JP2013159847A - Grain-oriented magnetic steel sheet and method of manufacturing the same - Google Patents

Grain-oriented magnetic steel sheet and method of manufacturing the same Download PDF

Info

Publication number
JP2013159847A
JP2013159847A JP2012025245A JP2012025245A JP2013159847A JP 2013159847 A JP2013159847 A JP 2013159847A JP 2012025245 A JP2012025245 A JP 2012025245A JP 2012025245 A JP2012025245 A JP 2012025245A JP 2013159847 A JP2013159847 A JP 2013159847A
Authority
JP
Japan
Prior art keywords
steel sheet
grain
irradiation
region
iron loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012025245A
Other languages
Japanese (ja)
Other versions
JP5884168B2 (en
Inventor
重宏 ▲高▼城
Shigehiro Takagi
Hiroshi Yamaguchi
山口  広
Seiji Okabe
誠司 岡部
Kazuhiro Hanazawa
和浩 花澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012025245A priority Critical patent/JP5884168B2/en
Publication of JP2013159847A publication Critical patent/JP2013159847A/en
Application granted granted Critical
Publication of JP5884168B2 publication Critical patent/JP5884168B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a grain-oriented magnetic steel sheet with a low iron loss and little degradation of magnetic permeability by effectively controlling generation of an excessively high dislocation density region that has been of concern during beam irradiation.SOLUTION: On a grain-oriented magnetic steel sheet with a linear grid distortion formed on a surface of the steel sheet in a direction of 60-120° with respect to a rolling direction, a region having the grid distortion of 0.1-0.3% and a region having the grid distortion of 0.3% or higher are distributed alternately and periodically at 0.1 mm or more intervals along the direction of the linear grid distortion.

Description

本発明は、変圧器の鉄心などの用途に使用される方向性電磁鋼板およびその製造方法に関し、特に透磁率の低下を招くことなしに鉄損の有利な低減を図ろうとするものである。   The present invention relates to a grain-oriented electrical steel sheet used for applications such as an iron core of a transformer and a method for manufacturing the grain-oriented electrical steel sheet, and particularly intends to achieve an advantageous reduction in iron loss without causing a decrease in magnetic permeability.

変圧器などに使用される方向性電磁鋼板には、高磁束密度を始めとして、低鉄損、高透磁率、低騒音など、多岐にわたる特性が求められる。特に、近年では、エネルギ使用効率の高い変圧器が求められており、方向性電磁鋼板として、低鉄損かつ高透磁率であることが重要になっている。   Directional electrical steel sheets used for transformers and the like are required to have various characteristics such as high magnetic flux density, low iron loss, high magnetic permeability, and low noise. In particular, in recent years, a transformer with high energy use efficiency has been demanded, and it has become important for the grain-oriented electrical steel sheet to have low iron loss and high magnetic permeability.

方向性電磁鋼板の鉄損を低減する方法としては、これまで素材の組織や化学組成の調整の他に、鋼板への線状溝の形成、レーザ、プラズマ炎、電子ビーム照射などによる磁区細分化が知られている(例えば特許文献1など)。
上記した方法のうち、線状溝の形成は、鉄損の改善効果が大きいことが知られているが、磁束密度を劣化させるという欠点がある。
一方、レーザやプラズマ炎、電子ビーム照射による磁区細分化は、鉄損を劇的に改善することができるだけでなく、鋼板の磁束密度はほとんど劣化させないことが知られている。ところが、このような磁区細分化を行うと、鋼板の透磁率は減少する傾向にある。透磁率が低くなると、励磁に必要な電流が大きくなり、変圧器の負荷損が増大してしまう。また、磁気シールドなどの用途では、透磁率が低いとシールド性が劣化してしまう。
In order to reduce the iron loss of grain-oriented electrical steel sheets, in addition to adjusting the structure and chemical composition of the material, magnetic domain subdivision by forming linear grooves in the steel sheet, laser, plasma flame, electron beam irradiation, etc. Is known (for example, Patent Document 1).
Among the methods described above, the formation of the linear groove is known to have a large effect of improving the iron loss, but has a drawback of deteriorating the magnetic flux density.
On the other hand, it is known that magnetic domain fragmentation by laser, plasma flame, or electron beam irradiation can not only dramatically improve iron loss, but also hardly deteriorate the magnetic flux density of the steel sheet. However, when such magnetic domain subdivision is performed, the magnetic permeability of the steel sheet tends to decrease. When the magnetic permeability decreases, the current required for excitation increases and the load loss of the transformer increases. In applications such as a magnetic shield, if the magnetic permeability is low, the shielding performance is deteriorated.

方向性電磁鋼板の透磁率を高くする技術は、これまでにも幾つか報告されてきた(例えば特許文献2など)が、従来のレーザ、プラズマ炎、電子ビーム照射による磁区細分化技術では、鉄損をいかに低減するかに主眼が置かれており、照射によって透磁率が劣化することについては注意が払われていなかった。   Several techniques for increasing the magnetic permeability of grain-oriented electrical steel sheets have been reported so far (for example, Patent Document 2). However, in conventional magnetic domain fragmentation techniques using laser, plasma flame, and electron beam irradiation, iron is used. The main focus was on how to reduce the loss, and no attention was paid to the deterioration of the permeability due to irradiation.

特公平7-65106号公報Japanese Patent Publication No.7-65106 特許第4258202号公報Japanese Patent No.4258202 特許第4344264号公報Japanese Patent No. 4344264 特許第3361709号公報Japanese Patent No. 3361709

透磁率は、磁壁の移動のしやすさを表すものであるから、透磁率を高く保つためには、磁壁の移動を妨げる結晶粒界や、高転位密度領域などを低減すれば良い。
しかしながら、例えば特許文献3に示されるように、レーザなどを照射した部分には、局所的に高転位密度領域が形成される。
Since the magnetic permeability indicates the ease of movement of the domain wall, in order to keep the magnetic permeability high, it is only necessary to reduce crystal grain boundaries that hinder the movement of the domain wall, a high dislocation density region, and the like.
However, as shown in Patent Document 3, for example, a high dislocation density region is locally formed in a portion irradiated with a laser or the like.

上記のような、高転位密度領域は、主として、レーザやプラズマ炎、電子ビーム(以下、まとめてビームという)照射部の局所的な高温化によって生成し、局所的に高温であるほどより高密度に形成される傾向がある。特許文献4によれば、ビーム照射部の局所的な高温化は、ビームのパワー密度が高い方が顕著であるため、透磁率の劣化を抑制するためには、パワー密度が低い条件でビーム照射を行うことが望ましい。しかしながら、パワー密度を低減した場合には、十分な磁区細分化効果が得られず、ビーム照射後の鋼板の鉄損が十分には低減されないという問題があった。
さらに、ビーム照射材の生産性を高くすることを背景として、以下に述べるように、ビームのパワー密度はできるだけ高くすることが求められており、照射による透磁率の劣化代はますます大きくなる傾向にある。
The high dislocation density region as described above is mainly generated by locally increasing the temperature of a laser, plasma flame, or electron beam (hereinafter collectively referred to as a beam) irradiation part, and the higher the local temperature, the higher the density. Tend to be formed. According to Patent Document 4, since the higher temperature of the beam irradiation part is more conspicuous when the beam irradiation unit is locally heated, the beam irradiation is performed under the condition of low power density in order to suppress the deterioration of the magnetic permeability. It is desirable to do. However, when the power density is reduced, there is a problem that a sufficient magnetic domain refinement effect cannot be obtained and the iron loss of the steel sheet after beam irradiation is not sufficiently reduced.
Furthermore, against the backdrop of increasing the productivity of beam irradiation materials, as described below, it is required to increase the power density of the beam as much as possible, and the rate of deterioration in permeability due to irradiation tends to increase. It is in.

さて、ビーム照射材の生産性の観点からは、ビーム走査の高速化が求められている。パルス状にビームを照射する場合では、ビームの平均走査速度vは、v〜pf(p:パルス照射部の間隔(ドットピッチ)、f:照射の繰返し周波数)で与えられるため、照射の高周波数化が必要になってくる。電子ビームの場合には、繰返し周波数fを数百kHz以上という極めて大きい値まで設定することができるため、高速操業の点では有利である。また、さらなる高速化を達成しようとする場合には、ドットピッチpを増大させることが重要になっている。
しかしながら、これまでの技術では、パルス照射部の間隔pを過度に大きくすると、鉄損が十分に低減しないという問題があった。
Now, from the viewpoint of productivity of the beam irradiation material, speeding up of the beam scanning is required. In the case of irradiating the beam in a pulsed manner, the average scanning speed v of the beam is given by v to pf (p: interval of the pulse irradiation part (dot pitch), f: repetition frequency of irradiation), so that the high frequency of irradiation It will be necessary. In the case of an electron beam, the repetition frequency f can be set to a very large value of several hundred kHz or more, which is advantageous in terms of high-speed operation. In order to achieve further higher speed, it is important to increase the dot pitch p.
However, the conventional technology has a problem that the iron loss is not sufficiently reduced when the interval p between the pulse irradiation portions is excessively increased.

さらに、ビームの走査速度vが大きくなると、鋼板に熱歪みを導入するために必要なビーム出力Wが高くなる。単純に、鋼板への単位長さ当たりの入熱量Qを考えても、
Q=W/v=W/(pf)
であるから、走査速度vが大きくなると、入熱量Qを一定に保つためには、ビーム出力Wを大きくしなければならない。ビーム出力が高い場合、ビーム径などが同等であれば、パワー密度も高くなる。
すると、上記したように、透磁率の劣化を抑制する観点からは不利になってしまう。特許文献4によれば、パワー密度が高くなる分、入熱量を低減させても、同等の鉄損低減効果が得られるとされているが、それでも透磁率の劣化を防止するほどまで入熱量を低減することはできない。
Further, as the beam scanning speed v increases, the beam output W necessary for introducing thermal strain into the steel sheet increases. Simply considering the heat input Q per unit length to the steel plate,
Q = W / v = W / (pf)
Therefore, when the scanning speed v increases, the beam output W must be increased in order to keep the heat input Q constant. When the beam output is high, the power density is high if the beam diameter is the same.
Then, as described above, it is disadvantageous from the viewpoint of suppressing the deterioration of the magnetic permeability. According to Patent Document 4, it is said that even if the amount of heat input is reduced as much as the power density is increased, an equivalent iron loss reduction effect can be obtained, but the amount of heat input is still high enough to prevent deterioration of the magnetic permeability. It cannot be reduced.

本発明は、上記の問題を有利に解決するもので、ビームの照射パターンに工夫を加えることによって、従来、ビーム照射の際に懸念された過度な高転位密度領域の生成を効果的に抑制して、低鉄損で透磁率の劣化が少ない方向性電磁鋼板をその有利な製造方法と共に提案することを目的とする。   The present invention advantageously solves the above problem, and by adding a device to the irradiation pattern of the beam, it can effectively suppress the generation of an excessively high dislocation density region that has been a concern in the conventional beam irradiation. Thus, it is an object of the present invention to propose a grain-oriented electrical steel sheet with low iron loss and little magnetic permeability deterioration together with its advantageous manufacturing method.

さて、発明者らは、連続的なビーム照射が、パルス状のビーム照射に比べて低パワー密度のビーム照射で満足のいく鉄損低減効果を有することに着目し、パルス状のビーム照射と連続的なビーム照射を組み合わせた照射パターンとすることによって、照射後に鉄損と透磁率の両者に優れた方向性電磁鋼板を得ることに成功した。   Now, the inventors have noted that continuous beam irradiation has a satisfactory iron loss reduction effect with low power density beam irradiation as compared with pulsed beam irradiation. By using an irradiation pattern combined with typical beam irradiation, we succeeded in obtaining a grain-oriented electrical steel sheet excellent in both iron loss and magnetic permeability after irradiation.

電子ビームのように、常に出力され続けるビームによって、鋼板表面を照射する場合、走査線に沿って、ビームの照射時間を、長時間(s1)と短時間(s2)を繰り返すようにして行うことが多い。この繰り返しの距離周期が本明細書中に記載するドットピッチに対応する。
通常、パルス状にビーム照射する場合には、図1(a)に示すように、例えば、s2/s1<0.1となるように、s2がs1に対して十分短くなるように設定されるが、短時間照射部におけるビームの走査速度(最大走査速度)を小さくし、s2/s1を通常よりも大きくすることによって、ドットピッチを過度に小さくすることなく、連続的なビーム照射に近づけることが可能であることに想い至った。さらに、実験を積み重ねることによって、上記のように短時間照射部におけるビームの走査速度を小さくした場合には、パワー密度が比較的低くても、十分な鉄損低減効果が得られることが見出された。
本発明は、上記の知見に立脚するものである。
When irradiating the surface of a steel sheet with a beam that is constantly output, such as an electron beam, the irradiation time of the beam is repeated long (s 1 ) and short (s 2 ) along the scanning line. Often done. This repeated distance period corresponds to the dot pitch described in this specification.
Normal setting, when the beam irradiation in pulses, as shown in FIG. 1 (a), for example, such that s 2 / s 1 <0.1, as s 2 is sufficiently shorter than the s 1 However, a continuous beam can be obtained without excessively reducing the dot pitch by reducing the scanning speed (maximum scanning speed) of the beam in the short-time irradiation unit and increasing s 2 / s 1 more than usual. I came up with the idea that it was possible to approach irradiation. Furthermore, by repeating experiments, it has been found that when the beam scanning speed in the short-time irradiation unit is reduced as described above, a sufficient iron loss reduction effect can be obtained even if the power density is relatively low. It was done.
The present invention is based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
1.鋼板の表面に、圧延方向に対して60°から120°の方向に線状の格子歪みを形成した方向性電磁鋼板であって、
上記線状格子歪みの方向に沿って、格子歪みが0.1〜0.3%である領域と0.3%超の領域が、0.1mm以上の間隔で交互にかつ周期的に分布していることを特徴とする方向性電磁鋼板。
That is, the gist configuration of the present invention is as follows.
1. A directional electrical steel sheet in which a linear lattice strain is formed in the direction of 60 ° to 120 ° with respect to the rolling direction on the surface of the steel plate,
Along with the linear lattice strain direction, a region where the lattice strain is 0.1 to 0.3% and a region where the lattice strain is more than 0.3% are alternately and periodically distributed at intervals of 0.1 mm or more. Oriented electrical steel sheet.

2.方向性電磁鋼板の表面に、圧延方向に対して60°から120°の方向に電子ビームを照射して格子歪み領域を形成するに際し、
上記電子ビームの最大走査速度が50m/s〜300m/sで、かつ平均走査速度が20m/s以上の条件で電子ビーム照射を行うことを特徴とする前記1に記載の方向性電磁鋼板の製造方法。
2. When forming the lattice strain region by irradiating the surface of the grain-oriented electrical steel sheet with an electron beam in a direction of 60 ° to 120 ° with respect to the rolling direction,
2. The grain-oriented electrical steel sheet according to 1 above, wherein the electron beam irradiation is performed under the condition that the maximum scanning speed of the electron beam is 50 m / s to 300 m / s and the average scanning speed is 20 m / s or more. Method.

3.格子歪み領域を形成する前記電子ビーム照射を、鋼板表面上の圧延方向に3〜10mmの間隔を隔てて周期的に行うことを特徴とする前記2に記載の方向性電磁鋼板の製造方法。 3. 3. The method for producing a grain-oriented electrical steel sheet according to 2 above, wherein the electron beam irradiation for forming the lattice strain region is periodically performed at intervals of 3 to 10 mm in the rolling direction on the steel sheet surface.

本発明に従う条件で電子ビームを照射することによって、照射後も透磁率が高い低鉄損材を製造することが可能になり、変圧器の鉄心などに使用した場合に、変圧器のエネルギ使用効率を向上させることができ、産業上有用である。
また、本発明に示す低鉄損・高透磁率材を製造するための電子ビーム照射は、高速走査が可能であるため、ビーム照射材の生産性を低下させることがなく、この点でも産業上有用である。
By irradiating the electron beam under the conditions according to the present invention, it becomes possible to produce a low iron loss material having a high magnetic permeability even after irradiation. When used for a transformer core or the like, the energy use efficiency of the transformer This is industrially useful.
In addition, the electron beam irradiation for producing the low iron loss / high permeability material shown in the present invention can be scanned at high speed, so that the productivity of the beam irradiation material is not lowered. Useful.

ビームの照射時間と走査方向位置との関係を示した図である。It is the figure which showed the relationship between the irradiation time of a beam, and a scanning direction position. 歪み領域の分布が鉄損および透磁率に及ぼす影響を示した図である。It is the figure which showed the influence which distribution of a distortion area | region has on an iron loss and a magnetic permeability. 照射パターンの一例を示した図である。It is the figure which showed an example of the irradiation pattern.

以下、本発明を具体的に説明する。
[被照射材]
本発明は、方向性電磁鋼板に適用され、鋼板には、地鉄の上に絶縁被膜などがコーティングされていても良いし、無くても問題はない。そして、本発明に従う照射条件にてビームを照射することによって、以下に示す歪み分布を有する方向性電磁鋼板となる。
ビーム照射によって、鋼板表面に形成される格子歪み(以下、単に歪みという)は、鋼板表面の圧延方向に対して60°から120°の方向に線状に生成され、この方向に沿って、歪みの大きさが0.1〜0.3%である領域と0.3%以上の領域が、一定間隔dで交互にかつ周期的に分布している。ここで、dは、ドットピッチの半分に相当し、0.1mm以上となっている。
Hereinafter, the present invention will be specifically described.
[Material to be irradiated]
The present invention is applied to a grain-oriented electrical steel sheet, and the steel sheet may be coated with an insulating coating or the like on the ground iron, and there is no problem even if it is absent. And it becomes a grain-oriented electrical steel sheet which has the distortion distribution shown below by irradiating a beam on the irradiation conditions according to this invention.
Lattice strain (hereinafter referred to simply as strain) formed on the surface of the steel sheet by beam irradiation is generated linearly in the direction of 60 ° to 120 ° with respect to the rolling direction of the steel plate surface. The area of 0.1 to 0.3% and the area of 0.3% or more are alternately and periodically distributed at a constant interval d. Here, d corresponds to half the dot pitch and is 0.1 mm or more.

図2に、鋼板に付与する歪みの大きさが0.3%超の歪み領域をJ、0.1〜0.3%の歪み領域をK、0.1%未満の歪み領域をLとした場合に、
(a) JとKが交互に周期的に存在する場合、
(b) JとLが交互に周期的に存在する場合、および
(c) KとLが交互に周期的に存在する場合
の、鉄損と透磁率バランスについて調べた結果を示す。
ここに示される素材は、(a)についてはB8が1.925〜1.930T、Wh17/50が0.272〜0.299W/kgの範囲で、(b)についてはB8が1.925〜1.929T、Wh17/50が0.273〜0.299W/kgの範囲で、(c)についてはB8が1.925〜1.929T、Wh17/50が0.272〜0.299W/kgの範囲で、それぞればらついた特性を有するものであり、いずれの試料も、電子ビーム照射前の透磁率μ17/50は30000〜34500emu、全鉄損W17/50は0.845〜0.865W/kgであった。また、dは、いずれの試料も0.2mmとした。
In FIG. 2, when the strain region where the magnitude of strain applied to the steel sheet exceeds 0.3% is J, the strain region of 0.1 to 0.3% is K, and the strain region of less than 0.1% is L,
(a) When J and K are alternately present periodically,
(b) when J and L are alternately present periodically, and
(c) The result of investigating the iron loss and the permeability balance when K and L are alternately present periodically is shown.
Material shown here, B 8 for (a) is 1.925~1.930T, ranging Wh 17/50 is 0.272~0.299W / kg, the B 8 for (b) 1.925~1.929T, Wh 17 / 50 is in the range of 0.273 to 0.299 W / kg, and (c) has the characteristics that B 8 is in the range of 1.925 to 1.929 T and Wh 17/50 is in the range of 0.272 to 0.299 W / kg, respectively. In each sample, the permeability μ 17/50 before the electron beam irradiation was 30000 to 34500 emu, and the total iron loss W 17/50 was 0.845 to 0.865 W / kg. In addition, d was 0.2 mm for all samples.

図2より、電子ビームをドット状に照射して、周期的な歪み分布を形成させる場合には、(a)0.1〜0.3%の歪み領域と0.3%超の歪み領域を交互に周期的に分布させることによって 、鉄損を十分に低減させたときに透磁率も優れた鋼板になることが分かる。一方、(b)0.1%未満の歪み領域と0.3%超の歪み領域を交互に周期的に分布させた場合には、鉄損は同等の値になるにしても、透磁率が過度に劣化してしまうことが分かる。また、(c)0.1〜0.3%の歪み領域と0.1%未満の歪み領域を交互に周期的に分布させた場合には、高い透磁率は得られるものの、鉄損は十分には低減しないことが分かる。   As shown in FIG. 2, when a periodic strain distribution is formed by irradiating an electron beam in the form of dots, (a) a strain region of 0.1 to 0.3% and a strain region of more than 0.3% are alternately distributed periodically. By doing so, it can be seen that when the iron loss is sufficiently reduced, the steel sheet has excellent magnetic permeability. On the other hand, when (b) the strain region of less than 0.1% and the strain region of more than 0.3% are alternately distributed periodically, the magnetic permeability is excessively deteriorated even if the iron loss becomes an equivalent value. You can see that Further, (c) when a strain region of 0.1 to 0.3% and a strain region of less than 0.1% are alternately distributed periodically, high magnetic permeability can be obtained, but iron loss may not be sufficiently reduced. I understand.

[ビーム照射手法]
本発明は、ビーム照射によって、局所的な高転位密度領域の形成を抑制しつつ、磁区を細分化させることによって、低鉄損化を図るものであるが、その方法は、鋼板表面に連続的にビームを照射できるものであればいずれでも構わない。好適には、電子ビーム照射、プラズマ炎照射、レーザ照射であるが、その他の手法であっても、鋼板を局所的に高温化させることができるものであれば適用することができる。
以下、代表例として、電子ビームを使用する場合について説明する。
[Beam irradiation method]
The present invention is intended to reduce the iron loss by subdividing the magnetic domain while suppressing the formation of a local high dislocation density region by beam irradiation. Any one can be used as long as it can irradiate the beam. Preferably, electron beam irradiation, plasma flame irradiation, and laser irradiation are used, but other methods can be applied as long as the steel sheet can be locally heated.
Hereinafter, the case where an electron beam is used will be described as a representative example.

電子ビームは、鋼板を横切るように、鋼板の幅端部からもう一方の幅端部まで、その方向が鋼板の圧延方向から60〜120°の角度になるように、鋼板表面を走査させる。走査は、一方向に直線状とする。また、照射を要する材料の幅が広すぎる場合には、複数の照射源を用いて、照射しても良い。ビームは、鋼板表面の走査線に沿って、ビームの照射時間が、長時間(s1)と短時間(s2)を繰り返すようにして行う。この繰り返しの距離周期をドットピッチpとする。また、s2>0である。 The electron beam scans the surface of the steel sheet so as to cross the steel sheet from the width end of the steel sheet to the other width end so that the direction is an angle of 60 to 120 ° from the rolling direction of the steel sheet. Scanning is linear in one direction. In addition, when the width of the material requiring irradiation is too wide, irradiation may be performed using a plurality of irradiation sources. The beam is irradiated so that the irradiation time of the beam repeats a long time (s 1 ) and a short time (s 2 ) along the scanning line on the surface of the steel sheet. This repeated distance period is defined as a dot pitch p. Further, s 2 > 0.

照射パターンの一例を図3に示す。
図中、Aで示す円はビームスポットを示しており、ビームはA-1の位置にて一定時間(t)待機し、次のA-2まで速度Vmで移動し、A-2にてまた一定時間待機するような照射を繰返す。ここで、vmは照射中の最高速度になるので、以下、最高走査速度とする。
単位長さ当たりの平均走査速度vは、v〜1/(1/vm+t/p)で表すことができる。
ここで、平均走査速度vは20m/s以上とする。vが20m/sより小さいと、ビーム照射材の生産性が低下する。一方、vがあまりに大きいと、鋼板を局所的に高温化するために、過度の出力が必要になり、装置の寿命を著しく低下させるため、最大でも200m/s程度とすることが望ましい。
また、最高走査速度vmは、50m/s〜300m/sとする。50m/sより小さくすると、vが小さくなって、ビーム照射材の生産性が悪くなる。一方で、300m/sより大きくすると、図3中のB部に照射される熱量が過度に小さくなり、かえってA部において十分な鉄損低減に必要なビームのパワー密度が高くなって透磁率の劣化代が大きくなってしまうからである。
An example of the irradiation pattern is shown in FIG.
In the figure, a circle indicated by A indicates a beam spot. The beam waits for a certain time (t) at the position A-1, moves to the next A-2 at a speed Vm, and again at A-2. Repeat the irradiation to wait for a certain time. Here, since vm is the maximum speed during irradiation, hereinafter, the maximum scanning speed is assumed.
The average scanning speed v per unit length can be expressed by v˜1 / (1 / vm + t / p).
Here, the average scanning speed v is set to 20 m / s or more. When v is less than 20 m / s, the productivity of the beam irradiation material decreases. On the other hand, if v is too large, an excessive output is required to locally increase the temperature of the steel sheet, and the life of the apparatus is remarkably reduced. Therefore, it is desirable that the maximum be about 200 m / s.
The maximum scanning speed vm is 50 m / s to 300 m / s. When it is less than 50 m / s, v becomes small, and the productivity of the beam irradiation material is deteriorated. On the other hand, if it is greater than 300 m / s, the amount of heat applied to part B in FIG. 3 becomes excessively small. On the other hand, the power density of the beam necessary for sufficient iron loss reduction in part A increases, and the magnetic permeability is reduced. This is because the deterioration allowance increases.

A部におけるビームの待機時間tは、1〜20μsとすることが好ましい。tが1μsより小さいと、鋼板を局所的に高温化するために必要なビーム出力が過度に高くなり、装置の寿命を著しく下げてしまう。一方、20μsより大きいと、生産性が低下してしまう。
ドットピッチpは、0.2〜0.8mmとすることが好ましい。生産性向上の点から0.2mm以上であることが好ましく、一方0.8mmより大きいと、ビーム照射後の鉄損が十分には低減しない。
The beam waiting time t in the A part is preferably 1 to 20 μs. If t is smaller than 1 μs, the beam output necessary for locally increasing the temperature of the steel sheet becomes excessively high, and the lifetime of the apparatus is significantly reduced. On the other hand, if it is larger than 20 μs, the productivity is lowered.
The dot pitch p is preferably 0.2 to 0.8 mm. From the viewpoint of improving productivity, it is preferably 0.2 mm or more. On the other hand, if it is larger than 0.8 mm, the iron loss after beam irradiation is not sufficiently reduced.

また、鋼板の端部から他端部までの走査は、圧延方向に3〜10mmの間隔を隔てて繰り返し行うことが望ましい。この間隔が過度に短いと、生産能力が過度に減少してしまい、一方過度に長いと、鉄損を十分に低減することができないため、3〜10mmとすることが好ましい。
なお、その他、照射エネルギ、ビーム径などは、WD(ワーキングディスタンス)、真空度などの条件によって調整範囲、適正値が異なるため、必要に応じて適宜調整する必要がある。
Further, it is desirable that the scanning from the end portion to the other end portion of the steel plate is repeatedly performed at intervals of 3 to 10 mm in the rolling direction. If this interval is excessively short, the production capacity is excessively decreased. On the other hand, if it is excessively long, the iron loss cannot be sufficiently reduced.
In addition, the adjustment range and appropriate values of irradiation energy, beam diameter, and the like vary depending on conditions such as WD (working distance) and degree of vacuum, and therefore need to be adjusted as necessary.

[歪みの定量化]
鋼板表面の歪み分布は、CrossCourt Ver.3.0(BLG Productions Bristol製)を用いたEBSD−wilkinson法によって測定した。1回の測定における測定視野は、予めマグネットビュアー観察などによって還流磁区が形成され、ビームが照射されたと推定される部分が中心になるように、600μm以上×600μm以上の範囲とした。また、測定ピッチは5μmとし、還流磁区形成部から200μm離れた位置を無歪み参照点に選んだ。
また、被膜付き試料のEBSD測定をするにあたっては、事前に被膜を除去した。被膜除去処理後、被膜が残存しないことは、EPMA測定などにより簡易に行うことが可能である。被膜の除去は、従来知見に基づき行えば良いが、被膜除去の際、地鉄を過度に削ることが無いように注意する必要がある。本測定は、いずれの試料においても、地鉄表面から10μmの部分で歪み測定を実施した。また歪みとして、線上に観察された還流磁区領域の長手方向(ビームの走査方向)の歪みを測定した。
[Quantification of distortion]
The strain distribution on the surface of the steel sheet was measured by the EBSD-wilkinson method using CrossCourt Ver.3.0 (BLG Productions Bristol). The field of view in one measurement was set to a range of 600 μm or more and 600 μm or more so that a reflux magnetic domain was previously formed by magnet viewer observation or the like, and a portion estimated to be irradiated with the beam was centered. The measurement pitch was 5 μm, and a position 200 μm away from the reflux magnetic domain forming part was selected as the no-distortion reference point.
In addition, the coating was removed in advance for EBSD measurement of the coated sample. It can be easily performed by EPMA measurement or the like that no film remains after the film removal treatment. The removal of the coating may be performed based on the conventional knowledge, but care must be taken not to scrape the ground iron excessively when removing the coating. In this measurement, strain measurement was carried out at 10 μm from the surface of the ground iron in any sample. Further, as the strain, the strain in the longitudinal direction (beam scanning direction) of the reflux magnetic domain region observed on the line was measured.

[鉄損および透磁率の評価]
長さ(圧延方向):280mm、幅(圧延直角方向):100mmの試料を用い、JIS C2556に準拠して、単板磁気試験装置による磁気測定を行った。また、素材鉄損測定と同じ試料について直流磁化(0.01HZ以下)で、磁束最大値:1.7T、最小値:−1.7Tのヒステリシス(B−H)ループの測定を行い、そのB−Hループ1周期から求めた鉄損をヒステリシス損Wh17/50 とした。
[Evaluation of iron loss and permeability]
Using a sample having a length (rolling direction) of 280 mm and a width (perpendicular to the rolling direction) of 100 mm, magnetic measurement was performed using a single plate magnetic test apparatus in accordance with JIS C2556. In addition, the same sample as the material iron loss measurement is measured with a direct current magnetization (0.01HZ or less), a magnetic flux maximum value: 1.7T, and a minimum value: -1.7T hysteresis (BH) loop. The iron loss obtained from one cycle was defined as hysteresis loss Wh 17/50 .

[素材の成分組成]
本発明が適用される方向性電磁鋼板の素材の成分組成としては、例えば以下の元素が挙げられる。
Si:2.0〜8.0質量%
Siは、鋼の電気抵抗を高め、鉄損を改善するのに有効な元素であるが、含有量が2.0質量%に満たないと十分な鉄損低減効果が達成できず、一方8.0質量%を超えると加工性が著しく低下し、また磁束密度も低下するため、Si量は2.0〜8.0質量%の範囲とすることが好ましい。
[Component composition of the material]
Examples of the component composition of the material of the grain-oriented electrical steel sheet to which the present invention is applied include the following elements.
Si: 2.0 to 8.0 mass%
Si is an element effective in increasing the electrical resistance of steel and improving iron loss. However, if the content is less than 2.0% by mass, a sufficient iron loss reduction effect cannot be achieved, while 8.0% by mass is achieved. When it exceeds, workability will fall remarkably and magnetic flux density will also fall, Therefore It is preferable to make Si amount into the range of 2.0-8.0 mass%.

C:50質量ppm以下
Cは、熱延板組織の改善のために添加を行うが、最終製品では磁気時効の起こらない50質量ppm以下までCを低減することが好ましい。
C: 50 mass ppm or less C is added to improve the hot-rolled sheet structure, but it is preferable to reduce C to 50 mass ppm or less where magnetic aging does not occur in the final product.

Mn:0.005〜1.0質量%
Mnは、熱間加工性を良好にする上で必要な元素であるが、含有量が0.005質量%未満ではその添加効果に乏しく、一方1.0質量%を超えると製品板の磁束密度が低下するため、Mn量は0.005〜1.0質量%の範囲とすることが好ましい。
Mn: 0.005 to 1.0 mass%
Mn is an element necessary for improving the hot workability. However, if the content is less than 0.005% by mass, the effect of addition is poor, whereas if it exceeds 1.0% by mass, the magnetic flux density of the product plate decreases. The amount of Mn is preferably in the range of 0.005 to 1.0 mass%.

上記の基本成分以外に、磁気特性改善成分として、次に述べる元素を適宜含有させることができる。
Ni:0.03〜1.50質量%、Sn:0.01〜1.50質量%、Sb:0.005〜1.50質量%、Cu:0.03〜3.0質量%、P:0.03〜0.50質量%、Mo:0.005〜0.10質量%およびCr:0.03〜1.50質量%のうちから選んだ少なくとも1種
Niは、熱延板組織を改善して磁気特性を向上させるために有用な元素である。しかしながら、含有量が0.03質量%未満では磁気特性の向上効果が小さく、一方1.50質量%を超えると二次再結晶が不安定になり磁気特性が劣化する。そのため、Ni量は0.03〜1.50質量%の範囲とするのが好ましい。
また、Sn,Sb,Cu,P,MoおよびCrはそれぞれ、磁気特性の向上に有用な元素であるが、いずれも上記した各成分の下限に満たないと磁気特性の向上効果が小さく、一方上記した各成分の上限量を超えると二次再結晶粒の発達が阻害されるため、それぞれ上記の範囲で含有させることが好ましい。
なお、上記成分以外の残部は、製造工程において混入する不可避的不純物およびFeである。
In addition to the above basic components, the following elements can be appropriately contained as magnetic property improving components.
Ni: 0.03-1.50 mass%, Sn: 0.01-1.50 mass%, Sb: 0.005-1.50 mass%, Cu: 0.03-3.0 mass%, P: 0.03-0.50 mass%, Mo: 0.005-0.10 mass% and Cr: At least one selected from 0.03 to 1.50 mass%
Ni is an element useful for improving the magnetic properties by improving the hot-rolled sheet structure. However, if the content is less than 0.03% by mass, the effect of improving the magnetic properties is small. On the other hand, if it exceeds 1.50% by mass, the secondary recrystallization becomes unstable and the magnetic properties deteriorate. Therefore, the amount of Ni is preferably in the range of 0.03 to 1.50 mass%.
Sn, Sb, Cu, P, Mo, and Cr are elements that are useful for improving the magnetic properties. However, if the lower limit of each component is not satisfied, the effect of improving the magnetic properties is small. If the upper limit amount of each component is exceeded, the development of secondary recrystallized grains is hindered.
The balance other than the above components is inevitable impurities and Fe mixed in the manufacturing process.

圧延方向のB8が1.925〜1.935T、全鉄損W17/50が0.845〜0.865W/kg、透磁率μ17/50が30000〜34000emuである被膜がついた板厚:0.23mmの方向性電磁鋼板に、表1に示す種々の条件で電子ビームを照射した。ここで、歪み分布a〜cは、鋼板に付与する歪みの大きさが0.3%超の歪み領域をJ、0.1〜0.3%の歪み領域をK、0.1%未満の歪み領域をLとした場合に、
a:JとKが交互に周期的に存在する場合、
b:JとLが交互に周期的に存在する場合、および
c:KとLが交互に周期的に存在する場合
を表している。
その後、磁気測定を行ったのち、被膜を除去し、地鉄表面から10μmの位置でEBSD法にて表面の歪み分布を測定した。磁気測定値は10枚の測定試料の平均値とした。
表1に、実験結果を示す。
Rolling direction B 8 is 1.925~1.935T, Zentetsuson W 17/50 is 0.845~0.865W / kg, thickness permeability mu 17/50 is attached film is 30000~34000emu: 0.23mm directional The electromagnetic steel sheet was irradiated with an electron beam under various conditions shown in Table 1. Here, the strain distributions a to c are obtained when J is a strain region where the strain applied to the steel sheet exceeds 0.3%, K is a strain region of 0.1 to 0.3%, and L is a strain region less than 0.1%. ,
a: When J and K are alternately present periodically,
b: represents a case where J and L are alternately present periodically, and c: a case where K and L are alternately present periodically.
Then, after the magnetic measurement, the coating was removed, and the strain distribution on the surface was measured by the EBSD method at a position 10 μm from the surface of the ground iron. The magnetic measurement value was an average value of 10 measurement samples.
Table 1 shows the experimental results.

Figure 2013159847
Figure 2013159847

表1に示したとおり、本発明に従い電子ビームを照射することによって、格子歪みが0.1〜0.3%である領域と0.3%超の領域が、0.1mm以上の間隔で交互にかつ周期的に分布した方向性電磁鋼板を作製することができる。
本方向性電磁鋼板は、鉄損W17/50が0.75W/kg以下であり、かつ、透磁率が20000emu以上の極めて優れた磁気特性を有することが分かる。比較して、本発明条件から逸脱し、歪み分布がbの状態であるNo.1の条件では、低鉄損が得られるものの、透磁率が20000emu未満となる。また、歪み分布がcの状態であるNo.8の条件では、高い透磁率が得られるものの、鉄損が大きくなる。なお、No.10に示すよう に、圧延方向における線間隔(RD線間隔)が13mmと大きい場合には、0.75W/kgより大きい鉄損となってしまうが、RD線間隔は、必要となる特性と生産性との兼ね合い等で適宜定めればよい。
As shown in Table 1, by irradiating the electron beam according to the present invention, the region where the lattice strain is 0.1 to 0.3% and the region where it exceeds 0.3% are alternately and periodically distributed at intervals of 0.1 mm or more. A grain-oriented electrical steel sheet can be produced.
It can be seen that this grain- oriented electrical steel sheet has extremely excellent magnetic properties with an iron loss W 17/50 of 0.75 W / kg or less and a magnetic permeability of 20000 emu or more. In comparison, under the condition of No. 1 that deviates from the conditions of the present invention and the strain distribution is in the state of b, the magnetic permeability is less than 20000 emu although the low iron loss is obtained. Further, under the condition of No. 8 in which the strain distribution is c, high magnetic permeability is obtained, but the iron loss increases. As shown in No. 10, when the line interval (RD line interval) in the rolling direction is as large as 13 mm, the iron loss is larger than 0.75 W / kg, but the RD line interval is necessary. What is necessary is just to determine suitably by balance etc. of a characteristic and productivity.

Claims (3)

鋼板の表面に、圧延方向に対して60°から120°の方向に線状の格子歪みを形成した方向性電磁鋼板であって、
上記線状格子歪みの方向に沿って、格子歪みが0.1〜0.3%である領域と0.3%超の領域が、0.1mm以上の間隔で交互にかつ周期的に分布していることを特徴とする方向性電磁鋼板。
A directional electrical steel sheet in which a linear lattice strain is formed in the direction of 60 ° to 120 ° with respect to the rolling direction on the surface of the steel plate,
Along with the linear lattice strain direction, a region where the lattice strain is 0.1 to 0.3% and a region where the lattice strain is more than 0.3% are alternately and periodically distributed at intervals of 0.1 mm or more. Oriented electrical steel sheet.
方向性電磁鋼板の表面に、圧延方向に対して60°から120°の方向に電子ビームを照射して格子歪み領域を形成するに際し、
上記電子ビームの最大走査速度が50m/s〜300m/sで、かつ平均走査速度が20m/s以上の条件で電子ビーム照射を行うことを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。
When forming the lattice strain region by irradiating the surface of the grain-oriented electrical steel sheet with an electron beam in a direction of 60 ° to 120 ° with respect to the rolling direction,
2. The grain-oriented electrical steel sheet according to claim 1, wherein the electron beam irradiation is performed under a condition that a maximum scanning speed of the electron beam is 50 m / s to 300 m / s and an average scanning speed is 20 m / s or more. Production method.
格子歪み領域を形成する前記電子ビーム照射を、鋼板表面上の圧延方向に3〜10mmの間隔を隔てて周期的に行うことを特徴とする請求項2に記載の方向性電磁鋼板の製造方法。   The method for producing a grain-oriented electrical steel sheet according to claim 2, wherein the electron beam irradiation for forming the lattice strain region is periodically performed at intervals of 3 to 10 mm in the rolling direction on the steel sheet surface.
JP2012025245A 2012-02-08 2012-02-08 Oriented electrical steel sheet and manufacturing method thereof Active JP5884168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012025245A JP5884168B2 (en) 2012-02-08 2012-02-08 Oriented electrical steel sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012025245A JP5884168B2 (en) 2012-02-08 2012-02-08 Oriented electrical steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013159847A true JP2013159847A (en) 2013-08-19
JP5884168B2 JP5884168B2 (en) 2016-03-15

Family

ID=49172360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012025245A Active JP5884168B2 (en) 2012-02-08 2012-02-08 Oriented electrical steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5884168B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543945A (en) * 1991-08-14 1993-02-23 Kawasaki Steel Corp Manufacture of low iron loss grain-oriented silicon steel sheet
JPH0619112B2 (en) * 1986-09-26 1994-03-16 新日本製鐵株式会社 Method for improving iron loss value of electrical steel sheet
JPH0765108B2 (en) * 1990-03-09 1995-07-12 川崎製鉄株式会社 Iron loss reduction method of unidirectional silicon steel sheet by electron beam irradiation
JPH0765109B2 (en) * 1990-03-09 1995-07-12 川崎製鉄株式会社 Iron loss reduction method of unidirectional silicon steel sheet by electron beam irradiation
JP2003500541A (en) * 1999-05-26 2003-01-07 アクシアイ スペシャリ テルニ エス.ピー.エイ. Method of improving magnetic properties of grain-oriented electromagnetic silicon steel sheet by laser treatment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0619112B2 (en) * 1986-09-26 1994-03-16 新日本製鐵株式会社 Method for improving iron loss value of electrical steel sheet
JPH0765108B2 (en) * 1990-03-09 1995-07-12 川崎製鉄株式会社 Iron loss reduction method of unidirectional silicon steel sheet by electron beam irradiation
JPH0765109B2 (en) * 1990-03-09 1995-07-12 川崎製鉄株式会社 Iron loss reduction method of unidirectional silicon steel sheet by electron beam irradiation
JPH0543945A (en) * 1991-08-14 1993-02-23 Kawasaki Steel Corp Manufacture of low iron loss grain-oriented silicon steel sheet
JP2003500541A (en) * 1999-05-26 2003-01-07 アクシアイ スペシャリ テルニ エス.ピー.エイ. Method of improving magnetic properties of grain-oriented electromagnetic silicon steel sheet by laser treatment

Also Published As

Publication number Publication date
JP5884168B2 (en) 2016-03-15

Similar Documents

Publication Publication Date Title
JP5158285B2 (en) Oriented electrical steel sheet
JP5760504B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5884165B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5593942B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5954421B2 (en) Oriented electrical steel sheet for iron core and method for producing the same
JP5594439B1 (en) Oriented electrical steel sheet and manufacturing method thereof
JP4669565B2 (en) Method for producing grain-oriented electrical steel sheet in which magnetic domain is controlled by laser light irradiation
KR20130025965A (en) Oriented electromagnetic steel plate
JP6060988B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP6010907B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JPWO2013099272A1 (en) Oriented electrical steel sheet and manufacturing method thereof
EP2813593A1 (en) Grain-oriented electrical steel plate
JP2008127600A (en) Non-oriented electromagnetic steel sheet for divided core
JP4344264B2 (en) Low iron loss unidirectional electrical steel sheet
JP6090553B2 (en) Iron core for three-phase transformer
JP5953690B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5884168B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP4972767B2 (en) Method for producing high silicon steel sheet
JP2020105589A (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JP2013159850A (en) Grain-oriented magnetic steel sheet and method for producing the same
JP5691265B2 (en) Method for producing grain-oriented electrical steel sheet
JP7459955B2 (en) grain-oriented electrical steel sheet
JP5870580B2 (en) Method for producing grain-oriented electrical steel sheet
JP5533348B2 (en) Method for producing grain-oriented electrical steel sheet
JPWO2014068963A1 (en) Manufacturing method of low iron loss grain oriented electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160118

R150 Certificate of patent or registration of utility model

Ref document number: 5884168

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250