JP2008127600A - Non-oriented electromagnetic steel sheet for divided core - Google Patents

Non-oriented electromagnetic steel sheet for divided core Download PDF

Info

Publication number
JP2008127600A
JP2008127600A JP2006311570A JP2006311570A JP2008127600A JP 2008127600 A JP2008127600 A JP 2008127600A JP 2006311570 A JP2006311570 A JP 2006311570A JP 2006311570 A JP2006311570 A JP 2006311570A JP 2008127600 A JP2008127600 A JP 2008127600A
Authority
JP
Japan
Prior art keywords
steel sheet
electrical steel
oriented electrical
flux density
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006311570A
Other languages
Japanese (ja)
Other versions
JP4855220B2 (en
Inventor
Takeaki Wakizaka
岳顕 脇坂
Satoshi Arai
聡 新井
Takahide Shimazu
高英 島津
Norito Abe
憲人 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006311570A priority Critical patent/JP4855220B2/en
Publication of JP2008127600A publication Critical patent/JP2008127600A/en
Application granted granted Critical
Publication of JP4855220B2 publication Critical patent/JP4855220B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-oriented electromagnetic steel sheet having optimal magnetic properties as a divided core of a motor and a transformer. <P>SOLUTION: A hot-rolled plate of the non-oriented electromagnetic steel sheet has a composition comprising, by mass%, 0.005% or less C, 2 to 4% Si, 1% or less Mn, more than 1 to 2% Al, 0.003 to 0.2% Sn and the balance Fe with unavoidable impurities. The non-oriented electromagnetic steel sheet with a thickness of 0.15 to 0.3 mm is manufactured by the steps of: annealing the hot-rolled plate; cold-rolling the hot-rolled plate once; and subsequently recrystallization-annealing the sheet. Then, the non-oriented electromagnetic steel sheet for the divided core has (i) a recrystallized structure in which a mean crystal grain size is 40 to 200 μm and (ii) the magnetic properties in which magnetic flux density B<SB>50</SB>(C) in a direction of 90 degrees (C direction) with respect to a rolling direction (L direction) and magnetic flux density B<SB>50</SB>(X) in a direction of 45 degrees (X direction) with respect to the rolling direction (L direction) satisfy the following expression (1): B<SB>50</SB>(C)/B<SB>50</SB>(X)≥-0.5333×t<SP>2</SP>+0.3907×t+0.945, wherein (t) represents a sheet thickness (mm). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、モーターやトランスのコア(鉄芯)材料として用いる無方向性電磁鋼板に関する。   The present invention relates to a non-oriented electrical steel sheet used as a core (iron core) material for a motor or a transformer.

近年、環境保全や、省エネルギーの観点から、電気自動車への関心が高まり、駆動用モーターには、高速回転と小型化とともに、周波数400〜数kHzで駆動できることが求められている。   In recent years, interest in electric vehicles has increased from the viewpoints of environmental protection and energy saving, and drive motors are required to be capable of being driven at a frequency of 400 to several kHz along with high-speed rotation and miniaturization.

このため、モーターのコア材料である無方向性電磁鋼板においては、渦電流損失を低減するため、板厚を薄くするとともに、固有抵抗を高め、さらに、鋼板強度(ローター剛性を上げる)を改善するため、Si量及びAl量を増加する必要がある。さらに、無方向性電磁鋼板には、モーターの初動トルクを改善するため、高い磁束密度も要求される。   For this reason, in the non-oriented electrical steel sheet that is the core material of the motor, in order to reduce eddy current loss, the sheet thickness is reduced, the specific resistance is increased, and further the steel sheet strength (increasing the rotor rigidity) is improved. Therefore, it is necessary to increase the amount of Si and the amount of Al. Furthermore, non-oriented electrical steel sheets are also required to have a high magnetic flux density in order to improve the initial torque of the motor.

モーターコアは、無方向性電磁鋼板を打ち抜いて製造されるが、最近は、打抜き歩留りを改善する観点や、巻き線を効率化して銅損を低減する観点から、モーターコアを、ティース部分で個々に分割した分割コアで構成する傾向にある。そして、分割コアのティース部分には、長さ方向及び幅方向に磁界が印加されるので、磁束密度が高いことが要求される。   Motor cores are manufactured by stamping non-oriented electrical steel sheets. Recently, motor cores are individually manufactured in the teeth part from the viewpoint of improving punching yield and reducing winding loss by improving winding efficiency. Tend to consist of split cores. And since a magnetic field is applied to the teeth part of a division | segmentation core in a length direction and a width direction, it is requested | required that magnetic flux density is high.

通常、無方向性電磁鋼板から、一つのモーターコアを打ち抜く場合、無方向性電磁鋼板の磁気特性には、鋼板の圧延方向(コイル長手方向、以下「L方向」ということがある。)、L方向と直角の方向(コイル幅方向、以下「C方向」ということがある。)、L方向と45°の方向(以下「X方向」ということがある。)において、差(異方性)が小さいことが望まれる(特許文献1〜5、参照)。   Usually, when one motor core is punched from a non-oriented electrical steel sheet, the magnetic properties of the non-oriented electrical steel sheet include the rolling direction of the steel sheet (coil longitudinal direction, hereinafter referred to as “L direction”), L. There is a difference (anisotropy) in the direction perpendicular to the direction (coil width direction, hereinafter referred to as “C direction”), and in the L direction and 45 ° direction (hereinafter also referred to as “X direction”). It is desired to be small (see Patent Documents 1 to 5).

しかし、分割コアを打ち抜く場合、磁気特性の優れた方向に沿って、ティース部分を打ち抜けばよいから、無方向性電磁鋼板を分割コア専用として用いる場合、L方向、C方向、及び、X方向における磁気特性の異方性は、必ずしも、小さくなくてもよい。つまり、磁気特性の異方性が大きいほうが、即ち、X方向の磁気特性を犠牲にして、L方向とC方向の磁気特性を改善したほうが、分割コアの設計において、分割コアのティース部分で所要の磁気特性を確保することができる点で、好ましい。   However, when punching the split core, it is only necessary to punch through the teeth portion along the direction of excellent magnetic properties. Therefore, when using a non-oriented electrical steel sheet exclusively for the split core, the L direction, the C direction, and the X direction The anisotropy of the magnetic characteristics in is not necessarily small. In other words, the larger the magnetic property anisotropy, that is, the improvement of the magnetic properties in the L direction and the C direction at the expense of the magnetic properties in the X direction is required in the tooth portion of the divided core in the design of the divided core. It is preferable in that the magnetic characteristics can be secured.

特開2001−164343号公報JP 2001-164343 A 特開2006−45613号公報JP 2006-45613 A 特開2006−45641号公報JP 2006-45641 A 特開2006−144036号公報JP 2006-144036 A 特開2006−199999号公報JP 2006-199999 A

本発明者は、無方向性電磁鋼板において、磁気特性を高めるため、鋼板の板厚を薄くし、かつ、Si量及び/又はAl量を増加すると、磁束密度の異方性が小さくなるという現象に気がついた。即ち、特定の方向、例えば、L方向やC方向の磁束密度が低下し、所望の磁束密度が得られず、結局、このような磁気特性を有する無方向性電磁鋼板は、分割コア用に適さないという問題に遭遇した。   The present inventor has a phenomenon that, in a non-oriented electrical steel sheet, in order to enhance magnetic properties, when the thickness of the steel sheet is reduced and the Si content and / or Al content is increased, the magnetic flux density anisotropy is reduced. I noticed. That is, the magnetic flux density in a specific direction, for example, the L direction or the C direction is reduced, and a desired magnetic flux density cannot be obtained. As a result, a non-oriented electrical steel sheet having such magnetic characteristics is suitable for a split core. Encountered the problem of not.

そこで、本発明は、モーターやトランスの分割コア用として最適な磁気特性を有する無方向性電磁鋼板を提供することを目的とする。   Then, an object of this invention is to provide the non-oriented electrical steel sheet which has the optimal magnetic characteristic for the division | segmentation cores of a motor or a transformer.

本発明者は、質量%で、Si:2〜4%、及び、Al:1超〜2%を含有する板厚0.15〜0.3mmの無方向性電磁鋼板において、Snを0.003〜0.2%添加して、ゴス方位の結晶粒を増加し、L方向及びC方向の磁気特性(磁束密度)を改善することを基本思想とし、分割コア用として最適な磁気特性を確保する手法について、鋭意研究した。その結果、次の知見を得るに至った。   The inventor of the present invention is a non-oriented electrical steel sheet having a thickness of 0.15 to 0.3 mm containing Si: 2 to 4% and Al: more than 1 to 2% by mass%, and Sn is 0.003. Add 0.2% to increase the number of goth-oriented crystal grains and improve the magnetic properties (magnetic flux density) in the L and C directions, and ensure optimal magnetic properties for the split core. We have studied earnestly about the method. As a result, the following knowledge was obtained.

(x)L、C、及び、X方向の磁気特性の差(異方性)は、板厚(製品板厚)、冷間圧延での圧下率、再結晶焼鈍後の結晶粒径に密接に関連するが、最終的に、これらを制御すれば、異方性の大きい所要の磁束密度B50(磁化力5000A/mで得られる磁束密度[T])を確保することができる。 (X) The difference in magnetic properties (anisotropy) in the L, C, and X directions is closely related to the plate thickness (product plate thickness), the reduction ratio in cold rolling, and the crystal grain size after recrystallization annealing. Although related, finally, if these are controlled, a required magnetic flux density B 50 having a large anisotropy (magnetic flux density [T] obtained at a magnetizing force of 5000 A / m) can be secured.

(y)L方向とC方向の磁気特性を繋ぐ、X方向の磁束密度B50を低減すると、L方向及びC方向の磁束密度B50が改善される傾向にあるから、X方向の磁気特性は、分割コア用無方向性電磁鋼板の磁気特性を評価する上で重要な指標であり、C方向の磁気特性との関係で、所定の範囲に維持する必要がある。 (Y) connecting the magnetic properties of the L direction and the C direction and to reduce the magnetic flux density B 50 in the X direction, because there is a tendency that the magnetic flux density B 50 in the L direction and C direction are improved, the magnetic properties of the X-direction This is an important index for evaluating the magnetic properties of the non-oriented electrical steel sheet for the split core, and needs to be maintained within a predetermined range in relation to the magnetic properties in the C direction.

本発明は、上記知見に基づいてなされたもので、その要旨は以下のとおりである。   This invention was made | formed based on the said knowledge, and the summary is as follows.

(1) 質量%で、C:0.005%以下、Si:2〜4%、Mn:1%以下、Al:1超〜2%、Sn:0.003〜0.2%を含有し、残部がFe及び不可避的不純物からなる熱延板に焼鈍を施した後、冷間圧延を一回施し、次いで、再結晶焼鈍を施して製造した板厚:0.15〜0.3mmの無方向性電磁鋼板であって、
(i)平均結晶粒径が40〜200μmの再結晶組織を有し、かつ、
(ii)圧延方向(L方向)と90°の方向(C方向)の磁束密度B50(C)と、圧延方向(L方向)と45°の方向(X方向)の磁束密度B50(X)が、下記式(1)を満たす磁気特性を有する
ことを特徴とする分割コア用無方向性電磁鋼板。
50(C)/B50(X)≧−0.5333×t+0.3907×t+0.945 (1)
ここで、t:板厚(mm)
(1) By mass%, C: 0.005% or less, Si: 2-4%, Mn: 1% or less, Al: more than 1-2%, Sn: 0.003-0.2%, Thickness: 0.15 to 0.3 mm non-directional, which is manufactured by annealing a hot-rolled sheet consisting of Fe and unavoidable impurities, followed by cold rolling and then recrystallization annealing Electrical steel sheet,
(I) having a recrystallized structure having an average crystal grain size of 40 to 200 μm, and
(Ii) Magnetic flux density B 50 (C) in the rolling direction (L direction) and 90 ° direction (C direction), and magnetic flux density B 50 (X in the rolling direction (L direction) and 45 ° direction (X direction). ) Has a magnetic property satisfying the following formula (1).
B 50 (C) / B 50 (X) ≧ −0.5333 × t 2 + 0.3907 × t + 0.945 (1)
Where t: plate thickness (mm)

(2) 前記磁気特性において、圧延方向(L方向)の磁束密度B50(L)が、下記式(2)を満たすことを特徴とする前記(1)に記載の分割コア用無方向性電磁鋼板。
50(L)/Bs≧0.82 (2)
ここで、Bs:飽和磁束密度
(2) In the magnetic characteristics, the magnetic flux density B 50 (L) in the rolling direction (L direction) satisfies the following formula (2): steel sheet.
B 50 (L) /Bs≧0.82 (2)
Where Bs: saturation magnetic flux density

(3) 前記磁気特性において、鉄損W10/800が40W/kg以下であることを特徴とする前記(1)又は(2)に記載の分割コア用無方向性電磁鋼板。 (3) The non-oriented electrical steel sheet for split core according to (1) or (2), wherein the iron loss W 10/800 is 40 W / kg or less in the magnetic characteristics.

(4) 前記冷間圧延が、レバース圧延であることを特徴とする前記(1)〜(3)のいずれかに記載の分割コア用無方向性電磁鋼板。   (4) The non-oriented electrical steel sheet for split core according to any one of (1) to (3), wherein the cold rolling is lever rolling.

(5) 前記冷間圧延において、圧下率が75〜89%であることを特徴とする前記(1)〜(4)のいずれかに記載の分割コア用無方向性電磁鋼板。   (5) The non-oriented electrical steel sheet for split core according to any one of (1) to (4), wherein a rolling reduction is 75 to 89% in the cold rolling.

(6) 前記再結晶焼鈍において、昇温速度が100〜5000℃/秒であることを特徴とする前記(1)〜(5)のいずれかに記載の分割コア用無方向性電磁鋼板。   (6) The non-oriented electrical steel sheet for split core according to any one of (1) to (5), wherein a temperature increase rate is 100 to 5000 ° C./second in the recrystallization annealing.

(7) 前記熱延板の焼鈍温度が900℃超であることを特徴とする前記(1)〜(6)のいずれかに記載の分割コア用無方向性電磁鋼板。   (7) The non-oriented electrical steel sheet for split core according to any one of (1) to (6), wherein an annealing temperature of the hot-rolled sheet is higher than 900 ° C.

本発明によれば、モーターやトランスの分割コア用として最適な磁気特性を有する無方向性電磁鋼板を提供することができる。また、本発明によれば、分割コアの形状、及び/又は、分割コアのティース部分に求める磁気特性に応じて、分割コアを設計し、打ち抜くことができるので、無方向性電磁鋼板の利用度が増す。   ADVANTAGE OF THE INVENTION According to this invention, the non-oriented electrical steel sheet which has the optimal magnetic characteristic as an object for the split cores of a motor or a transformer can be provided. Further, according to the present invention, since the split core can be designed and punched according to the shape of the split core and / or the magnetic characteristics required for the tooth portion of the split core, the utilization of the non-oriented electrical steel sheet Increase.

本発明は、質量%で、C:0.005%以下、Si:2〜4%、Mn:1%以下、Al:1超〜2%、Sn:0.003〜0.2%を含有し、残部がFe及び不可避的不純物からなる熱延板に焼鈍を施した後、冷間圧延を一回施し、次いで、再結晶焼鈍を施した板厚0.15〜0.3mmの無方向性電磁鋼板であって、
(i)平均結晶粒径が40〜200μmの再結晶組織を有し、かつ、
(ii)C方向(L方向と90°)の磁束密度B50(C)と、X方向(L方向と45°)の磁束密度B50(X)が、下記式(1)を満たす磁気特性を有することを特徴とする。
50(C)/B50(X)≧−0.5333×t+0.3907×t+0.945 (1)
ここで、t:板厚(mm)
The present invention contains, in mass%, C: 0.005% or less, Si: 2-4%, Mn: 1% or less, Al: 1 more than 2%, Sn: 0.003-0.2%. Then, after annealing the hot-rolled sheet consisting of Fe and inevitable impurities, the cold rolling is performed once, and then the recrystallization annealing is applied to the non-directional electromagnetic material having a thickness of 0.15 to 0.3 mm. A steel plate,
(I) having a recrystallized structure having an average crystal grain size of 40 to 200 μm, and
(Ii) and C direction (L direction and 90 °) the magnetic flux density B 50 of (C), the magnetic flux density B 50 in the X direction (L direction and 45 °) is (X), the magnetic properties satisfying the following formulas (1) It is characterized by having.
B 50 (C) / B 50 (X) ≧ −0.5333 × t 2 + 0.3907 × t + 0.945 (1)
Where t: plate thickness (mm)

50(C)は、鋼板面上で、C方向に5000A/mで磁化して測定したC方向の磁束密度(単位:T)である。B50(X)は、鋼板面上で、X方向に5000A/mで磁化して測定したX方向の磁束密度である。なお、B50(L)は、L方向に5000A/mで磁化して測定したL方向の磁束密度である。 B 50 (C) is a magnetic flux density (unit: T) in the C direction measured by being magnetized at 5000 A / m in the C direction on the steel plate surface. B 50 (X) is the magnetic flux density in the X direction measured by magnetization at 5000 A / m in the X direction on the steel plate surface. B 50 (L) is the magnetic flux density in the L direction measured by magnetizing at 5000 A / m in the L direction.

まず、熱延板の成分組成を限定する理由について説明する。なお、以下、%は、質量%を意味する。   First, the reason for limiting the component composition of the hot-rolled sheet will be described. Hereinafter, “%” means mass%.

Cは、鋼板を強化する元素であるが、磁気特性の点で有害な元素であり、極力低減するのが好ましいので、Cは、0.005%以下に限定した。好ましくは、0.003%以下である。   C is an element that reinforces the steel sheet. However, C is an element harmful in terms of magnetic properties and is preferably reduced as much as possible. Therefore, C is limited to 0.005% or less. Preferably, it is 0.003% or less.

Siは、鋼板の電気抵抗を高め、鉄損を低減する元素であるので、2%以上を含有する。4%を超えて含有すると、鋼板が脆化し、また、所要の磁束密度B50が得られないので、Siの上限を4%とした。 Since Si is an element that increases the electrical resistance of the steel sheet and reduces iron loss, it contains 2% or more. When the content exceeds 4%, the steel sheet is embrittled, and since the required magnetic flux density B 50 is not obtained, and 4% the upper limit of Si.

Mnは、熱間圧延時に、MnSとしてSを固定し、熱間圧延時の鋼板耳割れを防止する元素である。固溶Mnは、鋼板の電気抵抗を高め、鉄損を低減するが、Mnが多すぎると結晶粒成長性が阻害されるので、Mnの上限を1%とした。   Mn is an element that fixes S as MnS at the time of hot rolling and prevents steel plate ear cracks during hot rolling. The solute Mn increases the electrical resistance of the steel sheet and reduces the iron loss. However, if Mn is too much, crystal grain growth is inhibited, so the upper limit of Mn is set to 1%.

Alは、Siと同様に、鋼板の電気抵抗を高め、鉄損を低減する元素であるので、1%を超えて含有する。ただし、Alが多くなると,磁束密度の異方性が小さくなる傾向にあるので、本発明で採用する各種の対策が必要となる。一方、2%を超えて含有すると、添加コストの問題や、飽和磁束密度の低下が懸念されるので、上限を2%とした。   Al, like Si, is an element that increases the electrical resistance of the steel sheet and reduces the iron loss, so it contains more than 1%. However, since the anisotropy of the magnetic flux density tends to decrease as the Al content increases, various measures adopted in the present invention are required. On the other hand, if the content exceeds 2%, there is a concern about the problem of addition cost and a decrease in saturation magnetic flux density, so the upper limit was made 2%.

Snは、Si:2〜4%、及び、Al:1超〜2%を含有する無方向性電磁鋼板の再結集組織において、Goss方位粒を増加し、特に、L方向の磁気特性(磁束密度)を改善するために、0.003%以上含有する必要がある。一方、0.2%を超えて含有しても、上記改善効果は飽和するし、熱間脆性の問題で疵が増加するので、上限を0.2%とした。   Sn increases the number of Goss orientation grains in the reconstituted structure of non-oriented electrical steel sheets containing Si: 2 to 4% and Al: more than 1 to 2%. In particular, the magnetic properties in L direction (magnetic flux density) In order to improve the above, it is necessary to contain 0.003% or more. On the other hand, even if the content exceeds 0.2%, the above improvement effect is saturated and wrinkles increase due to hot brittleness, so the upper limit was made 0.2%.

本発明は、上記元素の他、不可避的不純物として、S、P、N、O、Cu、Ni、Cr、Ca等を、本発明の機械特性及び磁気特性を損なわない範囲で含有してもよい。ただし、従来どおり、不純物としてのS、N、及び、Oは、少ないほうが好ましい。それら各成分は、それぞれ、0.001%以下、0.0025%以下、及び、0.003%以下が好ましい。   In addition to the above elements, the present invention may contain S, P, N, O, Cu, Ni, Cr, Ca, etc. as inevitable impurities as long as the mechanical properties and magnetic properties of the present invention are not impaired. . However, as in the past, it is preferable that S, N, and O as impurities are small. Each of these components is preferably 0.001% or less, 0.0025% or less, and 0.003% or less.

また,狙いの異方性を阻害しないことを確認している範囲は、Cu<0.2%、Ni<0.1%、Cr<0.1%、Ca<0.01%、Nb<0.002%、Ti<0.003%であるので、これら元素は、それぞれ上記範囲内に抑制するのが好ましい。なお,Sbは、異方性を小さくするので、添加してはならない。Sbは、不可避的に含有する場合、0.001%未満が好ましい。   Further, the ranges where it is confirmed that the target anisotropy is not inhibited are Cu <0.2%, Ni <0.1%, Cr <0.1%, Ca <0.01%, Nb <0. Since 0.002% and Ti <0.003%, these elements are preferably suppressed within the above ranges. Note that Sb should not be added because it reduces anisotropy. When Sb is unavoidably contained, it is preferably less than 0.001%.

上記成分組成の熱延板に焼鈍を施した後、冷間圧延を一回施し、次いで、再結晶焼鈍を施して、平均結晶粒径が40〜200μmの再結晶組織を形成する。   After annealing the hot-rolled sheet having the above component composition, cold rolling is performed once, and then recrystallization annealing is performed to form a recrystallized structure having an average crystal grain size of 40 to 200 μm.

本発明においては、前述した知見(x)に基づいて、再結晶組織の平均結晶粒径を40〜200μmに限定する。平均結晶粒径が大きいと、鉄損特性は改善されるが、磁束密度の異方性が小さくなる傾向にある。この傾向からすれば、平均結晶粒は小さいほうがよいが、40μm未満であると、所望の高周波鉄損W10/800が得られない。 In the present invention, based on the above-described knowledge (x), the average crystal grain size of the recrystallized structure is limited to 40 to 200 μm. When the average grain size is large, the iron loss characteristics are improved, but the anisotropy of the magnetic flux density tends to be small. From this tendency, the average crystal grain is preferably small, but if it is less than 40 μm, the desired high-frequency iron loss W 10/800 cannot be obtained.

一方、平均結晶粒径が200μmを超えると、磁束密度の異方性が小さくなり、本発明の狙う所望のB50(C)/B50(X)を確保することが困難となる。高周波鉄損をさらに改善する意味では,再結晶組織の平均結晶粒径は70〜200μmが好ましい。 On the other hand, when the average crystal grain size exceeds 200 μm, the anisotropy of the magnetic flux density decreases, and it becomes difficult to secure the desired B 50 (C) / B 50 (X) aimed by the present invention. In order to further improve the high-frequency iron loss, the average crystal grain size of the recrystallized structure is preferably 70 to 200 μm.

なお,平均結晶粒径は,鋼板断面を光学顕微鏡で観察した組織において,L方向の線分と交差する結晶粒界の個数を数え、平均化して求めた。   The average crystal grain size was obtained by counting and averaging the number of crystal grain boundaries intersecting the line segment in the L direction in the structure obtained by observing the cross section of the steel sheet with an optical microscope.

本発明は、平均結晶粒径40〜200μmの再結晶組織を有する板厚0.15〜0.3mmの無方向性電磁鋼板が、下記式(1)を満たす磁気特性を有することを特徴とする。
50(C)/B50(X)≧−0.5333×t+0.3907×t+0.945 (1)
ここで、t:板厚(mm)
The present invention is characterized in that a non-oriented electrical steel sheet having a thickness of 0.15 to 0.3 mm having a recrystallized structure having an average crystal grain size of 40 to 200 μm has magnetic properties satisfying the following formula (1). .
B 50 (C) / B 50 (X) ≧ −0.5333 × t 2 + 0.3907 × t + 0.945 (1)
Where t: plate thickness (mm)

なお、B50(C)、B50(X)、及び、B50(L)については、前述したとおりである。 B 50 (C), B 50 (X), and B 50 (L) are as described above.

X方向のB50(X)は、L方向のB50(L)がC方向のB50(C)(通常、B50(L)>B50(C))へ遷移する過程で、両者を繋ぐ磁束密度B50である。そして、本発明者は、X方向のB50(X)に着目した。 B 50 (X) in the X direction is a process in which B 50 (L) in the L direction transitions to B 50 (C) in the C direction (usually B 50 (L)> B 50 (C)). Magnetic flux density B 50 to be connected. The inventor paid attention to B 50 (X) in the X direction.

50(C)/B50(X)は、X方向のB50(X)に着目し、B50(C)とB50(X)の差を、両者の比で評価する指標であり、この比を所定の範囲内に規定することは、B50(C)とB50(X)の差を、所定の範囲内に抑制することを意味している。 B 50 (C) / B 50 (X) is focused on the X-direction of the B 50 (X), the difference between the B 50 (C) and B 50 (X), an indicator for evaluating in their ratio, Defining this ratio within a predetermined range means that the difference between B 50 (C) and B 50 (X) is suppressed within the predetermined range.

本発明者は、この意味するところは、下記の理由で、無方向性電磁鋼板の分割コア用としての適確性を判断する上で、極めて重要であるとの認識に立ち、分割コア用無方向性電磁鋼板の磁気特性を評価する指標として、「B50(C)/B50(X)」を導入した。 The present inventor has recognized that this is extremely important in determining the appropriateness of the non-oriented electrical steel sheet for the split core for the following reasons, and the non-direction for the split core. "B 50 (C) / B 50 (X)" was introduced as an index for evaluating the magnetic properties of the heat-resistant electrical steel sheet.

図1(a)及び(b)に、分割コアの打ち抜き態様を示す。図1(a)は、分割コアのティース部分をC方向(L方向と90°)に設定し、打抜き歩留りを最優先して打ち抜く態様(以下「打抜き態様A」ということがある。)を示し、図1(b)は、分割コアのティース部分をL方向に設定し、打抜き歩留りとともに、鉄心特性(ティース部の磁束密度)を重視して打ち抜く態様(以下「打抜き態様B」ということがある。)を示す。   1 (a) and 1 (b) show how the split core is punched. FIG. 1A shows an aspect in which the tooth portion of the split core is set in the C direction (90 degrees with respect to the L direction) and punching is performed with the highest priority on the punching yield (hereinafter sometimes referred to as “punching aspect A”). In FIG. 1B, the tooth portion of the split core is set in the L direction, and punching is performed with emphasis on the core characteristics (magnetic flux density of the tooth portion) as well as the punching yield (hereinafter referred to as “punching mode B”). .)

直近、電動モーターの分野では、従来の一体コアに加え、打抜き歩留まりの向上や、巻き線の効率化による銅損向上の観点から、分割コアを用いるケースが増加している。分割コアは、圧延後コイル状に巻き取った電磁鋼板コイルの圧延方向(L方向)に対し、打抜き態様A又は打抜き態様Bで打ち抜かれる場合が多い。   Recently, in the field of electric motors, in addition to the conventional integrated core, the number of cases using a split core is increasing from the viewpoint of improving the punching yield and improving copper loss by increasing the efficiency of winding. In many cases, the split core is punched in the punching mode A or the punching mode B with respect to the rolling direction (L direction) of the magnetic steel sheet coil wound in a coil shape after rolling.

一般に、工業的に製造される無方向性電磁鋼板は、C方向及びX方向の磁気特性(磁化特性、鉄損特性)が、L方向の磁気特性(磁化特性、鉄損特性)に比べ劣位であり、C方向又はX方向の磁気特性が、分割コア鉄心全体の磁気特性を左右することになる。   In general, non-oriented electrical steel sheets manufactured industrially have inferior magnetic properties (magnetization characteristics, iron loss characteristics) in the C direction and X direction compared to magnetic characteristics (magnetization characteristics, iron loss characteristics) in the L direction. Yes, the magnetic characteristics in the C direction or the X direction influence the magnetic characteristics of the entire split core iron core.

そして、分割コア鉄芯の磁束流には、打抜き態様A及び打抜き態様Bで打ち抜かれた分割コアのいずれの場合も、磁束がL方向からC方向に回転する途中に、遷移的なX方向の磁束流が存在するが、分割コアでは,このX方向の遷移的な磁束流領域は少なく、分割コア鉄心の磁気特性に及ぼす影響度は小さいと推測される。   The flux flow of the split core iron core includes a transitional X direction in the middle of the magnetic flux rotating from the L direction to the C direction in both cases of the split core punched in the punching mode A and the punching mode B. Although there is a magnetic flux flow, in the split core, the transitional magnetic flux region in the X direction is small, and it is estimated that the degree of influence on the magnetic properties of the split core iron core is small.

つまり、本発明者は、C方向の磁気特性とX方向の磁気特性の比:B50(C)/B50(X)が大きくなるように材料設計すれば、分割コア鉄心全体の磁気特性を改善することができると発想した。 In other words, the present inventor can control the magnetic properties of the entire split core iron core by designing the material so that the ratio of the magnetic properties in the C direction to the magnetic properties in the X direction: B 50 (C) / B 50 (X) is increased. I thought it could be improved.

なお、L方向とC方向における適正な磁気特性のバランスは、分割コア一片の寸法、形状により決定される。   The appropriate balance of magnetic characteristics in the L direction and the C direction is determined by the size and shape of the split core piece.

50(C)/B50(X)を所定の範囲に規定することは、無方向性電磁鋼板の磁気特性の異方性を所定の範囲に限定することであるから、分割コアを設計する際、分割コア鉄心全体の磁気特性の向上を考慮して、分割コアの形状、及び、打ち抜き態様を設計することができる。 Since defining B 50 (C) / B 50 (X) within a predetermined range is to limit the anisotropy of the magnetic properties of the non-oriented electrical steel sheet to a predetermined range, a split core is designed. At this time, the shape of the split core and the punching mode can be designed in consideration of the improvement of the magnetic characteristics of the entire split core iron core.

したがって、B50(C)/B50(X)は、無方向性電磁鋼板の分割コア用としての適確性を判断する上で、極めて重要な指標である。 Therefore, B 50 (C) / B 50 (X) is a very important index for judging the accuracy of the non-oriented electrical steel sheet for the split core.

しかし、無方向性電磁鋼板における磁気特性の異方性は、板厚の影響を受け、板厚が薄くなるに従い、異方性は小さくなる傾向にあるので、本発明においては、B50(C)/B50(X)を、単に、数値限定するのではなく、無方向性電磁鋼板の板厚t(0.15〜0.3mm)との関係で、下記式(1)を規定した。
50(C)/B50(X)≧−0.5333×t+0.3907×t+0.945 (1)
However, since the anisotropy of the magnetic characteristics in the non-oriented electrical steel sheet is affected by the plate thickness and tends to decrease as the plate thickness decreases, in the present invention, B 50 (C ) / B 50 (X) is not simply numerically limited, but the following formula (1) is defined in relation to the thickness t (0.15 to 0.3 mm) of the non-oriented electrical steel sheet.
B 50 (C) / B 50 (X) ≧ −0.5333 × t 2 + 0.3907 × t + 0.945 (1)

前述したように、無方向性電磁鋼板の板厚は、無方向性電磁鋼板の磁気特性の異方性に大きく影響し、板厚が薄くなるに従い、磁気特性の異方性が小さくなる。   As described above, the thickness of the non-oriented electrical steel sheet greatly affects the anisotropy of the magnetic characteristics of the non-oriented electrical steel sheet, and the anisotropy of the magnetic characteristics decreases as the thickness decreases.

そこで、本発明者は、L及びC方向とX方向において、所要の磁束密度の異方性を維持し、かつ、分割コアの磁気特性上重要なL方向及びC方向において、所要の磁束密度を確保するため、B50(C)/B50(X)と板厚(t)との関係を、回帰分析法を用いて鋭意分析した。 Therefore, the inventor maintains the required magnetic flux density anisotropy in the L and C directions and the X direction, and sets the required magnetic flux density in the L and C directions, which are important for the magnetic properties of the split core. In order to ensure, the relationship between B 50 (C) / B 50 (X) and the plate thickness (t) was intensively analyzed using a regression analysis method.

板厚0.15〜0.3mmの範囲において、板厚が大きくなるのに従い、磁気特性の異方性がゆるやかに大きくなる傾向を見いだしたので、本発明者は、上記関係を、板厚tの2次関数で近似することとして回帰分析を行なった。その結果、上記式(1)が成立することを見いだした。   In the range of the plate thickness of 0.15 to 0.3 mm, the present inventors found that the anisotropy of the magnetic properties gradually increases as the plate thickness increases. Regression analysis was performed as an approximation with a quadratic function. As a result, it was found that the above formula (1) holds.

即ち、B50(C)/B50(X)が、上記式(1)の右辺の値(=A値、以下「A値」ということがある。)より小さければ、磁気特性の異方性は小さくなり、無方向性電磁鋼板の磁気特性を評価する上で重要なL方向とC方向において、所要の磁束密度を確保することが困難となる。 That is, if B 50 (C) / B 50 (X) is smaller than the value on the right side of the above formula (1) (= A value, hereinafter may be referred to as “A value”), the anisotropy of the magnetic properties. It becomes difficult to secure a required magnetic flux density in the L direction and the C direction, which are important in evaluating the magnetic properties of the non-oriented electrical steel sheet.

なお、上記式(1)は、無方向性電磁鋼板の板厚が0.15〜0.3mmの場合に成立する関係式である。板厚が上記範囲を超える場合は、係数が変わるので、板厚が上記範囲を超える無方向性電磁鋼板に適用することはできない。   In addition, said Formula (1) is a relational expression which is materialized when the plate | board thickness of a non-oriented electrical steel sheet is 0.15-0.3 mm. When the plate thickness exceeds the above range, the coefficient changes, and therefore it cannot be applied to a non-oriented electrical steel sheet having a plate thickness exceeding the above range.

例えば、板厚tが0.3mmを超えると、B50(C)/B50(X)が急激に大きくなり、分割コア用としての磁気特性としては満足できるが、高周波用のコアとしては不適格である。 For example, when the plate thickness t exceeds 0.3 mm, B 50 (C) / B 50 (X) increases rapidly, which is satisfactory as a magnetic property for a split core, but not as a high frequency core. Eligible.

本発明は、板厚が薄くても(薄ければ、磁気特性の異方性が小さくなる)、なおかつ、B50(C)/B50(X)が大きい(即ち、磁気特性の異方性が大きい)分割コア用無方向性電磁鋼板の開発に取り組み、その結果、なされたものである。 According to the present invention, even if the plate thickness is thin (the thin the sheet, the magnetic property anisotropy becomes small), and B 50 (C) / B 50 (X) is large (ie, the magnetic property anisotropy). As a result, we have developed non-oriented electrical steel sheets for split cores.

即ち、本発明は、分割コア用としての無方向性電磁鋼板の磁気特性を評価するため、磁気特性の異方性を表示する指標「B50(C)/B50(X)」を導入し、該指標と、磁気特性に影響を及ぼす板厚との関係で、その下限を規定することを基本思想とするものである。 That is, the present invention introduces an index “B 50 (C) / B 50 (X)” indicating the anisotropy of the magnetic properties in order to evaluate the magnetic properties of the non-oriented electrical steel sheet for the split core. The basic idea is to define the lower limit in relation to the index and the plate thickness that affects the magnetic characteristics.

上記式(1)に従う、磁気特性の異方性と板厚との相関関係については、後述する実施例において、実験結果で実証するが、上記相関関係の詳細については、今後の研究課題である。   The correlation between the magnetic property anisotropy and the plate thickness according to the above equation (1) will be demonstrated in experimental results in the examples described later, but the details of the correlation are for further study. .

本発明者は、板厚が薄くなると、表面の磁区構造が変化し、該変化が、特に、X方向の磁化過程に大きく影響し、その結果、上記式(1)で解析できる磁気特性の異方性が発現するものと推定している。   The present inventor has found that the magnetic domain structure on the surface changes as the plate thickness decreases, and this change particularly affects the magnetization process in the X direction. As a result, the magnetic characteristics that can be analyzed by the above equation (1) differ. It is presumed that anisotropy appears.

分割コアを設計する場合、上記式(1)には現れないL方向の磁束密度B50(L)も重要な指標である。B50(L)の値は、当然のことながら、鋼板の成分組成によっても変化するので、飽和磁束密度Bsとの比:B50(L)/Bs(結晶方位指標)を採用し、この比によっても、無方向性電磁鋼板の磁気特性を評価することが好ましい。 When designing a split core, the magnetic flux density B 50 (L) in the L direction that does not appear in the above equation (1) is also an important index. Since the value of B 50 (L) naturally changes depending on the composition of the steel plate, the ratio with the saturation magnetic flux density Bs is adopted: B 50 (L) / Bs (crystal orientation index). Therefore, it is preferable to evaluate the magnetic properties of the non-oriented electrical steel sheet.

より優れた磁気特性を有する分割コアを得る場合には、B50(L)/Bsが、下記式(2)を満たすように材料設計をすることが必要である。
50(L)/Bs≧0.82 (2)
In order to obtain a split core having better magnetic properties, it is necessary to design the material so that B 50 (L) / Bs satisfies the following formula (2).
B 50 (L) /Bs≧0.82 (2)

結晶方位指標B50(L)/Bsが0.82未満であると、分割コアとしての磁気特性が不十分である。 When the crystal orientation index B 50 (L) / Bs is less than 0.82, the magnetic properties as a split core are insufficient.

本発明は、熱延板に焼鈍を施した後、冷間圧延を一回施し、次いで、再結晶焼鈍を施すことを要件とするものであるので、次に、好ましい製造要件について、説明する。   Since the present invention requires that the hot-rolled sheet is annealed and then cold-rolled once and then recrystallized, the preferable manufacturing requirements will be described below.

熱延板の焼鈍は、高温で行うことが好ましい。この焼鈍で熱延板の結晶粒径を粗大化すると、冷間圧延後の再結晶で、Goss方位粒が形成され易く、磁束密度の異方性が大きくなる。それ故、焼鈍温度は、できるだけ高温側がよく、900℃超が好ましい。   The annealing of the hot rolled sheet is preferably performed at a high temperature. When the crystal grain size of the hot-rolled sheet is increased by this annealing, Goss orientation grains are easily formed by recrystallization after cold rolling, and the anisotropy of magnetic flux density increases. Therefore, the annealing temperature should be as high as possible, preferably over 900 ° C.

焼鈍後の冷間圧延は、レバース圧延が好ましい。この圧延によれば、一方向圧延のいわゆるタンデム圧延に比較し、B50(L)を0.02T程度改善することができる。レバース圧延は,通常のゼンジミャーミル圧延などで実施することができる。 The cold rolling after annealing is preferably lever rolling. According to this rolling, B 50 (L) can be improved by about 0.02 T, compared with so-called tandem rolling of unidirectional rolling. Lever's rolling can be performed by ordinary Sendzimir mill rolling or the like.

冷間圧延での圧下率は、指標B50(C)/B50(X)、及び、B50(L)/Bsに敏感に影響するので重要である。圧下率が小さいほうが、B50(C)/B50(X)、及び、B50(L)/Bsは、ともに改善されるが、圧下率が75%未満であると、熱延板の板厚を、工業的に難しい薄い領域内の板厚にすることが必要となり、このことは、実質的に不可能である。一方、圧下率が89%超であると、所要のB50(C)/B50(X)、及び、B50(L)/Bsを確保することが難しくなる。 The rolling reduction in cold rolling is important because it sensitively affects the indices B 50 (C) / B 50 (X) and B 50 (L) / Bs. When the rolling reduction is smaller, both B 50 (C) / B 50 (X) and B 50 (L) / Bs are improved, but if the rolling reduction is less than 75%, It is necessary to make the thickness a plate thickness in a thin region that is difficult to industrially, and this is virtually impossible. On the other hand, if the rolling reduction exceeds 89%, it becomes difficult to secure the required B 50 (C) / B 50 (X) and B 50 (L) / Bs.

再結晶焼鈍においては、昇温速度を、少なくとも600〜700℃の範囲で、100〜5000℃/秒とし、急速加熱することが好ましい。この急速加熱により、再結晶組織中にGoss方位粒を増加させ、特に、B50(C)/B50(X)を改善することができる。昇温速度が100℃/秒未満では、上記改善効果が少なく,また、5000℃/秒以上では、工業的な設備コストの面で無理がある。 In the recrystallization annealing, it is preferable that the heating rate is 100 to 5000 ° C./second in the range of at least 600 to 700 ° C. and rapid heating is performed. By this rapid heating, Goss orientation grains can be increased in the recrystallized structure, and in particular, B 50 (C) / B 50 (X) can be improved. If the rate of temperature increase is less than 100 ° C./second, the above improvement effect is small, and if it is 5000 ° C./second or more, it is impossible in terms of industrial equipment cost.

また、無方向性電磁鋼板の磁気特性を評価する場合、鉄損特性も重要であり、本発明においては、鉄損W10/800が40W/kg以下であることが好ましい。コンパクトなモーターコアにするための高速回転仕様に適用するためである。 Moreover, when evaluating the magnetic characteristics of a non-oriented electrical steel sheet, the iron loss characteristics are also important. In the present invention, the iron loss W 10/800 is preferably 40 W / kg or less. This is because it is applied to high-speed rotation specifications to make a compact motor core.

次に、本発明の実施例について説明するが、実施例の条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, examples of the present invention will be described. The conditions of the examples are one example of conditions adopted for confirming the feasibility and effects of the present invention, and the present invention is limited to this one example of conditions. Is not to be done. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

(実施例1)
鋼を真空溶解炉で溶解しつつ、成分組成を調整し、表1に示す成分組成を有するインゴットを鋳造した。これを、1200℃に加熱して熱間圧延し、1.5mm厚の熱延板とした。次いで、N2雰囲気中、920℃で90秒均熱して焼鈍を行った。酸洗後、冷間圧延を施して、板厚0.25mm(圧下率83.3%)の冷延板とした。
(Example 1)
The component composition was adjusted while melting steel in a vacuum melting furnace, and an ingot having the component composition shown in Table 1 was cast. This was heated to 1200 ° C. and hot-rolled to obtain a hot-rolled sheet having a thickness of 1.5 mm. Next, annealing was performed by heating at 920 ° C. for 90 seconds in an N 2 atmosphere. After pickling, cold rolling was performed to obtain a cold-rolled sheet having a sheet thickness of 0.25 mm (a rolling reduction of 83.3%).

その後、冷延板を、H2雰囲気中、1000℃で20秒均熱し、冷延板に再結晶焼鈍を施した。再結晶焼鈍時の加熱速度は、10℃/秒であった。冷延板の平均結晶粒径は、40〜60μmの範囲に入っていた。磁気特性を、55mm角SSTで、角度別に測定した。得られた結果を、表1に、併せて示す。 Thereafter, the cold-rolled plate was soaked at 1000 ° C. for 20 seconds in an H 2 atmosphere, and the cold-rolled plate was subjected to recrystallization annealing. The heating rate during recrystallization annealing was 10 ° C./second. The average crystal grain size of the cold rolled sheet was in the range of 40 to 60 μm. The magnetic characteristics were measured for each angle with a 55 mm square SST. The obtained results are also shown in Table 1.

磁束密度B50は,磁化力5000A/mでの磁束密度(単位T)である。 The magnetic flux density B 50 is a magnetic flux density (unit T) at a magnetizing force of 5000 A / m.

飽和磁束密度Bsは、振動試料型磁力計(Vibrating Sample Magnetometer)で計測した。W10/800は、磁束密度1.0T、周波数800Hzでの鉄損であり、L方向とC方向での測定値を平均したものである。 The saturation magnetic flux density Bs was measured with a vibrating sample magnetometer. W 10/800 is an iron loss at a magnetic flux density of 1.0 T and a frequency of 800 Hz, and is an average of measured values in the L direction and the C direction.

A値は、以下の式で定義した。
A値=−0.5333×t2+0.3907×t+0.945(t:板厚)
The A value was defined by the following formula.
A value = −0.5333 × t 2 + 0.3907 × t + 0.945 (t: plate thickness)

なお、実施例2以下も、上記記号及び式に従うものである。   In addition, Example 2 and the following also follow the above symbols and formulas.

Figure 2008127600
Figure 2008127600

実験No.1〜5は、Sn量を変更したものである。表1から、本発明の範囲内のSn量で、優れた磁束密度の異方性:B50(L)/B50(C)が得られていることと、また、Sn量の増加に伴い、L方向の磁束密度B50(L)が改善されていることが分かる。 Experiment No. 1-5 change Sn amount. Table 1 shows that excellent magnetic flux density anisotropy: B 50 (L) / B 50 (C) is obtained with an Sn content within the scope of the present invention, and that the Sn content increases. It can be seen that the magnetic flux density B 50 (L) in the L direction is improved.

実験No.6〜10は、Al量を変更したものである。Al量が多くなると,磁束密度の異方性:B50(C)/B50(X)が低下する。つまり、Al量の増大により、磁束密度の異方性の確保が難しくなる傾向にあることが分かる。 Experiment No. 6 to 10 are obtained by changing the amount of Al. As the Al content increases, the anisotropy of magnetic flux density: B 50 (C) / B 50 (X) decreases. That is, it can be seen that the increase in the amount of Al tends to make it difficult to ensure the anisotropy of the magnetic flux density.

本発明は、Al量が多い、即ち、磁気特性の異方性を確保することが困難となる領域で、分割コア用の無方向性電磁鋼板を提供するものである。また、Al量が本発明の範囲内にあれば,優れた高周波鉄損W10/800が得られていることが分かる。 The present invention provides a non-oriented electrical steel sheet for a split core in a region where there is a large amount of Al, that is, it is difficult to ensure anisotropy of magnetic properties. It can also be seen that if the Al content is within the range of the present invention, an excellent high-frequency iron loss W 10/800 is obtained.

(実施例2)
質量%で、C:0.003%、Si:3%、Mn:0.15%、Al:1.5%、S:0.0001%、N:0.0010%、Sn:0.05%を含むインゴットを1050℃に加熱し、表2に示す各種板厚の熱延板を製造した。次に、熱延板を、N2雰囲気中で、1150℃で60秒均熱し、熱延板に焼鈍を施し、その後、冷間圧延を施し、表2に示す板厚の冷延板を製造した。
(Example 2)
In mass%, C: 0.003%, Si: 3%, Mn: 0.15%, Al: 1.5%, S: 0.0001%, N: 0.0010%, Sn: 0.05% The ingot containing was heated to 1050 ° C. to produce hot-rolled plates having various plate thicknesses shown in Table 2. Next, the hot-rolled sheet is soaked at 1150 ° C. for 60 seconds in an N 2 atmosphere, the hot-rolled sheet is annealed, and then cold-rolled to produce cold-rolled sheets having the thicknesses shown in Table 2. did.

次いで、再結晶焼鈍を、20%H2+80%N2雰囲気中、1100℃で10秒均熱して行なった。加熱は、ラジアントチューブを用い、20℃/秒の加熱速度で昇温した。平均結晶粒径は、150μmであった。得られた結果を、表2に示す。 Next, recrystallization annealing was performed by soaking at 1100 ° C. for 10 seconds in an atmosphere of 20% H 2 + 80% N 2 . Heating was performed using a radiant tube at a heating rate of 20 ° C./second. The average grain size was 150 μm. The results obtained are shown in Table 2.

Figure 2008127600
Figure 2008127600

実験No.1〜6は、熱延板の板厚を調整したが、冷延板の板厚を固定し、磁気特性に及ぼす冷延率(圧下率)の影響を調査したものである。表2に示すように、冷延率が本発明の範囲内にあれば、優れた磁束密度の異方性が得られている。   Experiment No. In Nos. 1 to 6, the thickness of the hot-rolled sheet was adjusted, but the thickness of the cold-rolled sheet was fixed, and the influence of the cold rolling rate (rolling rate) on the magnetic properties was investigated. As shown in Table 2, if the cold rolling rate is within the range of the present invention, excellent magnetic flux density anisotropy is obtained.

実験No.7〜12は、熱延板の板厚を固定し、冷延板の板厚を変更したものである。冷延板の板厚(即ち、製品板厚)が、本発明の範囲内にあれば、優れた高周波鉄損W10/800が得られ、また、冷延率が、本発明の範囲内にあれば、優れた磁束密度の異方性が得られている。冷延率が、本発明の範囲を超えると、B50(L)が大きく劣化する。 Experiment No. 7-12 fix the plate | board thickness of a hot rolled sheet, and change the plate | board thickness of a cold rolled sheet. If the thickness of the cold-rolled sheet (that is, the product sheet thickness) is within the range of the present invention, an excellent high-frequency iron loss W 10/800 can be obtained, and the cold- rolling rate is within the range of the present invention. If it exists, the anisotropy of the outstanding magnetic flux density is acquired. When the cold rolling rate exceeds the range of the present invention, B 50 (L) is greatly deteriorated.

また,冷延板の板厚は、製品板の板厚と見なしてよいが、板厚が薄くなると、異方性B50(C)/B50(X)が減少すること、特に、0.32mmから0.30mmにかけて、この異方性が著しく減少することが分かる。 Further, the plate thickness of the cold-rolled plate may be regarded as the plate thickness of the product plate. However, when the plate thickness is reduced, the anisotropic B 50 (C) / B 50 (X) is decreased. It can be seen that this anisotropy decreases significantly from 32 mm to 0.30 mm.

なお,0.35mm厚(実験No.7)と0.32mm厚(実験No.8)については、前記式(1)で定義するA値の板厚範囲を外れるものであるが、強引に、その板厚を代入して求めた値を、A値として示してある。この二次曲線上のA値と、実測したB50(C)/B50(X)を対比すると、板厚の厚い0.35mm厚と0.32mm厚については、値が大きく乖離し、実測値が大きいことが分かる。即ち、板厚が0.30mmを超える場合、異方性:B50(C)/B50(X)を大きくすることは容易であることが分かる。 In addition, about 0.35 mm thickness (experiment No. 7) and 0.32 mm thickness (experiment No. 8), it is outside the plate thickness range of the A value defined by the above formula (1), but forcibly, A value obtained by substituting the thickness is shown as an A value. When the A value on this quadratic curve is compared with the measured B 50 (C) / B 50 (X), the values for the thick plate thicknesses of 0.35 mm and 0.32 mm differ greatly. It can be seen that the value is large. That is, when the plate thickness exceeds 0.30 mm, it is easy to increase the anisotropy B 50 (C) / B 50 (X).

しかし、本発明は、特に、磁束密度の異方性の急激な減少が避けられない0.30mm以下の薄い板厚領域において、敢えて、磁束密度の異方性を改善したものである。   However, according to the present invention, the anisotropy of the magnetic flux density is intentionally improved particularly in a thin plate thickness region of 0.30 mm or less where a sudden decrease in the anisotropy of the magnetic flux density is inevitable.

(実施例3)
質量%で、C:0.002%、Si:2.3%、Mn:0.17%、Al:1.8%、S:0.0004%、N:0.0019%、Sn:0.17%を含むスラブを1150℃に加熱し、1.3mm厚の熱延コイルを製造した。その他の成分(不可避的不純物として)を分析すると、Cu:0.1%、Ni:0.05%、Cr:0.05%、Ca:0.0003%、V:0.001%、Ti:0.001%、Nb:0.001%、Mo:0.002%、Sb:0.0001%であった。
(Example 3)
By mass%, C: 0.002%, Si: 2.3%, Mn: 0.17%, Al: 1.8%, S: 0.0004%, N: 0.0019%, Sn: 0.00. A slab containing 17% was heated to 1150 ° C. to produce a 1.3 mm thick hot rolled coil. When other components (as inevitable impurities) were analyzed, Cu: 0.1%, Ni: 0.05%, Cr: 0.05%, Ca: 0.0003%, V: 0.001%, Ti: 0.001%, Nb: 0.001%, Mo: 0.002%, Sb: 0.0001%.

この熱延コイルを、N2雰囲気中、1100℃で100秒均熱して、焼鈍し、その後、レバース圧延(圧下率88.5%)で、板厚0.15mmの冷延板を製造した。次いで,表3に示すように、誘導加熱方式により、各種の昇温速度で、N2雰囲気中、室温から1100℃まで昇温し、その後、50%H2+50%N2雰囲気中で、15秒均熱を行った。平均粒径は、200μmであった。結果を表3示す。 This hot rolled coil was soaked at 1100 ° C. for 100 seconds in an N 2 atmosphere and annealed, and then a cold rolled sheet having a thickness of 0.15 mm was manufactured by lever rolling (reduction rate of 88.5%). Next, as shown in Table 3, the temperature was raised from room temperature to 1100 ° C. in an N 2 atmosphere at various heating rates by an induction heating method, and then in a 50% H 2 + 50% N 2 atmosphere, 15 A second soaking was performed. The average particle size was 200 μm. The results are shown in Table 3.

Figure 2008127600
Figure 2008127600

表3から、昇温速度が上昇すると,磁束密度の異方性が大きく改善されることが分かる。特に、昇温速度が100℃/秒以上において、従来にない異方性:B50(C)/B50(X)が得られていることが分かる。なお、5000℃/秒を超える昇温速度は、電源などのコスト問題があり、工業的ではない。 From Table 3, it can be seen that the anisotropy of the magnetic flux density is greatly improved when the heating rate is increased. In particular, it can be seen that the unprecedented anisotropy: B 50 (C) / B 50 (X) is obtained at a temperature rising rate of 100 ° C./second or more. In addition, the temperature rising rate exceeding 5000 ° C./second is not industrial because of a cost problem such as a power source.

前述したように、本発明によれば、モーターやトランスの分割コア用として最適な磁気特性を有し、かつ、利用度の高い無方向性電磁鋼板を提供することができる。したがって、本発明は、無方向性電磁鋼板を素材として用いる電気機器製造産業において利用可能性が大きいものである。   As described above, according to the present invention, it is possible to provide a non-oriented electrical steel sheet that has optimum magnetic characteristics for a split core of a motor or a transformer and has high utilization. Therefore, the present invention has great applicability in the electrical equipment manufacturing industry using non-oriented electrical steel sheets as raw materials.

分割コアの打ち抜き態様を示す図である。(a)は、分割コアのティース部分をC方向(L方向に90℃の方向)に設定して打ち抜く態様を示し、(b)は、分割コアのティース部分をL方向に設定して打ち抜く態様を示す。It is a figure which shows the punching aspect of a split core. (A) shows a mode in which the tooth portion of the split core is set in the C direction (90 ° C. in the L direction) and punched, and (b) shows a mode in which the tooth portion of the split core is set in the L direction and punched. Indicates.

符号の説明Explanation of symbols

1 分割コア
2 ティース部分
1 split core 2 teeth

Claims (7)

質量%で、C:0.005%以下、Si:2〜4%、Mn:1%以下、Al:1超〜2%、Sn:0.003〜0.2%を含有し、残部がFe及び不可避的不純物からなる熱延板に焼鈍を施した後、冷間圧延を一回施し、次いで、再結晶焼鈍を施して製造した板厚:0.15〜0.3mmの無方向性電磁鋼板であって、
(i)平均結晶粒径が40〜200μmの再結晶組織を有し、かつ、
(ii)圧延方向(L方向)と90°の方向(C方向)の磁束密度B50(C)と、圧延方向(L方向)と45°の方向(X方向)の磁束密度B50(X)が、下記式(1)を満たす磁気特性を有する
ことを特徴とする分割コア用無方向性電磁鋼板。
50(C)/B50(X)≧−0.5333×t+0.3907×t+0.945 (1)
ここで、t:板厚(mm)
In mass%, C: 0.005% or less, Si: 2 to 4%, Mn: 1% or less, Al: more than 1 to 2%, Sn: 0.003 to 0.2%, the balance being Fe And a non-oriented electrical steel sheet having a thickness of 0.15 to 0.3 mm, which is manufactured by annealing a hot-rolled sheet made of inevitable impurities and then performing cold rolling once and then recrystallizing annealing. Because
(I) having a recrystallized structure having an average crystal grain size of 40 to 200 μm, and
(Ii) Magnetic flux density B 50 (C) in the rolling direction (L direction) and 90 ° direction (C direction), and magnetic flux density B 50 (X in the rolling direction (L direction) and 45 ° direction (X direction). ) Has a magnetic property satisfying the following formula (1): a non-oriented electrical steel sheet for split cores.
B 50 (C) / B 50 (X) ≧ −0.5333 × t 2 + 0.3907 × t + 0.945 (1)
Where t: plate thickness (mm)
前記磁気特性において、圧延方向(L方向)の磁束密度B50(L)が、下記式(2)を満たすことを特徴とする請求項1に記載の分割コア用無方向性電磁鋼板。
50(L)/Bs≧0.82 (2)
ここで、Bs:飽和磁束密度
2. The non-oriented electrical steel sheet for split core according to claim 1, wherein a magnetic flux density B 50 (L) in a rolling direction (L direction) satisfies the following formula (2) in the magnetic characteristics.
B 50 (L) /Bs≧0.82 (2)
Where Bs: saturation magnetic flux density
前記磁気特性において、鉄損W10/800が40W/kg以下であることを特徴とする請求項1又は2に記載の分割コア用無方向性電磁鋼板。 3. The non-oriented electrical steel sheet for split core according to claim 1, wherein an iron loss W 10/800 is 40 W / kg or less in the magnetic characteristics. 前記冷間圧延が、レバース圧延であることを特徴とする請求項1〜3のいずれか1項に記載の分割コア用無方向性電磁鋼板。   The non-oriented electrical steel sheet for a split core according to any one of claims 1 to 3, wherein the cold rolling is lever rolling. 前記冷間圧延において、圧下率が75〜89%であることを特徴とする請求項1〜4のいずれか1項に記載の分割コア用無方向性電磁鋼板。   The non-oriented electrical steel sheet for split core according to any one of claims 1 to 4, wherein a rolling reduction is 75 to 89% in the cold rolling. 前記再結晶焼鈍において、昇温速度が100〜5000℃/秒であることを特徴とする請求項1〜5のいずれか1項に記載の分割コア用無方向性電磁鋼板。   The non-oriented electrical steel sheet for split core according to any one of claims 1 to 5, wherein in the recrystallization annealing, a temperature rising rate is 100 to 5000 ° C / second. 前記熱延板の焼鈍温度が900℃超であることを特徴とする請求項1〜6のいずれか1項に記載の分割コア用無方向性電磁鋼板。   The non-oriented electrical steel sheet for split core according to any one of claims 1 to 6, wherein an annealing temperature of the hot-rolled sheet is higher than 900 ° C.
JP2006311570A 2006-11-17 2006-11-17 Non-oriented electrical steel sheet for split core Active JP4855220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006311570A JP4855220B2 (en) 2006-11-17 2006-11-17 Non-oriented electrical steel sheet for split core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006311570A JP4855220B2 (en) 2006-11-17 2006-11-17 Non-oriented electrical steel sheet for split core

Publications (2)

Publication Number Publication Date
JP2008127600A true JP2008127600A (en) 2008-06-05
JP4855220B2 JP4855220B2 (en) 2012-01-18

Family

ID=39553746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006311570A Active JP4855220B2 (en) 2006-11-17 2006-11-17 Non-oriented electrical steel sheet for split core

Country Status (1)

Country Link
JP (1) JP4855220B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029621A1 (en) 2010-08-30 2012-03-08 Jfeスチール株式会社 Method for producing non-oriented magnetic steel sheet
JP2013010982A (en) * 2011-06-28 2013-01-17 Jfe Steel Corp Method for manufacturing non-oriented electromagnetic steel sheet
JP2013093454A (en) * 2011-10-26 2013-05-16 Jfe Steel Corp Selection method of magnetic steel sheet for motor core
WO2016002904A1 (en) * 2014-07-02 2016-01-07 新日鐵住金株式会社 Non-oriented magnetic steel sheet, and manufacturing method for same
JP2017509799A (en) * 2013-12-23 2017-04-06 ポスコPosco Non-oriented electrical steel sheet and manufacturing method thereof
KR20170107042A (en) * 2015-02-24 2017-09-22 제이에프이 스틸 가부시키가이샤 Method for manufacturing non-oriented electrical steel sheet
JP2017537230A (en) * 2014-10-20 2017-12-14 アルセロールミタル Method for producing tin-containing non-oriented silicon steel sheet, obtained steel sheet and use of the steel sheet
US9920393B2 (en) 2012-03-15 2018-03-20 Jfe Steel Corporation Method of producing non-oriented electrical steel sheet
US9978488B2 (en) 2013-02-21 2018-05-22 Jfe Steel Corporation Method for producing semi-processed non-oriented electrical steel sheet having excellent magnetic properties
JP2019163509A (en) * 2018-03-20 2019-09-26 日本製鉄株式会社 Nonoriented electromagnetic steel sheet and method for producing the same
US10541071B2 (en) * 2014-06-26 2020-01-21 Nippon Steel Corporation Electrical steel sheet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192891A (en) * 1997-09-22 1999-04-06 Nkk Corp Silicon steel sheet for electric automobile motor
JP2001059145A (en) * 1999-06-16 2001-03-06 Sumitomo Metal Ind Ltd Nonoriented silicon steel sheet and its manufacture
JP2004323972A (en) * 2003-04-10 2004-11-18 Nippon Steel Corp Method for manufacturing non-directional silicon steel plate of high magnetic flux density

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192891A (en) * 1997-09-22 1999-04-06 Nkk Corp Silicon steel sheet for electric automobile motor
JP2001059145A (en) * 1999-06-16 2001-03-06 Sumitomo Metal Ind Ltd Nonoriented silicon steel sheet and its manufacture
JP2004323972A (en) * 2003-04-10 2004-11-18 Nippon Steel Corp Method for manufacturing non-directional silicon steel plate of high magnetic flux density

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029621A1 (en) 2010-08-30 2012-03-08 Jfeスチール株式会社 Method for producing non-oriented magnetic steel sheet
JP2013010982A (en) * 2011-06-28 2013-01-17 Jfe Steel Corp Method for manufacturing non-oriented electromagnetic steel sheet
JP2013093454A (en) * 2011-10-26 2013-05-16 Jfe Steel Corp Selection method of magnetic steel sheet for motor core
US9920393B2 (en) 2012-03-15 2018-03-20 Jfe Steel Corporation Method of producing non-oriented electrical steel sheet
US9978488B2 (en) 2013-02-21 2018-05-22 Jfe Steel Corporation Method for producing semi-processed non-oriented electrical steel sheet having excellent magnetic properties
US10643771B2 (en) 2013-12-23 2020-05-05 Posco Non-oriented electrical steel sheet and manufacturing method therefor
JP2017509799A (en) * 2013-12-23 2017-04-06 ポスコPosco Non-oriented electrical steel sheet and manufacturing method thereof
US10541071B2 (en) * 2014-06-26 2020-01-21 Nippon Steel Corporation Electrical steel sheet
WO2016002904A1 (en) * 2014-07-02 2016-01-07 新日鐵住金株式会社 Non-oriented magnetic steel sheet, and manufacturing method for same
JPWO2016002904A1 (en) * 2014-07-02 2017-04-27 新日鐵住金株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
EP3165624A4 (en) * 2014-07-02 2017-11-29 Nippon Steel & Sumitomo Metal Corporation Non-oriented magnetic steel sheet, and manufacturing method for same
CN106661686A (en) * 2014-07-02 2017-05-10 新日铁住金株式会社 Non-oriented magnetic steel sheet and manufacturing method for same
KR20170002605A (en) * 2014-07-02 2017-01-06 신닛테츠스미킨 카부시키카이샤 Non-oriented magnetic steel sheet, and manufacturing method for same
KR101898368B1 (en) 2014-07-02 2018-09-12 신닛테츠스미킨 카부시키카이샤 Non-oriented magnetic steel sheet, and manufacturing method for same
US10354784B2 (en) 2014-07-02 2019-07-16 Nippon Steel & Sumitomo Metal Corporation Non-oriented magnetic steel sheet and method of manufacturing the same
JP2017537230A (en) * 2014-10-20 2017-12-14 アルセロールミタル Method for producing tin-containing non-oriented silicon steel sheet, obtained steel sheet and use of the steel sheet
JP2020183583A (en) * 2014-10-20 2020-11-12 アルセロールミタル Method of production of tin containing non grain-oriented silicon steel sheet, steel sheet obtained and use thereof
EP3209807B1 (en) 2014-10-20 2020-11-25 ArcelorMittal Method of production of tin containing non grain-oriented silicon steel sheet
JP7066782B2 (en) 2014-10-20 2022-05-13 アルセロールミタル Manufacturing method of tin-containing non-directional silicon steel sheet, obtained steel sheet and use of the steel sheet
US11566296B2 (en) 2014-10-20 2023-01-31 Arcelormittal Method of production of tin containing non grain-oriented silicon steel sheet, steel sheet obtained and use thereof
KR102014007B1 (en) 2015-02-24 2019-08-23 제이에프이 스틸 가부시키가이샤 Manufacturing method of non-oriented electrical steel sheet
KR20170107042A (en) * 2015-02-24 2017-09-22 제이에프이 스틸 가부시키가이샤 Method for manufacturing non-oriented electrical steel sheet
JP2019163509A (en) * 2018-03-20 2019-09-26 日本製鉄株式会社 Nonoriented electromagnetic steel sheet and method for producing the same
JP7040184B2 (en) 2018-03-20 2022-03-23 日本製鉄株式会社 Non-oriented electrical steel sheet and its manufacturing method

Also Published As

Publication number Publication date
JP4855220B2 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
JP4855222B2 (en) Non-oriented electrical steel sheet for split core
JP4855220B2 (en) Non-oriented electrical steel sheet for split core
CN103052722B (en) Process for producing non-oriented electromagnetic steel sheet
JP5699642B2 (en) Motor core
JP2017057462A (en) Non-oriented magnetic electromagnetic steel sheet and manufacturing method therefor
JP2011084761A (en) Non-oriented electromagnetic steel sheet for rotor and manufacturing method therefor
JP2008174773A (en) Nonoriented electromagnetic steel sheet for rotor, and its production method
JP2018178197A (en) Nonoriented electromagnetic steel sheet and manufacturing method therefor
JP2012036459A (en) Non-oriented magnetic steel sheet and production method therefor
JP4855225B2 (en) Non-oriented electrical steel sheet with small anisotropy
JP3888033B2 (en) Method for producing non-oriented electrical steel sheet
JP5515451B2 (en) Core material for split motor
JP2007031755A (en) Method for producing non-oriented silicon steel sheet for rotor
JP2018178198A (en) Nonoriented electromagnetic steel sheet and manufacturing method therefor
JP5939190B2 (en) Electrical steel sheet
JP2005120403A (en) Non-oriented electrical steel sheet with low core loss in high-frequency region
JP2018178196A (en) Nonoriented electromagnetic steel sheet and manufacturing method therefor
JP5671872B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5671871B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JPH0888114A (en) Manufacture of nonoriented flat rolled magnetic steel sheet
JP4855221B2 (en) Non-oriented electrical steel sheet for split core
JP2006249555A (en) Silicon steel sheet having low core loss in high frequency region and method for producing the same
JP6123234B2 (en) Electrical steel sheet
JP4568999B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5826284B2 (en) Wire rods, steel wires having excellent magnetic properties, and methods for producing them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4855220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350