JP4341386B2 - Non-oriented electrical steel sheet and manufacturing method thereof - Google Patents
Non-oriented electrical steel sheet and manufacturing method thereof Download PDFInfo
- Publication number
- JP4341386B2 JP4341386B2 JP2003395838A JP2003395838A JP4341386B2 JP 4341386 B2 JP4341386 B2 JP 4341386B2 JP 2003395838 A JP2003395838 A JP 2003395838A JP 2003395838 A JP2003395838 A JP 2003395838A JP 4341386 B2 JP4341386 B2 JP 4341386B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel sheet
- precipitates
- oriented electrical
- electrical steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Description
本発明は、無方向性電磁鋼板、特に高速回転モータのロータを典型例とする、大きな応力がかかる部品に用いて好適な、高強度でかつ低鉄損の特性を有する無方向性電磁鋼板およびその製造方法に関するものである。 The present invention relates to a non-oriented electrical steel sheet, particularly a non-oriented electrical steel sheet having a characteristic of high strength and low iron loss, which is suitable for a part subjected to a large stress, such as a rotor of a high-speed rotary motor. It relates to the manufacturing method.
近年、モータの駆動システムの発達により、駆動電源の周波数制御が可能となり、可変速運転や商用周波数以上で高速回転を行うモータが増加している。このような高速回転を行うモータでは、高速回転に耐え得るロータが必要になる。すなわち、回転体に作用する遠心力は回転半径に比例し、回転速度の2乗に比例して大きくなるため、中・大型の高速モータではロータに作用する応力が600MPaを超える場合もある。従って、こうした高速回転モータでは、ロータの強度が高いことが必要となる。 In recent years, with the development of motor drive systems, it is possible to control the frequency of the drive power supply, and the number of motors that perform variable speed operation and high-speed rotation above the commercial frequency is increasing. In such a motor that performs high-speed rotation, a rotor that can withstand high-speed rotation is required. That is, since the centrifugal force acting on the rotating body is proportional to the radius of rotation and increases in proportion to the square of the rotational speed, the stress acting on the rotor may exceed 600 MPa in medium and large high-speed motors. Therefore, in such a high-speed rotary motor, it is necessary that the strength of the rotor is high.
また、近年のモータ効率向上の観点から増加した、ロータに永久磁石を埋め込んだ磁石埋設型DCインバータ制御モータでは、遠心力でロータから磁石が飛び出そうとするが、これを抑える際に、ロータに使用された電磁鋼板には大きな力が掛かる。このためにも、モータ、特にロータに使用される電磁鋼板には、高強度が必要とされている。 In addition, the magnet-embedded DC inverter control motor with permanent magnets embedded in the rotor, which has increased from the viewpoint of improving motor efficiency in recent years, attempts to eject magnets from the rotor by centrifugal force. A large force is applied to the used electrical steel sheet. For this reason, high strength is required for electromagnetic steel sheets used in motors, particularly rotors.
モータ、発電機などの回転機器は、電磁気現象を利用するため、その素材は磁気特性に優れていること、すなわち低鉄損、高磁束密度であることが望ましい。通常、ロータコアはプレス打ち抜きした無方向性電磁鋼板を積層して使用するが、高速回転モータにおいてロータ素材が上述の機械強度を満足できない場合は、より高強度の鋳鋼製ロー夕などを使用せざるを得ないのが現状である。しかしながら、鋳物製ロー夕は一体物であるため、ロータに作用するリップル損と呼ばれる高周波磁束による渦電流損が電磁鋼板を積層したロータより大きく、モータ効率が低下してしまう要因となっている。従って、磁気特性に優れ、かつ高強度の電磁鋼板がロータ用素材として要望されているのである。 Since rotating devices such as motors and generators use electromagnetic phenomena, it is desirable that the material has excellent magnetic properties, that is, low iron loss and high magnetic flux density. Normally, the rotor core is used by laminating non-oriented electrical steel sheets that have been stamped out of the stamp. However, if the rotor material does not satisfy the above-mentioned mechanical strength in a high-speed rotary motor, it is necessary to use a caster made of higher-strength cast steel. It is the present condition that we do not get. However, since the casting made of cast iron is an integral object, the eddy current loss due to the high-frequency magnetic flux called ripple loss acting on the rotor is larger than that of the rotor laminated with electromagnetic steel sheets, which causes a reduction in motor efficiency. Therefore, there is a demand for a magnetic steel sheet having excellent magnetic properties and high strength as a rotor material.
金属学的には、高強度化の手段として、固溶強化、析出強化および結晶粒微細化の3つの方法が知られており、電磁鋼板に適用した例も見られる。例えば、固溶強化を利用したものとしては、特許文献1に、Si含有量を3.5〜7.0%に高めたうえに固溶強化能の大きい元素を添加する方法が開示されている。また、特許文献2には、Si含有量を2.0〜3.5%とし、NiあるいはNiとMnの両方の含有量を高め、650〜850℃という低温焼鈍により製造することで再結晶粒径を制御する方法が開示されている。さらに、析出強化を利用する方法としては、特許文献3に、Si含有量を2.0〜4.0%とし、Nb,Zr,Ti,Vの微細な炭化物、窒化物を析出させる方法が開示されている。
これらの方法により、ある程度の高強度を有する電磁鋼板が得られる。しかしながら、特許文献1に記載されるようなSi量が多い鋼では、冷間圧延性が著しく低下し、安定的な工業生産が困難となる不利がある。さらに、この技術により得られる鋼板は磁束密度B50が1.56〜1.60Tと大幅に低下してしまうという問題もあった。 By these methods, an electrical steel sheet having a certain degree of strength can be obtained. However, the steel having a large amount of Si as described in Patent Document 1 has a disadvantage that the cold rolling property is remarkably lowered and stable industrial production becomes difficult. Furthermore, the steel plate obtained by this technique has a problem that the magnetic flux density B 50 is significantly reduced to 1.56 to 1.60 T.
特許文献2における方法では、機械強度を高めるため低温焼鈍による再結晶粒成長の抑制が必要となるため、磁気特性、特に比較的周波数の低い商用周波数から数100Hzでの鉄損が低下するという問題があった。 In the method in Patent Document 2, since it is necessary to suppress recrystallized grain growth by low-temperature annealing in order to increase mechanical strength, there is a problem that iron loss at several hundred Hz from a commercial frequency having a relatively low frequency is lowered. was there.
一方、特許文献3に記載の方法では、炭、窒化物自体が磁壁移動の障壁となるため、また炭、窒化物が電磁鋼板の結晶粒成長を妨げるため、鉄損に劣るという問題がある。 On the other hand, the method described in Patent Document 3 has a problem that iron loss is inferior because charcoal and nitride itself serve as a barrier for domain wall movement and charcoal and nitride hinder crystal grain growth of the electromagnetic steel sheet.
以上のように、従来の方法は、安定的に工業生産可能な電磁鋼板において、高強度と低鉄損とを両立するという観点からは、いずれも満足できるものでは無かった。 As described above, none of the conventional methods is satisfactory from the viewpoint of achieving both high strength and low iron loss in an electromagnetic steel sheet that can be stably industrially produced.
本発明は、良好な磁気特性と高強度とを両立した無方向性電磁鋼板およびこの鋼板を工業的に安定して生産することを可能とする製造方法について提案することを目的とする。 An object of the present invention is to propose a non-oriented electrical steel sheet that achieves both good magnetic properties and high strength and a manufacturing method that enables industrially stable production of this steel sheet.
発明者らは、上記課題を解決するために、Cuを含んだ鋼の時効硬化現象に着目して種々の検討を行った結果、良好な鉄損と高強度とを両立するための手段を確立するに到った。すなわち、鋼中の析出物は高強度化に寄与する一方、磁壁移動を抑制して鉄損(履歴損)を劣化させるという、従来の知見に反して、鋼中にCuを適量添加して時効処理を行うことにより、平均径が20nm以下の極微細なCuを均一に析出させることが可能であること、そして、こうして得られた極微細析出物は、高強度化に非常に有効であるが、鉄損(履歴損)はほとんど劣化させないことを、新規に知見した。
本発明は、上記の知見に基づくものである。
In order to solve the above-mentioned problems, the inventors have made various studies focusing on the age hardening phenomenon of Cu-containing steel, and as a result, established means for achieving both good iron loss and high strength. I arrived. In other words, contrary to the conventional knowledge that precipitates in steel contribute to high strength and suppress the domain wall motion to deteriorate iron loss (history loss), an appropriate amount of Cu is added to the steel to age. By performing the treatment, it is possible to uniformly precipitate ultrafine Cu having an average diameter of 20 nm or less, and the ultrafine precipitate obtained in this way is very effective for increasing the strength. It was newly found that iron loss (history loss) hardly deteriorates.
The present invention is based on the above findings.
すなわち、本発明の要旨構成は、以下の通りである。
(1)質量%で、
C:0.02%以下、
Si:4.5%以下、
Mn:3.0%以下、
Al:3.0%以下、
P:0.50%以下、
Ni:5.0%以下および
Cu:0.2%以上4.0%以下
を含有し、残部Feおよび不可避的不純物の成分組成からなり、鋼中に0.2〜2.0vol%のCu析出物を有し、該Cu析出物の平均径が1〜20nm(ただし、平均直径が0.02μmである場合を除く)であることを特徴とする無方向性電磁鋼板。
(2)上記(1)において、降伏応力が下記式で示されるCYS(MPa)以上であることを特徴とする無方向性電磁鋼板。
記
CYS=180 + 5600[%C]+95[%Si]+50[%Mn]+37[%Al]
+435[%P]+25[%Ni]+22d -1/2
ただし、d:結晶粒の平均粒径(mm)
That is, the gist configuration of the present invention is as follows.
(1) In mass%,
C: 0.02% or less,
Si: 4.5% or less,
Mn: 3.0% or less,
Al: 3.0% or less,
P: 0.50% or less,
Ni: 5.0% or less and
Cu: 0.2% to 4.0% inclusive, composed of the remaining Fe and inevitable impurities, and having 0.2 to 2.0 vol% Cu precipitates in the steel, the average diameter of the Cu precipitates being 1 to 20 nm (provided that the average diameter of unless a 0.02 [mu] m) non-oriented electrical steel sheet you being a.
(2) The non-oriented electrical steel sheet according to (1), wherein the yield stress is CYS (MPa) or more represented by the following formula.
Record
CYS = 180 + 5600 [% C] + 95 [% Si] + 50 [% Mn] + 37 [% Al]
+435 [% P] +25 [% Ni] + 22d -1/2
Where d: average grain size (mm) of crystal grains
(3)上記(1)または(2)において、成分組成として、さらにZr、V、Sb、Sn、Ge、B、Ca、希土類元素およびCoから選んだ1種または2種以上を、質量%で、
ZrおよびVについてはそれぞれ0.1〜3.0%、
Sb、SnおよびGeについてはそれぞれ0.002〜0.5%、
B,Caおよび希土類元素についてはそれぞれ0.001〜0.01%、そして
Coについては0.2〜5.0%
にて含有することを特徴とする無方向性電磁鋼板。
(3) In the above (1) or (2), as a component composition, one or more selected from Zr, V, Sb, Sn, Ge, B, Ca, rare earth elements and Co are added in mass%. ,
For Zr and V, 0.1 to 3.0%,
0.002 to 0.5% for Sb, Sn and Ge,
0.001 to 0.01% for B, Ca and rare earth elements, respectively
0.2 to 5.0% for Co
Non-oriented electrical steel sheet you characterized by containing at.
(4)質量%で、
C:0.02%以下、
Si:4.5%以下、
Mn:3.0%以下、
Al:3.0%以下、
P:0.50%以下、
Ni:5.0%以下および
Cu:0.2%以上4.0%以下
を含有し、残部Feおよび不可避的不純物の成分組成からなる、鋼スラブに、熱間圧延を施した後、冷間圧延あるいは温間圧延を施して最終板厚とし、次いで(Cu固溶温度+10℃)以上に加熱した後、Cu固溶温度から400℃までを10℃/s以上の速度で冷却する仕上焼鈍を施し、その後400℃以上650℃以下の温度にて時効処理を施すことを特徴とする無方向性電磁鋼板の製造方法。
(4) In mass%,
C: 0.02% or less,
Si: 4.5% or less,
Mn: 3.0% or less,
Al: 3.0% or less,
P: 0.50% or less,
Ni: 5.0% or less and
Cu: 0.2% or more and 4.0% or less, consisting of the remaining Fe and inevitable impurities, the steel slab is hot-rolled and then cold-rolled or warm-rolled to the final thickness. Then, after heating to (Cu solid solution temperature + 10 ° C) or higher, finish annealing is performed to cool from the Cu solid solution temperature to 400 ° C at a rate of 10 ° C / s or higher, and then to a temperature of 400 ° C or higher and 650 ° C or lower. method for producing a non-oriented electrical steel sheet you characterized by applying aging treatment Te.
(5)質量%で、
C:0.02%以下、
Si:4.5%以下、
Mn:3.0%以下、
Al:3.0%以下、
P:0.50%以下、
Ni:5.0%以下および
Cu:0.2%以上4.0%以下
を含み、さらにZr、V、Sb、Sn、Ge、B、Ca、希土類元素およびCoから選んだ1種または2種以上を、
ZrおよびVについてはそれぞれ0.1〜3.0%、
Sb、SnおよびGeについてはそれぞれ0.002〜0.5%、
B,Caおよび希土類元素についてはそれぞれ0.001〜0.01%、そして
Coについては0.2〜5.0%
にて含有し、残部Feおよび不可避的不純物の成分組成からなる、鋼スラブに、熱間圧延を施した後、冷間圧延あるいは温間圧延を施して最終板厚とし、次いで(Cu固溶温度+10℃)以上に加熱した後、Cu固溶温度から400℃まで10℃/s以上の速度で冷却する仕上焼鈍を施し、その後400℃以上650℃以下の温度にて時効処理を施すことを特徴とする無方向性電磁鋼板の製造方法。
(5) In mass%,
C: 0.02% or less,
Si: 4.5% or less,
Mn: 3.0% or less,
Al: 3.0% or less,
P: 0.50% or less,
Ni: 5.0% or less and
Cu: 0.2% to 4.0%, and one or more selected from Zr, V, Sb, Sn, Ge, B, Ca, rare earth elements and Co,
For Zr and V, 0.1 to 3.0%,
0.002 to 0.5% for Sb, Sn and Ge,
0.001 to 0.01% for B, Ca and rare earth elements, respectively
0.2 to 5.0% for Co
The steel slab, which is composed of the remaining Fe and the inevitable impurities, is subjected to hot rolling, followed by cold rolling or warm rolling to obtain the final thickness, and then (Cu solid solution temperature) After heating to + 10 ℃) or higher, finish annealing is performed to cool from the Cu solid solution temperature to 400 ℃ at a rate of 10 ℃ / s or more, and then an aging treatment is performed at a temperature of 400 ℃ to 650 ℃. method for producing a non-oriented electrical steel sheet shall be the.
本発明によれば、磁気特性に優れ、しかも高い強度を有する電磁鋼板を安定して提供することができる。 According to the present invention, it is possible to stably provide a magnetic steel sheet having excellent magnetic properties and high strength.
次に、本発明について、その構成要件毎に詳述する。
(鋼板の成分組成)
まず、成分組成範囲およびその限定理由を説明する。なお、本明細書において鋼組成を表す%は、特にことわらない限り質量%を意味するものである。
C:0.02%以下
C量が0.02%を超えると磁気時効により鉄損が著しく劣化するため、0.02%以下に制限する。
Next, the present invention will be described in detail for each constituent requirement.
(Component composition of steel sheet)
First, the component composition range and the reason for limitation will be described. In the present specification, “%” representing a steel composition means “% by mass” unless otherwise specified.
C: 0.02% or less If the C content exceeds 0.02%, the iron loss deteriorates significantly due to magnetic aging, so it is limited to 0.02% or less.
Si:4.5%以下
Siは、脱酸剤として有用であることに加え、電気抵抗の増加により電磁鋼板の鉄損を低減する効果が大きい。さらに、固溶強化により強度向上に寄与する。脱酸剤としては、0.05%以上で効果が顕著となる。鉄損低減や固溶強化のためには0.5%、好適には1.2%以上で含有させる。しかし、4.5%を超えると、鋼板の圧延性の劣化が激しくなるため、その含有量は4.5%以下に制限する。
Si: 4.5% or less
In addition to being useful as a deoxidizer, Si has a great effect of reducing the iron loss of the electrical steel sheet by increasing the electrical resistance. Furthermore, it contributes to strength improvement by solid solution strengthening. As a deoxidizer, the effect becomes remarkable at 0.05% or more. For reducing iron loss and strengthening solid solution, it is contained at 0.5%, preferably 1.2% or more. However, if it exceeds 4.5%, the rollability of the steel sheet deteriorates severely, so its content is limited to 4.5% or less.
Mn:3.0%以下
Mnは、固溶強化による強度向上に有効な元素であることに加え、熱間脆性の改善に有効な元素であり、好ましくは0.05%以上で含有させる。しかし、過剰な添加は鉄損の劣化をもたらすため、その含有量を3.0%以下に制限する。
Mn: 3.0% or less
Mn is an element effective for improving hot brittleness in addition to being an element effective for improving strength by solid solution strengthening, and is preferably contained at 0.05% or more. However, excessive addition causes deterioration of iron loss, so its content is limited to 3.0% or less.
Al:3.0%以下
Alは、脱酸剤として有効であり、好ましくは0.5ppm以上で含有させる。しかし、過剰な添加は圧延性の低下をもたらすので、その添加量を3.0%以下に制限する。
Al: 3.0% or less
Al is effective as a deoxidizer and is preferably contained at 0.5 ppm or more. However, excessive addition causes a decrease in rollability, so the addition amount is limited to 3.0% or less.
P:0.50%以下
Pは、比較的少量の添加でも大幅な固溶強化能が得られるため高強度化に極めて有効であり、好ましくは0.01%以上で含有させる。一方、過剰な含有は偏析による脆化を引き起し、粒界割れや圧延性の低下をもたらすため、その含有量は0.50%以下に制限する。
P: 0.50% or less P is extremely effective for increasing the strength because a significant solid solution strengthening ability can be obtained even when added in a relatively small amount, and is preferably contained at 0.01% or more. On the other hand, an excessive content causes embrittlement due to segregation and causes intergranular cracking and a decrease in rollability, so the content is limited to 0.50% or less.
Ni:5.0%以下
Niは、固溶強化による高強度化に有効な元素であり、好ましくは0.1%以上で含有させる。なぜなら、NiをCuとともに添加すると、特にCu析出物の時効析出相の成長が促進しやすい高Si系の鋼において、Cu析出物の粗大化抑制に効果を発揮し、時効析出硬化能を高める効果が得やすくなるからである。しかし、5.0%を超えると、その効果は飽和しコスト高をまねくだけになるため、その上限を5.0%とする。
Ni: 5.0% or less
Ni is an element effective for increasing the strength by solid solution strengthening, and is preferably contained at 0.1% or more. This is because, when Ni is added together with Cu, it is effective in suppressing the coarsening of Cu precipitates and enhancing the age precipitation hardening ability, especially in high-Si steels where the growth of the aging precipitation phase of Cu precipitates is easy to promote. It is because it becomes easy to obtain. However, if it exceeds 5.0%, the effect will be saturated and only the cost will be increased, so the upper limit is set to 5.0%.
Cu:0.2%以上4.0%以下
Cuは、時効処理によって微細な析出物を形成することにより、鉄損(履歴損)の劣化をほとんど伴わずに、大幅な強度上昇をもたらす。ここで、Cuの添加量として0.2%以上を確保しないと、後述する時効処理において所定量のCu析出物が得られなくなるため、Cuの添加量は0.2%以上とする。一方、Cuの添加量が4.0%を超えると、後述する時効処理においてCu析出物の平均径が20nmを超えて粗大化し、鉄損の劣化が大きくなるとともに、強度上昇代も低下する。従って、Cuの含有量は0.2%以上4.0%以下、好適には0.5%以上2.0%以下の範囲とする。
Cu: 0.2% to 4.0%
By forming fine precipitates by aging treatment, Cu brings about a significant increase in strength with almost no deterioration of iron loss (history loss). Here, unless a Cu addition amount of 0.2% or more is ensured, a predetermined amount of Cu precipitates cannot be obtained in the aging treatment described later, so the Cu addition amount is 0.2% or more. On the other hand, if the amount of Cu exceeds 4.0%, the average diameter of Cu precipitates becomes larger than 20 nm in the aging treatment described later, and the deterioration of iron loss increases and the strength increase margin also decreases. Therefore, the Cu content is in the range of 0.2% to 4.0%, preferably 0.5% to 2.0%.
上記元素の他は、Fe(鉄)および不可避的不純物である。不可避的不純物としてのSおよびNは、鉄損の観点からそれぞれ0.01%以下とすることが望ましい。 In addition to the above elements, they are Fe (iron) and inevitable impurities. S and N as inevitable impurities are each preferably 0.01% or less from the viewpoint of iron loss.
本発明に係わる無方向性電磁鋼板の基本組成は以上の通りであるが、上記成分に加えて、磁気特性の改善元素として知られるZr,V,Sb,Sn,Ge,B,Ca,希土類元素およびCoを単独または複合で添加することが出来る。しかし、その添加量は本発明の目的を害さない程度にすべきである。具体的には、
ZrおよびVについては0.1〜3.0%、
Sb,SnおよびGeについては0.002〜0.5%、
B,Caおよび希土類元素については0.001〜0.01%、
Coについては0.2〜5.0%
である。
The basic composition of the non-oriented electrical steel sheet according to the present invention is as described above. In addition to the above components, Zr, V, Sb, Sn, Ge, B, Ca, rare earth elements known as elements for improving magnetic properties are known. And Co can be added alone or in combination. However, the amount added should be such that the object of the present invention is not impaired. In particular,
About 0.1 to 3.0% for Zr and V,
0.002 to 0.5% for Sb, Sn and Ge
0.001 to 0.01% for B, Ca and rare earth elements,
0.2 to 5.0% for Co
It is.
(鋼板の組織、特性値)
本発明に係る無方向性電磁鋼板では、鋼板中のCuが鋼中に微細に析出していること、すなわち鋼中に0.2〜2.0vol%のCu析出物を有し、該Cu析出物の平均径が1〜20nmであることが肝要である。
まず、鋼中のCu析出物の量が0.2vol%未満では、析出強化のために必要な析出密度が得られないため、0.2vol%以上が必要である。
一方Cu析出物の量が2.0vol%を超えると、隣接する析出物同士が合体する確率が高まり、析出物の平均サイズが粗大化し強度の大幅な上昇を得ることが難しくなるため、2.0vol%以下にする。
(Structure and characteristic values of steel sheet)
In the non-oriented electrical steel sheet according to the present invention, Cu in the steel sheet is finely precipitated in the steel, that is, the steel has 0.2 to 2.0 vol% of Cu precipitates, and the average of the Cu precipitates. It is important that the diameter is 1 to 20 nm.
First, if the amount of Cu precipitates in the steel is less than 0.2 vol%, the precipitation density required for precipitation strengthening cannot be obtained, so 0.2 vol% or more is necessary.
On the other hand, if the amount of Cu precipitates exceeds 2.0 vol%, the probability that adjacent precipitates will coalesce increases, and the average size of the precipitates becomes coarse and it is difficult to obtain a significant increase in strength, so 2.0 vol% Below.
また、Cu析出物は、微細であるほど高強度化に寄与するが、鋼中におけるCu析出物の平均径が1nm未満では、強度の上昇効果が飽和する上、後述するCu析出物径の測定において1nm未満の微小径の特定が難しく、かような微小範囲に製品組織を管理する際に支障を来す場合もあるため、特に工業生産の観点からは平均径を1nm以上とする。一方、Cu析出物の平均径が20nmを超えると、高強度化に寄与しなくなる上、鉄損を劣化させることになる。したがって、鉄損を劣化させずに、高強度化に寄与する1〜20nmの平均径の微細析出物としてCuを存在させることが重要である。 The finer the Cu precipitates, the higher the strength. However, if the average diameter of the Cu precipitates in the steel is less than 1 nm, the effect of increasing the strength is saturated and the Cu precipitate diameter is measured later. In this case, it is difficult to specify a minute diameter of less than 1 nm, and there are cases in which the product structure is managed in such a minute range. Therefore, from the viewpoint of industrial production, the average diameter is 1 nm or more. On the other hand, if the average diameter of the Cu precipitate exceeds 20 nm, it will not contribute to the increase in strength and the iron loss will be deteriorated. Therefore, it is important that Cu be present as fine precipitates having an average diameter of 1 to 20 nm that contribute to high strength without deteriorating iron loss.
ここで、鋼中のCu析出物の量は、後述の時効処理後の鋼板から採取した試料について、その厚みを予め求めておき、該試料の約400nm×400nm領域の走査透過電子顕微鏡像(暗視野像)を数視野撮影し、画像処理によってCu析出物の認識を行い、認識されたCu析出物を統計的に処理することによって導出した。
また、Cu析出物の平均径は、同様に画像処理によって認識したCu析出物について、
(a)当該視野内のCu析出物1個当りの平均体積から、球相当径を算出する、
(b)各Cu析出物体積より各Cu析出物の球相当径を求め、その平均値を算出する、
(c)当該視野におけるCu析出物1個当りの平均面積から、円相当径を算出する、
(d)各Cu析出物面積より各Cu析出物の円相当径を求め、その平均値を算出する、のいずれかの手法で求めることができる。
そして、Cu析出物の平均径が1〜20nmの範囲にある、ということは、上記の(a) 〜(d)の測定手法のいずれか少なくとも1つの手法によって得られる平均径が、1〜20nmの範囲にあることを意味する。
Here, the amount of Cu precipitates in the steel is determined in advance by measuring the thickness of a sample collected from a steel sheet after aging treatment, which will be described later, and a scanning transmission electron microscope image (darkness) of the sample in an area of about 400 nm × 400 nm. Several fields of view) were taken, Cu precipitates were recognized by image processing, and the recognized Cu precipitates were statistically processed.
In addition, the average diameter of Cu precipitates is the same for Cu precipitates recognized by image processing.
(a) Calculate the equivalent sphere diameter from the average volume per Cu precipitate in the field of view.
(b) Find the equivalent sphere diameter of each Cu precipitate from each Cu precipitate volume, calculate the average value,
(c) Calculate the equivalent circle diameter from the average area per Cu precipitate in the field of view,
(d) The equivalent circle diameter of each Cu precipitate can be determined from the area of each Cu precipitate, and the average value can be calculated by any of the methods.
And that the average diameter of Cu precipitates is in the range of 1 to 20 nm means that the average diameter obtained by at least one of the above-described measurement methods (a) to (d) is 1 to 20 nm. Means in the range of
この際、観察領域の試料厚みが薄すぎると、Cu析出物の脱落頻度が高まり、逆に厚すぎると走査透過電子顕微鏡像中の析出粒子認識が困難になるため、観察領域の厚みは30nm〜60nmの範囲とすることが好ましい。
また、一般に、Cu含有鋼の透過電子顕微鏡試料は表面電着Cu粒子の影響により、析出量が過大評価傾向にあるため、観察にはアルゴンイオンによって表面清浄化を施した試料を用いることが好ましい。
ちなみに、図1に1.8%Si−1.0%Cu系の時効処理後鋼板を上記に従って観察した際の一例を示すように、黒地に白く浮き出ている粒子が時効により析出したCuである。
At this time, if the sample thickness in the observation region is too thin, the frequency of dropping of Cu precipitates increases, and conversely if too thick, it becomes difficult to recognize the precipitated particles in the scanning transmission electron microscope image. A range of 60 nm is preferable.
In general, a transmission electron microscope sample of Cu-containing steel has a tendency to overestimate the amount of precipitation due to the effect of surface-deposited Cu particles, so it is preferable to use a sample that has been surface cleaned with argon ions for observation. .
Incidentally, as shown in FIG. 1 as an example when the steel sheet after aging treatment of 1.8% Si-1.0% Cu is observed according to the above, the particles floating white on the black background are Cu precipitated by aging.
なお、本発明におけるCu析出物とは、Cuの析出物を対象としていることは勿論であるが、析出物が極微細になると、Cuに鉄が含まれる場合があり、このような場合も含めてCu析出物という。 The Cu precipitates in the present invention are of course intended for Cu precipitates, but when the precipitates become extremely fine, Cu may contain iron, including such cases. This is called Cu precipitate.
また、製造条件によっては粒界に粗大なCu析出物が認められることもあるが、本発明では結晶粒内におけるCu析出物を規定することが重要である。すなわち、本発明で所期した上記特性を電磁鋼板に付与するには、その母相を強化することが有効であり、この強化に寄与するCuの微細析出は結晶粒内に実現させることが重要である。 Depending on the production conditions, coarse Cu precipitates may be observed at the grain boundaries, but in the present invention, it is important to define the Cu precipitates in the crystal grains. That is, in order to impart the above-mentioned characteristics expected in the present invention to an electrical steel sheet, it is effective to strengthen its matrix, and it is important to realize Cu fine precipitation that contributes to this strengthening in the crystal grains. It is.
さて、Cu量を0.20〜4.0%、好ましくは0.5〜2.0%とした鋼では、例えば500℃×10hの時効焼鈍により、鋼中に平均で5nm程度のCu析出物を微細に析出させることができ、その結果、時効後に100MPa程度の強度上昇を得ることができる。その結果、製品の降伏応力YS(MPa)は、下記式で表されるCYS 以上となる。
記
CYS=180 + 5600[%C]+95[%Si]+50[%Mn]+37[%Al]
+435[%P]+25[%Ni]+22d-1/2
Now, in steel with a Cu content of 0.20 to 4.0%, preferably 0.5 to 2.0%, for example, by aging annealing at 500 ° C. × 10 h, an average of about 5 nm of Cu precipitates can be precipitated in the steel. As a result, a strength increase of about 100 MPa can be obtained after aging. As a result, the yield stress YS (MPa) of the product is not less than CYS represented by the following formula.
Record
CYS = 180 + 5600 [% C] + 95 [% Si] + 50 [% Mn] + 37 [% Al]
+435 [% P] +25 [% Ni] + 22d -1/2
上記式において、各元素の項の係数は、各元素1%当りの固溶強化量を表している。また、dは製品の平均結晶粒径(直径:mm)であり、圧延方向沿った板厚断面をナイタール腐食液などでエッチングされた試料を光学顕微鏡により観察し、観察視野面積と視野内の結晶粒数より結晶粒の円相当径として求められるものである。この平均結晶粒径dが小さいほど高強度化されるが、鉄損が劣化する。そのため、求められる強度および鉄損特性に応じて結晶粒径dを調整する。
なお、適正な結晶粒径は求められる鉄損レベルにもよるが、一般に約0.02〜0.2mmである。
In the above formula, the coefficient of the term of each element represents the amount of solid solution strengthening per 1% of each element. Further, d is the average crystal grain size (diameter: mm) of the product, and a specimen obtained by etching a plate thickness section along the rolling direction with a nital etchant is observed with an optical microscope. It is calculated | required as a circle equivalent diameter of a crystal grain from the number of grains. The smaller the average grain size d, the higher the strength, but the iron loss deteriorates. Therefore, the crystal grain size d is adjusted according to the required strength and iron loss characteristics.
The appropriate crystal grain size is generally about 0.02 to 0.2 mm, although it depends on the required iron loss level.
上記した時効による強度上昇を、磁気特性へ悪影響を与えることなしに実現するには、上記した成分組成に加えて、特に時効条件等を適正化し、Cuの析出状態を制御することが必須であり、以下の条件に従って製造することが肝要である。 In order to realize the above-mentioned strength increase due to aging without adversely affecting the magnetic properties, in addition to the above-described component composition, it is essential to optimize the aging conditions and control the Cu precipitation state. Therefore, it is important to manufacture according to the following conditions.
(製造方法)
本発明に係わる鉄損に優れた高強度無方向性電磁鋼板を製造するためには、まず、転炉あるいは電気炉などにて、前記した所定成分に溶製された鋼を、連続鋳造あるいは造塊後の分塊圧延により鋼スラブとする。鋼スラブの組成範囲は、目的とする製品板の組成範囲と同一でよい。次いで、得られたスラブを熱間圧延し、必要に応じて熱延坂焼鈍を施し、一回あるいは中間焼鈍を挟む二回以上の冷間圧延あるいは温間圧延を施して製品板厚とし、仕上げ焼鈍を施し、その後時効処理を施す。さらに、仕上げ焼鈍後のいずれかの段階において、必要に応じて絶縁被膜の塗布および焼き付け処理を行う。
(Production method)
In order to produce a high-strength non-oriented electrical steel sheet having excellent iron loss according to the present invention, first, a steel melted in the above-mentioned predetermined components is continuously cast or manufactured in a converter or an electric furnace. A steel slab is formed by rolling after ingot. The composition range of the steel slab may be the same as the composition range of the target product plate. Next, the obtained slab is hot-rolled, subjected to hot rolling hill annealing as necessary, and subjected to cold rolling or warm rolling twice or more sandwiching one or intermediate annealing to obtain a product thickness. Annealing and then aging treatment. Furthermore, at any stage after finish annealing, an insulating coating is applied and baked as necessary.
上記の仕上焼鈍は、Cuを固溶させるため、焼鈍温度を{Cu固溶温度(Ts)+10℃}以上とし、仕上焼鈍の冷却過程において、Cuの析出を抑制するためにCu固溶温度から400℃までの間を10℃/s以上の速度で冷却することによって行う。焼鈍温度が(Cu固溶温度+10℃)未満であるとき、粗大なCu析出物が製品中に残留し、その後の時効焼鈍によっても高強度とならない。また、冷却速度が10℃/s未満の場合にも、Cuが粗大に析出し、その後の時効焼鈍によっても高強度とならない。仕上焼鈍温度の上限は特に設けないが、1150℃を超えると、鋼板表面の酸化に伴う鉄損劣化が大きくなるので1150℃以下とすることが望ましい。
なお、Cu固溶温度(Ts)は
Ts(℃)=3351/{3.279-log10(Cu質量%)}−273
により求められる。
In the above finish annealing, in order to dissolve Cu, the annealing temperature is set to {Cu solid solution temperature (Ts) + 10 ° C} or more, and the Cu solid solution temperature is used to suppress Cu precipitation in the cooling process of finish annealing. It is performed by cooling at a rate of 10 ° C / s or more from 1 to 400 ° C. When the annealing temperature is lower than (Cu solid solution temperature + 10 ° C), coarse Cu precipitates remain in the product and do not become high strength even by subsequent aging annealing. Even when the cooling rate is less than 10 ° C./s, Cu precipitates coarsely, and does not become high strength even by subsequent aging annealing. The upper limit of the finish annealing temperature is not particularly set, but if it exceeds 1150 ° C., iron loss deterioration accompanying oxidation of the steel sheet surface increases, so it is preferable to set it to 1150 ° C. or less.
The Cu solid solution temperature (Ts) is
Ts (° C.) = 3351 / {3.279-log 10 (Cu mass%)} − 273
It is calculated by.
引き続く時効処理は、400℃以上650℃以下、好ましくは450℃以上600℃以下の温度で行う。すなわち、400℃未満の場合には、微細Cuの析出が不十分となり、高強度が得られない。一方、650℃を超えるとCu析出物が粗大化するため、鉄損が劣化し強度上昇量も減少するため、良好な強度−鉄損バランスを有する電磁鋼板が得られない。なお、適切な時効時間は処理温度にも依存するが、20s以上1000h以下が好適である。なお、この時効処理の実施時期は、絶縁被膜の塗布焼付け前、焼付け後、プレス打ち抜きなどの加工後、などのいずれのタイミングで実施してもよい。 The subsequent aging treatment is performed at a temperature of 400 ° C. to 650 ° C., preferably 450 ° C. to 600 ° C. That is, when the temperature is lower than 400 ° C., the precipitation of fine Cu becomes insufficient and high strength cannot be obtained. On the other hand, when the temperature exceeds 650 ° C., the Cu precipitates become coarse, so that the iron loss is deteriorated and the amount of increase in strength is also reduced. An appropriate aging time depends on the treatment temperature, but is preferably 20 s or more and 1000 h or less. The aging treatment may be performed at any timing before or after the insulating film is applied and baked, after baking, or after processing such as press punching.
表1に示す成分組成を有する鋼を転炉で溶製し、連続鋳造によりスラブとした。次いで、このスラブを、熱間圧延により板厚2.2mmの熱延板とした。この熱延板を、冷間圧延により最終板厚0.5mmの冷延板としたのち、表1に示す焼鈍条件にて仕上焼鈍した。その際、Cu固溶温度から400℃までの冷却速度は20℃/sとした。その後、仕上焼鈍板に500℃および10hの時効処理を施したのち、絶縁被膜を被成し製品板とした。なお、製品の組成は表1に示すスラブ組成と同じであった。 Steel having the component composition shown in Table 1 was melted in a converter and made into a slab by continuous casting. Next, this slab was formed into a hot-rolled sheet having a thickness of 2.2 mm by hot rolling. This hot-rolled sheet was made into a cold-rolled sheet having a final sheet thickness of 0.5 mm by cold rolling, and then subjected to finish annealing under the annealing conditions shown in Table 1. At that time, the cooling rate from the Cu solid solution temperature to 400 ° C. was set to 20 ° C./s. Thereafter, the finish annealed plate was subjected to an aging treatment at 500 ° C. and 10 hours, and then an insulating coating was applied to obtain a product plate. The product composition was the same as the slab composition shown in Table 1.
かくして得られた製品板について、平均結晶粒径d、鉄損W15/50、降伏応力YSを評価した。なお、鉄損はエプスタイン試験法により測定した。降伏応力YSは、製品板の圧延方向とその直角方向について測定し、その値を平均して求めた。
平均結晶粒径dは、製品断面の光学顕微鏡観察により円相当径として求めた。
The product plate thus obtained was evaluated for average crystal grain size d, iron loss W 15/50 , and yield stress YS. The iron loss was measured by the Epstein test method. The yield stress YS was determined by measuring the rolling direction of the product plate and the direction perpendicular thereto, and averaging the values.
The average crystal grain size d was determined as an equivalent circle diameter by optical microscope observation of the product cross section.
また、Cu析出物の評価は、走査透過電子顕微鏡観察により、次のように行った。まず、電子顕微鏡観察用の試料は、製品板の厚み中心部より圧延面に平行な平板として採取し、過塩素酸−メタノール系の電解液を用いた電解研磨により薄膜化した後、試料表面の清浄化のため、アルゴンイオンによるスパッタリングを5分間実施して準備した。観察は、1nm径以下の電子線を観察視野中で走査する走査透過モードで行い、析出物が認識しやすい暗視野像を3視野ずつ取得した。なお観察領域が薄すぎると析出粒子の脱落頻度が高まり、厚すぎると走査透過電子顕微鏡像中の析出粒子認識が困難になるため、観察領域の厚みが30〜60nmの範囲となるようにした。ここで、試料厚みは電子エネルギー損失スペクトルから見積もった。こうして得られた、400 nm×400nmの暗視野像全てについて、画像処理によりCu析出物の粒子認識を行い、Cu析出物数を求めると共に、各Cu析出物面積より各Cu析出物の円相当径を算出し、この各Cu析出物の円相当径から、各Cu析出物を球と仮定して各Cu析出物の体積を求め、かように求めた体積の総和を全Cu析出物体積とした。次いで、この全Cu析出物体積と観察対象の全体積、つまり各視野の体積(400nm×400nm×観察領域の厚み)の合計体積とから、体積分率として析出量(f)を算出するとともに、Cu析出物数で全Cu析出物体積を除した平均析出物体積から、析出物の球相当径を求め、それを平均径(dp)として評価した。
これらの評価結果を表1に併記する。
Moreover, evaluation of Cu precipitate was performed as follows by scanning transmission electron microscope observation. First, a sample for electron microscope observation was collected as a flat plate parallel to the rolling surface from the center of the thickness of the product plate, and after thinning by electrolytic polishing using a perchloric acid-methanol electrolyte, For cleaning, sputtering with argon ions was performed for 5 minutes. Observation was performed in a scanning transmission mode in which an electron beam having a diameter of 1 nm or less was scanned in the observation field, and dark field images in which precipitates were easily recognized were obtained for each of three fields. If the observation region is too thin, the frequency of dropping of the precipitated particles is increased. If the observation region is too thick, it is difficult to recognize the precipitated particles in the scanning transmission electron microscope image. Therefore, the thickness of the observation region is set in the range of 30 to 60 nm. Here, the sample thickness was estimated from the electron energy loss spectrum. For all of the 400 nm × 400 nm dark field images obtained in this manner, particle recognition of Cu precipitates was performed by image processing, the number of Cu precipitates was determined, and the equivalent circle diameter of each Cu precipitate was determined from each Cu precipitate area. From the equivalent circle diameter of each Cu precipitate, the volume of each Cu precipitate was calculated assuming that each Cu precipitate was a sphere, and the total volume thus obtained was defined as the total Cu precipitate volume. . Next, from this total Cu precipitate volume and the total volume of the observation object, that is, the total volume of each visual field (400 nm × 400 nm × the thickness of the observation region), the precipitation amount (f) is calculated as a volume fraction, From the average precipitate volume obtained by dividing the total Cu precipitate volume by the number of Cu precipitates, the equivalent sphere diameter of the precipitate was determined and evaluated as the average diameter (dp).
These evaluation results are also shown in Table 1.
表1に示すように、成分組成を本発明の範囲内に制御したものは、いずれも製品板において、高強度を有し、かつ鉄損に優れたものとなった。これらの発明例は、強化因子であるCu析出物の析出量fおよび平均径dpが発明範囲内にある。
これに対し、低Si成分系の従来鋼(比較例:No.1−10)および高Si成分系の従来鋼(比較例:No.1−11)では、良好な鉄損が得られるものの、強度が低い。また、Cuを過剰に含有する鋼(比較例:No.1−7)は、鉄損が悪くかつ強度も低かった。
As shown in Table 1, all the components whose composition was controlled within the range of the present invention had high strength and excellent iron loss in the product plate. In these invention examples, the precipitation amount f and average diameter dp of Cu precipitates, which are strengthening factors, are within the scope of the invention.
On the other hand, in the low Si component-based conventional steel (Comparative Example: No. 1-10) and the high Si component-based conventional steel (Comparative Example: No. 1-11), although good iron loss is obtained, The strength is low. Moreover, steel containing excessive Cu (Comparative Example: No. 1-7) had poor iron loss and low strength.
表2に示す成分組成を有する鋼を、転炉により溶製し、連続鋳造によりスラブとした。このスラブを、熱間圧延により板厚1.8mmの熱延板とし、熱延板に800℃×5hの熱延板焼鈍を施した後、1回冷延法により板厚0.35mmの冷延板とした。さらに、この冷延板に、表2に示す条件で仕上焼鈍を行い、ついで絶縁被膜を被成し、表2に示す時効処理を行って製品とした。なお、製品板の組成は、スラブ組成と同じであった。 Steel having the component composition shown in Table 2 was melted by a converter and made into a slab by continuous casting. This slab is hot rolled into a hot rolled sheet having a thickness of 1.8 mm, and hot rolled sheet is subjected to hot rolled sheet annealing at 800 ° C. × 5 h, and then cold rolled with a thickness of 0.35 mm by a single cold rolling method. It was. Furthermore, this cold-rolled sheet was subjected to finish annealing under the conditions shown in Table 2, and then an insulating coating was formed, and an aging treatment shown in Table 2 was performed to obtain a product. The product plate had the same composition as the slab composition.
かくして得られた製品板について、実施例1の場合と同様に、平均結晶粒径d、鉄損W15/50および降伏応力YS(MPa)、さらにCu析出物の析出量fおよび平均径dpについて、評価した。
その評価結果を表2に併記するように、鋼組成、仕上焼鈍条件および時効処理条件を本発明範囲内に制御したものは、製品板において優れた鉄損と高強度とを得ることができた。
With respect to the product plate thus obtained, as in Example 1, the average crystal grain size d, the iron loss W 15/50 and the yield stress YS (MPa), and the precipitation amount f and the average diameter dp of the Cu precipitates ,evaluated.
As the evaluation results are listed in Table 2, the steel composition, finish annealing conditions and aging treatment conditions controlled within the scope of the present invention were able to obtain excellent iron loss and high strength in the product plate. .
しかしながら、Cuを添加しない従来鋼(比較例:No.2−11)では、優れた鉄損を得ることはできるが、高強度を得ることができない。また、仕上焼鈍温度が低すぎる場合(比較例:No.2−1)、仕上焼鈍冷却速度が遅すぎる場合(比較例:No.2−4)には、鉄損が劣化するばかりでなく、高強度も得ることができない。さらに、時効温度が低すぎる場合(比較例:No.2−5)には、高強度が得ることができず、時効温度が高すぎる場合(比較例:No.2−10)には、鉄損が劣化し、高強度も得ることができなかった。 However, in the conventional steel to which Cu is not added (Comparative Example: No. 2-11), although excellent iron loss can be obtained, high strength cannot be obtained. Further, when the finish annealing temperature is too low (Comparative Example: No. 2-1) and the finish annealing cooling rate is too slow (Comparative Example: No. 2-4), not only the iron loss is deteriorated, High strength cannot be obtained. Furthermore, when the aging temperature is too low (Comparative Example: No. 2-5), high strength cannot be obtained, and when the aging temperature is too high (Comparative Example: No. 2-10), iron Loss deteriorated and high strength could not be obtained.
Claims (5)
C:0.02%以下、
Si:4.5%以下、
Mn:3.0%以下、
Al:3.0%以下、
P:0.50%以下、
Ni:5.0%以下および
Cu:0.2%以上4.0%以下
を含有し、残部Feおよび不可避的不純物の成分組成からなり、鋼中に0.2〜2.0vol%のCu析出物を有し、該Cu析出物の平均径が1〜20nm(ただし、平均直径が0.02μmである場合を除く)であることを特徴とする無方向性電磁鋼板。 % By mass
C: 0.02% or less,
Si: 4.5% or less,
Mn: 3.0% or less,
Al: 3.0% or less,
P: 0.50% or less,
Ni: 5.0% or less and
Cu: 0.2% to 4.0% inclusive, composed of the remaining Fe and inevitable impurities, and having 0.2 to 2.0 vol% Cu precipitates in the steel, the average diameter of the Cu precipitates being 1 to 20 nm (provided that the average diameter of unless a 0.02 [mu] m) non-oriented electrical steel sheet you being a.
記Record
CYS=180 + 5600[%C]+95[%Si]+50[%Mn]+37[%Al]CYS = 180 + 5600 [% C] + 95 [% Si] + 50 [% Mn] + 37 [% Al]
+435[%P]+25[%Ni]+22d+435 [% P] +25 [% Ni] + 22d -1/2-1/2
ただし、d:結晶粒の平均粒径(mm)Where d: average grain size (mm) of crystal grains
ZrおよびVについてはそれぞれ0.1〜3.0%、
Sb、SnおよびGeについてはそれぞれ0.002〜0.5%、
B,Caおよび希土類元素についてはそれぞれ0.001〜0.01%、そして
Coについては0.2〜5.0%
にて含有することを特徴とする無方向性電磁鋼板。 In Claim 1 or 2, as a component composition, the 1 type (s) or 2 or more types further selected from Zr, V, Sb, Sn, Ge, B, Ca, rare earth elements, and Co in mass%,
For Zr and V, 0.1 to 3.0%,
0.002 to 0.5% for Sb, Sn and Ge,
0.001 to 0.01% for B, Ca and rare earth elements, respectively
0.2 to 5.0% for Co
Non-oriented electrical steel sheet you characterized by containing at.
C:0.02%以下、
Si:4.5%以下、
Mn:3.0%以下、
Al:3.0%以下、
P:0.50%以下、
Ni:5.0%以下および
Cu:0.2%以上4.0%以下
を含有し、残部Feおよび不可避的不純物の成分組成からなる、鋼スラブに、熱間圧延を施した後、冷間圧延あるいは温間圧延を施して最終板厚とし、次いで(Cu固溶温度+10℃)以上に加熱した後、Cu固溶温度から400℃までを10℃/s以上の速度で冷却する仕上焼鈍を施し、その後400℃以上650℃以下の温度にて時効処理を施すことを特徴とする無方向性電磁鋼板の製造方法。 % By mass
C: 0.02% or less,
Si: 4.5% or less,
Mn: 3.0% or less,
Al: 3.0% or less,
P: 0.50% or less,
Ni: 5.0% or less and
Cu: 0.2% or more and 4.0% or less, consisting of the remaining Fe and inevitable impurities, the steel slab is hot-rolled and then cold-rolled or warm-rolled to the final thickness. Then, after heating to (Cu solid solution temperature + 10 ° C) or higher, finish annealing is performed to cool from the Cu solid solution temperature to 400 ° C at a rate of 10 ° C / s or higher, and then to a temperature of 400 ° C or higher and 650 ° C or lower. method for producing a non-oriented electrical steel sheet you characterized by applying aging treatment Te.
C:0.02%以下、
Si:4.5%以下、
Mn:3.0%以下、
Al:3.0%以下、
P:0.50%以下、
Ni:5.0%以下および
Cu:0.2%以上4.0%以下
を含み、さらにZr、V、Sb、Sn、Ge、B、Ca、希土類元素およびCoから選んだ1種または2種以上を、
ZrおよびVについてはそれぞれ0.1〜3.0%、
Sb、SnおよびGeについてはそれぞれ0.002〜0.5%、
B,Caおよび希土類元素についてはそれぞれ0.001〜0.01%、そして
Coについては0.2〜5.0%
にて含有し、残部Feおよび不可避的不純物の成分組成からなる、鋼スラブに、熱間圧延を施した後、冷間圧延あるいは温間圧延を施して最終板厚とし、次いで(Cu固溶温度+10℃)以上に加熱した後、Cu固溶温度から400℃までを10℃/s以上の速度で冷却する仕上焼鈍を施し、その後400℃以上650℃以下の温度にて時効処理を施すことを特徴とする無方向性電磁鋼板の製造方法。 % By mass
C: 0.02% or less,
Si: 4.5% or less,
Mn: 3.0% or less,
Al: 3.0% or less,
P: 0.50% or less,
Ni: 5.0% or less and
Cu: 0.2% to 4.0%, and one or more selected from Zr, V, Sb, Sn, Ge, B, Ca, rare earth elements and Co,
For Zr and V, 0.1 to 3.0%,
0.002 to 0.5% for Sb, Sn and Ge,
0.001 to 0.01% for B, Ca and rare earth elements, respectively
0.2 to 5.0% for Co
The steel slab, which is composed of the remaining Fe and the inevitable impurities, is subjected to hot rolling, followed by cold rolling or warm rolling to obtain the final thickness, and then (Cu solid solution temperature) + 10 ° C) or higher, and then finish annealing to cool from the solid solution temperature of Cu to 400 ° C at a rate of 10 ° C / s or higher, and then perform an aging treatment at a temperature of 400 ° C or higher and 650 ° C or lower. method for producing a non-oriented electrical steel sheet shall be the features.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003395838A JP4341386B2 (en) | 2003-03-31 | 2003-11-26 | Non-oriented electrical steel sheet and manufacturing method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003095737 | 2003-03-31 | ||
JP2003395838A JP4341386B2 (en) | 2003-03-31 | 2003-11-26 | Non-oriented electrical steel sheet and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004315956A JP2004315956A (en) | 2004-11-11 |
JP4341386B2 true JP4341386B2 (en) | 2009-10-07 |
Family
ID=33478700
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003395838A Expired - Fee Related JP4341386B2 (en) | 2003-03-31 | 2003-11-26 | Non-oriented electrical steel sheet and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4341386B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100709056B1 (en) | 2002-12-05 | 2007-04-18 | 제이에프이 스틸 가부시키가이샤 | Non-oriented magnetic steel sheet and method for production thereof |
TWI293332B (en) | 2003-10-06 | 2008-02-11 | Nippon Steel Corp | A high-strength non-oriented electrical steel sheet and a fabricated part and a method of producing the same |
JP5397252B2 (en) * | 2004-02-17 | 2014-01-22 | 新日鐵住金株式会社 | Electrical steel sheet and manufacturing method thereof |
JP4424075B2 (en) * | 2004-06-02 | 2010-03-03 | 住友金属工業株式会社 | Non-oriented electrical steel sheet, non-oriented electrical steel sheet for aging heat treatment, and production method thereof |
JP5423175B2 (en) * | 2009-06-23 | 2014-02-19 | 新日鐵住金株式会社 | Non-oriented electrical steel sheet and manufacturing method thereof |
WO2019017426A1 (en) | 2017-07-19 | 2019-01-24 | 新日鐵住金株式会社 | Non-oriented electromagnetic steel plate |
WO2019188940A1 (en) * | 2018-03-26 | 2019-10-03 | 日本製鉄株式会社 | Nonoriented electromagnetic steel sheet |
JP7092095B2 (en) * | 2018-11-09 | 2022-06-28 | Jfeスチール株式会社 | Motor core and its manufacturing method |
WO2023079836A1 (en) | 2021-11-02 | 2023-05-11 | Jfeスチール株式会社 | Non-oriented electromagnetic steel plate and manufacturing method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004084053A (en) * | 2002-06-26 | 2004-03-18 | Nippon Steel Corp | Electromagnetic steel sheet having remarkably superior magnetic property, and manufacturing method therefor |
-
2003
- 2003-11-26 JP JP2003395838A patent/JP4341386B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004315956A (en) | 2004-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2489753B1 (en) | Non-oriented magnetic steel sheet and method for production thereof | |
JP4380199B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JP2019019355A (en) | Electromagnetic steel and method for producing the same, motor core for rotor and method for producing the same, motor core for stator and method for producing the same, and method for producing motor core | |
JP2013112853A (en) | Method for manufacturing non-oriented electrical steel sheet | |
JP4352691B2 (en) | Age-hardening non-oriented electrical steel sheet excellent in punchability and iron loss, method for producing the same, and method for producing a rotor using the same | |
JP2008127600A (en) | Non-oriented electromagnetic steel sheet for divided core | |
JPWO2013179438A1 (en) | Non-oriented electrical steel sheet | |
JPWO2020166718A1 (en) | Non-oriented electrical steel sheet | |
JP4341386B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JP2003213385A (en) | Nonoriented silicon steel sheet | |
JP4265400B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JP4341476B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JP2005120403A (en) | Non-oriented electrical steel sheet with low core loss in high-frequency region | |
JP7119519B2 (en) | Non-oriented electrical steel sheet, stator core, rotor core and manufacturing method thereof | |
EP1156128A1 (en) | Non-oriented electromagnetic steel sheet having reduced magnetic anisotropy in high frequency region and excellent press workability | |
JP4670230B2 (en) | Non-oriented electrical steel sheet | |
JP2004353037A (en) | High-strength non-oriented electromagnetic steel sheet superior in magnetic property, and manufacturing method therefor | |
JP5186781B2 (en) | Non-oriented electrical steel sheet for aging heat treatment, non-oriented electrical steel sheet and method for producing the same | |
JP2005126748A (en) | High fatigue strength non-oriented magnetic steel sheet superior in magnetic properties, and manufacturing method therefor | |
JP5648661B2 (en) | Non-oriented electrical steel sheet for aging heat treatment, non-oriented electrical steel sheet and method for producing the same | |
JP4356580B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JP5768327B2 (en) | Method for producing non-oriented electrical steel sheet with excellent high magnetic field iron loss | |
JP2005120431A (en) | Method for manufacturing high-strength nonoriented silicon steel sheet having excellent magnetic characteristic | |
CN117377787A (en) | Non-oriented electrical steel sheet and method for manufacturing same | |
JP2005272913A (en) | High strength non-oriented electrical steel sheet and its production method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061026 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080522 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080527 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080728 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20080728 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090616 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090629 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120717 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4341386 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120717 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130717 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |