JP2004300535A - High strength nonoriented silicon steel sheet having excellent magnetic property, and its production method - Google Patents

High strength nonoriented silicon steel sheet having excellent magnetic property, and its production method Download PDF

Info

Publication number
JP2004300535A
JP2004300535A JP2003095881A JP2003095881A JP2004300535A JP 2004300535 A JP2004300535 A JP 2004300535A JP 2003095881 A JP2003095881 A JP 2003095881A JP 2003095881 A JP2003095881 A JP 2003095881A JP 2004300535 A JP2004300535 A JP 2004300535A
Authority
JP
Japan
Prior art keywords
less
steel sheet
excellent magnetic
temperature
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003095881A
Other languages
Japanese (ja)
Other versions
JP4380199B2 (en
Inventor
Masaaki Kono
雅昭 河野
Minoru Takashima
稔 高島
Masaki Kono
正樹 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003095881A priority Critical patent/JP4380199B2/en
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to EP12002344.5A priority patent/EP2489753B1/en
Priority to EP03777194.6A priority patent/EP1580289B1/en
Priority to KR1020057010094A priority patent/KR100709056B1/en
Priority to PCT/JP2003/015462 priority patent/WO2004050934A1/en
Priority to US10/537,194 priority patent/US7513959B2/en
Priority to TW092134160A priority patent/TWI257430B/en
Publication of JP2004300535A publication Critical patent/JP2004300535A/en
Application granted granted Critical
Publication of JP4380199B2 publication Critical patent/JP4380199B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reconcile satisfactory magnetic properties and high strength in a nonoriented silicon steel sheet, and to industrially stably produce the same. <P>SOLUTION: The nonoriented silicon steel sheet has a componential composition comprising ≤0.02% C, ≤4.5% Si, ≤3.0% Mn, ≤3.0% Al, ≤0.50% P, 0.5 to 5.0% Ni and 0.2 to 4.0% Cu, and the balance Fe with inevitable impurities, and in which tensile strength is controlled to be CTS (MPa) shown by the following formula or larger: CTS=5600[%C]+87[%Si]+15[%Mn]+70[%Al]+430[%P]+37[%Ni]+22d<SP>-1/2</SP>+230; wherein, d is the average grain size (mm) of the crystal grains. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、無方向性電磁鋼板、特に高速回転モータのロータを典型例とする、大きな応力がかかる部品に用いて好適な、高強度でかつ低鉄損の特性を有する無方向性電磁鋼板およびその製造方法に関するものである。
【0002】
【従来技術】
近年、モータの駆動システムの発達により、駆動電源の周波数制御が可能となり、可変速運転や商用周波数以上で高速回転を行うモータが増加している。このような高速回転を行うモータでは、高速回転に耐え得るロータが必要になる。すなわち、回転体に作用する遠心力は回転半径に比例し、回転速度の2乗に比例して大きくなるため、中・大型の高速モータではロータに作用する応力が600MPaを超える場合もある。従って、こうした高速回転モータでは、ロータの強度が高いことが必要となる。
【0003】
また、近年のモータ効率向上の観点から増加した、ロータに永久磁石を埋め込んだ磁石埋設型DCインバータ制御モータでは、遠心力でロータから磁石が飛び出そうとするが、これを抑える際に、ロータに使用された電磁鋼板には大きな力が掛かる。このためにも、モータ、特にロータに使用される電磁鋼板には、高強度が必要とされている。
【0004】
モータ、発電機などの回転機器は、電磁気現象を利用するため、その素材には磁気特性、すなわち低鉄損、高磁束密度であることが望ましい。通常、ロータコアはプレス打ち抜きした無方向性電磁鋼板を積層して使用するが、高速回転モータにおいてロータ素材が上述の機械強度が満足できない場合は、より高強度の鋳鋼製ロー夕などを使用せざるを得ないのが現状である。しかしながら、鋳物製ロー夕は一体物であるため、ロータに作用するリップル損と呼ばれる高周波磁束による渦電流損が電磁鋼板を積層したロータより大きく、モータ効率が低下してしまう要因となっている。従って、磁気特性に優れ、かつ高強度の電磁鋼板がロータ用素材として要望されているのである。
【0005】
金属学的には、高強度化の手段として、固溶強化、析出強化および結晶粒微細化の3つの方法が知られており、電磁鋼板に適用した例も見られる。例えば、固溶強化を利用したものとしては、特許文献1には、Si含有量を3.5〜7.0%に高めたうえに固溶強化能の大きい元素を添加する方法が開示されている。また、特許文献2には、Si含有量を2.0〜3.5%とし、NiあるいはNiとMnの両方の含有量を高め、650〜850℃という低温焼鈍により製造することで再結晶粒径を制御する方法が開示されている。さらに、析出強化を利用する方法としては、特許文献3に、Si含有量を2.0〜4.0%とし、Nb,Zr,Ti,Vの微細な炭化物、窒化物を析出させる方法が開示されている。
【0006】
【特許文献1】
特開昭60−238421号公報
【特許文献2】
特開昭62−256917号公報
【特許文献3】
特開平6−330255号公報
【0007】
【発明が解決しようとする課題】
これらの方法により、ある程度の高強度を有する電磁鋼板が得られる。しかしながら、特許文献1に記載されるようなSi量が多い鋼では、冷間圧延性が著しく低下し、安定的な工業生産が困難となる不利がある。さらに、この技術により得られる鋼板は磁束密度B50が1.56〜1.60Tと大幅に低下してしまうという問題もあった。
【0008】
特許文献2における方法では、機械強度を高めるため低温焼鈍による再結晶粒成長の抑制が必要となるため、磁気特性、特に比較的周波数の低い商用周波数から数100Hzでの鉄損が低下するという問題があった。そのため、これらの周波数域での鉄損が重要となるステータ部材には使用することが出来ないため、モータ打ち抜き加工時の歩留まりが大幅な低下が余儀なくされていた。すなわち、ステータおよびロータを打抜く際、通常は同じ1枚の鋼板から、まず円環状のステータを打抜く一方で、その中空部からロータを打抜くことにより無駄を少なくしているが、特許文献2の方法では両者を別々の鋼板から打抜く必要があり、歩留まりが低下してしまうのである。
【0009】
一方、特許文献3に記載の方法では、炭、窒化物自体が磁壁移動の障壁となるため、また炭、窒化物が電磁鋼板の結晶粒成長を妨げるため、鉄損に劣るという問題がある。
【0010】
以上のように、従来の方法は、安定的に工業生産可能な電磁鋼板において、高強度と低鉄損とを両立するという観点からは、いずれも満足できるものでは無かった。
【0011】
本発明は、良好な磁気特性と高強度とを両立した無方向性電磁鋼板およびこの鋼板を工業的に安定して生産することを可能とする製造方法について提案することを目的とする。
【0012】
【課題を解決するための手段】
発明者らは、上記課題を解決するために、Cuを含んだ鋼の時効硬化現象に着目して種々の検討を行った結果、良好な鉄損と高強度とを両立するための手段を確立するに到った。すなわち、鋼中の析出物は高強度化に寄与すると同時に、磁壁移動を抑制して劣化させるという、従来の知見に反して、鋼中にCuを適量添加して時効処理を行うことにより、20nm以下の極微細にCuを析出させることが可能であること、そして、こうして得られた極微細析出物は、高強度化に非常に有効であるが、鉄損(履歴損)はほとんど劣化させないことを、新規に知見した。さらに、このCu析出に関し、CuとNiを複合添加すると、鋼板の製造工程における熱履歴により生じる析出が大幅に低減する結果、広範な焼鈍条件によっても安定的に高強度かつ低鉄損が得られることを新規に知見し、本発明を完成するに到った。
【0013】
本発明の要旨構成は、以下の通りである。
(1)質量%で、
C:0.02%以下、
Si:4.5%以下、
Mn:3.0%以下、
Al:3.0%以下、
P:0.50%以下、
Ni:0.5%以上5.0%以下および
Cu:0.2%以上4.0%以下
を含有し、残部Feおよび不可避的不純物の成分組成を有し、引張強さが下記式で示されるCTS(MPa)以上であることを特徴とする磁気特性の優れた高強度無方向性電磁鋼板。

CTS=5600[%C]+87[%Si]+15[%Mn]+70[%Al]+430[%P]+37[%Ni]+22d−1/2+230
ただし、d:結晶粒の平均粒径(mm)
【0014】
(2)上記(1)において、成分組成として、さらにZr、V、Sb、Sn、Ge、B、Ca、希土類元素およびCoから選んだ1種または2種以上を、
ZrおよびVについてはそれぞれ0.1〜3.0%、
Sb、SnおよびGeについてはそれぞれ0.002〜0.5%、
B,Caおよび希土類元素についてはそれぞれ0.001〜0.01%、そして
Coについては0.2〜5.0%
にて含有することを特徴とする磁気特性の優れた高強度無方向性電磁鋼板。
【0015】
(3)質量%で、
C:0.02%以下、
Si:4.5%以下、
Mn:3.0%以下、
Al:3.0%以下、
P:0.50%以下、
Ni:0.5%以上5.0%以下および
Cu:0.2%以上4.0%以下
を含有する鋼スラブに、熱間圧延を施した後、冷間圧延あるいは温間圧延を施して最終板厚とした後、最終到達温度が650〜1150℃かつ900℃〜400℃の温度域での冷却速度が1℃/s以上である、仕上げ焼鈍を施した後、400℃以上650℃以下の温度にて時効処理を施すことを特徴とする磁気特性の優れた高強度無方向性電磁鋼板の製造方法。
【0016】
(4)質量%で、
C:0.02%以下、
Si:4.5%以下、
Mn:3.0%以下、
Al:3.0%以下、
P:0.50%以下、
Ni:0.5%以上5.0%以下および
Cu:0.2%以上4.0%以下
を含み、さらにZr、V、Sb、Sn、Ge、B、Ca、希土類元素およびCoから選んだ1種または2種以上を、
ZrおよびVについてはそれぞれ0.1〜3.0%、
Sb、SnおよびGeについてはそれぞれ0.002〜0.5%、
B,Caおよび希土類元素についてはそれぞれ0.001〜0.01%、そして
Coについては0.2〜5.0%
にて含有する鋼スラブに、熱間圧延を施した後、冷間圧延あるいは温間圧延を施して最終板厚とした後、最終到達温度が650〜1150℃かつ900℃〜400℃の温度域での冷却速度が1℃/s以上である、仕上げ焼鈍を施した後、400℃以上650℃以下の温度にて時効処理を施すことを特徴とする磁気特性の優れた高強度無方向性電磁鋼板の製造方法。
【0017】
【発明の実施の形態】
次に、本発明について、その構成要件毎に詳述する。
(鋼板の成分組成)
まず、成分組成範囲およびその限定理由を説明する。なお、本明細書において鋼組成を表す%は、特にことわらない限り質量%を意味するものである。
C:0.02%以下
C量が0.02%を超えると磁気時効により鉄損が著しく劣化するため、0.02%以下に制限する。
【0018】
Si:4.5%以下
Siは、脱酸剤として有用であることに加え、電気抵抗の増加により電磁鋼板の鉄損を低減する効果が大きい。さらに、固溶強化により強度向上に寄与する。脱酸剤としては、0.05%以上の含有で効果が顕著となる。また、鉄損低減および固溶強化のためには0.5%以上、さらに好適には1.2%以上で含有させる。しかし、4.5%を超えると、鋼板の圧延性の劣化が激しくなるため、その含有量は4.5%以下に制限する。
【0019】
Mn:3.0%以下
Mnは、固溶強化による強度向上に有効な元素であることに加え、熱間脆性の改善に有効な元素であり、好ましくは0.05%以上で含有させる。しかし、過剰な添加は鉄損の劣化をもたらすため、その含有量を3.0%以下に制限する。
【0020】
Al:3.0%以下
Alは、脱酸剤として有効であり、好ましくは0.5ppm以上含有させる。しかし、過剰な添加は圧延性の低下をもたらすので、その添加量を3.0%以下に制限する。
【0021】
P:0.50%以下
Pは、比較的少量の添加でも大幅な固溶強化能が得られるため高強度化に極めて有効であり、好ましくは0.01%以上で含有させる。一方、過剰な含有は偏析による脆化を引き起し、粒界割れや圧延性の低下をもたらすため、その含有量は0.50%以下に制限する。
【0022】
次に、CuおよびNiの添加は、本発明において最も重要な事項である。
Cu:0.2%以上4.0%以下
Cuは、時効処理によって微細な析出物を形成することにより、ほとんど鉄損(履歴損)の劣化を伴わずに、大幅な強度上昇をもたらす。その効果を得るには、後述するNiを含有する条件において0.2%以上が必要である。一方、4.0%を超えると粗大な析出物が形成されるため、鉄損の劣化が大きくなるとともに、強度上昇代も低下する。従って、Cuの含有量は0.2%以上4.0%以下、好適には0.3%以上2.0%以下の範囲とする。
【0023】
Ni:0.5%以上5.0%以下
Niは、それ自体が固溶強化による高強度化に有効な元素であるが、Cuとともに添加するとCuの固溶析出状態に影響し、時効により極めて微細なCu析出物を安定的に析出させる効果を有する。その結果、Cu時効析出による高強度化効果を大幅に高めることが可能となる。また、Niはへゲと呼ばれる熱延板表面欠陥を減少し鋼板歩留まりを改善する効果も有する。これらの効果を得るために、最低でも0.5%以上の添加が必要である。一方、5.0%を超えると、その効果は飽和しコスト高をまねくだけになるため、その上限を5.0%とする。より好適には、1.0%以上3.5%以下の範囲とする。
【0024】
上記元素の他は、Fe(鉄)および不可避的不純物である。不可避的不純物としてのSおよびNは、鉄損の観点からそれぞれ0.01%以下とすることが望ましい。
【0025】
本発明に係わる無方向性電磁鋼板の基本組成は以上の通りであるが、上記成分に加えて、磁気特性の改善元素として知られるZr,V,Sb,Sn,Ge,B,Ca,希土類元素およびCoを単独または複合で添加することが出来る。しかし、その添加量は本発明の目的を害さない程度にすべきである。具体的には、
Zr,Vについては0.1〜3.0%
Sb,Sn,Geについては0.002〜0.5%
B,Ca,および希土類元素については0.001〜0.01%
Coについては0.2〜5.0%
である。
【0026】
本発明では、上記の成分範囲ならびに後述の製造条件とすることにより、時効後のCu析出を適正化することができ、その結果、製品の引張強さTS(MPa)は、下記式で表されるCTS 以上となる。

CTS=5600[%C]+87[%Si]+15[%Mn]+70[%Al]+430[%P]+37[%Ni]+22d−1/2+230
【0027】
ここで、各元素の係数は、各元素1%あたりの固溶あるいは析出強化量に相当する項、dは製品の平均結晶粒径(直径:mm)であり、ナイタール腐食液などでエッチングされた試料を光学顕微鏡により観察し、観察視野面積と視野内の結晶粒数より結晶粒の円相当径として求められるものである。平均結晶粒径dが小さいほど結晶粒微細化により高強度化されるが、鉄損が劣化する。そのため、求められる強度、鉄損特性に応じて結晶粒径dを調整する。
【0028】
(製造方法)
本発明に係わる鉄損に優れた高強度無方向性電磁鋼板を製造するためには、まず、転炉あるいは電気炉などにて、前記した所定成分に溶製された鋼を、連続鋳造あるいは造塊後の分塊圧延により鋼スラブとする。次いで、得られたスラブを熱間圧延し、必要に応じて熱延坂焼鈍を施し、一回あるいは中間焼鈍を挟む二回以上の冷間圧延あるいは温間圧延を施して製品板厚とし、仕上げ焼鈍を施し、その後時効処理を施す。さらに、仕上げ焼鈍後のいずれかの段階において、必要に応じて絶縁被膜の塗布および焼き付け処理を行う。
【0029】
本発明では、素材のSi量を高めることなく後工程で高強度化するので、冷間圧延により製造することが可能である。なお、温間圧延には集合組織を改善し鉄損および磁束密度を向上させる効果を有するため、温間圧延を採用することもできる。
【0030】
上記の仕上げ焼鈍は、圧延による歪を除去するとともに、必要な鉄損特性を得るため再結晶により適切な結晶粒径を得ることを目的とする。適性な結晶粒径は求められる鉄損レベルにもよるが、一般に20〜200μmであり、そのためには仕上げ焼鈍の最終到達温度は700℃以上が必要である。一方、1150℃を超える焼鈍を行うと粗大粒となり粒界割れを起こしやすくなるとともに、鋼板表面の酸化窒化に伴う鉄損劣化が大きくなるため、その上限は1150℃とする。
【0031】
発明者らは、Cuの微細析出を活用する場合、仕上げ焼鈍の冷却条件が重要であることを見出した。すなわち、仕上げ焼鈍の冷却過程において、Cuの固溶温度から600℃までの冷却速度が十分に速くないと、一部のCuが冷却中に粗大に析出するため、鉄損の劣化要因となり、またその後の時効焼鈍によっても粗大な析出物の量が増加し十分な強度が得られない場合があるのである。ここで、Cuのみ含有しNiを含有しない場合、その冷却速度は900℃〜400℃の温度域で10℃/s以上であることが必要であった。
【0032】
ところが、Cuとともに本発明範囲のNiを含有した場合、冷却速度は1℃/s以上であれば冷却中の粗大な析出が抑制出来、その後の時効処理によって鉄損の大幅な劣化を伴うことなく十分な強度上昇が得られる。つまり、CuとNiを複合添加して時効処理を行う場合には、Niを添加しない場合と比較して、より多様な仕上げ焼鈍条件で安定した特性を得ることができる。したがって、仕上げ焼鈍後の冷却の際、焼鈍における最高到達温度が900℃を超える場合には900℃から、焼鈍最高到達温度が900℃以下の場合には仕上げ焼鈍温度から、400℃までの温度域での冷却速度を1℃/s以上に制限する。
以上の条件を満足すれば、続く時効処理後の強度は、
CTS=5600[%C]+87[%Si]+15[%Mn]+70[%Al]+430[%P]+37[%Ni]+22d−1/2+230
以上とすることができる。
【0033】
引き続く時効処理は、400℃以上650℃以下の温度で行う。すなわち、400℃未満の場合には、微細Cuの析出が不十分となり、高強度が得られない。一方、650℃を越えるとCu析出物が粗大化するため、鉄損が劣化し強度上昇量も減少するため、良好な強度−鉄損バランスを有する電磁鋼板が得られない。なお、適切な時効時間は処理温度にも依存するが、10min〜1000hが好適である。なお、この時効処理の実施時期は、絶縁被膜の塗布焼付け前、焼付け後、プレス打ち抜きなどの加工後、などのいずれのタイミングで実施してもよい。
【0034】
【実施例】
実施例1
表1に示す、Si:3%、Mn:0.2%およびAl:0.3%を基本成分として、CuおよびNi含有量を変化させた、残部が鉄および不可避不純物からなる鋼スラブを、熱間圧延により板厚2.0mmとし、ついで表2に示すように、無焼鈍または1000℃で300sの熱延板焼鈍を施した後、酸洗ならびに仕上げ板厚0.35mmの冷間圧延を行った。さらに、最高到達温度950℃で30s均熱保持の仕上げ焼鈍を施したのち、900℃〜400℃の温度域での冷却速度を6℃/sの条件で冷却した。その後、絶縁被膜を塗布焼付けしてから、時効のために550℃で5hの熱処理を施し製品板とした。
【0035】
かくして得られた製品板について、鉄損特性および機械特性を評価した。なお、製品板での成分組成は、スラブ段階とほぼ同様であった。鉄損は圧延方向と圧延直角方向の試料を等量用いて、エプスタイン法により評価した。機械的特性は、圧延方向と圧延直角方向とから切り出した試料の平均をもって評価した。その結果を、表1に示す。
【0036】
また、従来の、公知の固溶強化、結晶粒微細化強化、析出強化などによって高張力とした電磁鋼板として、以下に示すものも試作した。
すなわち、固溶強化を利用した例として、表2に示すように、C:0.002%、Si:4.5%、Mn:0.2%、P:0.01%、Al:0.6%、W:1.0%およびMo:1.0%を含み、残部が鉄および不可避不純物からなる鋼スラブを熱間圧延し、900℃で30sの熱延板焼鈍を行った後、400℃で温間圧延して0.35mm厚に仕上げ、950℃×30sの仕上げ焼鈍を行った。
固溶強化および結晶粒微細化を利用した例として、表2に示すように、C:0.005%、Si:3%、Mn:0.2%、P:0.05%およびNi:4.5%を含み、残部が鉄および不可避不純物からなる鋼を熱間圧延し、次いで冷間圧延して0.35mm厚としたのち、800℃で30sの仕上げ焼鈍を行った。
析出強化を利用した例として、表2に示すように、C:0.03%、Si:3.2%、Mn:0.2%、P:0.02%、Al:0.65%、N:0.003%、Nb:0.018%およびZr:0.022%を含み、残部が鉄および不可避不純物からなる鋼を、熱間圧延後0.35mm厚に冷間圧延し、750℃×30sの仕上げ焼鈍を施した。
なお、いずれの場合も、時効処理は行わなかった。
【0037】
【表1】

Figure 2004300535
【0038】
【表2】
Figure 2004300535
【0039】
本発明による鋼板No.7〜13は、ベース組成を有する比較例である鋼板No.1とほぼ同等の優れた磁気特性を有しつつ、大幅な高強度が得られている。さらに、従来の高強度電磁鋼板である鋼板No.14〜16と比較しても、大幅な低鉄損あるいは高磁束密度性を有し、強度−磁気特性バランスに優れている。
【0040】
実施例2
表1に示した比較鋼Cおよび発明鋼Jを、熱間圧延により板厚2.0mmとし、ついで1000℃で300sの熱延板焼鈍を施した後、酸洗並びに仕上げ板厚0.35mmの冷間圧延を行った。さらに、最高到達温度950℃にて30s均熱保持する仕上げ焼鈍を施し、900℃〜400℃の温度域での冷却速度を表3に示す種々の条件に変化させて冷却した。その後、絶縁被膜を塗布焼付けして焼鈍板とした。得られた焼鈍板に時効のため550℃で5hの熱処理を施して製品板とした。かくして得られた製品板について、鉄損特性および機械特性を評価した。なお、製品板での成分組成はスラブ段階とはぼ同様であった。その結果を表3、そして図1および2に示す。
【0041】
【表3】
Figure 2004300535
【0042】
鋼Cは、鋼板No.18および19に示すように、10℃/s以上の比較的速い冷却速度の場合には優れた磁気特性と高強度を示すものの、10℃/s以下の条件では鉄損が劣化し、強度も低下する傾向にある。それに対して、Cuとともに適量のNiを添加した発明鋼Jは、鋼板No.22〜24に示すように、幅広い冷却速度条件で安定して優れた磁気特性と高強度を両立することが可能であった。
【0043】
実施例3
表4に示す組成を有する残部が鉄および不可避不純物からなる鋼を、熱間圧延により板厚2.0mmとし、ついで無焼鈍または表5に示す温度で300sの熱延板焼鈍を施した後、酸洗ならびに所定厚さまでの冷間圧延を行った。さらに、表5の温度で30s均熱保持の仕上げ焼鈍を施し、900℃〜400℃の温度域での冷却速度を6℃/sの条件で冷却した。その後、絶縁被膜を塗布焼付けして焼鈍板とした。得られた焼鈍板に時効のため表5に示す温度で10hの時効処理を施して製品板とした。かくして得られた製品板について、鉄損特性および機械特性を評価した。その結果を表5に併記する。なお、製品板での成分組成はスラブ段階とほぼ同様であった。表5から、いずれの試料もそれぞれの鋼板グレードにおいて、優れた磁気特性と非常に高い強度特性を有していることがわかる。
【0044】
【表4】
Figure 2004300535
【0045】
【表5】
Figure 2004300535
【0046】
【発明の効果】
以上のように本発明によれば、磁気特性に優れ、しかも高い強度を有する電磁鋼板を安定して提供することできる。
【図面の簡単な説明】
【図1】時効処理後の鉄損に及ぼす仕上げ焼鈍冷却速度の影響を示す図である。
【図2】時効処理後の引張強さに及ぼす仕上げ焼鈍冷却速度の影響を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is a non-oriented electrical steel sheet, particularly a typical example of a rotor of a high-speed rotation motor, suitable for parts subjected to large stress, high-strength and non-oriented electrical steel sheet having low iron loss characteristics and It relates to the manufacturing method.
[0002]
[Prior art]
In recent years, with the development of motor drive systems, it has become possible to control the frequency of a drive power supply, and the number of motors that perform high-speed rotation at variable speed operation or commercial frequency is increasing. Such a motor that rotates at high speed requires a rotor that can withstand high-speed rotation. That is, since the centrifugal force acting on the rotating body increases in proportion to the radius of rotation and in proportion to the square of the rotation speed, the stress acting on the rotor may exceed 600 MPa in a medium-sized or large-sized high-speed motor. Therefore, in such a high-speed rotation motor, the strength of the rotor needs to be high.
[0003]
In addition, in a magnet embedded DC inverter control motor in which permanent magnets are embedded in the rotor, which has been increased from the viewpoint of improving motor efficiency in recent years, the magnets tend to fly out of the rotor by centrifugal force. A large force is applied to the used electromagnetic steel sheet. For this reason, high strength is required for electrical steel sheets used for motors, especially rotors.
[0004]
Rotating devices such as motors and generators utilize electromagnetic phenomena, and therefore it is desirable that the material thereof has magnetic properties, that is, low iron loss and high magnetic flux density. Normally, the rotor core is used by laminating non-oriented electrical steel sheets that have been stamped out by stamping.If the rotor material cannot satisfy the above-mentioned mechanical strength in a high-speed rotation motor, a higher-strength cast steel rotor or the like must be used. It is the present situation that does not get. However, since the cast rotor is an integral body, the eddy current loss due to high-frequency magnetic flux called ripple loss acting on the rotor is larger than that of a rotor having laminated electromagnetic steel sheets, which is a factor that lowers the motor efficiency. Accordingly, a magnetic steel sheet having excellent magnetic properties and high strength has been demanded as a material for a rotor.
[0005]
In terms of metallurgy, three methods of solid solution strengthening, precipitation strengthening and grain refinement are known as means for increasing strength, and examples of application to electromagnetic steel sheets are also seen. For example, as a method using solid solution strengthening, Patent Literature 1 discloses a method of increasing the Si content to 3.5 to 7.0% and adding an element having a large solid solution strengthening ability. I have. Patent Document 2 discloses that the recrystallized grains are produced by setting the Si content to 2.0 to 3.5%, increasing the content of Ni or both Ni and Mn, and performing low-temperature annealing at 650 to 850 ° C. A method for controlling the diameter is disclosed. Further, as a method utilizing precipitation strengthening, Patent Document 3 discloses a method in which the Si content is 2.0 to 4.0% and fine carbides and nitrides of Nb, Zr, Ti, and V are precipitated. Have been.
[0006]
[Patent Document 1]
Japanese Patent Application Laid-Open No. Sho 60-238421 [Patent Document 2]
JP 62-256917 A [Patent Document 3]
JP-A-6-330255
[Problems to be solved by the invention]
By these methods, an electromagnetic steel sheet having a certain high strength can be obtained. However, steel having a large amount of Si as described in Patent Literature 1 has a disadvantage that the cold rollability is remarkably reduced and stable industrial production becomes difficult. Further, the steel sheet obtained by this technique is magnetic flux density B 50 has a problem that deteriorates significantly and 1.56~1.60T.
[0008]
According to the method disclosed in Patent Document 2, it is necessary to suppress the growth of recrystallized grains by low-temperature annealing in order to increase the mechanical strength. Therefore, there is a problem that the magnetic properties, particularly the iron loss at several hundred Hz from a relatively low commercial frequency, are reduced. was there. Therefore, it cannot be used for a stator member in which iron loss in these frequency ranges is important, so that the yield at the time of punching a motor has to be significantly reduced. That is, when punching a stator and a rotor, an annular stator is usually punched from the same sheet of steel, while the rotor is punched from the hollow portion to reduce waste. In the second method, both need to be punched from separate steel plates, and the yield decreases.
[0009]
On the other hand, the method described in Patent Literature 3 has a problem that the carbon loss is inferior because the carbon and the nitride themselves act as barriers for domain wall movement, and the carbon and the nitride hinder the crystal grain growth of the magnetic steel sheet.
[0010]
As described above, none of the conventional methods is satisfactory from the viewpoint of achieving both high strength and low iron loss in magnetic steel sheets that can be stably industrially produced.
[0011]
An object of the present invention is to propose a non-oriented electrical steel sheet having both good magnetic properties and high strength, and a manufacturing method capable of industrially stably producing this steel sheet.
[0012]
[Means for Solving the Problems]
The present inventors have conducted various studies focusing on the age hardening phenomenon of steel containing Cu in order to solve the above problems, and as a result, have established means for achieving both good iron loss and high strength. I came to. That is, contrary to the conventional knowledge that precipitates in steel contribute to high strength and suppress domain wall movement and deteriorate at the same time, by adding an appropriate amount of Cu to steel and performing aging treatment, It is possible to precipitate the following ultra-fine Cu, and the ultra-fine precipitate thus obtained is very effective for increasing the strength, but hardly deteriorates iron loss (history loss). Was newly found. Furthermore, with respect to this Cu precipitation, when Cu and Ni are added in combination, the precipitation caused by the heat history in the manufacturing process of the steel sheet is greatly reduced, so that high strength and low iron loss can be stably obtained even under a wide range of annealing conditions. This has been newly found, and the present invention has been completed.
[0013]
The gist configuration of the present invention is as follows.
(1) In mass%,
C: 0.02% or less,
Si: 4.5% or less,
Mn: 3.0% or less,
Al: 3.0% or less,
P: 0.50% or less,
Ni: contains 0.5% or more and 5.0% or less and Cu: 0.2% or more and 4.0% or less, has a component composition of balance Fe and inevitable impurities, and has a tensile strength represented by the following formula. A high strength non-oriented electrical steel sheet having excellent magnetic properties, characterized by having a CTS (MPa) or higher.
CTS = 5600 [% C] +87 [% Si] +15 [% Mn] +70 [% Al] +430 [% P] +37 [% Ni] + 22d− 1 / 2 + 230
Here, d: average grain size of crystal grains (mm)
[0014]
(2) In the above (1), one or more selected from Zr, V, Sb, Sn, Ge, B, Ca, a rare earth element, and Co are further used as a component composition.
0.1 to 3.0% for each of Zr and V;
0.002 to 0.5% for Sb, Sn and Ge,
0.001 to 0.01% for B, Ca and rare earth elements, and 0.2 to 5.0% for Co
A high-strength non-oriented electrical steel sheet with excellent magnetic properties characterized by containing
[0015]
(3) In mass%,
C: 0.02% or less,
Si: 4.5% or less,
Mn: 3.0% or less,
Al: 3.0% or less,
P: 0.50% or less,
After hot rolling is performed on a steel slab containing Ni: 0.5% or more and 5.0% or less and Cu: 0.2% or more and 4.0% or less, cold rolling or warm rolling is performed. After the final sheet thickness, the final reaching temperature is 650 to 1150 ° C and the cooling rate in the temperature range of 900 ° C to 400 ° C is 1 ° C / s or more. A method for producing a high-strength non-oriented electrical steel sheet having excellent magnetic properties, characterized by aging at a temperature of
[0016]
(4) In mass%,
C: 0.02% or less,
Si: 4.5% or less,
Mn: 3.0% or less,
Al: 3.0% or less,
P: 0.50% or less,
Ni: contains 0.5% or more and 5.0% or less and Cu: 0.2% or more and 4.0% or less, and is further selected from Zr, V, Sb, Sn, Ge, B, Ca, rare earth elements, and Co. One or two or more
0.1 to 3.0% for each of Zr and V;
0.002 to 0.5% for Sb, Sn and Ge,
0.001 to 0.01% for B, Ca and rare earth elements, and 0.2 to 5.0% for Co
After subjecting the steel slab containing to hot rolling to cold rolling or warm rolling to a final thickness, the final temperature reached 650-1150 ° C and 900 ° C-400 ° C. A high-strength non-directional electromagnetic member having excellent magnetic properties, characterized by subjecting to finish annealing with a cooling rate of 1 ° C./s or more and then aging at a temperature of 400 ° C. to 650 ° C. Steel plate manufacturing method.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the present invention will be described in detail for each component.
(Steel composition)
First, the component composition range and the reason for the limitation will be described. In this specification,% representing the steel composition means mass% unless otherwise specified.
C: 0.02% or less If the C content exceeds 0.02%, the iron loss is remarkably deteriorated due to magnetic aging, so the content is limited to 0.02% or less.
[0018]
Si: 4.5% or less In addition to being useful as a deoxidizing agent, Si has a large effect of reducing iron loss of an electromagnetic steel sheet by increasing electric resistance. In addition, solid solution strengthening contributes to strength improvement. The effect becomes remarkable when the content of the deoxidizing agent is 0.05% or more. In order to reduce iron loss and strengthen solid solution, the content is made 0.5% or more, more preferably 1.2% or more. However, when the content exceeds 4.5%, the rollability of the steel sheet is greatly deteriorated, so that the content is limited to 4.5% or less.
[0019]
Mn: 3.0% or less Mn is an element effective for improving hot brittleness in addition to an element effective for improving strength by solid solution strengthening, and is preferably contained at 0.05% or more. However, since excessive addition causes deterioration of iron loss, its content is limited to 3.0% or less.
[0020]
Al: 3.0% or less Al is effective as a deoxidizing agent, and is preferably contained at 0.5 ppm or more. However, excessive addition causes a reduction in rollability, so the amount of addition is limited to 3.0% or less.
[0021]
P: 0.50% or less P is very effective for increasing the strength because a large amount of solid solution strengthening ability can be obtained even if a relatively small amount of P is added, and is preferably contained at 0.01% or more. On the other hand, excessive content causes embrittlement due to segregation, resulting in grain boundary cracking and reduction in rollability. Therefore, the content is limited to 0.50% or less.
[0022]
Next, the addition of Cu and Ni is the most important matter in the present invention.
Cu: 0.2% or more and 4.0% or less Cu forms a fine precipitate by the aging treatment, and brings about a significant increase in strength with almost no deterioration of iron loss (history loss). To obtain the effect, 0.2% or more is required under the condition containing Ni described later. On the other hand, if it exceeds 4.0%, coarse precipitates are formed, so that the iron loss deteriorates greatly and the strength increase margin decreases. Therefore, the content of Cu is in the range of 0.2% to 4.0%, preferably 0.3% to 2.0%.
[0023]
Ni: 0.5% or more and 5.0% or less Ni itself is an effective element for increasing the strength by solid solution strengthening, but when added together with Cu, it affects the solid solution precipitation state of Cu, and is extremely affected by aging. This has the effect of stably depositing fine Cu precipitates. As a result, it is possible to greatly enhance the effect of increasing strength by Cu aging precipitation. Ni also has the effect of reducing the surface defects of the hot-rolled sheet called hege and improving the yield of the steel sheet. In order to obtain these effects, it is necessary to add at least 0.5% or more. On the other hand, if it exceeds 5.0%, the effect is saturated and only the cost is increased. Therefore, the upper limit is set to 5.0%. More preferably, it is in the range of 1.0% or more and 3.5% or less.
[0024]
The other elements are Fe (iron) and unavoidable impurities. It is desirable that S and N as unavoidable impurities are each 0.01% or less from the viewpoint of iron loss.
[0025]
The basic composition of the non-oriented electrical steel sheet according to the present invention is as described above. In addition to the above components, Zr, V, Sb, Sn, Ge, B, Ca, rare earth elements known as elements for improving magnetic properties And Co can be added alone or in combination. However, the amount added should not be detrimental to the purpose of the present invention. In particular,
0.1 to 3.0% for Zr and V
0.002 to 0.5% for Sb, Sn, and Ge
0.001 to 0.01% for B, Ca and rare earth elements
0.2-5.0% for Co
It is.
[0026]
In the present invention, the precipitation of Cu after aging can be optimized by setting the above component ranges and the following production conditions, and as a result, the tensile strength TS (MPa) of the product is represented by the following formula. CTS or more.
CTS = 5600 [% C] +87 [% Si] +15 [% Mn] +70 [% Al] +430 [% P] +37 [% Ni] + 22d− 1 / 2 + 230
[0027]
Here, the coefficient of each element is a term corresponding to the amount of solid solution or precipitation strengthening per 1% of each element, and d is the average crystal grain size (diameter: mm) of the product, which was etched with a nital etching solution or the like. The sample is observed with an optical microscope, and is obtained as a circle equivalent diameter of crystal grains from the observation visual field area and the number of crystal grains in the visual field. The smaller the average crystal grain size d, the higher the strength due to the refinement of the crystal grains, but the lower the core loss. Therefore, the crystal grain size d is adjusted according to the required strength and iron loss characteristics.
[0028]
(Production method)
In order to produce a high-strength non-oriented electrical steel sheet excellent in iron loss according to the present invention, first, in a converter or an electric furnace, a steel melted to the above-described predetermined component is continuously cast or formed. A steel slab is formed by slab rolling after the ingot. Next, the obtained slab is hot-rolled, subjected to hot rolling slope annealing as necessary, and subjected to cold rolling or warm rolling two or more times with one or intermediate annealing sandwiched to a product thickness, and finished. Anneal and then aging. Further, at any stage after the final annealing, an insulating coating is applied and baked as required.
[0029]
In the present invention, since the strength is increased in a subsequent step without increasing the amount of Si in the material, it can be manufactured by cold rolling. Since warm rolling has the effect of improving the texture and improving iron loss and magnetic flux density, warm rolling can also be employed.
[0030]
The above-mentioned finish annealing is intended to remove distortion due to rolling and to obtain an appropriate crystal grain size by recrystallization in order to obtain necessary iron loss characteristics. The appropriate crystal grain size depends on the required iron loss level, but is generally 20 to 200 μm. For that purpose, the final ultimate temperature of the finish annealing needs to be 700 ° C. or more. On the other hand, when annealing exceeding 1150 ° C. is performed, coarse grains are formed and grain boundary cracks are easily caused, and iron loss deterioration accompanying oxynitriding of the steel sheet surface is increased. Therefore, the upper limit is set to 1150 ° C.
[0031]
The inventors have found that when utilizing the fine precipitation of Cu, the cooling conditions of the finish annealing are important. That is, in the cooling process of the finish annealing, if the cooling rate from the solid solution temperature of Cu to 600 ° C. is not sufficiently fast, some of the Cu precipitates coarsely during cooling, which becomes a factor of deterioration of iron loss, and Even after subsequent aging annealing, the amount of coarse precipitates increases and sufficient strength may not be obtained in some cases. Here, when only Cu and no Ni are contained, the cooling rate needs to be 10 ° C./s or more in a temperature range of 900 ° C. to 400 ° C.
[0032]
However, when containing Ni in the range of the present invention together with Cu, if the cooling rate is 1 ° C./s or more, coarse precipitation during cooling can be suppressed, and subsequent aging treatment does not cause significant deterioration of iron loss. A sufficient increase in strength is obtained. That is, when aging treatment is performed by adding Cu and Ni in combination, stable characteristics can be obtained under more various finish annealing conditions than in the case where Ni is not added. Therefore, at the time of cooling after finish annealing, the temperature range from 900 ° C. when the maximum temperature reached in annealing exceeds 900 ° C., and from the finish annealing temperature to 400 ° C. when the maximum temperature reached annealing is 900 ° C. or less. The cooling rate at 1 ° C./s or more.
If the above conditions are satisfied, the strength after the subsequent aging treatment is
CTS = 5600 [% C] +87 [% Si] +15 [% Mn] +70 [% Al] +430 [% P] +37 [% Ni] + 22d− 1 / 2 + 230
The above can be considered.
[0033]
The subsequent aging treatment is performed at a temperature of 400 to 650 ° C. That is, when the temperature is lower than 400 ° C., precipitation of fine Cu becomes insufficient, and high strength cannot be obtained. On the other hand, when the temperature exceeds 650 ° C., the Cu precipitates become coarse, so that the iron loss is deteriorated and the amount of increase in strength is also reduced, so that an electromagnetic steel sheet having a good strength-iron loss balance cannot be obtained. The appropriate aging time also depends on the processing temperature, but is preferably from 10 min to 1000 h. The aging treatment may be carried out at any time before the application and baking of the insulating film, after the baking, and after processing such as press punching.
[0034]
【Example】
Example 1
As shown in Table 1, a steel slab consisting of 3% of Si, 0.2% of Mn, and 0.3% of Al and having the contents of Cu and Ni changed as the basic components and the balance of iron and unavoidable impurities was used. After hot rolling to a sheet thickness of 2.0 mm, as shown in Table 2, after performing no annealing or hot rolling sheet annealing at 1000 ° C. for 300 s, pickling and cold rolling of a finished sheet thickness of 0.35 mm were performed. went. Furthermore, after performing the final annealing of holding the soaking at a maximum temperature of 950 ° C. for 30 seconds, the cooling rate in a temperature range of 900 ° C. to 400 ° C. was 6 ° C./s. Thereafter, an insulating coating was applied and baked, and then heat-treated at 550 ° C. for 5 hours for aging to obtain a product plate.
[0035]
The product sheet thus obtained was evaluated for iron loss characteristics and mechanical characteristics. In addition, the component composition in the product plate was almost the same as in the slab stage. The iron loss was evaluated by the Epstein method using equal amounts of samples in the rolling direction and the direction perpendicular to the rolling direction. The mechanical properties were evaluated using the average of samples cut out from the rolling direction and the direction perpendicular to the rolling direction. Table 1 shows the results.
[0036]
Further, as a conventional electromagnetic steel sheet having a high tensile strength by known solid solution strengthening, crystal grain refinement strengthening, precipitation strengthening, and the like, the following steel sheets were also experimentally manufactured.
That is, as an example using solid solution strengthening, as shown in Table 2, C: 0.002%, Si: 4.5%, Mn: 0.2%, P: 0.01%, Al: 0. After hot-rolling a steel slab containing 6%, W: 1.0% and Mo: 1.0%, with the balance being iron and unavoidable impurities, the steel slab was annealed at 900 ° C. for 30 s for 400 seconds. The steel sheet was warm-rolled at a temperature of 0 ° C. to finish to a thickness of 0.35 mm, and was subjected to finish annealing at 950 ° C. × 30 seconds.
As an example using solid solution strengthening and grain refinement, as shown in Table 2, C: 0.005%, Si: 3%, Mn: 0.2%, P: 0.05%, and Ni: 4 A steel containing 0.5% and the balance consisting of iron and unavoidable impurities was hot-rolled, then cold-rolled to a thickness of 0.35 mm, and then subjected to finish annealing at 800 ° C. for 30 s.
As an example using precipitation strengthening, as shown in Table 2, C: 0.03%, Si: 3.2%, Mn: 0.2%, P: 0.02%, Al: 0.65%, A steel containing 0.003% of N, 0.018% of Nb and 0.022% of Zr, and the balance consisting of iron and unavoidable impurities is hot-rolled, cold-rolled to a thickness of 0.35 mm, and then heated to 750 ° C. × 30s finish annealing was performed.
In each case, no aging treatment was performed.
[0037]
[Table 1]
Figure 2004300535
[0038]
[Table 2]
Figure 2004300535
[0039]
According to the steel sheet No. Steel sheets Nos. 7 to 13 are comparative examples having a base composition. While having excellent magnetic properties almost equal to that of No. 1, significant high strength is obtained. Further, a steel sheet No. which is a conventional high-strength electromagnetic steel sheet is used. Compared to 14 to 16, it has a remarkably low iron loss or high magnetic flux density, and is excellent in strength-magnetic property balance.
[0040]
Example 2
The comparative steel C and the invention steel J shown in Table 1 were hot-rolled to a sheet thickness of 2.0 mm, and then subjected to hot-rolled sheet annealing at 1000 ° C. for 300 s, and then pickled and finished to a sheet thickness of 0.35 mm. Cold rolling was performed. Furthermore, finish annealing was carried out at a maximum temperature of 950 ° C. for 30 seconds so as to maintain a uniform temperature, and cooling was performed by changing the cooling rate in a temperature range of 900 ° C. to 400 ° C. to various conditions shown in Table 3. Thereafter, an insulating coating was applied and baked to obtain an annealed plate. The obtained annealed sheet was subjected to a heat treatment at 550 ° C. for 5 hours for aging to obtain a product sheet. The product sheet thus obtained was evaluated for iron loss characteristics and mechanical characteristics. In addition, the component composition in the product plate was almost the same as that in the slab stage. The results are shown in Table 3 and FIGS.
[0041]
[Table 3]
Figure 2004300535
[0042]
Steel C is a steel sheet No. As shown in FIGS. 18 and 19, when the cooling rate is relatively high at 10 ° C./s or more, excellent magnetic properties and high strength are exhibited. It tends to decrease. On the other hand, the invention steel J to which an appropriate amount of Ni was added together with Cu is the steel sheet No. As shown in Nos. 22 to 24, it was possible to stably achieve both excellent magnetic properties and high strength under a wide range of cooling rate conditions.
[0043]
Example 3
A steel having a composition shown in Table 4 consisting of iron and unavoidable impurities was hot-rolled to a thickness of 2.0 mm, and then subjected to no annealing or hot-rolled sheet annealing at a temperature shown in Table 5 for 300 s, Pickling and cold rolling to a predetermined thickness were performed. Furthermore, finish annealing was performed at a temperature shown in Table 5 for 30s soaking, and cooling was performed at a cooling rate of 6 ° C / s in a temperature range of 900 ° C to 400 ° C. Thereafter, an insulating coating was applied and baked to obtain an annealed plate. The obtained annealed sheet was subjected to aging treatment for 10 hours at the temperature shown in Table 5 for aging to obtain a product sheet. The product sheet thus obtained was evaluated for iron loss characteristics and mechanical characteristics. The results are also shown in Table 5. In addition, the component composition in the product plate was almost the same as in the slab stage. Table 5 shows that all the samples have excellent magnetic properties and very high strength properties in each steel sheet grade.
[0044]
[Table 4]
Figure 2004300535
[0045]
[Table 5]
Figure 2004300535
[0046]
【The invention's effect】
As described above, according to the present invention, it is possible to stably provide an electromagnetic steel sheet having excellent magnetic properties and high strength.
[Brief description of the drawings]
FIG. 1 is a diagram showing the effect of the finish annealing cooling rate on iron loss after aging treatment.
FIG. 2 is a graph showing the effect of a finish annealing cooling rate on tensile strength after aging treatment.

Claims (4)

質量%で、
C:0.02%以下、
Si:4.5%以下、
Mn:3.0%以下、
Al:3.0%以下、
P:0.50%以下、
Ni:0.5%以上5.0%以下および
Cu:0.2%以上4.0%以下
を含有し、残部Feおよび不可避的不純物の成分組成を有し、引張強さが下記式で示されるCTS(MPa)以上であることを特徴とする磁気特性の優れた高強度無方向性電磁鋼板。

CTS=5600[%C]+87[%Si]+15[%Mn]+70[%Al]+430[%P]+37[%Ni]+22d−1/2+230
ただし、d:結晶粒の平均粒径(mm)
In mass%,
C: 0.02% or less,
Si: 4.5% or less,
Mn: 3.0% or less,
Al: 3.0% or less,
P: 0.50% or less,
Ni: contains 0.5% or more and 5.0% or less and Cu: 0.2% or more and 4.0% or less, has a component composition of balance Fe and inevitable impurities, and has a tensile strength represented by the following formula. A high strength non-oriented electrical steel sheet having excellent magnetic properties, characterized by having a CTS (MPa) or higher.
CTS = 5600 [% C] +87 [% Si] +15 [% Mn] +70 [% Al] +430 [% P] +37 [% Ni] + 22d− 1 / 2 + 230
Here, d: average grain size of crystal grains (mm)
請求項1において、成分組成として、さらにZr、V、Sb、Sn、Ge、B、Ca、希土類元素およびCoから選んだ1種または2種以上を、
ZrおよびVについてはそれぞれ0.1〜3.0%、
Sb、SnおよびGeについてはそれぞれ0.002〜0.5%、
B,Caおよび希土類元素についてはそれぞれ0.001〜0.01%、そして
Coについては0.2〜5.0%
にて含有することを特徴とする磁気特性の優れた高強度無方向性電磁鋼板。
In claim 1, one or more selected from Zr, V, Sb, Sn, Ge, B, Ca, a rare earth element and Co as a component composition,
0.1 to 3.0% for each of Zr and V;
0.002 to 0.5% for Sb, Sn and Ge,
0.001 to 0.01% for B, Ca and rare earth elements, and 0.2 to 5.0% for Co
High strength non-oriented electrical steel sheet with excellent magnetic properties characterized by containing
質量%で、
C:0.02%以下、
Si:4.5%以下、
Mn:3.0%以下、
Al:3.0%以下、
P:0.50%以下、
Ni:0.5%以上5.0%以下および
Cu:0.2%以上4.0%以下
を含有する鋼スラブに、熱間圧延を施した後、冷間圧延あるいは温間圧延を施して最終板厚とした後、最終到達温度が650〜1150℃かつ900℃〜400℃の温度域での冷却速度が1℃/s以上である、仕上げ焼鈍を施した後、400℃以上650℃以下の温度にて時効処理を施すことを特徴とする磁気特性の優れた高強度無方向性電磁鋼板の製造方法。
In mass%,
C: 0.02% or less,
Si: 4.5% or less,
Mn: 3.0% or less,
Al: 3.0% or less,
P: 0.50% or less,
After hot rolling is performed on a steel slab containing Ni: 0.5% or more and 5.0% or less and Cu: 0.2% or more and 4.0% or less, cold rolling or warm rolling is performed. After the final sheet thickness, the final reaching temperature is 650 to 1150 ° C and the cooling rate in the temperature range of 900 ° C to 400 ° C is 1 ° C / s or more. A method for producing a high-strength non-oriented electrical steel sheet having excellent magnetic properties, characterized by aging at a temperature of
質量%で、
C:0.02%以下、
Si:4.5%以下、
Mn:3.0%以下、
Al:3.0%以下、
P:0.50%以下、
Ni:0.5%以上5.0%以下および
Cu:0.2%以上4.0%以下
を含み、さらにZr、V、Sb、Sn、Ge、B、Ca、希土類元素およびCoから選んだ1種または2種以上を、
ZrおよびVについてはそれぞれ0.1〜3.0%、
Sb、SnおよびGeについてはそれぞれ0.002〜0.5%、
B,Caおよび希土類元素についてはそれぞれ0.001〜0.01%、そして
Coについては0.2〜5.0%
にて含有する鋼スラブに、熱間圧延を施した後、冷間圧延あるいは温間圧延を施して最終板厚とした後、最終到達温度が650〜1150℃かつ900℃〜400℃の温度域での冷却速度が1℃/s以上である、仕上げ焼鈍を施した後、400℃以上650℃以下の温度にて時効処理を施すことを特徴とする磁気特性の優れた高強度無方向性電磁鋼板の製造方法。
In mass%,
C: 0.02% or less,
Si: 4.5% or less,
Mn: 3.0% or less,
Al: 3.0% or less,
P: 0.50% or less,
Ni: contains 0.5% or more and 5.0% or less and Cu: 0.2% or more and 4.0% or less, and is further selected from Zr, V, Sb, Sn, Ge, B, Ca, rare earth elements, and Co. One or two or more
0.1 to 3.0% for each of Zr and V;
0.002 to 0.5% for Sb, Sn and Ge,
0.001 to 0.01% for B, Ca and rare earth elements, and 0.2 to 5.0% for Co
After subjecting the steel slab containing to hot rolling to cold rolling or warm rolling to a final thickness, the final temperature reached 650-1150 ° C and 900 ° C-400 ° C. A high-strength non-directional electromagnetic member having excellent magnetic properties, characterized by subjecting to finish annealing with a cooling rate of 1 ° C./s or more and then aging at a temperature of 400 ° C. to 650 ° C. Steel plate manufacturing method.
JP2003095881A 2002-12-05 2003-03-31 Non-oriented electrical steel sheet and manufacturing method thereof Expired - Fee Related JP4380199B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2003095881A JP4380199B2 (en) 2003-03-31 2003-03-31 Non-oriented electrical steel sheet and manufacturing method thereof
EP03777194.6A EP1580289B1 (en) 2002-12-05 2003-12-03 Non-oriented magnetic steel sheet and method for production thereof
KR1020057010094A KR100709056B1 (en) 2002-12-05 2003-12-03 Non-oriented magnetic steel sheet and method for production thereof
PCT/JP2003/015462 WO2004050934A1 (en) 2002-12-05 2003-12-03 Non-oriented magnetic steel sheet and method for production thereof
EP12002344.5A EP2489753B1 (en) 2002-12-05 2003-12-03 Non-oriented magnetic steel sheet and method for production thereof
US10/537,194 US7513959B2 (en) 2002-12-05 2003-12-03 Non-oriented electrical steel sheet and method for manufacturing the same
TW092134160A TWI257430B (en) 2002-12-05 2003-12-04 Non-oriented electrical steel sheet and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003095881A JP4380199B2 (en) 2003-03-31 2003-03-31 Non-oriented electrical steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004300535A true JP2004300535A (en) 2004-10-28
JP4380199B2 JP4380199B2 (en) 2009-12-09

Family

ID=33408102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003095881A Expired - Fee Related JP4380199B2 (en) 2002-12-05 2003-03-31 Non-oriented electrical steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4380199B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031754A (en) * 2005-07-25 2007-02-08 Sumitomo Metal Ind Ltd Method for manufacturing non-oriented electromagnetic steel sheet to be aged
JP2007039754A (en) * 2005-08-04 2007-02-15 Sumitomo Metal Ind Ltd METHOD FOR PRODUCING Cu-CONTAINING NONORIENTED ELECTRICAL STEEL SHEET
EP1679386A4 (en) * 2003-10-06 2009-12-09 Nippon Steel Corp High-strength magnetic steel sheet and worked part therefrom, and process for producing them
JP2011006721A (en) * 2009-06-23 2011-01-13 Nippon Steel Corp Non-oriented electromagnetic steel sheet and method for manufacturing the same
JP2011099163A (en) * 2010-11-08 2011-05-19 Sumitomo Metal Ind Ltd Method for manufacturing non-oriented electromagnetic steel sheet for aging heat treatment
JP2015507695A (en) * 2011-12-20 2015-03-12 ポスコ High silicon steel plate excellent in productivity and magnetic properties and method for producing the same
EP2657357A4 (en) * 2010-12-23 2016-03-02 Posco Low iron loss high strength non-oriented electromagnetic steel sheet and method for manufacturing same
WO2019017426A1 (en) 2017-07-19 2019-01-24 新日鐵住金株式会社 Non-oriented electromagnetic steel plate
JP2019019355A (en) * 2017-07-13 2019-02-07 新日鐵住金株式会社 Electromagnetic steel and method for producing the same, motor core for rotor and method for producing the same, motor core for stator and method for producing the same, and method for producing motor core
WO2020091039A1 (en) 2018-11-02 2020-05-07 日本製鉄株式会社 Non-oriented electromagnetic steel sheet
WO2020091043A1 (en) 2018-11-02 2020-05-07 日本製鉄株式会社 Non-oriented electromagnetic steel sheet
JP2020094254A (en) * 2018-12-14 2020-06-18 日本製鉄株式会社 High strength non-oriented electromagnetic steel sheet excellent in caulking property
JP2020094252A (en) * 2018-12-14 2020-06-18 日本製鉄株式会社 Non-oriented electromagnetic steel sheet and manufacturing method therefor, rotor core iron core of ipm motor
JP2020094253A (en) * 2018-12-14 2020-06-18 日本製鉄株式会社 Non-oriented electromagnetic steel sheet and manufacturing method therefor, rotor core iron core of ipm motor
CN113029778A (en) * 2021-02-26 2021-06-25 武汉钢铁有限公司 Method for rapidly judging grain diameter of primary recrystallization of oriented silicon steel
WO2021199400A1 (en) 2020-04-02 2021-10-07 日本製鉄株式会社 Non-oriented electromagnetic steel sheet and method for producing same
WO2021210671A1 (en) 2020-04-16 2021-10-21 日本製鉄株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing same
WO2021210672A1 (en) 2020-04-16 2021-10-21 日本製鉄株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101902438B1 (en) 2016-12-19 2018-09-28 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004084053A (en) * 2002-06-26 2004-03-18 Nippon Steel Corp Electromagnetic steel sheet having remarkably superior magnetic property, and manufacturing method therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004084053A (en) * 2002-06-26 2004-03-18 Nippon Steel Corp Electromagnetic steel sheet having remarkably superior magnetic property, and manufacturing method therefor

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1679386A4 (en) * 2003-10-06 2009-12-09 Nippon Steel Corp High-strength magnetic steel sheet and worked part therefrom, and process for producing them
JP4696750B2 (en) * 2005-07-25 2011-06-08 住友金属工業株式会社 Method for producing non-oriented electrical steel sheet for aging heat treatment
JP2007031754A (en) * 2005-07-25 2007-02-08 Sumitomo Metal Ind Ltd Method for manufacturing non-oriented electromagnetic steel sheet to be aged
JP2007039754A (en) * 2005-08-04 2007-02-15 Sumitomo Metal Ind Ltd METHOD FOR PRODUCING Cu-CONTAINING NONORIENTED ELECTRICAL STEEL SHEET
JP2011006721A (en) * 2009-06-23 2011-01-13 Nippon Steel Corp Non-oriented electromagnetic steel sheet and method for manufacturing the same
JP2011099163A (en) * 2010-11-08 2011-05-19 Sumitomo Metal Ind Ltd Method for manufacturing non-oriented electromagnetic steel sheet for aging heat treatment
EP2657357A4 (en) * 2010-12-23 2016-03-02 Posco Low iron loss high strength non-oriented electromagnetic steel sheet and method for manufacturing same
US10134513B2 (en) 2011-12-20 2018-11-20 Posco High silicon steel sheet having excellent productivity and magnetic properties and method for manufacturing same
JP2015507695A (en) * 2011-12-20 2015-03-12 ポスコ High silicon steel plate excellent in productivity and magnetic properties and method for producing the same
JP2019019355A (en) * 2017-07-13 2019-02-07 新日鐵住金株式会社 Electromagnetic steel and method for producing the same, motor core for rotor and method for producing the same, motor core for stator and method for producing the same, and method for producing motor core
US11279985B2 (en) 2017-07-19 2022-03-22 Nippon Steel Corporation Non-oriented electrical steel sheet
WO2019017426A1 (en) 2017-07-19 2019-01-24 新日鐵住金株式会社 Non-oriented electromagnetic steel plate
KR20190127964A (en) 2017-07-19 2019-11-13 닛폰세이테츠 가부시키가이샤 Non-oriented electronic steel sheet
WO2020091039A1 (en) 2018-11-02 2020-05-07 日本製鉄株式会社 Non-oriented electromagnetic steel sheet
WO2020091043A1 (en) 2018-11-02 2020-05-07 日本製鉄株式会社 Non-oriented electromagnetic steel sheet
US11866797B2 (en) 2018-11-02 2024-01-09 Nippon Steel Corporation Non-oriented electrical steel sheet
KR20230051302A (en) 2018-11-02 2023-04-17 닛폰세이테츠 가부시키가이샤 Non-oriented electromagnetic steel sheet
KR20210024613A (en) 2018-11-02 2021-03-05 닛폰세이테츠 가부시키가이샤 Non-oriented electromagnetic steel plate
KR20210036948A (en) 2018-11-02 2021-04-05 닛폰세이테츠 가부시키가이샤 Non-oriented electromagnetic steel plate
JP2020094253A (en) * 2018-12-14 2020-06-18 日本製鉄株式会社 Non-oriented electromagnetic steel sheet and manufacturing method therefor, rotor core iron core of ipm motor
JP7256362B2 (en) 2018-12-14 2023-04-12 日本製鉄株式会社 Non-oriented electrical steel sheet and manufacturing method thereof, rotor core core of IPM motor
JP7256361B2 (en) 2018-12-14 2023-04-12 日本製鉄株式会社 Non-oriented electrical steel sheet and manufacturing method thereof, rotor core core of IPM motor
JP2020094252A (en) * 2018-12-14 2020-06-18 日本製鉄株式会社 Non-oriented electromagnetic steel sheet and manufacturing method therefor, rotor core iron core of ipm motor
JP7323762B2 (en) 2018-12-14 2023-08-09 日本製鉄株式会社 High-strength non-oriented electrical steel sheet with excellent caulking properties
JP2020094254A (en) * 2018-12-14 2020-06-18 日本製鉄株式会社 High strength non-oriented electromagnetic steel sheet excellent in caulking property
WO2021199400A1 (en) 2020-04-02 2021-10-07 日本製鉄株式会社 Non-oriented electromagnetic steel sheet and method for producing same
KR20220144400A (en) 2020-04-02 2022-10-26 닛폰세이테츠 가부시키가이샤 Non-oriented electrical steel sheet and manufacturing method thereof
WO2021210671A1 (en) 2020-04-16 2021-10-21 日本製鉄株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing same
WO2021210672A1 (en) 2020-04-16 2021-10-21 日本製鉄株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing same
KR20220152579A (en) 2020-04-16 2022-11-16 닛폰세이테츠 가부시키가이샤 Non-oriented electrical steel sheet and manufacturing method thereof
KR20220158843A (en) 2020-04-16 2022-12-01 닛폰세이테츠 가부시키가이샤 Non-oriented electrical steel sheet and manufacturing method thereof
CN113029778A (en) * 2021-02-26 2021-06-25 武汉钢铁有限公司 Method for rapidly judging grain diameter of primary recrystallization of oriented silicon steel

Also Published As

Publication number Publication date
JP4380199B2 (en) 2009-12-09

Similar Documents

Publication Publication Date Title
TWI674322B (en) Method for manufacturing non-oriented electrical steel sheet, method for manufacturing motor core, and motor core
JP4380199B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5228379B2 (en) Non-oriented electrical steel sheet with excellent strength and magnetic properties and manufacturing method thereof
US20080060728A1 (en) Method of manufacturing a nonoriented electromagnetic steel sheet
JP2019019355A (en) Electromagnetic steel and method for producing the same, motor core for rotor and method for producing the same, motor core for stator and method for producing the same, and method for producing motor core
EP2489753A1 (en) Non-oriented magnetic steel sheet and method for production thereof
JP2001316729A (en) Method for manufacturing nonoriented silicon steel sheet having low core loss and high magnetic flux density
JP4352691B2 (en) Age-hardening non-oriented electrical steel sheet excellent in punchability and iron loss, method for producing the same, and method for producing a rotor using the same
WO2007063581A1 (en) Nonoriented electromagnetic steel sheet and process for producing the same
JP2007031754A (en) Method for manufacturing non-oriented electromagnetic steel sheet to be aged
JP4341386B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2017057456A (en) High strength member for motor using non-oriented electromagnetic steel sheet and manufacturing method therefor
JP2004339603A (en) High-strength non-oriented electromagnetic steel sheet superior in high-frequency magnetic property, and manufacturing method therefor
JP4341476B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP4568999B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP4424075B2 (en) Non-oriented electrical steel sheet, non-oriented electrical steel sheet for aging heat treatment, and production method thereof
JP2019183231A (en) Nonoriented electromagnetic steel sheet, stater core, rotor core, and manufacturing method therefor
JP4670230B2 (en) Non-oriented electrical steel sheet
CN105331879A (en) Non-oriented silicon steel for high-power-density motor and production method
JP5186781B2 (en) Non-oriented electrical steel sheet for aging heat treatment, non-oriented electrical steel sheet and method for producing the same
JP2004353037A (en) High-strength non-oriented electromagnetic steel sheet superior in magnetic property, and manufacturing method therefor
JP2005126748A (en) High fatigue strength non-oriented magnetic steel sheet superior in magnetic properties, and manufacturing method therefor
JP2005120431A (en) Method for manufacturing high-strength nonoriented silicon steel sheet having excellent magnetic characteristic
JP4306490B2 (en) Method for producing high strength non-oriented electrical steel sheet with low iron loss
JP4356580B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090615

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4380199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees