JP2005120403A - Non-oriented electrical steel sheet with low core loss in high-frequency region - Google Patents

Non-oriented electrical steel sheet with low core loss in high-frequency region Download PDF

Info

Publication number
JP2005120403A
JP2005120403A JP2003354658A JP2003354658A JP2005120403A JP 2005120403 A JP2005120403 A JP 2005120403A JP 2003354658 A JP2003354658 A JP 2003354658A JP 2003354658 A JP2003354658 A JP 2003354658A JP 2005120403 A JP2005120403 A JP 2005120403A
Authority
JP
Japan
Prior art keywords
steel sheet
region
crystal grain
thickness
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003354658A
Other languages
Japanese (ja)
Inventor
Kunihiro Senda
邦浩 千田
Masayoshi Ishida
昌義 石田
Kenichi Sadahiro
健一 定廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003354658A priority Critical patent/JP2005120403A/en
Publication of JP2005120403A publication Critical patent/JP2005120403A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-oriented electrical steel sheet having low core loss in a high-frequency region as well as in a low-frequency region by means of a technique different from the addition of specific-resistance-increasing elements and the reduction of sheet thickness. <P>SOLUTION: In the non-oriented electrical steel sheet, ≤4 mass% Si is contained and the size of crystalline grains is smaller in the surface layer part of the steel sheet than in the inner part of the steel sheet. This steel sheet has the following characteristics: when a fine crystalline grain region is defined as the steel-sheet surface layer part where the average crystalline grain size Dz in a sheet-thickness direction z is ≤1.5 times the minimum value Dmm of the above grain sizes and a coarse crystalline grain region is defined as the remaining inner part of the steel sheet, the thickness of the fine crystalline grain region per side is 8 to 25% of the whole sheet thickness and the average crystalline grain size in the fine crystalline grain region is 2 to 70% of that in the coarse crystalline grain region. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電動機、発電機、静止器等の鉄心に用いられる無方向性電磁鋼板に関し、特に、低周波域だけでなく400Hz以上の高周波域においても鉄損特性に優れる無方向性電磁鋼板に関するものである。   The present invention relates to a non-oriented electrical steel sheet used for iron cores of electric motors, generators, stationary machines, and the like, and more particularly, to a non-oriented electrical steel sheet having excellent iron loss characteristics not only in a low frequency range but also in a high frequency range of 400 Hz or higher. Is.

近年、電気機器、電気自動車等の分野に用いられるモータは、サイズの小型化を目的として、従来よりも高い回転数のものが採用されつつある。また、磁石モータにおいては、トルク向上、トルクリップル低減の観点から、多極ロータが用いられる傾向にある。このような高回転数、多極のモータにおいては、回転数や極数の増加に伴い、駆動電源の周波数も高くなる傾向にある。そのため、モータの鉄心素材である電磁鋼板には、高周波での磁気特性に優れることが要求される。一方、電機機器や電気自動車に用いられるモータは、低周波域で使用される頻度・時間も多いことから、高周波域と同時に低周波域でも低鉄損であることが望ましい。   2. Description of the Related Art In recent years, motors used in the fields of electric equipment, electric vehicles, and the like have been adopted with higher rotational speeds than before for the purpose of reducing the size. In a magnet motor, a multipolar rotor tends to be used from the viewpoint of improving torque and reducing torque ripple. In such a high rotation speed, multi-pole motor, the frequency of the drive power supply tends to increase as the rotation speed and the number of poles increase. Therefore, an electromagnetic steel sheet that is a core material of a motor is required to have excellent magnetic properties at high frequencies. On the other hand, since motors used in electrical equipment and electric vehicles are frequently used in a low frequency range, it is desirable that the iron loss be low in the low frequency range as well as in the high frequency range.

さて、電磁鋼板の鉄損は、ヒステリシス損と渦電流損の和であり、上記渦電流損は古典的渦電流損と異常渦電流損からなること、電磁鋼板が高周波で磁化された場合には、渦電流損の増加により鉄心の鉄損が増加することが知られている。この増加を抑制するためには、鉄心素材である電磁鋼板の比抵抗を増加したり、あるいは、板厚を低減したりして、古典的渦電流損を低減することが有効である。しかし、比抵抗を増加させるためには、Si,Al,Cr,Mnなどの比抵抗増加元素を多量に添加する必要があり、そのために、圧延負荷が増大して製造が困難になるほか、硬度の上昇によりユーザでの打抜き性が劣化するという問題点がある。また、比抵抗増加元素の添加は、渦電流損の低減には有利であるものの、飽和磁化を減少させるため、低速で高出力を得ようとする用途には好ましくない。また、板厚を減少した場合には、圧延性の低下や焼鈍費用の増加を招くとともに、鋼板の剛性低下によりユーザでの取り扱いが難しくなるなどの問題が発生する。   Now, the iron loss of the electrical steel sheet is the sum of hysteresis loss and eddy current loss, and the eddy current loss consists of classic eddy current loss and abnormal eddy current loss. It is known that the iron loss of the iron core increases due to the increase of eddy current loss. In order to suppress this increase, it is effective to reduce the classic eddy current loss by increasing the specific resistance of the electromagnetic steel sheet, which is a core material, or by reducing the plate thickness. However, in order to increase the specific resistance, it is necessary to add a large amount of specific resistance increasing elements such as Si, Al, Cr, Mn, etc., which increases the rolling load and makes it difficult to manufacture. There is a problem that the punching performance by the user deteriorates due to the rise in the height. The addition of the specific resistance increasing element is advantageous for reducing the eddy current loss, but is not preferable for the purpose of obtaining a high output at a low speed because the saturation magnetization is reduced. In addition, when the plate thickness is reduced, the rolling property is lowered and the annealing cost is increased, and problems such as difficulty in handling by the user due to the reduced rigidity of the steel plate occur.

そのため、比抵抗増加や板厚低減という上述した手段とは異なる、新たな高周波域での鉄損低減技術の開発が行われている。例えば、特許文献1には、板厚を0.10〜0.25mmに低減するとともに、平均結晶粒径を5〜60μmと従来の適正値よりも小さく制御し、異常渦電流損を低減する技術が提案されている。この技術は、鉄損が、結晶粒径が大きくなるほど減少するヒステリシス損と逆に増加する渦電流損の和であることから、使用周波数に応じて結晶粒径を最適化する、即ち、高周波域では、低周波域で最適化した結晶粒径よりも粒径を細かくする必要があるとの考えに基くものである。   For this reason, development of a new iron loss reduction technique in a high frequency region, which is different from the above-described means of increasing specific resistance and reducing plate thickness, has been performed. For example, Patent Document 1 proposes a technique for reducing abnormal eddy current loss by reducing the plate thickness to 0.10 to 0.25 mm and controlling the average crystal grain size to 5 to 60 μm, which is smaller than the conventional appropriate value. ing. In this technique, the iron loss is the sum of the hysteresis loss that decreases as the crystal grain size increases and the eddy current loss that increases conversely. Then, it is based on the idea that it is necessary to make the grain size finer than the crystal grain size optimized in the low frequency range.

また、磁性材料を高周波で磁化させた場合、表皮効果により磁束は板厚の表層部に集中し、渦電流も板厚表層部に集中する。従って、高周波域での鉄損低減のためには板厚表層部での鉄損低減が有効である。この考えに基く技術として、例えば、特許文献2や特許文献3には、化学気相蒸着等により浸珪・拡散処理し、鋼板表層のSi濃度を板厚中央部より高くして磁気特性を改善する技術が、特許文献4には、ヒステリシス損の役割に注目して、板厚最表層の結晶粒の粒径を適正に制御することにより高周波磁気特性を改善する技術が、さらに、特許文献5には、磁束の板厚表層部への集中に着目して、板厚表層部の集合組織を改善しヒステリシス損を低減する技術が開示されている。
特開平03−223445号公報 特開昭62−227033号公報 特開平11−209852号公報 特開平06−073511号公報 特開平07−150310号公報
Further, when the magnetic material is magnetized at a high frequency, the magnetic flux concentrates on the surface layer portion of the plate thickness due to the skin effect, and the eddy current also concentrates on the surface layer portion of the plate thickness. Therefore, in order to reduce the iron loss in the high frequency range, it is effective to reduce the iron loss in the surface layer portion of the plate thickness. As a technique based on this idea, for example, in Patent Document 2 and Patent Document 3, the magnetic properties are improved by performing silicon dioxide diffusion treatment by chemical vapor deposition or the like, and increasing the Si concentration of the steel sheet surface layer from the center of the plate thickness. Patent Document 4 discloses a technique for improving the high-frequency magnetic characteristics by properly controlling the grain size of the crystal grain of the outermost layer thickness, focusing on the role of hysteresis loss. Discloses a technique for improving the texture of the plate thickness surface layer portion and reducing the hysteresis loss, focusing on the concentration of magnetic flux on the plate thickness surface layer portion.
Japanese Unexamined Patent Publication No. 03-223445 JP-A-62-227033 JP-A-11-209852 Japanese Unexamined Patent Publication No. 06-073511 Japanese Unexamined Patent Publication No. 07-150310

しかしながら、特許文献1の技術は、高周波域における鉄損特性に対する最適結晶粒径を規定したに過ぎないため、結晶粒径の微細化に伴って低周波域での透磁率の減少やヒステリシス損の増加が避けられず、低周波域での鉄損が著しく劣化する。そのため、高速回転と同時に低速回転での運転効率を重視するような機器には適合しないという問題がある。また、特許文献2や3の技術は、浸珪処理に特殊な製造設備を必要とし、製造コストの増加を招くほか、浸珪量の増加に伴って飽和磁化が低下するという問題がある。さらに、特許文献4の技術は、鋼板表面の結晶粒がヒステリシス損に及ぼす影響が必ずしも一定でないため、安定的に低鉄損を得ることが難しいという問題がある。また、特許文献5の技術は、高周波域で問題となる渦電流損の有効な低減方法を開示していない。   However, since the technique of Patent Document 1 only defines an optimum crystal grain size for iron loss characteristics in a high frequency region, a decrease in magnetic permeability and hysteresis loss in a low frequency region as the crystal grain size becomes finer. The increase is unavoidable and the iron loss in the low frequency range is significantly deteriorated. For this reason, there is a problem that it is not suitable for a device that places importance on the driving efficiency at the same time as the high speed rotation. Further, the techniques of Patent Documents 2 and 3 have a problem that special manufacturing equipment is required for the siliconization treatment, resulting in an increase in manufacturing cost and a decrease in saturation magnetization as the amount of siliconization increases. Furthermore, the technique of Patent Document 4 has a problem that it is difficult to stably obtain a low iron loss because the influence of crystal grains on the steel sheet surface on the hysteresis loss is not always constant. Further, the technique of Patent Document 5 does not disclose an effective method for reducing eddy current loss, which is a problem in a high frequency range.

本発明の目的は、従来技術が抱える上述した問題点に鑑み、比抵抗増加元素の添加や板厚低減とは異なる方法で、低周波域だけでなく高周波域においても低鉄損を実現した無方向性電磁鋼板を提供することにある。   The object of the present invention is to realize the low iron loss not only in the low frequency range but also in the high frequency range by a method different from the addition of the specific resistance increasing element and the reduction of the plate thickness in view of the above-mentioned problems of the prior art. It is to provide a grain-oriented electrical steel sheet.

発明者らは、低周波域における磁気特性を劣化させることなく高周波域の鉄損を改善する方法について、鋭意検討を行った。その結果、高周波域では、磁束が板厚表層部に集中するため、板厚表層部の結晶粒を細かくすることが鉄損低減には有効であり、一方、低周波域では、結晶粒の微細化は鉄損低減には不利となるため、結晶粒を粗大にすることが鉄損低減には有効であることから、これら2つの技術を組み合わせて、鋼板表層部を微細粒、鋼板内部を粗大粒とし、かつ微細結晶粒と粗大結晶粒の大きさおよびそれらの領域の厚さを適正に制御することが低周波および高周波の両領域においても低鉄損を得るために有効であることを見出した。   The inventors diligently studied a method for improving the iron loss in the high frequency range without deteriorating the magnetic characteristics in the low frequency range. As a result, since the magnetic flux concentrates on the plate thickness surface layer portion in the high frequency range, it is effective to reduce the iron loss to make the crystal grains in the plate thickness surface layer portion fine. Since the reduction of iron loss is disadvantageous for reducing iron loss, it is effective to reduce the iron loss by making the crystal grains coarse, so these two technologies are combined to make the steel plate surface layer fine particles and the steel plate inside coarse. It has been found that it is effective to obtain a low iron loss in both low and high frequency regions by properly controlling the size of fine grains and coarse grains and the thickness of those areas. It was.

また、板厚内部の結晶粒を粗大化することにより、比較的低磁場における透磁率が増加する結果、表層部の結晶粒微細化による透磁率の低下を抑制することが可能となり、ひいては、低周波から高周波域の鉄損低減に対しても有利に作用することを見出した。すなわち、板厚内部の結晶粒の粗大化により、低周波域では、板厚全部が微細化される場合に比べて平均の透磁率が向上し、また、高周波域では、板厚内部はある程度磁化される必要があることから、板厚内部の結晶粒径が大きいことは、高周波域の透磁率の確保に有利に作用し、高周波域でのヒステリシス損を低減し、鉄損を低減できることを知見した。   In addition, by coarsening the crystal grains inside the plate thickness, the permeability in a relatively low magnetic field increases, and as a result, it is possible to suppress a decrease in the magnetic permeability due to the refinement of the crystal grains in the surface layer portion. It has been found that it has an advantageous effect on reducing iron loss from high frequency to high frequency range. That is, due to the coarsening of the crystal grains inside the plate thickness, the average permeability is improved in the low frequency range compared to the case where the entire plate thickness is reduced, and in the high frequency range, the inside of the plate thickness is magnetized to some extent. The fact that the crystal grain size inside the plate thickness is large has an advantageous effect on ensuring the permeability in the high frequency range, reduces the hysteresis loss in the high frequency range, and reduces the iron loss. did.

上記知見に基き開発された本発明は、Siを4mass%以下含有し、結晶粒の大きさが鋼板内部より鋼板表層部の方が小さい無方向性電磁鋼板において、板厚方向zにおける平均結晶粒径Dzが、その最小値Dminの1.5倍以下である鋼板表層部を微細結晶粒領域とし、残りの鋼板内部を粗大結晶粒領域としたとき、該微細結晶粒領域の片面当たりの厚さが全板厚の8〜25%であり、かつ微細結晶粒領域の平均結晶粒径が粗大結晶粒領域のそれの2〜70%であることを特徴とする高周波域の鉄損が低い無方向性電磁鋼板である。   The present invention developed on the basis of the above knowledge is a non-oriented electrical steel sheet containing Si of 4 mass% or less and having a crystal grain size smaller in the steel sheet surface layer than in the steel sheet. When the surface portion of the steel sheet whose diameter Dz is 1.5 times or less the minimum value Dmin is a fine grain region, and the remaining steel sheet is a coarse grain region, the thickness per one side of the fine grain region is all Non-directional electromagnetic wave with low iron loss in high frequency region, characterized in that it is 8-25% of plate thickness and average crystal grain size of fine grain region is 2-70% of that of coarse grain region It is a steel plate.

本発明によれば、低周波域での鉄損を大きく損なうことなく高周波域の鉄損を改善した無方向性電磁鋼板を安価に提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the non-oriented electrical steel sheet which improved the iron loss of a high frequency region can be provided cheaply, without impairing the iron loss in a low frequency region largely.

本発明における平均結晶粒径の測定方法について、図1を用いて説明する。この図1は、表層部と内部の結晶粒径が異なる(表層部の粒径<内部の粒径)鋼板の断面を模式的に示したものである。鋼板の圧延方向の板厚断面(圧延面に垂直な面)を、エッチングなどの方法で結晶粒界を顕にした後、この断面に対して、圧延面に平行な線分を板厚方向のある位置zに引き、この線と交差する結晶粒界の数を計測し、その数nで線分の長さLを割った値(L/n)を板厚方向zにおける平均結晶粒径Dzとする。このような測定を、板厚方向全域に亘り30μm以下の間隔で測定し、そのようにして得たDzの中で最も小さい平均結晶粒径をDminと定義する。なお、結晶粒の大きさに圧延方向と圧延直角方向(板幅方向)で差があるときは、両者の平均を平均結晶粒径とする。   The method for measuring the average crystal grain size in the present invention will be described with reference to FIG. FIG. 1 schematically shows a cross section of a steel sheet having a crystal grain size different from that of the surface layer portion (particle size of the surface layer portion <internal particle size). After revealing the grain boundaries in the sheet thickness section (plane perpendicular to the rolling surface) in the rolling direction of the steel sheet by etching or the like, a line segment parallel to the rolling surface is plotted in the sheet thickness direction on this section. The number of grain boundaries intersecting this line is measured at a certain position z, and the value (L / n) obtained by dividing the length L of the line segment by the number n is the average grain size Dz in the plate thickness direction z. And Such measurement is measured at intervals of 30 μm or less over the entire plate thickness direction, and the smallest average crystal grain size among Dz obtained in this way is defined as Dmin. When there is a difference in the size of crystal grains between the rolling direction and the direction perpendicular to the rolling direction (sheet width direction), the average of both is taken as the average crystal grain size.

また、微細結晶粒領域の厚さは以下の方法で決定する。上述した圧延面に平行な線分を板厚中心に置き、徐々にその位置zを表裏の板表面側に移動していったとき、平均結晶粒径Dzが初めて、最小平均結晶粒径Dminの1.5倍の大きさ(Dz=Dmin×1.5)となる位置の表裏の板厚表面からの距離をそれぞれt1、t2としたとき、この鋼板の両表面からの距離t1、t2のそれぞれ1.5倍の領域を微細結晶粒領域と定義し、残された板厚中央部t3を粗大結晶粒領域と定義する。そして、微細結晶粒領域および粗大結晶粒領域の平均結晶粒径は、それぞれの領域内部におけるDzを平均したものと定義する。 Further, the thickness of the fine crystal grain region is determined by the following method. When the above-mentioned line segment parallel to the rolling surface is placed at the center of the plate thickness and the position z is gradually moved to the front and back plate surface sides, the average crystal grain size Dz is the first to be the minimum average crystal grain size Dmin. when 1.5 times the size of the distance from the front and back of the plate thickness surface of the (Dz = Dmin × 1.5) and a position and t 1, t 2 respectively, the respective distances t 1, t 2 from each surface of the steel sheet 1.5 times the area is defined as the fine crystal grain region, the plate thickness central portion t 3 when left is defined as a large crystal grain region. The average crystal grain size of the fine crystal grain region and the coarse crystal grain region is defined as an average of Dz in each region.

次に、本発明に係る無方向性電磁鋼板を限定する理由について説明する。
微細結晶粒領域の厚さ:片面当たり板厚の8〜25%
鋼板表層部の微細結晶粒領域は、前述したように、高周波域において鋼板表面に集中する磁束による渦電流損を低減するために必要である。一般に、無方向性電磁鋼板の高周波特性は400Hzの周波数で評価されることが多いが、この400Hzでの鉄損低減を図るためには、鋼板表層部に片面当たり板厚の1/5程度の微細結晶粒領域、具体的には、板厚0.15〜0.5mmの電磁鋼板においては、片面当たり板厚の8〜25%である微細結晶粒領域を形成する必要がある。微細結晶粒領域の厚さが8%未満では、高周波域での鉄損低減効果が小さく、一方、25%を超えると、透磁率の低下を招いたり、低周波域での鉄損が増大したりするので好ましくない。この微細結晶粒領域の厚さは、使用される周波数や要求される透磁率のレベルに応じてこの範囲内で調整することが好ましい。好ましい微細結晶粒領域の範囲は、片面当たり板厚の10〜20%の範囲である。
なお、この微細結晶粒領域は、鋼板の表裏の表層部に存在するのが好ましい。また、表裏の微細結晶粒領域の厚さは均等であることが望ましいが、均等でない場合でも、それぞれが板厚の8〜25%の範囲内であれば相応の鉄損低減効果が得られる。
Next, the reason for limiting the non-oriented electrical steel sheet according to the present invention will be described.
Fine grain region thickness: 8-25% of plate thickness per side
As described above, the fine crystal grain region of the steel plate surface layer portion is necessary to reduce eddy current loss due to magnetic flux concentrated on the steel plate surface in the high frequency region. In general, the high-frequency characteristics of non-oriented electrical steel sheets are often evaluated at a frequency of 400 Hz. To reduce iron loss at 400 Hz, the surface thickness of the steel sheet is about 1/5 of the thickness per side. In a fine crystal grain region, specifically, in a magnetic steel sheet having a thickness of 0.15 to 0.5 mm, it is necessary to form a fine crystal grain region that is 8 to 25% of the plate thickness per side. If the thickness of the fine crystal grain region is less than 8%, the effect of reducing the iron loss in the high frequency range is small. On the other hand, if the thickness exceeds 25%, the permeability is lowered or the iron loss in the low frequency range is increased. This is not preferable. The thickness of the fine crystal grain region is preferably adjusted within this range according to the frequency used and the required magnetic permeability level. A preferable range of the fine grain region is a range of 10 to 20% of the plate thickness per side.
In addition, it is preferable that this fine crystal grain area | region exists in the surface layer part of the front and back of a steel plate. Further, it is desirable that the thicknesses of the fine crystal grain regions on the front and back sides are uniform, but even if they are not uniform, a corresponding effect of reducing iron loss can be obtained if each is within the range of 8 to 25% of the plate thickness.

微細結晶粒領域の平均結晶粒径:粗大結晶粒領域の平均結晶粒径の2〜70%
微細結晶粒領域は、高周波域において、鋼板の表面付近に集中する渦電流損を低減させることを目的としているのに対し、粗大結晶粒領域は、低周波域での鉄損増加を防止すると共に、低周波域から高周波域に亘って高い透磁率を確保することを目的としている。そのため、鋼板表層部の微細結晶粒領域の結晶粒は、鋼板中央部の粗大結晶粒領域の結晶粒よりも十分に細かい、具体的には、微細結晶粒領域の平均結晶粒径を粗大結晶粒領域の平均結晶粒径の2〜70%とする必要がある。表層部の微細結晶粒領域の平均粒径が、粗大結晶粒領域の平均粒径の2%を下回って過度に微細化すると、ヒステリシス損の増加が顕著になり鉄損改善効果が得られない。一方、表層部の微細結晶粒領域の平均粒径が、粗大結晶粒領域の平均粒径の70%を上回ると、鋼板表層部での渦電流損の低減効果が得られない。好ましい微細結晶粒領域の平均結晶粒径は、粗大結晶粒領域の平均結晶粒径の2〜60%であり、より好ましくは4〜40%である。
Average crystal grain size of fine crystal grain region: 2 to 70% of average crystal grain size of coarse crystal grain region
The fine grain region aims to reduce the eddy current loss concentrated near the surface of the steel plate in the high frequency region, while the coarse grain region prevents an increase in iron loss in the low frequency region. The object is to ensure a high magnetic permeability from the low frequency range to the high frequency range. Therefore, the crystal grains in the fine crystal grain region of the steel sheet surface layer portion are sufficiently finer than the crystal grains in the coarse crystal grain region in the central part of the steel plate. It is necessary to be 2 to 70% of the average crystal grain size of the region. When the average grain size of the fine crystal grain region in the surface layer part is excessively refined below 2% of the average grain size of the coarse crystal grain region, an increase in hysteresis loss becomes remarkable, and the iron loss improvement effect cannot be obtained. On the other hand, if the average grain size of the fine crystal grain region in the surface layer portion exceeds 70% of the average grain size of the coarse crystal grain region, the effect of reducing the eddy current loss in the steel plate surface layer portion cannot be obtained. The average crystal grain size of the fine crystal grain region is preferably 2 to 60%, more preferably 4 to 40% of the average crystal grain size of the coarse crystal grain region.

Si:4mass%以下
Siは、比抵抗を増加し、渦電流損を低減するのに有効な元素である。しかし、板厚を薄くして渦電流損の低減を図る場合には、敢えて添加する必要はない。一方、より高周波域での鉄損低減を図ろうとする場合には、使用される周波数域に応じてSiを2mass%以上添加させることが好ましい。ただし、Siの添加量が4mass%を超えると、圧延が困難となるため、4mass%以下に制限する。
Si: 4 mass% or less
Si is an element effective for increasing specific resistance and reducing eddy current loss. However, when the plate thickness is reduced to reduce eddy current loss, there is no need to add it. On the other hand, when trying to reduce the iron loss in a higher frequency range, it is preferable to add 2 mass% or more of Si according to the frequency range to be used. However, if the addition amount of Si exceeds 4 mass%, rolling becomes difficult, so the amount is limited to 4 mass% or less.

本発明では、Si以外の成分については、特に限定するものではなく、要求特性に応じて添加することができる。例えば、Mn,Cr,Al等の比抵抗増加元素は、飽和磁化を高めるために無添加とし、あるいは逆に、高周波鉄損を重視する観点から、積極的に添加してもよい。添加する場合には、Mn:0.1〜4mass%、Cr:0.05〜10mass%、Al:0.1〜4mass%の範囲であることが好ましい。また、鋼板表層部の結晶粒を微細化するために、Nb,P,S,Se,N,Sn,Sb,Ti,Cなどの結晶粒微細化効果のある元素を、素材スラブ製造の段階あるいはスラブや鋼板の段階で表層部に添加するようにしてもよい。表層部に添加する場合には、Nb:0.003〜0.5mass%、P:0.02〜1.0mass%、S:0.003〜0.1mass%、Se:0.003〜0.1mass%、N:0.003〜0.02mass%、Sn:0.02〜1mass%、Sb:0.01〜0.2mass%、Ti:0.06〜0.2mass%、C:0.006〜0.5mass%の範囲であることが好ましい。ただし、板厚中心部の粗大結晶粒領域については、析出物によるヒステリシス損への弊害を避ける観点から、Nb,S,Se,N,Ti,Cはそれぞれ0.0050mass%以下とするのが望ましい。   In the present invention, components other than Si are not particularly limited, and can be added according to required characteristics. For example, a specific resistance increasing element such as Mn, Cr, Al or the like may be not added to increase saturation magnetization, or conversely, from the viewpoint of placing importance on high-frequency iron loss. When adding, it is preferable that they are the range of Mn: 0.1-4mass%, Cr: 0.05-10mass%, Al: 0.1-4mass%. In addition, in order to refine the crystal grains in the surface layer of the steel sheet, an element having a grain refinement effect such as Nb, P, S, Se, N, Sn, Sb, Ti, C or the like is used in the material slab manufacturing stage or You may make it add to a surface layer part in the stage of a slab or a steel plate. When added to the surface layer, Nb: 0.003-0.5 mass%, P: 0.02-1.0 mass%, S: 0.003-0.1 mass%, Se: 0.003-0.1 mass%, N: 0.003-0.02 mass%, Sn : 0.02 to 1 mass%, Sb: 0.01 to 0.2 mass%, Ti: 0.06 to 0.2 mass%, C: preferably 0.006 to 0.5 mass%. However, with respect to the coarse crystal grain region at the center of the plate thickness, Nb, S, Se, N, Ti, and C are each preferably 0.0050 mass% or less from the viewpoint of avoiding adverse effects on the hysteresis loss due to precipitates.

本発明に係る電磁鋼板を製造する方法、すなわち、板厚表層部に適正な厚さの微細結晶粒領域を得る方法については、特に限定されるものではないが、例えば、鋳造法や爆着法等を用いたクラッド技術を用いて表層部と内部の成分が異なるスラブを鋳造し、表層部の結晶粒を微細化する方法、熱間圧延前のスラブや焼鈍前の鋼板の表面に対して浸炭処理を施して、α−γ変態を利用して表層粒を微細化する方法、最終冷間圧延後に鋼板表層部に窒化処理を施したり、めっき・拡散処理を施したりして、表層部の結晶粒を微細化する方法などを用いることができる。   The method for producing the electrical steel sheet according to the present invention, that is, the method for obtaining a fine crystal grain region having an appropriate thickness in the surface layer portion is not particularly limited. Casting slabs with different surface layer and internal components using clad technology, etc., and refining the crystal grains in the surface layer part, carburizing the surface of the slab before hot rolling and the steel sheet before annealing A method of refinement of surface layer grains using α-γ transformation, nitriding treatment or plating / diffusion treatment on the steel plate surface layer after final cold rolling, A method of refining grains can be used.

C:0.003mass%、Si:2.0mass%、Mn:0.3mass%、Al:0.3mass%、残部がFeおよび不可避的不純物からなる鋼スラブを連続鋳造により製造し、この鋼スラブを1200℃に再加熱後、熱間圧延により板厚2.0mmの熱延鋼板とした。上記スラブ加熱に当たっては、浸炭処理を施して、スラブ表面から種々の深さまでCを浸入させ、その後の熱間圧延におけるα−γ変態を利用して、鋼板の表層部を種々の厚さで微細化した。上記熱延鋼板は、その後、酸洗し、板厚0.35mmに冷間圧延してから、25%H2−75%N2雰囲気にて、脱炭焼鈍を兼ねた750℃×2分の最終焼鈍を行った。上記のようにして得た各種鋼板からエプスタイン試片を圧延方向とその直角方向からそれぞれ250gずつ、合計500g採取し、エプスタイン磁気試験に供した。 C: 0.003mass%, Si: 2.0mass%, Mn: 0.3mass%, Al: 0.3mass%, steel slab consisting of Fe and unavoidable impurities in the balance is manufactured by continuous casting. After heating, a hot rolled steel sheet having a thickness of 2.0 mm was obtained by hot rolling. In the above slab heating, carburizing treatment is performed, C is infiltrated from the slab surface to various depths, and the surface layer portion of the steel sheet is finely formed with various thicknesses by using α-γ transformation in the subsequent hot rolling. Turned into. The hot-rolled steel sheet is then pickled, cold-rolled to a thickness of 0.35 mm, and then subjected to decarburization annealing in a 25% H 2 -75% N 2 atmosphere. Annealing was performed. A total of 500 g of Epstein specimens were collected from the various steel plates obtained as described above, 250 g from each of the rolling direction and the direction perpendicular thereto, and subjected to the Epstein magnetic test.

エプスタイン磁気試験の結果を表1に示す。本発明の無方向性電磁鋼板は、表層部に微細結晶粒領域を有しない比較材に比べて、低周波域ではほぼ同等の鉄損値であるが、高周波域では、約10%以上低い鉄損値が得られている。なお、表1における鉄損改善率とは、表1のNo.1あるいはNo.2の鉄損値をAとし、No.3〜19の鉄損値をBとしたときに、下記式;
鉄損低減率(%)=(A−B)/A×100
で与えられる鉄損低減率を、W15/50、W13/100、W10/400、W5/1k、W5/2kの各鉄損値について求め、それらの平均値を示したものである。
The results of the Epstein magnetic test are shown in Table 1. The non-oriented electrical steel sheet of the present invention has an iron loss value that is almost equivalent in the low frequency range as compared with a comparative material that does not have a fine grain region in the surface layer portion, but is about 10% or more lower in the high frequency range. Loss values are obtained. The iron loss improvement rate in Table 1 is the following formula when the iron loss value of No. 1 or No. 2 in Table 1 is A and the iron loss value of No. 3 to 19 is B:
Iron loss reduction rate (%) = (A−B) / A × 100
The iron loss reduction rate given by is calculated for each iron loss value of W 15/50 , W 13/100 , W 10/400 , W 5 / 1k , W 5 / 2k , and shows the average value of them is there.

Figure 2005120403
Figure 2005120403

C:0.003mass%、Si:3.0mass%、Mn:0.3mass%、Al:0.3mass%、残部がFeおよび不可避的不純物からなる溶鋼を連続鋳造して鋼スラブとする際、ワイヤ添加法によりスラブの表層部分にNbを濃化させた。このスラブを1200℃に再加熱して、熱間圧延を行い板厚1.8mmの熱延鋼板とした後、この熱延鋼板を熱延板焼鈍し、酸洗し、その後、冷間圧延により板厚0.15mmの冷延鋼板としてから、25%H2−75%N2雰囲気において、850℃×1分の最終焼鈍を行った。このようにして得た鋼板から、エプスタイン試験片を圧延方向およびその直角方向からそれぞれ250gずつ合計500g採取し、エプスタイン磁気試験に供した。 C: 0.003mass%, Si: 3.0mass%, Mn: 0.3mass%, Al: 0.3mass%, when the molten steel consisting of Fe and inevitable impurities is continuously cast into a steel slab, the slab is added by the wire addition method. Nb was concentrated in the surface layer portion of. This slab is reheated to 1200 ° C and hot-rolled to obtain a hot-rolled steel sheet with a thickness of 1.8 mm. Then, the hot-rolled steel sheet is subjected to hot-rolled sheet annealing, pickling, and then cold-rolled. After forming a cold rolled steel sheet having a thickness of 0.15 mm, final annealing was performed at 850 ° C. for 1 minute in a 25% H 2 -75% N 2 atmosphere. From the steel plate thus obtained, a total of 500 g of Epstein test specimens were collected from the rolling direction and the right-angled direction, 250 g each, and subjected to the Epstein magnetic test.

エプスタイン磁気試験の結果を表2に示す。本発明の無方向性電磁鋼板は、比較材に比べて高周波域で低い鉄損値が得られており、低周波域での鉄損劣化も小さい。なお、表2における鉄損改善率とは、表2のNo.21あるいはNo.22の鉄損値をAとし、No.23の鉄損値をBとしたときに、下記式;
鉄損低減率(%)=(A−B)/A×100
で与えられる鉄損低減率を、W15/50、W10/400、W5/1kの各鉄損値について求め、その平均値を示したものである。
The results of the Epstein magnetic test are shown in Table 2. The non-oriented electrical steel sheet of the present invention has a low iron loss value in the high frequency range as compared with the comparative material, and the iron loss deterioration in the low frequency range is small. The iron loss improvement rate in Table 2 is the following formula when the iron loss value of No. 21 or No. 22 in Table 2 is A and the iron loss value of No. 23 is B:
Iron loss reduction rate (%) = (A−B) / A × 100
The iron loss reduction rate given by is obtained for each iron loss value of W 15/50 , W 10/400 , and W 5 / 1k , and the average value is shown.

Figure 2005120403
Figure 2005120403

本発明の無方向性電磁鋼板における微細結晶粒領域および粗大結晶粒領域の平均結晶粒径および厚さの測定方法を模式図に示した図である。It is the figure which showed in the schematic diagram the measuring method of the average crystal grain size and thickness of the fine grain area | region and coarse grain area | region in the non-oriented electrical steel sheet of this invention.

Claims (1)

Siを4mass%以下含有し、結晶粒の大きさが鋼板内部より鋼板表層部の方が小さい無方向性電磁鋼板において、板厚方向zにおける平均結晶粒径Dzが、その最小値Dminの1.5倍以下である鋼板表層部を微細結晶粒領域とし、残りの鋼板内部を粗大結晶粒領域としたとき、該微細結晶粒領域の片面当たりの厚さが全板厚の8〜25%であり、かつ微細結晶粒領域の平均結晶粒径が粗大結晶粒領域のそれの2〜70%であることを特徴とする高周波域の鉄損が低い無方向性電磁鋼板。

In a non-oriented electrical steel sheet containing 4 mass% or less of Si and having a crystal grain size smaller in the surface layer than in the steel sheet, the average grain size Dz in the thickness direction z is 1.5 times the minimum value Dmin. When the following steel plate surface layer portion is a fine crystal grain region and the remaining steel plate is a coarse crystal grain region, the thickness per one side of the fine crystal grain region is 8 to 25% of the total plate thickness, and A non-oriented electrical steel sheet having a low iron loss in a high frequency region, characterized in that an average crystal grain size in a fine grain region is 2 to 70% of that in a coarse grain region.

JP2003354658A 2003-10-15 2003-10-15 Non-oriented electrical steel sheet with low core loss in high-frequency region Pending JP2005120403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003354658A JP2005120403A (en) 2003-10-15 2003-10-15 Non-oriented electrical steel sheet with low core loss in high-frequency region

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003354658A JP2005120403A (en) 2003-10-15 2003-10-15 Non-oriented electrical steel sheet with low core loss in high-frequency region

Publications (1)

Publication Number Publication Date
JP2005120403A true JP2005120403A (en) 2005-05-12

Family

ID=34612498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003354658A Pending JP2005120403A (en) 2003-10-15 2003-10-15 Non-oriented electrical steel sheet with low core loss in high-frequency region

Country Status (1)

Country Link
JP (1) JP2005120403A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100721817B1 (en) 2005-12-14 2007-05-28 주식회사 포스코 Non-oriented electrical steel sheets with improved magnetic property and method for manufacturing the same
JP2013044012A (en) * 2011-08-23 2013-03-04 Nippon Steel & Sumitomo Metal Corp Non-oriented electromagnetic steel sheet, and method of producing the same
JP2013044010A (en) * 2011-08-23 2013-03-04 Nippon Steel & Sumitomo Metal Corp Non-oriented electromagnetic steel sheet, and method of producing the same
JP2013044008A (en) * 2011-08-23 2013-03-04 Nippon Steel & Sumitomo Metal Corp Non-oriented electromagnetic steel sheet
JP2013044011A (en) * 2011-08-23 2013-03-04 Nippon Steel & Sumitomo Metal Corp Non-oriented electromagnetic steel sheet, method of producing the same, and method of evaluating cold rollability
JP2013044009A (en) * 2011-08-23 2013-03-04 Nippon Steel & Sumitomo Metal Corp Non-oriented electromagnetic steel sheet, and method of producing the same
JP2016048991A (en) * 2014-08-27 2016-04-07 日本電産株式会社 Motor armature, and motor
WO2018164185A1 (en) * 2017-03-07 2018-09-13 新日鐵住金株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing non-oriented electromagnetic steel sheet
JP2019199643A (en) * 2018-05-17 2019-11-21 日本製鉄株式会社 Nonoriented electromagnetic steel sheet and manufacturing method therefor
JP2021509442A (en) * 2017-12-26 2021-03-25 ポスコPosco Non-oriented electrical steel sheet and its manufacturing method
CN114514332A (en) * 2019-10-03 2022-05-17 杰富意钢铁株式会社 Non-oriented electromagnetic steel sheet and method for producing same

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100721817B1 (en) 2005-12-14 2007-05-28 주식회사 포스코 Non-oriented electrical steel sheets with improved magnetic property and method for manufacturing the same
JP2013044012A (en) * 2011-08-23 2013-03-04 Nippon Steel & Sumitomo Metal Corp Non-oriented electromagnetic steel sheet, and method of producing the same
JP2013044010A (en) * 2011-08-23 2013-03-04 Nippon Steel & Sumitomo Metal Corp Non-oriented electromagnetic steel sheet, and method of producing the same
JP2013044008A (en) * 2011-08-23 2013-03-04 Nippon Steel & Sumitomo Metal Corp Non-oriented electromagnetic steel sheet
JP2013044011A (en) * 2011-08-23 2013-03-04 Nippon Steel & Sumitomo Metal Corp Non-oriented electromagnetic steel sheet, method of producing the same, and method of evaluating cold rollability
JP2013044009A (en) * 2011-08-23 2013-03-04 Nippon Steel & Sumitomo Metal Corp Non-oriented electromagnetic steel sheet, and method of producing the same
JP2016048991A (en) * 2014-08-27 2016-04-07 日本電産株式会社 Motor armature, and motor
CN106208427A (en) * 2014-08-27 2016-12-07 日本电产株式会社 Motor armature and motor
WO2018164185A1 (en) * 2017-03-07 2018-09-13 新日鐵住金株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing non-oriented electromagnetic steel sheet
CN110366604A (en) * 2017-03-07 2019-10-22 日本制铁株式会社 The manufacturing method of non-oriented magnetic steel sheet and non-oriented magnetic steel sheet
JPWO2018164185A1 (en) * 2017-03-07 2019-12-26 日本製鉄株式会社 Non-oriented electrical steel sheet and method for producing non-oriented electrical steel sheet
CN110366604B (en) * 2017-03-07 2021-08-10 日本制铁株式会社 Non-oriented magnetic steel sheet and method for producing non-oriented magnetic steel sheet
US11124854B2 (en) 2017-03-07 2021-09-21 Nippon Steel Corporation Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet
US11486019B2 (en) 2017-12-26 2022-11-01 Posco Non-oriented electrical steel sheet and manufacturing method therefor
JP2021509442A (en) * 2017-12-26 2021-03-25 ポスコPosco Non-oriented electrical steel sheet and its manufacturing method
JP7260546B2 (en) 2017-12-26 2023-04-18 ポスコ カンパニー リミテッド Non-oriented electrical steel sheet and manufacturing method thereof
JP2019199643A (en) * 2018-05-17 2019-11-21 日本製鉄株式会社 Nonoriented electromagnetic steel sheet and manufacturing method therefor
JP7127358B2 (en) 2018-05-17 2022-08-30 日本製鉄株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
CN114514332B (en) * 2019-10-03 2023-03-14 杰富意钢铁株式会社 Non-oriented electromagnetic steel sheet and method for producing same
CN114514332A (en) * 2019-10-03 2022-05-17 杰富意钢铁株式会社 Non-oriented electromagnetic steel sheet and method for producing same

Similar Documents

Publication Publication Date Title
JP4855222B2 (en) Non-oriented electrical steel sheet for split core
KR100956530B1 (en) Nonoriented electromagnetic steel sheet
JP5854182B2 (en) Method for producing non-oriented electrical steel sheet
JP6913683B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP4855220B2 (en) Non-oriented electrical steel sheet for split core
JP6842546B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP5429411B1 (en) Non-oriented electrical steel sheet
JP2021509154A (en) Non-oriented electrical steel sheet and its manufacturing method
JP4319889B2 (en) Non-oriented electrical steel sheet with excellent all-round magnetic properties and method for producing the same
JP2004300535A (en) High strength nonoriented silicon steel sheet having excellent magnetic property, and its production method
JP5724837B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2005120403A (en) Non-oriented electrical steel sheet with low core loss in high-frequency region
JP2008127659A (en) Non-oriented electromagnetic steel sheet with less anisotropy
JP4696750B2 (en) Method for producing non-oriented electrical steel sheet for aging heat treatment
JP4358550B2 (en) Method for producing non-oriented electrical steel sheet with excellent rolling direction and perpendicular magnetic properties in the plate surface
JP2018178198A (en) Nonoriented electromagnetic steel sheet and manufacturing method therefor
JP7253054B2 (en) Non-oriented electrical steel sheet with excellent magnetism and its manufacturing method
JP5839778B2 (en) Non-oriented electrical steel sheet with excellent high-frequency iron loss and manufacturing method thereof
WO2020188812A1 (en) Non-oriented electromagnetic steel sheet
JP2020180347A (en) Electromagnetic steel sheet and method for producing the same
JP4424075B2 (en) Non-oriented electrical steel sheet, non-oriented electrical steel sheet for aging heat treatment, and production method thereof
JP2008260996A (en) Non-oriented electromagnetic steel sheet superior in magnetic properties in rolling direction, and manufacturing method therefor
JP6617857B1 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP7445656B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP4568999B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof