%, and the number ratio of crystal grains having a size of 15 to 70 mm is as extremely low as 8%.

【0024】このように、実機化因子の値が異なる2種
類の材料においては、微細結晶粒の個数比率に大きな差
異があることが判明したが、このような微細粒の存在に
よって如何なる機構で実機化因子および歪感受性の低下
すなわち耐歪特性の向上効果が得られたかについて、次
に調査した。まず、モデル変圧器におけるT部接合部の
磁束の流れを調査したところ、微細粒の存在によって磁
束の廻り込みが抑制されていることが判った。すなわ
ち、粗大結晶粒の方位の集積度の向上にも拘わらず、粗
大結晶粒の中に存在する微細な結晶粒が磁束の廻り込み
を抑制していることが新たに判明した。それ故、高磁束
密度の材料であるにも拘わらず、実機化因子が低く抑制
されたわけである。
As described above, it was found that there was a large difference in the number ratio of fine crystal grains between the two types of materials having different values of the realization factor. Next, it was investigated whether the effect of reducing the strain factor and the strain sensitivity, that is, the effect of improving the strain resistance characteristics, was obtained. First, when the flow of the magnetic flux at the junction of the T section in the model transformer was investigated, it was found that the presence of the fine particles suppressed the flow of the magnetic flux. That is, it has been newly found that the fine crystal grains existing in the coarse crystal grains suppress the wraparound of the magnetic flux, despite the improvement of the degree of integration of the orientation of the coarse crystal grains. Therefore, despite the fact that it is a material having a high magnetic flux density, the factor of realization was suppressed low.

【0025】次に、耐歪特性に対する効果について検討
を加えた。鋼板内に歪が付加された場合、歪に起因する
鋼板の磁気的エネルギーが増加し、相対的に静磁エネル
ギーの比率が低下するため、磁区の細分化効果は減殺さ
れる。これに対抗するには、弾性エネルギーや静磁エネ
ルギーなど磁区細分化に寄与する種類のエネルギーを、
付加された歪によるエネルギー増加分よりも少なくとも
優る量だけ、予め鋼板内に与えておくことが有効であ
る。かようなエネルギー付与方法としては、張力付与が
あり、その他にも静磁エネルギー増加手法がある。この
うち、張力付与については、現状よりも強い張力を付与
できるコーティングは見当たらず、コーティング厚みを
増加する手段では占積率の低下を招き、変圧器特性が劣
化する。
Next, the effect on the distortion resistance was examined. When strain is applied to the steel sheet, the magnetic energy of the steel sheet caused by the strain increases, and the ratio of the magnetostatic energy relatively decreases, so that the effect of subdividing the magnetic domains is reduced. To counter this, the types of energy that contribute to magnetic domain refinement, such as elastic energy and magnetostatic energy,
It is effective to provide the steel sheet with an amount at least superior to the increase in energy due to the applied strain in advance. As such an energy applying method, there is a method of applying tension, and there is also a method of increasing magnetostatic energy. Among them, regarding the application of tension, there is no coating that can apply a higher tension than the current state, and the means for increasing the coating thickness causes a decrease in the space factor and deteriorates the transformer characteristics.

【0026】そこで、静磁エネルギーについて考察する
と、磁束密度が向上し鋼板の結晶粒の方位の集積度が向
上すると、前述したような理由で結晶粒界に磁極が集積
し、しかも結晶粒径が粗大化に伴う結晶粒界の間隔の増
大のため、静磁エネルギーの大きさは激減する。しかし
ながら、人為的に生成させた微細粒は、その方位がゴス
方位から大きく(通常15°以上)ずれているため、かよ
うな微細粒を粗大結晶粒の中に存在させることによって
静磁エネルギーを増加させることが可能となり、これに
伴い製品の耐歪特性が向上するのである。
Considering the magnetostatic energy, when the magnetic flux density is improved and the degree of integration of the orientation of the crystal grains of the steel sheet is improved, the magnetic poles are accumulated at the crystal grain boundaries for the above-mentioned reason, and the crystal grain size is reduced. The magnitude of the magnetostatic energy is drastically reduced due to an increase in the interval between crystal grain boundaries accompanying the coarsening. However, since the orientation of the artificially generated fine grains is largely deviated from the Goss orientation (usually 15 ° or more), the presence of such fine grains in the coarse crystal grains reduces the magnetostatic energy. It is possible to increase the resistance, and the strain resistance of the product is improved accordingly.

【0027】この効果を、最大限発揮させるためには、
微細粒の粒径が板厚を貫通していることが重要である。
というのは、微細粒が板厚を貫通していないと、板厚垂
直方向に射影される粒界面積が小さく、結晶粒界上に発
生する磁極の量も少ないため、静磁エネルギーを高める
効果が弱いからであり、また磁束の廻り込みを抑制する
効果も同様に劣るため、実機化因子も増大することにな
るからである。
In order to maximize this effect,
It is important that the grain size of the fine grains penetrate the plate thickness.
This is because if the fine grains do not penetrate the plate thickness, the grain boundary area projected in the direction perpendicular to the plate thickness is small, and the amount of magnetic poles generated on the crystal grain boundaries is small, so the effect of increasing the magnetostatic energy Is also weak, and the effect of suppressing the wraparound of the magnetic flux is similarly inferior, so that the factor of realization increases.

【0028】次に、鋼板板厚を貫通する結晶粒全体に占
める3mm以下の微細結晶粒の個数比率の割合と耐歪特性
をも含めた実機化因子との関係について調査した結果
を、図3に示す。同図に示したとおり、微細粒の個数比
率が65〜98%の間、特に75〜98%の間で実機化因子が低
くかつ耐歪特性(歪付与加工時における実機化因子で評
価)も向上している。
Next, FIG. 3 shows the result of investigation on the relationship between the ratio of the number ratio of fine crystal grains of 3 mm or less to the entire crystal grains penetrating the steel sheet thickness and the factor of realization including distortion resistance. Shown in As shown in the figure, when the number ratio of fine grains is between 65 and 98%, particularly between 75 and 98%, the realization factor is low and the strain resistance characteristics (evaluated by the realization factor at the time of strain imparting processing) are also high. Has improved.

【0029】次に、板厚を貫通する全結晶粒についてそ
の平均粒径として適正な値を実験により求めた。すなわ
ち、磁束密度の向上に伴って粗大結晶粒はますます粗大
化していくが、これに応じて微細結晶粒の個数比率は数
値上増加していく。しかしながら、微細結晶粒間の距離
も同一の微細粒個数比率では粗大結晶粒の増大の応じて
実質的には増加していくことになるので、微細粒の存在
による静磁エネルギーの増加効果はさほど期待できない
ことになる。従って、平均結晶粒径として好ましい上限
値が存在することになる。図4に、この点について実験
した結果を示す。同図から明らかなように、板厚を貫通
する全結晶粒の平均結晶粒径が8〜50mmの範囲におい
て、とりわけ優れた実機化因子と耐歪特性の向上効果が
得られている。
Next, an appropriate value as an average particle size of all the crystal grains penetrating the plate thickness was obtained by an experiment. That is, as the magnetic flux density increases, the coarse crystal grains become more and more coarse, and the number ratio of the fine crystal grains numerically increases accordingly. However, since the distance between fine crystal grains substantially increases with the increase in coarse crystal grains at the same fine particle number ratio, the effect of increasing the magnetostatic energy due to the presence of fine grains is not so large. You can't expect it. Therefore, a preferable upper limit exists as the average crystal grain size. FIG. 4 shows the results of an experiment conducted on this point. As is apparent from the figure, when the average crystal grain diameter of all the crystal grains penetrating the plate thickness is in the range of 8 to 50 mm, particularly excellent realization factor and the effect of improving the strain resistance are obtained.

【0030】以上、板厚を貫通する微細粒の生成によっ
て、実機化因子の増加が抑制される機構および耐歪特性
が向上する機構について説明したが、次に、このような
効果を得るために必要な微細粒の生成に必要な製造条件
について検討した結果を、次に述べる。
The mechanism for suppressing the increase in the factor of realization and the mechanism for improving the strain resistance by the generation of fine grains penetrating the plate thickness have been described above. The result of examining the manufacturing conditions necessary for producing the necessary fine particles will be described below.

【0031】種々の実験の結果、上記の効果を有する微
細粒の生成には、2次再結晶前に、局所的に異常粒成長
の促進のための駆動力を高めておくことが必要で、特に
一定量の歪を鋼板内部に存在させることが有効であるこ
とが判明した。2次再結晶は特定方位の結晶粒が、その
他の1次再結晶粒を急激に蚕食して成長する現象であ
る。近年、この2次再結晶粒の核生成および成長には1
次再結晶粒の集合組織による選択性が強く作用している
ことが明らかになりつつあり、ゴス方位およびその近傍
方位以外の方位を有する結晶粒の核生成および成長は容
易でないと言われている。
As a result of various experiments, it is necessary to locally increase the driving force for promoting abnormal grain growth before secondary recrystallization in order to produce fine grains having the above-mentioned effects. In particular, it has been found that it is effective to cause a certain amount of strain to exist inside the steel sheet. Secondary recrystallization is a phenomenon in which a crystal grain of a specific orientation grows rapidly by eating other primary recrystallized grains. In recent years, nucleation and growth of secondary recrystallized grains have
It is becoming clear that the selectivity due to the texture of secondary recrystallized grains is acting strongly, and it is said that nucleation and growth of crystal grains having an orientation other than the Goss orientation and its neighboring orientation is not easy. .

【0032】しかしながら、発明者らの研究によれば、
鋼板内部の一定領域に異常粒成長の駆動力を高める処
理、例えば一定量の歪を導入する処理を施すことによ
り、一般の結晶粒の核生成および成長の駆動力を高める
ことが可能となり、ゴス方位から大きくずれた方位の結
晶粒を早期に成長させることができるようになる。ここ
でいう異常粒成長とは、極めて少数の結晶粒が圧倒的多
数の他の結晶粒を蚕食して急激に成長する現象の一般的
な呼称であり、2次再結晶が1次再結晶集合組織に依存
する特定の方位を有する少数の結晶粒のみが急激に成長
する現象である点において、両者は明瞭に異なる。
However, according to the study of the inventors,
By performing a process for increasing the driving force for abnormal grain growth in a certain region inside the steel sheet, for example, a process for introducing a certain amount of strain, it becomes possible to increase the driving force for nucleation and growth of general crystal grains. It becomes possible to grow a crystal grain having a direction greatly deviated from the direction at an early stage. The abnormal grain growth referred to here is a general term for a phenomenon in which a very small number of crystal grains overwhelm a large number of other crystal grains and grow rapidly, and secondary recrystallization is a primary recrystallization aggregate. They are distinctly different in that only a small number of crystal grains having a specific orientation depending on the structure grow rapidly.

【0033】また、発明者らの研究によると、駆動力を
高める処理に起因する異常粒成長はあくまでもその領域
内のみであり、この領域の外では1次再結晶粒の集合組
織による選択性が強く働き、当該結晶粒はもはや、それ
以上成長することができないことも究明された。このよ
うな現象は、この発明の目的にとって非常に都合の良い
性質である。以下、この点について述べる。
According to the study by the inventors, the abnormal grain growth caused by the treatment for increasing the driving force is only in the region, and the selectivity due to the texture of the primary recrystallized grains is outside the region. It was also determined that the crystal worked hard and could no longer grow anymore. Such a phenomenon is a very advantageous property for the purposes of the present invention. Hereinafter, this point will be described.

【0034】まず、第1に、鋼板内に歪を導入する場
合、歪の大きさと歪導入領域の大きさのみを制御すれ
ば、微細粒のサイズを制御することが可能となる。例え
ば、前述の実験に示したように、鋼板を貫通する微細粒
の適正サイズは円相当径で評価して3mm以下であるの
で、2次再結晶前に鋼板内部に存在させる歪導入領域に
ついても3mm以下に制御すれば、微細粒の大きさを適切
に制御できるのである。
First, when strain is introduced into the steel sheet, the size of the fine grains can be controlled by controlling only the magnitude of the strain and the size of the strain-introduced region. For example, as shown in the above-mentioned experiment, the appropriate size of the fine grains penetrating the steel sheet is 3 mm or less as evaluated by the equivalent circle diameter. If the size is controlled to 3 mm or less, the size of the fine particles can be appropriately controlled.

【0035】第2に、このようにして人為的に生成した
微細粒は、通常の粗大な2次再結晶粒の方位であるゴス
方位((110)〔001〕方位)から大きくずれてい
るので、粗大な2次再結晶粒と微細粒との結晶粒界に磁
極が高密度に生成し、前述した良好な耐歪特性と強い実
機化因子抑制効果が得られることになる。なお、方向性
電磁鋼板の製造過程においても自然発生的にかような微
細粒が生成されることがあり、自然に発生した微細粒も
上記と同様の作用を有している。しかしながら、その発
生過程は、自然発生した他の粒との成長競争に負けた粒
であり、本質的には2次再結晶粒であることに変わりは
なく、その方位もゴス方位に極めて近いので、結晶粒界
にはさほど高密度の磁極は生成せず、従って耐歪特性改
善作用はおよび実機化因子抑制作用は弱い。
Second, since the fine grains artificially generated in this way are largely deviated from the Goss orientation ((110) [001] orientation) which is the orientation of ordinary coarse secondary recrystallized grains. In addition, magnetic poles are generated at a high density at the crystal grain boundary between the coarse secondary recrystallized grains and the fine grains, so that the above-mentioned good strain resistance and strong effect of suppressing the factor of realization can be obtained. In the manufacturing process of the grain-oriented electrical steel sheet, such fine particles may be generated spontaneously, and the naturally generated fine particles have the same action as described above. However, the generation process is a grain that has lost the growth competition with other spontaneously generated grains, and is essentially a secondary recrystallized grain, and its orientation is very close to the Goss orientation. On the other hand, no magnetic poles having a high density are formed at the crystal grain boundaries, so that the effect of improving the strain resistance and the effect of suppressing the factor for realization are weak.

【0036】第3に、人為的に生成させるので、製品に
おける最も好ましい位置に微細粒を生成させることが可
能となる。なお、人為的に生成させた微細粒は、ゴス方
位から大きくずれていて、結晶方位としては劣るので、
製品内に高密度に存在させてはならない。すなわち、で
きるだけ離散的に存在させることが好ましく、粗大な結
晶粒の内部に孤立した状態で存在させることが理想的で
ある。ここに、離散的に存在させる間隔としては、5mm
以上とすることが好ましい。このような状態は、予め歪
導入領域を局所的かつ離散的に形成させることによって
容易に実現できる。また、粗大な結晶粒の内部であれ
ば、数個の微細粒が集合した状態は有利に適合する。
Third, since the fine particles are artificially generated, it is possible to generate fine particles at the most preferable positions in the product. In addition, since the artificially generated fine grains are greatly deviated from the Goss orientation and are inferior in crystal orientation,
It must not be present at high density in the product. In other words, it is preferable that they exist as discretely as possible, and ideally they exist in a state of being isolated inside coarse crystal grains. Here, the discrete interval is 5 mm
It is preferable to make the above. Such a state can be easily realized by previously forming the strain introduction region locally and discretely. In addition, within a coarse crystal grain, a state in which several fine grains are aggregated is advantageously adapted.

【0037】次に、脱炭・1次再結晶焼鈍後の鋼板に瞬
間的高温熱処理を施すことによって、人為的にこのよう
な微細粒が得られた機構について検討した結果について
述べる。さて、鋼板に瞬間的に高温熱処理を施した位置
の結晶組織の、2次再結晶焼鈍途中の過程における変化
について詳細に調査した。その結果、高温熱処理直後に
おいては、結晶粒径や析出インヒビターなどの結晶学的
変化はさほど大きくなく、無視できるほどであった。し
かしながら、2次再結晶焼鈍の極めて早い段階におい
て、一つの1次再結晶粒が周囲の1次再結晶粒の 1.5倍
から 3.0倍に粗大化していることが観察された。このよ
うな結晶粒の粗大化が生じる温度は、2次再結晶が起き
る通常の温度よりもはるかに低い温度であり、しかもそ
の後、板厚方向に貫通するまでに成長する時間も極めて
短い。板厚方向に貫通した後は、高温熱処理した領域内
までは同様に速やかに成長するが、その後は鋼板の昇温
をさらに継続しても成長は遅々としていて、この結晶粒
の成長はほぼ停止状態となる。
Next, the results of a study on the mechanism by which such fine grains were artificially obtained by subjecting a steel sheet after decarburization and primary recrystallization annealing to instantaneous high-temperature heat treatment will be described. The change in the crystal structure at the position where the steel sheet was instantaneously subjected to the high-temperature heat treatment during the secondary recrystallization annealing was examined in detail. As a result, immediately after the high-temperature heat treatment, the crystallographic changes such as the crystal grain size and the precipitation inhibitor were not so large and were negligible. However, at the very early stage of the secondary recrystallization annealing, it was observed that one primary recrystallized grain was coarsened to 1.5 to 3.0 times the surrounding primary recrystallized grains. The temperature at which such coarsening of the crystal grains occurs is much lower than the normal temperature at which secondary recrystallization occurs, and the growth time until the crystal grains penetrate in the thickness direction is very short. After penetrating in the sheet thickness direction, it grows up to the high-temperature heat-treated region in the same manner, but thereafter, even if the temperature of the steel sheet is further increased, the growth is slow, and the growth of the crystal grains is almost complete. It will be stopped.

【0038】さらに、昇温を続けるに伴い、高温熱処理
を施していない非処理部の領域において、通常の2次再
結晶の核が生成し、成長が進行することになる。しかし
ながら、高温熱処理を施した領域に早い段階から成長し
た結晶粒は、後から発生した通常の2次再結晶によって
は蚕食されず、結局、製品内に微細結晶粒として残存す
ることになる。
Further, as the temperature is raised, nuclei for normal secondary recrystallization are generated in the non-processed area where the high-temperature heat treatment is not performed, and the growth proceeds. However, the crystal grains grown from the early stage in the region subjected to the high-temperature heat treatment are not eaten by the subsequent secondary recrystallization, and eventually remain as fine crystal grains in the product.

【0039】このような現象は以下の機構により起こる
ことが、発明者らにより解明された。すなわち、高温熱
処理を施した領域においては、各1次再結晶粒の内部に
歪が一定量以上導入されており、最終仕上げ焼鈍の昇温
過程において、その歪の一部は失われていくが、高密度
の転位が各結晶粒内に残存している。この残存する転位
が、異常粒成長における結晶成長の駆動力を高める作用
を及ぼす。異常粒成長の駆動力が十分高くなると、1次
再結晶集合組織による結晶方位の選択性に打ち勝って、
一般の方位の結晶粒が核生成および粒成長を始めるよう
になる。この現象は、異常粒成長の駆動力が大きいため
に発生するものであるから、非処理部の領域で起こる通
常の2次再結晶の核生成や粒成長よりも格段に低い温度
で起こる。しかしながら、異常粒成長の駆動力を高めた
領域の外では、結晶成長の方位選択性が非常に強いた
め、成長することができない。
The inventors have found that such a phenomenon occurs by the following mechanism. That is, in the region subjected to the high-temperature heat treatment, a certain amount or more of strain is introduced into each primary recrystallized grain, and a part of the strain is lost in the temperature rise process of the final finish annealing. In addition, high-density dislocations remain in each crystal grain. The remaining dislocations have the effect of increasing the driving force for crystal growth in abnormal grain growth. When the driving force of abnormal grain growth becomes sufficiently high, it overcomes the selectivity of the crystal orientation by the primary recrystallization texture,
The crystal grains of the general orientation start nucleation and grain growth. Since this phenomenon occurs because of a large driving force for abnormal grain growth, it occurs at a temperature much lower than the normal secondary recrystallization nucleation and grain growth occurring in the non-processed region. However, the crystal cannot be grown outside the region where the driving force for abnormal grain growth is increased, because the orientation selectivity of crystal growth is very strong.

【0040】このように、高温熱処理領域において異常
粒成長を遂げる結晶粒の方位は、該領域では結晶方位選
択性が相対的に弱いために、ランダム方位となることが
特徴であるが、あくまでも異常粒成長の一種であるの
で、1次再結晶粒の正常粒成長に対する成長の抑制力の
存在は不可欠であり、強いインヒビター作用を必要とす
る。すなわち、薬剤を塗布したり、高温長時間の熱処理
による従来からの方法は、析出インヒビターを粗大化さ
せ抑制力を低下させるので、異常粒成長が起こり難くな
り、正常粒成長による多数の微細粒の発生を惹起させる
結果となるので不適切であり、この発明の方法とは本質
的に異なり、忌避すべき方法である。
As described above, in the high-temperature heat treatment region, the orientation of the crystal grain that undergoes abnormal grain growth is characterized by a random orientation because the crystal orientation selectivity is relatively weak in this region. Since this is a kind of grain growth, the existence of a growth suppressing power for normal grain growth of primary recrystallized grains is indispensable, and a strong inhibitor action is required. That is, the conventional method of applying a chemical or performing a heat treatment at a high temperature for a long time causes the precipitation inhibitor to be coarsened and the suppressing power is reduced, so that abnormal grain growth is unlikely to occur, and a large number of fine grains due to normal grain growth are hardly generated. It is unsuitable because it results in an outbreak and is inherently different from the method of the present invention and is a method to be avoided.

【0041】上述したように人為的に微細粒を生成させ
るためには、微細粒の成長を意図する領域内において、
結晶方位選択性を越えるレベルまで異常粒成長の駆動力
を高めることが必須条件であることは既に述べた。ここ
に異常粒成長の駆動力としては、(1) 歪の存在、(2) 1
次再結晶粒の微細化および(3) インヒビターの抑制力の
強化による結晶粒径に対するスーパーヒート化の増大等
が挙げられるが、(3) の方法はランダム方位の粒の発生
の制御が困難であり、しばしばゴス方位に近い結晶方位
の粒が成長し、微細粒の生成を意図する領域を越えて粗
大に成長するため、微細粒のサイズ制御が極めて難し
い。従って、上記結晶成長のための駆動力を高める方法
としては、(1) 歪を存在させること、または (2)1次再
結晶粒のサイズを小さくすることが有利な方法であり、
特に歪を存在させる方法が最も有利な技術であること
が、種々の実験から明らかとなった。
As described above, in order to artificially generate fine grains, in a region where growth of the fine grains is intended,
As described above, it is essential that the driving force for abnormal grain growth be increased to a level exceeding the crystal orientation selectivity. Here, the driving forces for abnormal grain growth include (1) the presence of strain, and (2) 1
Increasing the superheat to the crystal grain size by refinement of the secondary recrystallized grains and (3) strengthening the inhibitory force of the inhibitor, etc. can be mentioned, but the method (3) makes it difficult to control the generation of grains with random orientation. In some cases, grains having a crystal orientation close to the Goss orientation often grow and grow coarsely beyond a region where fine grains are intended to be formed, so that it is extremely difficult to control the size of the fine grains. Therefore, as a method of increasing the driving force for the crystal growth, it is advantageous to (1) make a strain exist or (2) reduce the size of primary recrystallized grains.
In particular, various experiments have revealed that the method of causing strain is the most advantageous technique.

【0042】例えば、前述した瞬間的な高温熱処理にお
いては、調査の結果、加熱処理が瞬間的であるため、高
温度であっても結晶粒径の増加や析出インヒビターの粗
大化といった結晶学的な変化は小さく、熱歪を多量に存
在させることが、結晶成長の駆動力を高めるのに有利に
作用していたことが判明した。つまり、急激な昇温と降
温により、結晶学的な組織変化を抑えて物理的な歪のみ
を鋼板内に導入できたことが有利に作用したものであ
る。ただし、若干の結晶粒径の増加や析出インヒビター
の粗大化は、これが、異常粒成長の核生成数の増加を抑
制する性質があり、領域内に生成する微細粒の個数を単
一なものに制限する作用があるので、結晶成長の駆動力
を低減させない限りにおいては好ましいと考えられる。
For example, in the above-mentioned instantaneous high-temperature heat treatment, as a result of investigation, since the heat treatment is instantaneous, even at a high temperature, crystallographical conditions such as an increase in the crystal grain size and a coarsening of the precipitation inhibitor occur. The change was small, and it was found that the presence of a large amount of thermal strain had an advantageous effect on increasing the driving force for crystal growth. In other words, the rapid increase and decrease in temperature advantageously suppresses the crystallographic change in structure and introduces only physical strain into the steel sheet. However, a slight increase in the crystal grain size and coarsening of the precipitation inhibitor have the property of suppressing the increase in the number of nuclei generated during abnormal grain growth, thereby reducing the number of fine grains generated in a single region. Since it has a restricting action, it is considered preferable unless the driving force for crystal growth is reduced.

【0043】上述した熱処理以外にも、結晶学的な組織
変化を抑えて物理的な歪を鋼板内に導入する方法は種々
考えられるが、発明者らが数多くの実験から最も有利な
方法として開発したものは、表面に小突起を有する鋼板
よりも硬い物体を鋼板表面に押圧する方法、高電圧を印
加し鋼板表面と局所的に通電または放電する方法、およ
びパルスレーザーを局所的に印加する方法等である。
In addition to the heat treatment described above, various methods for introducing a physical strain into a steel sheet while suppressing crystallographic structure change can be considered, but the present inventors have developed as the most advantageous method from numerous experiments. The method of pressing an object harder than the steel sheet having small projections on the surface of the steel sheet, the method of applying a high voltage to locally energize or discharge the steel sheet surface, and the method of locally applying a pulsed laser And so on.

【0044】また、結晶成長の駆動力を高めるための他
の方法である、1次再結晶粒の微粒化方法としては、実
験の結果、鋼板表面から局所的に浸炭させ、熱処理にお
けるα−γ変態を利用して局所的に微粒化する方法がと
りわけ効果的であった。さらに、インヒビターの抑制力
を強化する方法としては、局所的に鋼板表面から浸窒さ
せ、窒化珪素や窒化アルミを生成させて抑制力を局所的
に増大させる方法が、効果の安定性は低いものの有効で
あった。
As another method for increasing the driving force for crystal growth, a method for atomizing primary recrystallized grains is as follows. The method of locally atomizing using transformation was particularly effective. Furthermore, as a method of strengthening the inhibitory force of the inhibitor, a method of locally increasing the inhibitory force by locally nitriding the steel sheet surface to generate silicon nitride or aluminum nitride, although the effect stability is low, Was effective.

【0045】ところで、従来から、製品の結晶組織にお
ける微細粒に関して研究された例は存在し、例えば特公
平6-80172号公報では、 1.0mm以上 2.5mm以下の微細粒
を粒径:5.0 mm以上10.0mm以下の結晶粒に混粒状に存在
させることによって鉄損が低減する効果を見い出し、最
小の鉄損値を得るための微細粒の存在比率と粗大粒の存
在比率とを最適化する技術が開示されている。また特公
昭62-56923号公報には2mm以下の微細粒の個数比率を15
〜70%に制御して鉄損値を低減する技術が開示されてい
る。しかしながら、これらはいずれも磁区細分化処理の
技術が一般的でない当時の技術であり、磁束密度の値を
積極的に高めるべく意図したものではなく、従って2次
再結晶粒の平均粒径の適正値もこの発明における適正範
囲より小さい。また、これらの微細粒はあくまでも自然
に発生する2次再結晶粒の生成を促進したものであり、
人為的に生成させた微細粒ではないので、その方位はゴ
ス方位に近く、この発明のような材料に認められる耐歪
特性および実機特性を向上させるような機能は極めて弱
い。
By the way, there have been examples of studies on fine grains in the crystal structure of a product. For example, in Japanese Patent Publication No. Hei 6-80172, fine grains of 1.0 mm or more and 2.5 mm or less have a particle size of 5.0 mm or more. The technology to find the effect of reducing iron loss by allowing it to exist in the form of mixed grains in crystal grains of 10.0 mm or less and to optimize the ratio of fine grains and the proportion of coarse grains to obtain the minimum iron loss value has been developed. It has been disclosed. Japanese Patent Publication No. 62-56923 also discloses that the number ratio of fine particles of 2 mm or less is 15
There is disclosed a technique for controlling the iron loss value to about 70% to reduce the iron loss value. However, none of these techniques was a technique at the time when the technique of magnetic domain refining was common, and was not intended to positively increase the value of magnetic flux density. The value is also smaller than the proper range in the present invention. In addition, these fine grains promote the generation of naturally occurring secondary recrystallized grains,
Since it is not an artificially generated fine grain, its orientation is close to the Goss orientation, and the function of improving the strain resistance characteristics and the characteristics of the actual device, which are recognized in the material of the present invention, is extremely weak.

【0046】また、特開昭56−130454号公報には、2次
再結晶後の鋼板の表面に歪みを付与し、焼鈍することに
よって多数の再結晶粒を生成させ、磁区細分化効果によ
り鉄損を低減する技術が開示されているが、この技術で
は歪を施す鋼板は2次再結晶後の鋼板であるので、結晶
方位がゴス方位に近いことと、さらにインヒビターが鋼
板内に存在しないため、異常粒成長が起きず通常の正常
粒成長が起こるため、この時再結晶する粒は多数の再結
晶粒群からなり、しかも各再結晶粒の大きさは小さく鋼
板板厚の1/2以下のサイズであるので、この発明のよ
うな効果を有しない。さらに、この技術では、磁区細分
化のために、微細粒を鋼板の板幅方向に線状に分布させ
ることが不可欠であるので、磁束密度の低下を招き、ま
たこの発明における微細粒とは異なって実機化因子の改
善効果や耐歪特性向上効果は得られない。
Japanese Patent Application Laid-Open No. 56-130454 discloses that a steel sheet after secondary recrystallization is strained and annealed to produce a large number of recrystallized grains. Although a technique for reducing the loss is disclosed, in this technique, the steel sheet to be strained is a steel sheet after secondary recrystallization, so that the crystal orientation is close to the Goss orientation, and furthermore, because no inhibitor exists in the steel sheet. Since normal grain growth does not occur without abnormal grain growth, the grains to be recrystallized at this time consist of a large number of recrystallized grains, and the size of each recrystallized grain is small and not more than 1/2 of the steel sheet thickness. Therefore, the effect of the present invention is not obtained. Furthermore, in this technique, it is indispensable to distribute fine particles linearly in the width direction of the steel sheet for magnetic domain refining, so that the magnetic flux density is reduced, and unlike the fine particles in the present invention. Therefore, the effect of improving the actualization factor and the effect of improving the distortion resistance characteristics cannot be obtained.

【0047】これに対し、この発明の技術における微細
粒の存在効果は、製品の鉄損値を低下させるだけでな
く、高磁束密度化に伴う2次再結晶粒の粗大化に起因し
た実機化因子の増大を抑制して、変圧器の特性を製品特
性の向上に見合った性能にするための技術である。
On the other hand, the effect of the presence of the fine grains in the technique of the present invention not only reduces the iron loss value of the product, but also reduces the iron loss of the product. This is a technique for suppressing the increase in factors and making the characteristics of the transformer a performance commensurate with the improvement of the product characteristics.

【0048】この発明は、上述した数多くの実験・調査
を基にして、鋭意研究を重ねた末に完成されたものであ
る。すなわち、この発明の要旨構成は次のとおりであ
る。 1. Si:1.5 〜7.0 wt%、Mn:0.03〜2.5 wt%を含有
し、かつC, SおよびNの不純物としての混入をそれぞ
れC:0.003 wt%以下、S:0.002 wt%以下、N:0.00
2 wt%以下に抑制した電磁鋼板であって、鋼板の板厚方
向に貫通している結晶粒のうち、鋼板表面における粒径
が3mm以下である結晶粒の個数比率が65%以上、98%以
下であることを特徴とする、鉄損が低く、耐歪特性およ
び実機特性に優れた方向性電磁鋼板。
The present invention has been completed after intensive studies based on the numerous experiments and investigations described above. That is, the gist configuration of the present invention is as follows. 1. Si: 1.5 to 7.0 wt%, Mn: 0.03 to 2.5 wt%, and contamination of C, S and N as impurities, C: 0.003 wt% or less, S: 0.002 wt% or less, N: 0.00
In the electromagnetic steel sheet suppressed to 2 wt% or less, among the crystal grains penetrating in the thickness direction of the steel sheet, the number ratio of crystal grains having a grain size of 3 mm or less on the steel sheet surface is 65% or more and 98%. A grain-oriented electrical steel sheet having low iron loss, excellent in strain resistance and actual machine characteristics, characterized in that:

【0049】2.上記1において、板厚方向に貫通して
いる結晶粒全体の鋼板表面における粒径の平均値が8mm
以上、50mm以下であることを特徴とする、鉄損が低く、
耐歪特性および実機特性に優れた方向性電磁鋼板。
2. In the above item 1, the average value of the grain size on the steel sheet surface of the entire crystal grain penetrating in the thickness direction is 8 mm.
Above, 50mm or less, characterized by low iron loss,
Grain-oriented electrical steel sheet with excellent strain resistance and actual machine characteristics.

【0050】3.上記1または2において、板厚方向に
貫通し、かつ鋼板表面における粒径が3mm以下である結
晶粒として、人為的に規則配置させたものを含むことを
特徴とする、鉄損が低く、耐歪特性および実機特性に優
れた方向性電磁鋼板。
3. In the above item 1 or 2, a crystal grain penetrating in the sheet thickness direction and having a grain size of 3 mm or less on the surface of the steel sheet includes a crystal grain which is artificially regularly arranged, and has a low iron loss and a low iron loss. Grain-oriented electrical steel sheet with excellent distortion characteristics and actual machine characteristics.

【0051】4.C:0.010 〜0.120 wt%、Si:1.5 〜
7.0 wt%およびMn:0.03〜2.5 wt%を含み、かつ所定量
のインヒビター成分を含有する組成になる含けい素鋼ス
ラブを、熱間圧延し、必要に応じて熱延板焼鈍を施した
のち、1回または中間焼鈍を挟む2回以上の冷間圧延に
よって最終板厚とし、その後1次再結晶焼鈍ついで2次
再結晶焼鈍を施す一連の工程によって方向性電磁鋼板を
製造するに際し、1次再結晶焼鈍途中から2次再結晶開
始までの間において、鋼板内部に、結晶成長の駆動力を
増加させた領域を、鋼板面への射影領域が円相当径にて
0.05〜3.0 mmの大きさで人為的かつ離散的に設けること
を特徴とする、鉄損が低く、耐歪特性および実機特性に
優れた方向性電磁鋼板の製造方法。
4. C: 0.010 to 0.120 wt%, Si: 1.5 to
A silicon steel slab containing 7.0 wt% and Mn: 0.03 to 2.5 wt% and having a composition containing a predetermined amount of an inhibitor component is hot-rolled and, if necessary, subjected to hot-rolled sheet annealing. In producing a grain-oriented electrical steel sheet by a series of steps of performing cold rolling one or more times including intermediate annealing to obtain a final thickness, and then performing primary recrystallization annealing and then secondary recrystallization annealing. During the period from the recrystallization annealing to the start of the secondary recrystallization, a region in which the driving force for crystal growth is increased inside the steel plate, and a region projected onto the steel plate surface is a circle equivalent diameter.
A method for producing a grain-oriented electrical steel sheet having low iron loss, excellent in strain resistance and excellent in actual machine characteristics, characterized by being artificially and discretely provided in a size of 0.05 to 3.0 mm.

【0052】5.上記4において、結晶成長の駆動力を
増加させた領域を、規則的に配置させたことを特徴とす
る、鉄損が低く、耐歪特性および実機特性に優れた方向
性電磁鋼板の製造方法。
5. 4. The method for producing a grain-oriented electrical steel sheet according to 4 above, wherein the regions in which the driving force for crystal growth is increased are regularly arranged, the iron loss being low, the strain resistance characteristics and the characteristics of the actual machine being excellent.

【0053】6.上記4または5において、結晶成長の
駆動力を増加させた領域が、1次再結晶粒を微粒化した
領域または歪導入領域であることを特徴とする、鉄損が
低く、耐歪特性および実機特性に優れた方向性電磁鋼板
の製造方法。
6. In the above item 4 or 5, the region in which the driving force for crystal growth is increased is a region in which primary recrystallized grains are atomized or a region into which strain is introduced. A method for producing grain-oriented electrical steel sheets with excellent properties.

【0054】7.上記6において、結晶成長の駆動力を
増加させた領域が歪導入領域である場合に、該領域に対
し、最大歪量として 0.005〜0.70の歪を導入したことを
特徴とする、鉄損が低く、耐歪特性および実機特性に優
れた方向性電磁鋼板の製造方法。
7. In the above item 6, in the case where the region where the driving force for crystal growth is increased is a strain-introduced region, the region is characterized by introducing a strain of 0.005 to 0.70 as a maximum strain amount into the region. A method for producing grain-oriented electrical steel sheets having excellent strain resistance and actual machine characteristics.

【0055】8.上記4,5,6または7において、結
晶成長の駆動力を増加させるための歪の導入手段が、表
面に小突起を有する鋼板よりも硬い物体を鋼板表面に押
圧する方法、鋼板表面と電極との間に高電圧を印加し局
所的に通電または放電する方法、高温スポットレーザー
を瞬間的に照射する方法およびパルスレーザーを局所的
に照射する方法のいずれかである、鉄損が低く、耐歪特
性および実機特性に優れた方向性電磁鋼板の製造方法。
8. In the above 4, 5, 6, or 7, the method of introducing a strain for increasing the driving force for crystal growth is a method of pressing an object harder than a steel sheet having small projections on the surface thereof, the method comprising: Low iron loss and strain resistance, which is a method of applying a high voltage during the period to locally conduct or discharge, a method of irradiating a high-temperature spot laser instantaneously, or a method of locally irradiating a pulse laser. A method for producing grain-oriented electrical steel sheets with excellent characteristics and actual machine characteristics.

【0056】[0056]

【発明の実施の形態】以下、この発明について具体的に
説明する。まず、この発明の電磁鋼板について、その成
分組成を上記の範囲に限定した理由について説明する。 Si:1.5 〜7.0 wt% Siは、製品の電気抵抗を高め鉄損を低減するのに有効な
成分であり、このために1.5 wt%以上を含有させるが、
7.0wt%を超えると硬度が高くなり製造や加工が困難に
なるので、 1.5〜7.0 wt%の範囲に限定した。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below. First, the reason why the component composition of the magnetic steel sheet of the present invention is limited to the above range will be described. Si: 1.5 to 7.0 wt% Si is an effective component to increase the electrical resistance of the product and reduce iron loss. For this reason, 1.5 wt% or more is contained.
If the content exceeds 7.0 wt%, the hardness becomes high and the production and processing become difficult. Therefore, the content is limited to the range of 1.5 to 7.0 wt%.

【0057】Mn:0.03〜2.5 wt% Mnも、Siと同様、電気抵抗を高める働きがあり、また製
造時熱間加工を容易にする作用があるので、少なくとも
0.03wt%を含有させる必要があるが、2.5 wt%を超える
と熱処理時γ変態を誘起して磁気特性を劣化させるの
で、0.03〜2.5 wt%の範囲で含有させるものとした。
Mn: 0.03 to 2.5 wt% Mn, like Si, has a function of increasing electric resistance and a function of facilitating hot working during production.
Although it is necessary to contain 0.03 wt%, if it exceeds 2.5 wt%, γ transformation is induced at the time of heat treatment to deteriorate magnetic properties. Therefore, the content is set in the range of 0.03 to 2.5 wt%.

【0058】C:0.003 wt%以下、S:0.002 wt%以
下、N:0.002 wt%以下 C,SおよびNはいずれも、磁気特性上有害な作用があ
り、特に鉄損を劣化させるので、それぞれC:0.003 wt
%以下、S:0.002 wt%以下、N:0.002 wt%以下に抑
制するものとした。
C: 0.003 wt% or less, S: 0.002 wt% or less, N: 0.002 wt% or less Each of C, S and N has a harmful effect on magnetic properties and particularly deteriorates iron loss. C: 0.003 wt
%, S: 0.002 wt% or less, N: 0.002 wt% or less.

【0059】次に、鋼板を構成する結晶粒についての限
定理由について説明する。この発明において重要な結晶
粒は、板厚方向に貫通しているものである。というの
は、かような貫通粒は、結晶粒界に多くの磁極を生成さ
せ、大きな静磁エネルギーの増加が見込めるからであ
る。ここに、各結晶粒の粒径は、鋼板表面における結晶
粒の面積と同一の面積を有する円の直径(円相当径)で
もって表わす。また、平均結晶粒径は、一定面積中に含
まれるかかる結晶粒の個数で該面積を除し、この値の円
相当径で表わすものとする。
Next, the reasons for limiting the crystal grains constituting the steel sheet will be described. The important crystal grains in the present invention penetrate in the thickness direction. This is because such penetrating grains generate many magnetic poles at the grain boundaries, and a large increase in magnetostatic energy can be expected. Here, the particle size of each crystal grain is represented by the diameter of a circle having the same area as the area of the crystal grain on the steel sheet surface (equivalent circle diameter). The average crystal grain size is represented by the circle equivalent diameter of the value obtained by dividing the area by the number of such crystal grains contained in a certain area.

【0060】さて、この発明で所期した耐歪特性に優
れ、かつ実機特性に優れた方向性電磁鋼板を得るために
は、かかる貫通粒の分布に関し、粒径が3mm以下の結晶
粒の個数比率を65%以上、98%以下とすることが必須要
件となる。というのは、3mm以下の微細結晶粒の個数比
率が65%未満では、微細粒の存在による静磁エネルギー
増加作用が得られず、耐歪特性の劣化や実機化因子の増
大を招き、変圧器の鉄損が劣化するからであり、一方、
3mm以下の微細粒の個数比率が98%を超えると、製品の
磁束密度が低下し、鉄損が劣化するからである。なお、
微細粒の個数比率については、75%以上で特に著しい実
機化因子の低減ならびに耐歪特性の向上効果が認められ
る。
In order to obtain a grain-oriented electrical steel sheet which is excellent in the anti-strain characteristics and excellent in actual machine characteristics expected in the present invention, the number of crystal grains having a grain size of 3 mm or less is required for the distribution of the penetrating grains. It is an essential requirement that the ratio be 65% or more and 98% or less. If the number ratio of the fine crystal grains of 3 mm or less is less than 65%, the effect of increasing the magnetostatic energy due to the presence of the fine grains cannot be obtained, resulting in deterioration of the strain resistance characteristics and increase of the factor for realization, and This is because the iron loss of
If the number ratio of the fine particles having a size of 3 mm or less exceeds 98%, the magnetic flux density of the product decreases, and iron loss deteriorates. In addition,
With respect to the number ratio of the fine grains, when it is 75% or more, a particularly remarkable effect of reducing the factor of realization and improving the strain resistance is recognized.

【0061】また、かかる3mm以下の微細粒の結晶粒
は、自然に発生する微細な結晶利用することもできる
が、それに加えて、粒界に存在する磁極が鋼板中に均等
に分布し、静磁エネルギーの分布が一様となるように、
人為的に規則的に配置させることがより好ましい。その
間隔としては、5mm以上とすることが好ましい。これに
より、磁束の流れが均一になり、渦電流損が局部的に異
常に増大するといった鉄損の増加現象が抑制される。
The fine grains having a size of 3 mm or less can be fine grains generated naturally, but in addition, the magnetic poles existing at the grain boundaries are uniformly distributed in the steel sheet, and static To make the distribution of magnetic energy uniform,
It is more preferable to arrange them artificially and regularly. The interval is preferably 5 mm or more. Thereby, the flow of the magnetic flux becomes uniform, and an increase phenomenon of iron loss such as an abnormal increase of eddy current loss locally is suppressed.

【0062】さらに、鋼板の平均結晶粒径については、
8mm以上、50mm以下とすることが好ましい。というの
は、平均粒径が8mm未満の場合、結晶方位の集積度の低
下ひいては磁束密度の低下を生じる場合があるため、安
定して優れた鉄損値を得ることが難しく、逆に平均粒径
が50mmを超えると、実機化因子が劣化したり、耐歪特性
が劣化する場合が多くなるからである。
Further, regarding the average grain size of the steel sheet,
It is preferable that the thickness be 8 mm or more and 50 mm or less. If the average grain size is less than 8 mm, the degree of integration of the crystal orientation and the magnetic flux density may decrease, so it is difficult to obtain a stable and excellent iron loss value. If the diameter is more than 50 mm, the factor for realization of the device or the distortion resistance is likely to deteriorate.

【0063】なお、かかる方向性電磁鋼板の表面は必要
により絶縁物を存在させた状態で使用される。この時、
最終仕上げ焼鈍時に形成されるフォルステライト(Mg2S
iO4)を主成分とする絶縁被膜を存在させてもよいし、さ
らにその上に張力コーティングを被成させてもよい。
The surface of the grain-oriented electrical steel sheet is used in a state where an insulator is present as necessary. At this time,
Forsterite (Mg 2 S) formed during final finish annealing
An insulating coating mainly composed of iO 4 ) may be present, or a tensile coating may be further formed thereon.

【0064】次に、この発明に従う方向性電磁鋼板の製
造方法について説明する。まず、素材の成分組成につい
てその限定理由について述べる。 C:0.010 〜0.120 wt% C含有量が、0.010 wt%に満たないと組織改善効果が得
られず、2次再結晶が不完全となって磁気特性が劣化
し、一方 0.120wt%を超えると脱炭焼鈍で十分に除去で
きず、やはり磁気特性の劣化を招くので、C量は 0.010
〜0.120 wt%の範囲に限定した。
Next, a method of manufacturing a grain-oriented electrical steel sheet according to the present invention will be described. First, the reasons for limiting the component composition of the material will be described. C: 0.010 to 0.120 wt% If the C content is less than 0.010 wt%, the effect of improving the structure cannot be obtained, the secondary recrystallization is incomplete, and the magnetic properties deteriorate, whereas if the C content exceeds 0.120 wt%. Since the decarburization annealing does not allow sufficient removal, and also causes deterioration of magnetic properties, the C content is 0.010%.
Limited to the range of ~ 0.120 wt%.

【0065】Si:1.5 〜7.0 wt% Siは、電気抵抗を増加させて鉄損を低減するのに有効に
寄与するが、1.5 wt%に満たないとその添加効果に乏し
く、一方 7.0wt%を超えると加工性が劣化し、製造それ
自体や、製品の加工が極めて困難になるので、 1.5〜7.
0 wt%の範囲に限定した。
Si: 1.5-7.0 wt% Si effectively contributes to increase the electric resistance and reduce iron loss, but if it is less than 1.5 wt%, the effect of its addition is poor. If it exceeds, processability deteriorates, and it becomes extremely difficult to manufacture and process the product itself.
The range was limited to 0 wt%.

【0066】Mn:0.03〜2.5 wt% Mnも、Siと同様、電気抵抗の向上に有用なだけでなく、
熱間加工性の改善にも有効に寄与するが、0.03wt%に満
たないとその添加効果に乏しく、一方 2.5wt%を超える
と熱処理時γ変態を誘起して磁気特性の劣化を招くの
で、0.03〜2.5 wt%の範囲に限定した。
Mn: 0.03 to 2.5 wt% Mn, like Si, is not only useful for improving electric resistance,
Although it effectively contributes to the improvement of hot workability, if it is less than 0.03% by weight, the effect of its addition is poor. On the other hand, if it exceeds 2.5% by weight, γ transformation is induced during heat treatment, leading to deterioration of magnetic properties. It was limited to the range of 0.03 to 2.5 wt%.

【0067】鋼中には、上記の元素の他に2次再結晶を
誘起するためのインヒビター成分を含有させることが不
可欠で、特に優れた高磁束密度を有する方向性電磁鋼板
を製造するのに適したインヒビター成分としては、Al,
B,Bi,SbおよびTeのうちから選ばれる1種または2種
以上の元素が好ましい。ここに、Al, SbおよびTeについ
ては 0.005〜0.060 wt%、Bについては0.0003〜0.0025
wt%、Biについては0.0003〜0.0090wt%の範囲で含有さ
せる必要がある。というのは、いずれの元素について
も、下限に満たないと、インヒビターとして所期した1
次再結晶粒成長の抑制効果が得られず、逆に上限を超え
ると粒界割れといった悪影響が発生し、製品の表面性状
が劣化するからである。さらに、インヒビターとして
は、この他にも、Se, S, Sn, P, Ge, As, Nb,Cr, Ti,
Cu, Pb, ZnおよびIn等が知られていて、 0.005〜0.3 w
t%の範囲で適宜添加することができる。なお、インヒ
ビター元素としては、1種類だけの単独添加でも作用を
発揮するが、好ましくは2種類以上の複合添加がより好
ましい。
It is essential that the steel contain an inhibitor component for inducing secondary recrystallization in addition to the above-mentioned elements, which is particularly important for producing a grain-oriented electrical steel sheet having an excellent high magnetic flux density. Suitable inhibitor components include Al,
One or more elements selected from B, Bi, Sb and Te are preferred. Here, 0.005 to 0.060 wt% for Al, Sb and Te, and 0.0003 to 0.0025 wt% for B.
wt% and Bi must be contained in the range of 0.0003 to 0.0090 wt%. The reason is that if any of the elements is less than the lower limit, the intended inhibitor 1
This is because the effect of suppressing the growth of the next recrystallized grain cannot be obtained, and if the upper limit is exceeded, adverse effects such as grain boundary cracking occur, and the surface properties of the product deteriorate. In addition, other inhibitors include Se, S, Sn, P, Ge, As, Nb, Cr, Ti,
Cu, Pb, Zn and In etc. are known, 0.005 ~ 0.3 w
It can be appropriately added in the range of t%. In addition, as the inhibitor element, the action is exerted even when only one kind is added alone, but more preferably, two or more kinds are added in combination.

【0068】その他の添加元素については、高磁束密度
を得るためには必ずしも必要とされるものではないが、
例えば、Moなどは鋼板の表面性状を改善する効果がある
ので適宜含有させることは有利である。
The other additional elements are not necessarily required to obtain a high magnetic flux density.
For example, Mo and the like are effective in improving the surface properties of the steel sheet, so that it is advantageous to appropriately include them.

【0069】上記の好適成分組成に調整された鋼片は、
公知の熱延方法によって熱延鋼板とした後、必要に応じ
て熱延板焼鈍を施し、1回または中間焼鈍を挟む2回以
上の冷間圧延によって最終板厚とする。この最終冷間圧
延では、その圧下率の調整によって2次再結晶時に成長
する結晶の方位を制御するのであるが、圧下率が80%未
満では方位の劣る結晶粒が多数再結晶しがちで高い磁束
密度が得らない場合があり、一方95%を超えると2次再
結晶粒の核生成の確率が極端に低下し、2次再結晶が不
安定になる傾向にあるので、最終冷間圧延の圧下率は80
〜95%とすることが好ましい。
The steel slab adjusted to the above-mentioned preferable component composition is as follows:
After forming a hot-rolled steel sheet by a known hot-rolling method, hot-rolled sheet annealing is performed as necessary, and the final sheet thickness is obtained by cold rolling once or twice or more with intermediate annealing. In this final cold rolling, the orientation of the crystal grown during the secondary recrystallization is controlled by adjusting the rolling reduction. If the rolling reduction is less than 80%, a large number of crystal grains with poor orientation tend to recrystallize. The magnetic flux density may not be obtained. On the other hand, if it exceeds 95%, the probability of nucleation of secondary recrystallized grains is extremely reduced, and secondary recrystallization tends to be unstable. Of 80
It is preferable to set it to 95%.

【0070】なお、上記の圧延に際し、公知の温間圧延
やパス間時効処理を組み合わせることは、磁束密度をさ
らに向上させる上で有利である。また、最終圧延後、磁
区細分化のために、鋼板表面に線状の溝を設けることも
可能である。さらに、熱延板焼鈍や中間焼鈍において弱
脱炭処理を施すことも可能である。
In the above-mentioned rolling, it is advantageous to combine the known warm rolling and the inter-pass aging treatment in order to further improve the magnetic flux density. After the final rolling, a linear groove can be provided on the surface of the steel sheet for magnetic domain refining. Further, it is also possible to perform a weak decarburization treatment in hot-rolled sheet annealing or intermediate annealing.

【0071】ついで、1次再結晶焼鈍を施すが、この時
必要に応じて同時に脱炭処理も兼備させC量を所定の値
以下まで低減する。この1次再結晶焼鈍途中から2次再
結晶開始までの間において、この発明の最も肝要な技術
として、結晶成長の駆動力を増加させる領域を鋼板内部
に局所的に設ける。ここに、板厚方向への結晶成長は比
較的容易に起こるので、かかる領域が鋼板板厚方向にお
いて、必ずしも板厚全体にわたって設けられている必要
はなく、板厚方向においてその一部の領域に設けられて
いても、その効果においては同等である。ただし、この
領域の鋼板表面への射影領域としては、円相当径にて0.
05mm以上3.0 mm以下とすることが必要である。というの
は、0.05mm未満ではしばしば後から発生する通常の2次
再結晶粒によって最終的に蚕食され消滅する例が多くな
り、一方 3.0mmを超えると生成する微細粒の大きさも
3.0mmを超えるので磁束密度の低下を招き、鉄損が増大
するからである。
Next, primary recrystallization annealing is performed. At this time, if necessary, a decarburizing treatment is simultaneously performed to reduce the C content to a predetermined value or less. Between the middle of the primary recrystallization annealing and the start of the secondary recrystallization, as the most important technique of the present invention, a region for increasing the driving force for crystal growth is locally provided in the steel plate. Here, since crystal growth in the thickness direction occurs relatively easily, such a region does not necessarily need to be provided over the entire thickness in the thickness direction of the steel sheet, and may be provided in a partial region in the thickness direction. Even if provided, the effects are equivalent. However, the projected area of this area on the steel sheet surface is 0.
It is necessary to set it between 05 mm and 3.0 mm. The reason for this is that when the thickness is less than 0.05 mm, the number of cases often eventually disappeared and disappeared by the usual secondary recrystallized grains that frequently occur later, while the size of the fine grains generated when the thickness exceeded 3.0 mm was also reduced.
If it exceeds 3.0 mm, the magnetic flux density will be reduced, and iron loss will increase.

【0072】このような処理を施す領域については、3.
0 mm以下の狭小な領域であることが必要で、例えば長く
伸びた領域に処理した場合には、処理領域に方位の劣る
結晶粒が生成し、材料の磁束密度の大幅な劣化をきた
し、鉄損の増加を招く。
For the area to be subjected to such processing, see 3.
It is necessary to be a narrow area of 0 mm or less.For example, when processing is performed on a long elongated area, crystal grains with inferior orientation are generated in the processed area, causing significant deterioration of the magnetic flux density of the material, It causes an increase in loss.

【0073】このような領域を設ける製造工程上の時期
としては、1次再結晶開始前では新たな1次再結晶粒の
生成によって、このような領域が消滅するので効果がな
く、一方2次再結晶開始後では微細粒が領域内で核生成
−粒成長する間もなく2次再結晶粒によって蚕食される
ので、やはり効果が失われる。
In the manufacturing process for providing such a region, before the start of the primary recrystallization, the generation of new primary recrystallized grains eliminates such a region, so that there is no effect. After the start of recrystallization, the fine grains are eaten by the secondary recrystallized grains immediately after nucleation and grain growth in the region, so that the effect is also lost.

【0074】結晶成長の駆動力を増加させるための方法
としては、前述したとおり(1) 歪を導入する方法、(2)
1次再結晶粒を微細化する方法、(3) インヒビターの抑
制力の強化による方法等があるが、このうち(1), (2)の
方法が優れており、その中でも (1)の方法が人為的に微
細粒を発生させ制御する上で特に優れている。また、鋼
板に導入する歪量としては、0.005 未満の場合、微細粒
の生成が起こらない場合もあって作用が不安定となり、
一方0.70を超えると、同一位置に多数の微細粒が生成す
る傾向が強く、努力の割にその効果が薄くなるので、導
入歪量は0.005 〜0.70の範囲とすることが好ましい。
As described above, the methods for increasing the driving force for crystal growth include (1) a method of introducing strain, and (2)
There are methods to refine primary recrystallized grains and (3) methods to enhance inhibitory power, among which methods (1) and (2) are superior, and among them, method (1) Is particularly excellent in artificially generating and controlling fine grains. When the amount of strain introduced into the steel sheet is less than 0.005, the action becomes unstable because the generation of fine grains may not occur,
On the other hand, if it exceeds 0.70, a large number of fine grains tend to be formed at the same position, and the effect is reduced for the effort. Therefore, the amount of introduced strain is preferably in the range of 0.005 to 0.70.

【0075】工業的に、このような結晶成長の駆動力を
増加させた領域を高能率でかつ安定して設ける方法とし
て、特に優れた方法は、図5に示すような、表面に小突
起を有する物体で、鋼板よりも硬い物体を鋼板表面に押
圧する方法や、図6に示すような、鋼板表面と電極との
間に高電圧を印加し局所的に通電または放電する方法、
さらには高温のスポットレーザーを瞬間的に照射する方
法やパルスレーザーを局所的に照射する方法等である。
ここで、高温のスポットレーザーとは、炭酸ガスレーザ
ーなどのような連続発振するが大容量であるレーザーで
あり、鋼板表面の局所を数百ミリ秒以下の短時間のみ照
射し、加熱するものである。また、パルスレーザーと
は、Qスイッチ等を用いて、短時間、高密度の光束化と
したもので、極めて強力な衝撃力を鋼板の局所に付与す
ることができるものである。
As a method of industrially providing a region having an increased driving force for crystal growth with high efficiency and stability, a particularly excellent method is to form small projections on the surface as shown in FIG. A method of pressing an object that is harder than the steel plate on the surface of the steel plate, or a method of locally applying or discharging a high voltage between the steel plate surface and the electrode as shown in FIG.
Further, there are a method of instantaneously irradiating a high-temperature spot laser and a method of locally irradiating a pulse laser.
Here, a high-temperature spot laser is a laser that continuously oscillates but has a large capacity, such as a carbon dioxide laser, and irradiates a local portion of the steel sheet surface for a short time of several hundred milliseconds or less and heats it. is there. In addition, the pulse laser is a laser beam that is made into a high-density light flux in a short time by using a Q switch or the like, and can apply an extremely strong impact force locally to the steel sheet.

【0076】上記したようにして、結晶成長の駆動力を
増加させた領域を人為的に設けた後は、必要に応じて焼
鈍分離剤を塗布したのち、最終仕上げ焼鈍を施して2次
再結晶させる。最終仕上げ焼鈍は、1200℃前後の高温ま
で昇温し、純化焼鈍とフォルステライト質の下地被膜を
形成させてもよい。その後、鋼板表面に絶縁コーティン
グを塗布して製品とするが、コーティング塗布前に鋼板
表面を鏡面化したり、結晶方位強調処理を施しても良
い。また、絶縁コーティングとして張力コーティングを
用いてもよい。さらに、2次再結晶後の鋼板には、一層
の鉄損低減効果を得るために、公知の磁区細分化処理、
すなわちプラズマジェットやレーザー照射を線状領域に
施したり、突起ロールによる線状の凹み領域を設けたり
する処理を施すこともできる。
After the region where the driving force for crystal growth is increased is artificially provided as described above, an annealing separator is applied as necessary, and then a final finish annealing is performed to perform secondary recrystallization. Let it. In the final finish annealing, the temperature may be raised to a high temperature of about 1200 ° C. to form a purification annealing and a forsterite-based undercoating. Thereafter, an insulating coating is applied to the surface of the steel sheet to obtain a product. Before coating, the surface of the steel sheet may be mirror-finished or a crystal orientation enhancement process may be performed. Further, a tension coating may be used as the insulating coating. Further, in order to obtain a further iron loss reduction effect, the steel sheet after the secondary recrystallization has a well-known domain refining treatment,
That is, a process of applying a plasma jet or a laser to a linear region or providing a linear concave region by a projection roll can be performed.

【0077】以上、かかる製造方法によって、鉄損が低
く、耐歪特性および実機特性に優れた高磁束密度の方向
性電磁鋼板を得ることができ、特に3mm以下の微細粒を
15mm以上の粗大粒と共に混在させることにより、磁束密
度が高く、鉄損が低い製品とし、かつ実機の鉄損が極め
て低く優れた変圧器を組み立てることができる。
As described above, a grain-oriented electrical steel sheet having a low iron loss, a high magnetic flux density, and excellent strain resistance and actual machine characteristics can be obtained.
By mixing with coarse grains of 15 mm or more, it is possible to assemble an excellent transformer with high magnetic flux density and low iron loss and extremely low iron loss of the actual machine.

【0078】また、上記のような微細粒を発生させるた
めの各種処理を行う領域は、鋼板面内において、図7に
示すように離散的に分布させることが有効であるが、特
に均一に分散させた方が、磁束密度を低下させるなどの
害が少なく、また歪感受性が低下するといった効果も増
加するので、各種処理領域を鋼板面内に確率的に分散さ
せて存在させるのではなく、図8や図9に示すように、
人為的に規則配置させることが当然のことながら最も優
れた効果を得ることになる。この点、例えば図10に示す
ような、線状に長く伸びた人工的結晶粒を生成させた場
合は、製品の磁束密度の大幅な劣化を招き、鉄損は逆に
増加する。
It is effective that the regions where various processes for generating the fine particles as described above are performed are distributed discretely in the plane of the steel sheet as shown in FIG. Since the effect of lowering the magnetic flux density and other effects, such as lowering the magnetic flux density, and increasing the effect of lowering the strain sensitivity increase, the various processing regions are not stochastically dispersed in the surface of the steel sheet. As shown in FIG. 8 and FIG.
Naturally, it is natural to obtain the most excellent effect. In this regard, for example, when artificial crystal grains elongated linearly as shown in FIG. 10 are generated, the magnetic flux density of a product is significantly deteriorated, and the iron loss increases.

【0079】[0079]

【実施例】【Example】

実施例1 C:0.08wt%、Si:3.35wt%、Mn:0.07wt%、Al:0.02
wt%、Sb:0.05wt%およびN:0.008 wt%を含み、残部
はFeおよび不可避的不純物からなる鋼スラブを、1410℃
に加熱した後、常法により 2.2mm厚の熱延鋼板とした。
ついで、1000℃, 30秒の熱延板焼鈍後、酸洗し、 1.5mm
厚に冷間圧延した。その後、1080℃で50秒間の中間処理
を施したのち、 220℃の鋼板温度での温間圧延により0.
22mmの最終板厚とした。ついで、脱脂処理後、 850℃で
2分間の脱炭焼鈍を施したのち、鋼板を2分割し、一方
はそのままMgOを主成分とする焼鈍分離剤を塗布した
(比較例)。また残る一方には、図6に示した装置を用
いて、鋼板表面に 1.5mmのサイズの領域に1 kV で瞬時
の放電処理を施し、かかる瞬時の高温熱処理により、粒
成長の駆動力増加処理を施した。そして、かような領域
を、図9に示されるパターンで、コイル長手方向のピッ
チ:10mm、幅方向のピッチ:15mmで繰り返し設けたの
ち、同じくMgOを主成分とする焼鈍分離剤を塗布した
(発明例)。
Example 1 C: 0.08 wt%, Si: 3.35 wt%, Mn: 0.07 wt%, Al: 0.02
wt%, Sb: 0.05 wt% and N: 0.008 wt%, the balance being Fe and unavoidable impurities.
Then, a 2.2 mm thick hot-rolled steel sheet was obtained by a conventional method.
Then, after annealing the hot rolled sheet at 1000 ° C for 30 seconds,
It was cold rolled to a thickness. After that, an intermediate treatment was performed at 1080 ° C for 50 seconds, followed by warm rolling at a steel sheet temperature of 220 ° C.
The final thickness was 22 mm. Then, after the degreasing treatment, the steel sheet was subjected to decarburizing annealing at 850 ° C. for 2 minutes, and then the steel sheet was divided into two parts, one of which was directly coated with an annealing separator containing MgO as a main component (comparative example). On the other hand, the apparatus shown in FIG. 6 is used to apply an instantaneous discharge treatment at 1 kV to a 1.5 mm size area on the steel sheet surface, and to increase the driving force for grain growth by such an instantaneous high-temperature heat treatment. Was given. Then, such a region was repeatedly provided in the pattern shown in FIG. 9 at a pitch in the coil longitudinal direction: 10 mm and a pitch in the width direction: 15 mm, and then an annealing separator mainly containing MgO was applied ( Invention example).

【0080】ついで、得られたコイルは、最終仕上げ焼
鈍として、N2 中で 850℃まで30℃/hの昇温速度で昇
温し、 850℃に25時間保持した後、25%のN2 と75%の
2の混合雰囲気中にて15℃/hの昇温速度で1200℃ま
で昇温し、さらにH2 中で5時間保持した後、降温し
た。その後、これらのコイルは、未反応焼鈍分離剤を除
去した後、50%コロイダルシリカを含有する張力コーテ
ィングを塗布焼き付け、製品とした。
[0080] Then, the resulting coil, as a final finish annealing, the temperature was raised at a heating rate of 30 ° C. / h up to 850 ° C. in N 2, was held for 25 hours in 850 ° C., of 25% N 2 The temperature was raised to 1200 ° C. at a rate of 15 ° C./h in a mixed atmosphere of H 2 and 75% H 2 , further kept in H 2 for 5 hours, and then cooled. Then, after removing the unreacted annealing separator, these coils were coated with a tension coating containing 50% colloidal silica and baked to obtain products.

【0081】これらの鋼板を用い、スリット加工、剪断
加工、積層固定加工を行い、それぞれ脚幅:250 mm、高
さ:900 mm、厚み:300 mmの3相の変圧器を各2台ずつ
製造した。この時、1台はできるだけ歪が加わらないよ
うにして製造し、他の1台は歪付与の効果を実験的に評
価するために、加工時に50mmの径の球体を有するキャス
ターを5kgの荷重で押し付けて意図的に歪を付加して、
製造した。これらの変圧器の鉄損特性と実機化因子の値
について調べた結果を、材料の磁気特性について調査し
た結果と併せて、表3に示す。また、表3には、材料を
マクロエッチして測定した3mm以下の結晶粒の個数比率
と平均粒径についての調査結果も併せて示す。
Using these steel plates, slitting, shearing, and laminating were performed to produce two three-phase transformers each having a leg width of 250 mm, a height of 900 mm, and a thickness of 300 mm. did. At this time, one unit was manufactured with as little distortion as possible, and the other unit was cast on a caster with a 50 mm diameter sphere at the time of processing with a load of 5 kg in order to experimentally evaluate the effect of imparting distortion. Press and intentionally add distortion,
Manufactured. Table 3 shows the results of investigating the iron loss characteristics and the values of the factor of realization of these transformers, together with the results of investigating the magnetic characteristics of the materials. Table 3 also shows the results of a survey on the number ratio of crystal grains of 3 mm or less and the average grain size measured by macro-etching the material.

【0082】[0082]

【表3】 [Table 3]

【0083】同表から明らかなように、この発明の方向
性電磁鋼板を用いた変圧器の実機特性は、実機化因子も
低く、耐歪特性も極めて良好で、実際の変圧器の鉄心材
料として極めて優れていた。
As can be seen from the table, the transformer using the grain-oriented electrical steel sheet of the present invention has low actual machine characteristics and very good distortion resistance, and is used as an actual transformer core material. It was extremely good.

【0084】実施例2 C:0.08wt%、Si:3.40wt%、Mn:0.04wt%、Al:0.02
wt%、Cu:0.15wt%、Mo:0.010 wt%、Bi:0.005 wt%
およびN:0.008 wt%を含有し、残部はFeおよび不可避
的不純物からなる鋼スラブを、1410℃に加熱したのち、
常法により 2.6mm厚の熱延鋼板とした。ついで、1125で
30秒の均熱処理とミスト水の噴射による40℃/sの急冷か
らなる熱延板焼鈍を施したのち、酸洗し、 250℃の鋼板
温度での温間圧延により0.34mmの最終板厚とした。つい
で脱脂処理後、鋼板を3分割し、一つは 850℃で2分間
の脱炭焼鈍を施した後、MgOを主成分とする焼鈍分離剤
を塗布した(比較例1)。また他の一つは、 850℃で2
分間の脱炭焼鈍を施す際、850 ℃に昇温直後に、図11に
示す形状のセラミック製ロールを鋼板の走行速度と同期
させて回転させつつ鋼板を押圧し、図10に示すようなパ
ターンで、幅:2.0mmの板幅方向に延びる線状の粒成長
の駆動力増加処理を、圧延方向に20mmの繰り返しピッチ
で施した。脱炭焼鈍後、比較例1と同じく、MgOを主成
分とする焼鈍分離剤を塗布した(比較例2)。残る一つ
は、 850℃で2分間の脱炭焼鈍を施す際、同じく 850℃
に昇温直後に、図5に示した形状のセラミック製ロール
を鋼板の走行速度と同期させて回転させつつ鋼板を押圧
し、図9に示すようなパターンで、2.0 mmのサイズの局
所的な粒成長の駆動力増加処理を鋼板に施した。そし
て、このような処理を、コイル長手方向のピッチ:25m
m、幅方向のピッチ:20mmで繰り返し設けた。
Example 2 C: 0.08 wt%, Si: 3.40 wt%, Mn: 0.04 wt%, Al: 0.02
wt%, Cu: 0.15wt%, Mo: 0.010wt%, Bi: 0.005wt%
And N: 0.008 wt%, with the balance being Fe and unavoidable impurities, after heating the steel slab to 1410 ° C,
A 2.6 mm thick hot-rolled steel sheet was obtained by a conventional method. Then in 1125
After applying a hot-rolled sheet annealing consisting of soaking heat treatment of 30 seconds and quenching of 40 ° C / s by spraying mist water, pickling, and hot rolling at a steel sheet temperature of 250 ° C to a final sheet thickness of 0.34 mm did. Next, after the degreasing treatment, the steel sheet was divided into three parts, one of which was subjected to decarburization annealing at 850 ° C. for 2 minutes, and then an annealing separator containing MgO as a main component was applied (Comparative Example 1). The other is 2 at 850 ° C
Immediately after the decarburizing annealing for 5 minutes, the steel roll was pressed while rotating the ceramic roll having the shape shown in FIG. 11 in synchronization with the running speed of the steel sheet, immediately after the temperature was raised to 850 ° C., and the pattern shown in FIG. 10 was obtained. Then, a driving force increasing treatment of linear grain growth extending in the width direction of the sheet having a width of 2.0 mm was performed at a repetition pitch of 20 mm in the rolling direction. After decarburizing annealing, as in Comparative Example 1, an annealing separator containing MgO as a main component was applied (Comparative Example 2). The other one is 850 ° C when decarburizing annealing at 850 ° C for 2 minutes.
Immediately after the temperature was raised, the steel roll having the shape shown in FIG. 5 was pressed while rotating in synchronization with the traveling speed of the steel sheet, and a local 2.0 mm-sized pattern was formed in the pattern shown in FIG. The steel plate was subjected to a treatment for increasing the driving force for grain growth. Then, such a process is performed at a pitch of 25 m in the coil longitudinal direction.
m, pitch in the width direction: 20 mm.

【0085】図12に、小突起で押圧された部分の表面形
状の例を3次元粗度表示で示し、また図13には、小突起
で押圧された部分の歪分布の例をEBSD(Electron B
ackScattering Diffraction)で測定した結果を示す。
FIG. 12 shows an example of the surface shape of the portion pressed by the small projection in three-dimensional roughness display. FIG. 13 shows an example of the strain distribution of the portion pressed by the small projection by EBSD (Electron). B
ackScattering Diffraction).

【0086】これらのコイルは、最終仕上げ焼鈍とし
て、N2 中で 850℃まで30℃/hの昇温速度で昇温し、
ついで25%のN2 と75%のH2 の混合雰囲気中にて15℃
/hの昇温速度で1200℃まで昇温し、さらにH2 中で5
時間保持した後、降温した。その後、これらのコイル
は、未反応焼鈍分離剤を除去した後、50%のコロイダル
シリカを含有する張力コーティングを塗布焼き付け、製
品とした。
As a final finish annealing, these coils were heated in N 2 to 850 ° C. at a rate of 30 ° C./h,
15 ° C. in a mixed atmosphere of 25% N 2 and 75% H 2
/ At a Atsushi Nobori rate was raised to 1200 ° C. for h, further in H 2 5
After holding for a time, the temperature was lowered. Then, after removing the unreacted annealing separating agent, these coils were coated with a tension coating containing 50% of colloidal silica and baked to obtain products.

【0087】これらの鋼板を用い、スリット加工、剪断
加工、積層固定加工を行い、それぞれ脚幅:300 mm、高
さ:1100mm、厚み:250 mmの3相の変圧器を各2台ずつ
製造した。この時、1台はできるだけ歪が加わらないよ
うにして製造し、他の1台は歪付与の効果を実験的に評
価するために、加工時に50mmの径の球体を有するキャス
ターを5kgの荷重で押し付けて意図的に歪を付加して、
製造した。これらの変圧器の鉄損特性と実機化因子の値
について調べた結果を、材料の磁気特性について調査し
た結果と併せて表4に示す。また、表4には、材料をマ
クロエッチして測定した3mm以下の結晶粒の個数比率と
平均粒径についての調査結果も併せて示す。
Using these steel plates, slitting, shearing, and laminating were performed, and two three-phase transformers each having a leg width of 300 mm, a height of 1100 mm, and a thickness of 250 mm were manufactured. . At this time, one unit was manufactured with as little distortion as possible, and the other unit was cast on a caster with a 50 mm diameter sphere at the time of processing with a load of 5 kg in order to experimentally evaluate the effect of imparting distortion. Press and intentionally add distortion,
Manufactured. Table 4 shows the results of investigating the iron loss characteristics of these transformers and the values of the actualization factors, together with the results of investigating the magnetic characteristics of the materials. Table 4 also shows the results of a survey on the number ratio of crystal grains of 3 mm or less and the average grain size measured by macro-etching the material.

【0088】[0088]

【表4】 [Table 4]

【0089】同表から明らかなように、粒成長の駆動力
の増加処理を施した領域が線状である比較例2では、製
品の磁束密度が大幅に低下しており、また実機化因子も
高く変圧器特性に劣ってていた。これに対し、この発明
の方向性電磁鋼板を用いた変圧器の実機特性は、実機化
因子も低く、耐歪特性も極めて良好で、実際の変圧器の
鉄心材料として極めて優れていた。
As is clear from the table, in Comparative Example 2 in which the region subjected to the treatment for increasing the driving force for grain growth was linear, the magnetic flux density of the product was significantly reduced, and the factor for realizing the device was also reduced. High and poor transformer characteristics. On the other hand, the transformer using the grain-oriented electrical steel sheet of the present invention had low actual machine characteristics, extremely low distortion resistance, and was extremely excellent as a core material of an actual transformer.

【0090】実施例3 表5に示す成分組成になる鋼スラブを、1430℃に加熱し
た後、常法により 2.66mm厚の熱延鋼板とした。つい
で、1000℃で30秒の熱延板焼鈍後、酸洗し、1.8mm厚に
冷間圧延したのち、1050℃で50秒間の中間処理を施し、
230℃の鋼板温度での温間圧延により0.26mmの最終板厚
とした。ついで、 850℃で2分間の脱炭焼鈍を施した。
ついで、この鋼板を2分割し、一方はそのままMgOを主
成分とする焼鈍分離剤を塗布した(比較例)。また残る
一方は、図5に示した形状の高C焼入れ鋼製のロール
を、鋼板の走行速度と同期させて回転させつつ鋼板を押
圧し、図8に示すようなパターンで、最大歪量として0.
15を有する 1.5mmのサイズの領域について、局所的な粒
成長の駆動力増加処理を鋼板に施した。そして、このよ
うな領域を、コイル長手方向のピッチ:25mm、幅方向の
ピッチ:20mmで繰り返し設けた。その後、同じくMgOを
主成分とする焼鈍分離剤を塗布した(発明例)。
Example 3 A steel slab having the composition shown in Table 5 was heated to 1430 ° C., and then made into a hot-rolled steel sheet having a thickness of 2.66 mm by a conventional method. Then, after annealing the hot-rolled sheet at 1000 ° C for 30 seconds, pickling, cold rolling to a thickness of 1.8 mm, and then performing an intermediate treatment at 1050 ° C for 50 seconds,
The final thickness was 0.26 mm by warm rolling at a steel sheet temperature of 230 ° C. Then, decarburization annealing was performed at 850 ° C. for 2 minutes.
Next, this steel sheet was divided into two parts, and one of them was directly applied with an annealing separator containing MgO as a main component (comparative example). On the other hand, a roll made of high C quenched steel having the shape shown in FIG. 5 is pressed while rotating in synchronization with the running speed of the steel sheet, and a pattern as shown in FIG. 0.
The steel sheet was subjected to a local grain growth driving force increasing treatment for a 1.5 mm size area with 15. Such a region was repeatedly provided with a pitch in the coil longitudinal direction: 25 mm and a pitch in the width direction: 20 mm. Thereafter, an annealing separator containing MgO as a main component was applied (Example of the present invention).

【0091】これらのコイルは、最終仕上げ焼鈍とし
て、N2 中で 850℃まで30℃/hの昇温速度で昇温し、
850℃に25時間保持した後、25%のN2 と75%のH2
混合雰囲気中で15℃/hの昇温速度で1200℃まで昇温
し、さらにH2 中で5時間保持した後、降温した。その
後、これらのコイルは未反応焼鈍分離剤を除去した後、
50%コロイダルシリカを含有する張力コーティングを塗
布焼き付け製品とした。
As a final finish annealing, these coils were heated to 850 ° C. in N 2 at a rate of 30 ° C./h,
After maintaining at 850 ° C. for 25 hours, the temperature was increased to 1200 ° C. at a rate of 15 ° C./h in a mixed atmosphere of 25% N 2 and 75% H 2 , and further maintained at H 2 for 5 hours. Later, the temperature dropped. Then, after removing the unreacted annealing separator, these coils
Tensile coatings containing 50% colloidal silica were applied to baked products.

【0092】これらの鋼板を用い、スリット加工、剪断
加工、積層固定加工を行い、それぞれ脚幅:200 mm、高
さ:800 mm、厚み:350 mmの3相の変圧器を各2台ずつ
製造した。この時、1台はできるだけ歪が加わらないよ
うにして製造し、他の1台は歪付与の効果を実験的に評
価するため、これらの加工時に50mmの径の球体を有する
キャスターを5kgの荷重で押し付けて意図的に歪を付加
し製造した。これらの変圧器の鉄損特性と実機化因子の
値について調べた結果を、材料の磁気特性について調査
した結果と併せて表6に示す。また、表6には、材料を
マクロエッチして測定した3mm以下の結晶粒の個数比率
と平均粒径についての調査結果も併せて示す。
Using these steel plates, slit processing, shearing processing, and lamination fixing processing were performed to manufacture two three-phase transformers each having a leg width of 200 mm, a height of 800 mm, and a thickness of 350 mm. did. At this time, one unit was manufactured with as little distortion as possible, and the other unit was equipped with a caster having a sphere of 50 mm in diameter at the time of processing for 5 kg in order to experimentally evaluate the effect of applying strain. And intentionally added strain to produce. Table 6 shows the results of the investigation on the iron loss characteristics and the values of the factor of realization of these transformers, together with the results of the investigation on the magnetic characteristics of the materials. Table 6 also shows the results of a survey on the number ratio of crystal grains of 3 mm or less and the average grain size measured by macro-etching the material.

【0093】[0093]

【表5】 [Table 5]

【0094】[0094]

【表6】 [Table 6]

【0095】表6から明らかなように、この発明の方向
性電磁鋼板を用いた変圧器の実機特性は、実機化因子も
低く、耐歪特性も極めて良好で、実際の変圧器の鉄心材
料として極めて優れていた。
As is clear from Table 6, the transformer using the grain-oriented electrical steel sheet according to the present invention has low actual machine characteristics, very low distortion resistance, and is excellent as a core material of an actual transformer. It was extremely good.

【0096】実施例4 C:0.08wt%、Si:3.40wt%、Mn:0.09wt%、Al:0.02
wt%、Cu:0.05wt%、Nb:0.005 wt%、Ni:0.2 wt%、
Sb:0.045 wt%およびN:0.008 wt%を含有し、残部は
Feおよび不可避的不純物からなる鋼スラブを、1430℃に
加熱した後、常法により 2.2mmの熱延鋼板とした。つい
で、酸洗後、冷間圧延により 1.5mmの中間厚としたの
ち、1100℃で30秒の均熱処理とミスト水の噴射による40
℃/sの急冷からなる中間焼鈍を施し、ついで酸洗後、 2
50℃の鋼板温度での温間圧延により0.22mmの最終板厚と
した。ついで、脱脂処理後、鋼板を2分割し、一方は 8
50℃で2分間の脱炭焼鈍を施したのち、SiO2を主成分と
する焼鈍分離剤を塗布した(比較例)。また、残る一方
の鋼板は、 850℃で2分間の脱炭焼鈍後、パルスレーザ
ーを照射し、鋼板表面に 2.0mmのサイズで0.01〜0.08の
歪を有する粒成長の駆動力増加処理を鋼板に施した領域
を、間隔として2〜30mmで離散的に鋼板に設けた。つい
で、比較例と同様、SiO2を主成分とする焼鈍分離剤を塗
布した(発明例)。
Example 4 C: 0.08 wt%, Si: 3.40 wt%, Mn: 0.09 wt%, Al: 0.02
wt%, Cu: 0.05 wt%, Nb: 0.005 wt%, Ni: 0.2 wt%,
Contains Sb: 0.045 wt% and N: 0.008 wt%, with the balance being
A steel slab composed of Fe and unavoidable impurities was heated to 1430 ° C., and then made into a 2.2 mm hot-rolled steel sheet by an ordinary method. Next, after pickling, cold rolling is performed to obtain an intermediate thickness of 1.5 mm, and then heat treatment is performed at 1100 ° C for 30 seconds, and mist water is injected.
Intermediate annealing consisting of quenching at ℃ / s, followed by pickling
The final thickness was 0.22 mm by warm rolling at a steel sheet temperature of 50 ° C. Then, after degreasing, the steel sheet is divided into two parts,
After decarburizing annealing at 50 ° C. for 2 minutes, an annealing separator mainly composed of SiO 2 was applied (Comparative Example). The other steel sheet was subjected to pulsed laser irradiation after decarburizing annealing at 850 ° C for 2 minutes, and the steel sheet was subjected to a grain growth driving force increasing treatment with a 2.0 mm size and 0.01 to 0.08 strain on the steel sheet. The applied area was discretely provided on the steel plate at an interval of 2 to 30 mm. Then, similarly to the comparative example, an annealing separator mainly composed of SiO 2 was applied (inventive example).

【0097】これらのコイルは、最終仕上げ焼鈍とし
て、N2 中で 850℃まで30℃/hの昇温速度で昇温し、
850℃に25時間保持した後、25%のN2 と75%のH2
混合雰囲気中にて15℃/hの昇温速度で1200℃まで昇温
し、さらにH2 中で5時間保持した後、降温した。な
お、かくして得られたコイルには、表面酸化物被膜の生
成は認められなかった。その後、B2O3を含有する張力コ
ーティングを直接塗布焼き付け製品とした。
These coils were heated in N 2 to 850 ° C. at a rate of 30 ° C./h as final finish annealing.
After maintaining at 850 ° C. for 25 hours, the temperature is raised to 1200 ° C. at a rate of 15 ° C./h in a mixed atmosphere of 25% N 2 and 75% H 2 , and further maintained in H 2 for 5 hours. After that, the temperature was lowered. No formation of a surface oxide film was observed on the thus obtained coil. Then directly applied baking products tension coating containing B 2 O 3.

【0098】これらの鋼板を用い、スリット加工、剪断
加工、積層固定加工を行い、それぞれ脚幅:300 mm、高
さ:1100mm、厚み:250 mmの3相の変圧器を各2台ずつ
製造した。この時、1台はできるだけ歪が加わらないよ
うにして製造し、他の1台は歪付与の効果を実験的に評
価するために、加工時に50mmの径の球体を有するキャス
ターを5kgの荷重で押し付けて意図的に歪を付加して、
製造した。これらの変圧器の鉄損特性と実機化因子の値
について調べた結果を、材料の磁気特性について調査し
た結果と併せて表7に示す。また、表7には、材料をマ
クロエッチして測定した3mm以下の結晶粒の個数比率と
平均粒径についての調査結果も併せて示す。
Using these steel sheets, slit processing, shearing processing, and lamination fixing processing were performed, and two three-phase transformers each having a leg width of 300 mm, a height of 1100 mm, and a thickness of 250 mm were manufactured. . At this time, one unit was manufactured with as little distortion as possible, and the other unit was cast on a caster with a 50 mm diameter sphere at the time of processing with a load of 5 kg in order to experimentally evaluate the effect of imparting distortion. Press and intentionally add distortion,
Manufactured. Table 7 shows the results of the investigation on the iron loss characteristics and the values of the factor of realization of these transformers, together with the results of the investigation on the magnetic characteristics of the materials. Table 7 also shows the results of investigation on the number ratio of crystal grains of 3 mm or less and the average grain size measured by macro-etching the material.

【0099】[0099]

【表7】 [Table 7]

【0100】表7に示したように、この発明の方向性電
磁鋼板を用いた変圧器の実機特性は実機化因子も低く、
耐歪特性も極めて良好で実際の変圧器の鉄心材料として
極めて優れていた。
As shown in Table 7, the actual equipment characteristics of the transformer using the grain-oriented electrical steel sheet of the present invention had a low actualization factor.
The strain resistance was also very good, and it was extremely excellent as an actual transformer core material.

【0101】[0101]

【発明の効果】かくして、この発明によれば、製品鋼板
のもつ優れた材料特性を変圧器にそのまま反映させるこ
とができ、その結果、組み立て後においても優れた実機
特性を有する変圧器を得ることができる。
As described above, according to the present invention, the excellent material characteristics of the product steel plate can be directly reflected in the transformer, and as a result, a transformer having excellent actual machine characteristics even after assembly can be obtained. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に従い、人為的に微細粒を生成させた
鋼板の金属組織写真である。
FIG. 1 is a metallographic photograph of a steel sheet in which fine grains are artificially generated according to the present invention.

【図2】人為的に生成させた微細粒と自然に発生した微
細粒の結晶方位を比較して示した(100)極点図であ
る。
FIG. 2 is a (100) pole figure showing a comparison between crystal orientations of artificially generated fine grains and naturally generated fine grains.

【図3】3mm以下の微細粒の個数比率が、鉄損特性に対
する変圧器の鉄損比(実機化因子)および耐歪特性(歪
付与加工時の実機化因子)に及ぼす影響を示したグラフ
である。
FIG. 3 is a graph showing the effect of the number ratio of fine grains of 3 mm or less on the iron loss ratio of transformers to iron loss characteristics (actualization factor) and distortion resistance characteristics (actualization factor during strain imparting processing). It is.

【図4】方向性電磁鋼板における貫通粒の平均粒径と鉄
損特性ならびに変圧器の実機化因子および歪付与加工時
の実機化因子との関係を示したグラフである。
FIG. 4 is a graph showing the relationship between the average grain size of penetrating grains and iron loss characteristics of a grain-oriented electrical steel sheet, the factor for realizing a transformer, and the factor for realizing a strain imparting process.

【図5】表面に小突起を多数有するロールの外観図であ
る。
FIG. 5 is an external view of a roll having a large number of small protrusions on its surface.

【図6】局所通電加熱処理および局所放電加熱処理を施
すための装置の概念図である。
FIG. 6 is a conceptual diagram of an apparatus for performing a local energization heating process and a local discharge heating process.

【図7】結晶粒成長の駆動力を増加させた領域を、鋼板
表面に離散的に設けた状態を示した図である。
FIG. 7 is a diagram showing a state where regions where the driving force for crystal grain growth is increased are discretely provided on the surface of a steel sheet.

【図8】結晶粒成長の駆動力を増加させた領域を、鋼板
表面に規則的に設けた状態を示した図である。
FIG. 8 is a diagram showing a state in which regions in which the driving force for crystal grain growth is increased are regularly provided on the surface of the steel sheet.

【図9】結晶粒成長の駆動力を増加させた領域を、鋼板
表面に規則的に設けた状態の別例を示した図である。
FIG. 9 is a diagram showing another example of a state in which regions in which the driving force for crystal grain growth is increased are regularly provided on the surface of the steel sheet.

【図10】結晶粒成長の駆動力を増加させた領域を、鋼
板の幅方向に連続して線状に設けた状態を示した図であ
る。
FIG. 10 is a diagram showing a state in which a region where the driving force for crystal grain growth is increased is provided linearly continuously in the width direction of the steel sheet.

【図11】表面に線状突起を有するロールの外観図であ
る。
FIG. 11 is an external view of a roll having linear protrusions on its surface.

【図12】小突起で押圧された部分の表面形状を示した
図である。
FIG. 12 is a diagram showing a surface shape of a portion pressed by a small protrusion.

【図13】小突起で押圧された部分の歪分布を示した図
である(濃淡は導入歪量の程度を表し、濃くなるほど歪
量は大きい)。
FIG. 13 is a diagram showing a strain distribution of a portion pressed by small projections (shading indicates the degree of the introduced distortion amount, and the higher the density, the larger the distortion amount).

【符号の説明】[Explanation of symbols]

1 小突起 2 処理時間を定めるゲートパルス 3 高電圧電源 4 電極 5 粒成長の駆動力の増加処理領域 6 対電極 7 鋼板 8 線状突起 9 圧延方向 10 粒成長の駆動力増加処理の圧延方向への繰り返し処
理間隔 11 粒成長の駆動力増加処理の圧延直角方向への繰り返
し処理間隔
DESCRIPTION OF SYMBOLS 1 Small projection 2 Gate pulse which determines processing time 3 High voltage power supply 4 Electrode 5 Driving force increase processing area of grain growth 6 Counter electrode 7 Steel plate 8 Linear projection 9 Rolling direction 10 Rolling direction of grain growth driving force increase processing 11 Interval of repetitive processing in the direction perpendicular to the rolling direction of the increase in driving force for grain growth

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】Si:1.5 〜7.0 wt%、 Mn:0.03〜2.5 wt% を含有し、かつC, SおよびNの不純物としての混入を
それぞれ C:0.003 wt%以下、 S:0.002 wt%以下、 N:0.002 wt%以下 に抑制した電磁鋼板であって、鋼板の板厚方向に貫通し
ている結晶粒のうち、鋼板表面における粒径が3mm以下
である結晶粒の個数比率が65%以上、98%以下であるこ
とを特徴とする、鉄損が低く、耐歪特性および実機特性
に優れた方向性電磁鋼板。
(1) Si: 1.5 to 7.0 wt%, Mn: 0.03 to 2.5 wt%, and contamination of C, S and N as impurities respectively: C: 0.003 wt% or less, S: 0.002 wt% or less N: 0.002 wt% or less, wherein the number ratio of crystal grains having a grain size of 3 mm or less on the steel sheet surface among the crystal grains penetrating in the thickness direction of the steel sheet is 65% or more. A grain-oriented electrical steel sheet having a low iron loss, excellent in strain resistance and excellent in actual machine characteristics, characterized by being 98% or less.
【請求項2】 請求項1において、板厚方向に貫通して
いる結晶粒全体の鋼板表面における粒径の平均値が8mm
以上、50mm以下であることを特徴とする、鉄損が低く、
耐歪特性および実機特性に優れた方向性電磁鋼板。
2. The method according to claim 1, wherein the average value of the grain size on the steel sheet surface of the entire crystal grain penetrating in the thickness direction is 8 mm.
Above, 50mm or less, characterized by low iron loss,
Grain-oriented electrical steel sheet with excellent strain resistance and actual machine characteristics.
【請求項3】 請求項1または2において、板厚方向に
貫通し、かつ鋼板表面における粒径が3mm以下である結
晶粒として、人為的に規則配置させたものを含むことを
特徴とする、鉄損が低く、耐歪特性および実機特性に優
れた方向性電磁鋼板。
3. The method according to claim 1, wherein the crystal grains penetrating in the thickness direction and having a grain size of 3 mm or less on the surface of the steel sheet include those which are artificially and regularly arranged. Grain-oriented electrical steel sheet with low iron loss and excellent distortion resistance and actual machine characteristics.
【請求項4】 C:0.010 〜0.120 wt%、Si:1.5 〜7.
0 wt%およびMn:0.03〜2.5 wt%を含み、かつ所定量の
インヒビター成分を含有する組成になる含けい素鋼スラ
ブを、熱間圧延し、必要に応じて熱延板焼鈍を施したの
ち、1回または中間焼鈍を挟む2回以上の冷間圧延によ
って最終板厚とし、その後1次再結晶焼鈍ついで2次再
結晶焼鈍を施す一連の工程によって方向性電磁鋼板を製
造するに際し、 1次再結晶焼鈍途中から2次再結晶開始までの間におい
て、鋼板内部に、結晶成長の駆動力を増加させた領域
を、鋼板面への射影領域が円相当径にて0.05〜3.0 mmの
大きさで人為的かつ離散的に設けることを特徴とする、
鉄損が低く、耐歪特性および実機特性に優れた方向性電
磁鋼板の製造方法。
4. C: 0.010-0.120 wt%, Si: 1.5-7.
A silicon steel slab containing 0 wt% and Mn: 0.03 to 2.5 wt% and having a composition containing a predetermined amount of an inhibitor component is hot-rolled and, if necessary, subjected to hot-rolled sheet annealing. In producing a grain-oriented electrical steel sheet by a series of steps in which a final thickness is obtained by cold rolling once or twice or more with intermediate annealing, followed by primary recrystallization annealing and then secondary recrystallization annealing, During the period from the recrystallization annealing to the start of the secondary recrystallization, the region where the driving force for crystal growth was increased was placed inside the steel plate, and the projected region on the steel plate surface was 0.05 to 3.0 mm in circle equivalent diameter. Characterized by being artificially and discretely provided by
A method for producing grain-oriented electrical steel sheets with low iron loss and excellent strain resistance and actual machine properties.
【請求項5】 請求項4において、結晶成長の駆動力を
増加させた領域を、規則的に配置させたことを特徴とす
る、鉄損が低く、耐歪特性および実機特性に優れた方向
性電磁鋼板の製造方法。
5. The directionality according to claim 4, wherein the regions in which the driving force for crystal growth is increased are arranged regularly, characterized by low iron loss, excellent distortion resistance and excellent real machine characteristics. Manufacturing method of electrical steel sheet.
【請求項6】 請求項4または5において、結晶成長の
駆動力を増加させた領域が、1次再結晶粒を微粒化した
領域または歪導入領域であることを特徴とする、鉄損が
低く、耐歪特性および実機特性に優れた方向性電磁鋼板
の製造方法。
6. A low iron loss according to claim 4, wherein the region in which the driving force for crystal growth is increased is a region in which primary recrystallized grains are atomized or a strain-introduced region. A method for producing grain-oriented electrical steel sheets having excellent strain resistance and actual machine characteristics.
【請求項7】 請求項6において、結晶成長の駆動力を
増加させた領域が歪導入領域である場合に、該領域に対
し、最大歪量として 0.005〜0.70の歪を導入したことを
特徴とする、鉄損が低く、耐歪特性および実機特性に優
れた方向性電磁鋼板の製造方法。
7. The method according to claim 6, wherein when the region where the driving force for crystal growth is increased is a strain-introducing region, a strain of 0.005 to 0.70 is introduced as a maximum strain amount into the region. A method for producing a grain-oriented electrical steel sheet having a low iron loss, and excellent in distortion resistance characteristics and actual machine characteristics.
【請求項8】 請求項4,5,6または7において、結
晶成長の駆動力を増加させるための歪の導入手段が、表
面に小突起を有する鋼板よりも硬い物体を鋼板表面に押
圧する方法、鋼板表面と電極との間に高電圧を印加し局
所的に通電または放電する方法、高温スポットレーザー
を瞬間的に照射する方法およびパルスレーザーを局所的
に照射する方法のいずれかである、鉄損が低く、耐歪特
性および実機特性に優れた方向性電磁鋼板の製造方法。
8. The method according to claim 4, wherein the means for introducing strain for increasing the driving force for crystal growth presses an object harder than a steel sheet having small projections on the surface. A method in which a high voltage is applied between the steel sheet surface and the electrode to locally conduct or discharge, a method in which a high-temperature spot laser is instantaneously irradiated, and a method in which a pulse laser is locally irradiated, iron. A method for producing a grain-oriented electrical steel sheet with low loss and excellent strain resistance and actual machine properties.
JP23549797A 1996-10-21 1997-08-18 Grain-oriented electrical steel sheet with low iron loss and excellent strain resistance and actual machine properties, and method for producing the same Expired - Fee Related JP3383555B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP23549797A JP3383555B2 (en) 1996-10-21 1997-08-18 Grain-oriented electrical steel sheet with low iron loss and excellent strain resistance and actual machine properties, and method for producing the same
EP97118194A EP0837148B1 (en) 1996-10-21 1997-10-20 Grain-oriented electromagnetic steel sheet
DE69706388T DE69706388T2 (en) 1996-10-21 1997-10-20 Grain-oriented electromagnetic steel sheet
US08/953,920 US6083326A (en) 1996-10-21 1997-10-20 Grain-oriented electromagnetic steel sheet
CN97126080A CN1099474C (en) 1996-10-21 1997-10-21 Iron loss low, strain characteristic resistant and practical characteristic good grain orientation electromagnet steel plate and its manufacture method
KR1019970054015A KR100424126B1 (en) 1996-10-21 1997-10-21 Grain-oriented electromagnetic steel sheet
BR9705106A BR9705106A (en) 1996-10-21 1997-10-21 Electromagnetic steel sheet with oriented granulation
US09/557,230 US6444050B1 (en) 1996-10-21 2000-04-24 Grain-oriented electromagnetic steel sheet
US10/163,522 US6929704B2 (en) 1996-10-21 2002-06-06 Grain-oriented electromagnetic steel sheet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP27813596 1996-10-21
JP8-278135 1996-10-21
JP23549797A JP3383555B2 (en) 1996-10-21 1997-08-18 Grain-oriented electrical steel sheet with low iron loss and excellent strain resistance and actual machine properties, and method for producing the same

Publications (2)

Publication Number Publication Date
JPH10183312A true JPH10183312A (en) 1998-07-14
JP3383555B2 JP3383555B2 (en) 2003-03-04

Family

ID=26532164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23549797A Expired - Fee Related JP3383555B2 (en) 1996-10-21 1997-08-18 Grain-oriented electrical steel sheet with low iron loss and excellent strain resistance and actual machine properties, and method for producing the same

Country Status (1)

Country Link
JP (1) JP3383555B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014290A1 (en) 2010-07-28 2012-02-02 新日本製鐵株式会社 Orientated electromagnetic steel sheet and manufacturing method for same
JP2017061732A (en) * 2015-09-25 2017-03-30 Jfeスチール株式会社 Oriented electromagnetic steel sheet and production method thereof
WO2018207873A1 (en) 2017-05-12 2018-11-15 Jfeスチール株式会社 Oriented magnetic steel sheet and method for manufacturing same
JP2018184654A (en) * 2017-04-27 2018-11-22 Jfeスチール株式会社 Method for producing grain-oriented magnetic steel sheet
JP2022501517A (en) * 2018-09-27 2022-01-06 ポスコPosco Directional electrical steel sheet and its manufacturing method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014290A1 (en) 2010-07-28 2012-02-02 新日本製鐵株式会社 Orientated electromagnetic steel sheet and manufacturing method for same
US8790471B2 (en) 2010-07-28 2014-07-29 Nippon Steel & Sumitomo Metal Corporation Grain-oriented electrical steel sheet and manufacturing method thereof
US9659693B2 (en) 2010-07-28 2017-05-23 Nippon Steel & Sumitomo Metal Corporation Grain-oriented electrical steel sheet and manufacturing method thereof
JP2017061732A (en) * 2015-09-25 2017-03-30 Jfeスチール株式会社 Oriented electromagnetic steel sheet and production method thereof
WO2017051535A1 (en) * 2015-09-25 2017-03-30 Jfeスチール株式会社 Oriented electromagnetic steel sheet and manufacturing method therefor
JP2018184654A (en) * 2017-04-27 2018-11-22 Jfeスチール株式会社 Method for producing grain-oriented magnetic steel sheet
WO2018207873A1 (en) 2017-05-12 2018-11-15 Jfeスチール株式会社 Oriented magnetic steel sheet and method for manufacturing same
KR20190137127A (en) 2017-05-12 2019-12-10 제이에프이 스틸 가부시키가이샤 Grain oriented electrical steel sheet and its manufacturing method
US11578377B2 (en) 2017-05-12 2023-02-14 Jfe Steel Corporation Grain-oriented electrical steel sheet and method for producing the same
JP2022501517A (en) * 2018-09-27 2022-01-06 ポスコPosco Directional electrical steel sheet and its manufacturing method
US11603572B2 (en) 2018-09-27 2023-03-14 Posco Co., Ltd Grain-oriented electrical steel sheet and method for manufacturing same

Also Published As

Publication number Publication date
JP3383555B2 (en) 2003-03-04

Similar Documents

Publication Publication Date Title
JP5760504B2 (en) Oriented electrical steel sheet and manufacturing method thereof
KR100424126B1 (en) Grain-oriented electromagnetic steel sheet
JP3023242B2 (en) Method for producing low iron loss unidirectional silicon steel sheet with excellent noise characteristics
CN108699621B (en) Method for producing grain-oriented electromagnetic steel sheet
JPH02274815A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPS6345444B2 (en)
JP3644130B2 (en) Method for producing grain-oriented electrical steel sheet
JP3357578B2 (en) Grain-oriented electrical steel sheet with extremely low iron loss and method for producing the same
JP3399991B2 (en) Method for producing low iron loss unidirectional silicon steel sheet
JP3482833B2 (en) Grain-oriented electrical steel sheets with excellent iron loss, distortion resistance and magnetic properties in actual machines
JP3415377B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with extremely low iron loss
JP2000256810A (en) Grain oriented silicon steel sheet excellent in magnetic property in low magnetic field and high-frequency and punching workability and its production
CN107406936B (en) Orientation electromagnetic steel plate and its manufacturing method
JP3357601B2 (en) Grain-oriented electrical steel sheet with extremely low iron loss and its manufacturing method
JP3383555B2 (en) Grain-oriented electrical steel sheet with low iron loss and excellent strain resistance and actual machine properties, and method for producing the same
JP7318675B2 (en) Grain-oriented electrical steel sheet, manufacturing method thereof, and strain introduction device
JP3386742B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP6813134B2 (en) Directional electromagnetic steel sheet and iron core using it
JP3928275B2 (en) Electrical steel sheet
JP2002241906A (en) Grain-oriented silicon steel sheet having excellent coating film characteristic and magnetic property
JPH05179355A (en) Production of low-iron loss unidirectionally oriented silicon steel sheet
JP7197068B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JPS6331527B2 (en)
JPH05311241A (en) Manufacture of low core loss grain-oriented silicon steel sheet and irradiation device for electron beam
JPS6089521A (en) Production of grain oriented silicon steel sheet having excellent magnetic characteristic

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121220

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121220

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131220

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees