JP4670230B2 - Non-oriented electrical steel sheet - Google Patents

Non-oriented electrical steel sheet Download PDF

Info

Publication number
JP4670230B2
JP4670230B2 JP2003171031A JP2003171031A JP4670230B2 JP 4670230 B2 JP4670230 B2 JP 4670230B2 JP 2003171031 A JP2003171031 A JP 2003171031A JP 2003171031 A JP2003171031 A JP 2003171031A JP 4670230 B2 JP4670230 B2 JP 4670230B2
Authority
JP
Japan
Prior art keywords
strength
less
iron loss
steel sheet
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003171031A
Other languages
Japanese (ja)
Other versions
JP2005008906A (en
Inventor
善彦 尾田
雅昭 河野
稔 高島
正樹 河野
芳一 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003171031A priority Critical patent/JP4670230B2/en
Publication of JP2005008906A publication Critical patent/JP2005008906A/en
Application granted granted Critical
Publication of JP4670230B2 publication Critical patent/JP4670230B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、無方向性電磁鋼板、特に高速回転モータのロータを典型例とする、大きな応力がかかる部品に用いて好適な、高強度でかつ低鉄損の特性を有する無方向性電磁鋼板およびその製造方法に関するものである。
【0002】
【従来の技術】
電気自動車(EV)やハイブリット電気自動車(HEV)の駆動用モータでは、その小型化および高効率化が強く要望されている。そして、これらの要望に答えるために、ロータの回転数を現状の数千回転から数万回転に高めることが指向されている。従って、この高回転型のモータに使用されるロータには、大きな遠心力が作用することとなる。
【0003】
特に、近年、高効率モータの主流となっている永久磁石をロータ内部に埋め込んだ、埋め込み磁石式(IPM)モータでは、高速回転時に磁石が半径方向に飛び出そうとする力が働くため、コア材の強度が低い場合にはコアが半径方向に変形し、極端な場合には、ロータとステータとが接触したり、磁石が飛散するという問題が生じる。このロータの変形を抑制するため、コア材料には強度の優れた材料が要望されている。
【0004】
一方、モータを高速回転する場合は、コア材の励磁周波数が高くなるため、コア材料には、モータの発熱防止の観点から、高周波鉄損の低い材料が強く要望され、通常は電磁鋼板が使用されている。従って、高周波磁気特性に優れ、かつ高強度の電磁鋼板がモータ用素材として要望されているのである。
【0005】
このような高速回転機に使用される高強度の電磁鋼板として、例えば特許文献1には、Si:2〜3.5%を含む鋼にMnを0.1〜6%およびNiを0.3〜6%添加し、結晶粒径を30μm以下とする技術が開示されている。しかし、この技術では、強度は高いものの、結晶粒の微細化に起因して、鉄損W15/50が6W/kg程度と非常に高いという問題を有している。
【0006】
また、特許文献2には、Si:0.05〜3.2%の鋼にTiおよびVを添加し、TiおよびV系の炭窒化物を利用して高強度化を図る技術が開示されている。この技術では、引張強さ590MPa以上の強度が得られているものの、炭窒化物が比較的粗大に析出しているために、鉄損が高いという問題を有している。
【0007】
一方、高周波用途の低鉄損材料として、例えば特許文献3には、Si:1〜4%を含み、板厚が0.1〜0.25mmの薄電磁鋼板の技術が開示されている。この技術では、高周波鉄損は低いものの、強度は考慮されておらず、高速回転機のコア材料としては、強度面からその適用に限界があった。
【0008】
【特許文献1】
特開昭64−226号公報
【特許文献2】
特開平10−18005号公報
【特許文献3】
特開平8−60311号公報
【0009】
【発明が解決しようとする課題】
以上のように、従来の技術は、高強度と低鉄損とを両立するという観点からは、いずれも満足できるものでは無かった。
そこで、本発明は、良好な磁気特性、とりわけ高周波磁気特性と高強度とを両立した無方向性電磁鋼板について提案することを目的とする。
【0010】
【課題を解決するための手段】
発明者らは、上記の課題を解決するために、Cuを含んだ鋼の時効硬化現象に着目して種々の検討を行った結果、良好な鉄損と高強度とを両立するための手段を確立するに到った。すなわち、鋼中の析出物は高強度化に寄与すると同時に、磁壁移動を抑制して鉄損を増大させるという、従来の知見に反して、鋼中にCuを適量添加して時効処理を行うことにより、極微細にCuを析出させた場合には、強度上昇は大きいものの、鉄損(履歴損)はほとんど劣化しないことを、新規に知見した。さらに、Cuを添加してCu系の微細析出物を析出させた上で、板厚を低減することにより、磁気特性を損なうことなく高強度化が達成されることを見出し、本発明を完成するに到った。
【0011】
本発明の要旨構成は、以下の通りである。
(1)質量%で、
C:0.02%以下、
P:0.2%以下、
Si:4.5%以下、
Mn:3%以下、
Al:3%以下および
Cu:0.5〜4%
を含み、残部Feおよび不可避不純物の成分組成を有し、板厚が0.05〜0.27mmの範囲にあり、引張強さが550MPa以上であり、鉄損W5/1kが20W/kg以下、そして周波数50Hzおよび磁束密度1.7Tにおける励磁実効電流Iが4500A/m以下であり、さらに鉄損W5/1kと励磁実効電流Iとが下記式の関係を満足することを特徴とする無方向性電磁鋼板。

I×W5/1k≦5.5×10
【0014】
【発明の実施の形態】
次に、本発明を導くに到った実験結果について詳細に説明する。なお、本明細書において鋼組成を表す%は、特にことわらない限り質量%を意味するものである。
最初に、高強度電磁鋼板の強度と磁気特性との関係を調査するため、以下の4種類の鋼板を用意した。
鋼種1:固溶強化タイプの電磁鋼板として、C:0.002%、Si:4.5%、Mn:1%、P:0.01%、Al:0.6%およびMo:1.5%を含む鋼を溶製し、熱間圧延し、900℃で30sの熱延板焼鈍を行った後、400℃で温間圧延して0.20mm厚に仕上げ、950℃×30sの仕上げ焼鈍を行った。
【0015】
鋼種2:結晶粒微細化タイプの電磁鋼板として、C:0.005%、Si:3.5%、Mn:1%およびP:0.05%を含む鋼を溶製し、熱間圧延し、850℃で30sの熱延板焼鈍を行った後、冷間圧延して0.20mm厚としたのち、800℃で30sの仕上げ焼鈍を行った。
【0016】
鋼種3:析出強化タイプの電磁鋼板として、C:0.031%、Si:2.6%、Mn:0.2%、P:0.02%、Al:0.65%、N:0.003%、Nb:0.018%およびZr:0.022%を含む鋼を溶製し、熱間圧延後0.20mm厚に冷間圧延し、750℃×30sの仕上げ焼鈍を施した。
以上の鋼種1〜3については、時効処理を行わなかった。
【0017】
鋼種4:Cuの析出強化を利用した電磁鋼板として、C:0.002%、Si:3.2%、Mn:0.18%、P:0.01%、Al:0.55%およびCu:1.1%を含む鋼を溶製し、熱間圧延後900℃で30sの熱延板焼鈍を行い、0.20mm厚に冷間圧延し、900℃×30sの仕上げ焼鈍を施し、さらに550℃×1hの時効処理を施した。
【0018】
このようにして得られた材料の磁気特性および機械特性について調査した結果を、表1に示す。なお、磁気特性は、25cmエプスタイン法により、磁束密度0.5Tおよび周波数1kHzでの鉄損W5/1kと、1.7Tおよび50Hzでの励磁実効電流Iとを評価した。また、引張試験はJIS 13号B試験片を用いて行った。
【0019】
ここで、W5/1kと1.7Tおよび50Hzの励磁実効電流とを評価した理由は、以下の通りである。
すなわち、上述したEVやHEV等の高周波モータは、50Hz程度の低周波域から高周波域まで広い周波数域で駆動される。そして、低周波域では、特に高トルクの観点から高磁束密度で使用され、一方、高周波域では、誘起電圧を抑えるため比較的低磁場域で駆動される。なぜなら、高トルク域では励磁電流が多く必要となるため、励磁実効電流の高い材料は銅損が大きくなり、一方、W5/1kが高い材料は高周波域の鉄損が大きくなるためである。このため、高周波モータ用材料としては、両者の低い材料が好ましい。
【0020】
【表1】

Figure 0004670230
【0021】
表1より、従来の固溶強化、細粒強化および析出強化を利用した鋼種1〜3では、引張強さ700MPa以上の高い強度が得られているが、周波数1kHzでの鉄損W5/1kは20W/kgを超えており、励磁実効電流も高い値となっている。
これに対して、Cuの析出強化を利用した材料では、鉄損、励磁実効電流および強度共に良好な値を示している。この理由は、時効処理を経て析出した数nm〜数10nm程度の非常に微細なCu析出物は、転位をピン止めすることにより高強度化に寄与するものの、磁壁の移動はほとんど妨げないため、良好な鉄損が得られたものと考えられる。
すなわち、Cu析出を利用した本発明では、従来の高強度電磁鋼板で達成することができなかったレベルの、強度−磁気特性バランスが得られることがわかる。
【0022】
次に、高強度化に必要なCu添加量を調査するための実験を行った。すなわち、C:0.0020%、Si:3.0%、Mn:0.18%、P:0.01%およびAl:0.60%を含み、Cuを0.01〜5%の範囲で変化させた鋼スラブを、熱間圧延後900℃で30sの熱延板焼鈍を行い、0.20mm厚に冷間圧延し、900℃×30sの仕上げ焼鈍を施し、さらに550℃×1hの時効処理を施した。かくして得られた鋼板について、JIS Z2241に準拠した引張試験により引張強さを調査した。
【0023】
その調査結果を、Cu添加量と引張強さとの関係として、図1に示す。図1から、強度を向上させるためにはCu添加量を0.5%以上とする必要があることがわかる。すなわち、Cuが0.5%未満では、時効処理を行ったとしても十分なCu析出が得られないためである。一方、4%を超えてCuを添加すると、逆に強度は低下する。これは粗大な析出物が形成されるためである。従って、Cuの添加量は、0.5%以上4%以下とする。
【0024】
ここで、本発明において、Cuはモータコアの状態で微細に析出していることが特徴であり、この点から従来の集合組織制御等の目的から、Cu添加を行った電磁鋼板とは全く異なるものである。
【0025】
なお、Cuを析出させるための時効処理は、400℃〜650℃にて10min〜1000hとすることが推奨される。
【0026】
製品板の板厚は0.05〜0.27mmとする。これは、板厚を0.27mm以下とすることにより高周波鉄損が低下し、I×W5/1k≦5.5×10となりモータ効率が向上するためである。しかし、板厚が0.05mm未満では積層枚数が増大し、作業工数が増えるため下限を0.05mmとする。
【0027】
また、高強度材における励磁実効電流および鉄損とモータ効率との関係を調査するため、8極のIPMモータを試作した。モータは、ロータ外径110 mm、ステータ外径160 mmおよび固定子スロット数は24とし、永久磁石はNeFeB系の磁石を用いた。そして、コア材料として、種々の高強度材料(TS>550MPa)を適用してモータを試作し、この試作モータにおける効率を調査した。ここで、モータ効率は、トルクの要求される周波数50Hzではティース磁束密度1.7Tで測定し、トルクがそれほど要求されない周波数1kHzではティース磁束密度0.5Tでの効率を評価し、その平均値とした。
【0028】
図2に、このモータ効率と鋼板における励磁実効電流および鉄損との関係を示す。図2から、励磁実効電流4500A/m以下および鉄損20W/kg以下で、かつI×W5/1k≦5.5×10の場合に90%以上の効率が得られていることがわかる。すなわち、励磁実効電流Iが4500A/m超の材料では、高トルク域で駆動した場合に銅損の上昇が大きいために効率が低下し、一方、鉄損20W/kg超では高周波駆動時の鉄損が大きいために効率が低下したものと考えられる。さらに、I×W5/1kが5.5×10超の領域では、鉄損および銅損の両者が増大したことにより、効率が低下したものと考えられる。
【0029】
従って、電磁鋼板をモータに適用した際の効率を考慮する、周波数1kHzでの鉄損W5/1kは20W/kg以下、1.7Tおよび50Hzでの励磁実効電流Iは4500A/m以下とし、さらにI×W5/1k≦5.5×10とする。
【0030】
以下に、本発明について、その構成要件毎に詳述する。
(鋼板の成分組成)
まず、成分組成範囲およびその限定理由を説明する。
C:0.02%以下
Cは、磁気時効の問題があるため、0.02%以下とした。
P:0.2%以下、
Pは、鋼板の高強度化に有効な元素であるが、0.2%を超えて添加すると鋳造時の中央偏析が生じやすく、また鋼板が脆化し冷間圧延性が著しく低下するため、0.2%以下とした。
【0031】
Si:4.5%以下、
Siは、鋼板の固有抵抗を上げるために有効な元素であるが、4.5%を超えると冷間圧延性および温間圧延性が著しく低下するため、上限を4.5%、望ましくは飽和磁化の観点から4.0%未満とする。
【0032】
Mn:3%以下、
Mnは、熱間圧延時の赤熱脆性を防止するために有効な元素であり、好ましくは0.05%以上で含有させるが、3%を超えると磁束密度を低下させるため、上限を3%とした。
【0033】
Al:3%以下
Alは、Siと同様、固有抵抗を上げるために有効な元素であり、好ましくは0.1%以上で含有させるが、3%を超えると飽和磁化が低下するとともに、鋳造性等も著しく低下するため上限を3%とした。
【0034】
Cu:0.5〜4%
Cuは、磁気特性を損なうことなく強度を上昇するために添加する成分であり、その上、下限を設定した理由は、上述した通りである。
【0035】
本発明に係わる無方向性電磁鋼板の基本組成は以上の通りであるが、上記成分に加えて、磁気特性の改善元素として知られるSb、Sn、B、Ni、Cr、CoおよびREMを単独または複合で添加することが出来る。しかし、その添加量は本発明の目的を害さない程度にすべきである。具体的には、
Sb:0.005〜0.05%、
Sn:0.005〜0.1%、
B:0.0002〜0.002%、
Ni:0.1〜5%、
Co:0.2〜3%および
REM:0.001〜0.01%
である。また、Crに関しては、飽和磁化を低下させるため、添加する場合には0.8%以下とすることが望ましい。
【0036】
引張強さは550MPa以上とし、より望ましくは600MPa以上とする。これは、550MPa未満の強度では高速回転時にローターが変形するためである。
【0037】
(製造方法)
本発明に係わる鉄損に優れた高強度無方向性電磁鋼板を製造するには、まず、転炉あるいは電気炉などにて、前記した所定成分に溶製された鋼を、連続鋳造あるいは造塊後の分塊圧延により鋼スラブとする。次いで、得られたスラブを熱間圧延し、必要に応じて熱延坂焼鈍を施し、一回あるいは中間焼鈍を挟む二回以上の冷間圧延あるいは温間圧延を施して製品板厚とし、仕上げ焼鈍を施し、その後時効処理を施す。さらに、仕上げ焼鈍後のいずれかの段階において、必要に応じて絶縁被膜の塗布および焼き付け処理を行う。
【0038】
引き続き行われる時効処理は、400℃以上650℃以下の温度で行うことが好ましい。すなわち、400℃未満の場合には、微細Cuの析出が不十分となり、高強度が得られない、おそれがある。一方、650℃を超えると、Cu析出物が粗大化して鉄損が劣化し強度上昇量も減少するため、良好な強度−鉄損バランスを有する電磁鋼板が得られない、おそれがある。さらに、適切な時効時間としては、処理温度にも依存するが、10min〜1000hが好適である。
なお、この時効処理の実施時期は、絶縁被膜の塗布焼付け前、焼付け後、プレス打ち抜きなどの加工後、などのいずれのタイミングで実施してもよいが、薄手材の打ち抜き時のたわみを防止するためには、打ち抜き前の時効が好ましい。
【0039】
【実施例】
実施例1
転炉で吹練した後に脱ガス処理を行うことにより、表2に示す成分組成に調整した溶鋼から鋼スラブを鋳造し、このスラブを1140℃で1h加熱した後、板厚2.0mmまで熱間圧延を行った。熱延仕上げ温度は800℃とした。巻取り温度は600℃とし、900℃×30sの熱延板焼鈍を施した。その後、0.18mm厚まで冷間圧延を行い、950℃×30sの仕上焼鈍を行い、種々の条件で時効処理を行った。
【0040】
かくして得られた鋼板から採取した、25cmエプスタイン試験片を用いて磁気測定を行うとともに、JIS 13号B試験片を用いて引張試験を行った。各鋼板の磁気特性および引張強さを、表2に併せて示す。
【0041】
【表2】
Figure 0004670230
【0042】
表2から、成分および時効処理条件を適切な範囲内としたものは、鉄損および強度に優れていることがわかる。
これに対し、Cuを添加しない場合(鋼板1および2)では、時効処理により強度が上昇しないことがわかる。また、時効処理時間が短い場合(鋼板3)や、時効処理温度が低い場合(鋼板9)ではCuが十分に析出しておらず、必要な強度レベルが得られていない。さらに、析出時間が長すぎる場合(鋼板8)や、時効温度が高すぎる場合(鋼板12)にはCuの析出物サイズが粗大となっており、鉄損が増大するとともに、強度上昇も小さくなっている。
【0043】
実施例2
転炉で吹練した後に脱ガス処理を行うことにより、表3に示す成分組成に調整後鋳造して得た鋼スラブを、1140℃で1h加熱した後、板厚2.0mmまで熱間圧延を行った。熱延仕上げ温度は800℃とした。巻取り温度は600℃とし、900℃×30sの熱延板焼鈍を施した。その後、表3に示す種々の板厚まで冷間圧延もしくは温間圧延を行い、表3に示す仕上焼鈍条件で焼鈍を行い、550℃×1hの時効処理を行った。
【0044】
かくして得られた鋼板から採取した、25cmエプスタイン試験片を用いて磁気測定を行うとともに、JIS 13号B試験片を用いて引張試験を行った。各鋼板の磁気特性および引張強さを、表3に併せて示す。
【0045】
【表3】
Figure 0004670230
【0046】
表3より、本発明に従う成分組成および板厚とした場合に、高周波磁気特性並びに強度に優れた電磁鋼板が得られることがわかる。
これに対し、Cuを添加していない場合(鋼板13)では強度が低く、細粒化により高強度化を図った場合(鋼板14)では、強度は高いものの鉄損が高くなっている。また、固溶強化により高強度化を図った場合(鋼板15)では、励磁実効電流が高くなっている。Cuが本発明範囲以上である鋼板20では、Cuが粗大化したため、鉄損が増大し、強度が低下している。
【0047】
一方、板厚が本発明範囲をはずれている鋼板24では、鉄損が高くなっている。さらに、Siが本発明範囲を外れた鋼板29では励磁実効電流が高く、Pが本発明範囲を外れた鋼板30では、圧延時に鋼板が破断し、製品を得ることができなかった。また、AlおよびMnが本発明を外れた鋼板32および33では、励磁実効電流が高くなった。
【0048】
【発明の効果】
以上述べたように、本発明によれば鉄損、強度バランスに優れ、励磁実効電流の低い材料を得ることができる。従って、本発明の無方向性電磁鋼板は、EVやHEVモータ、高速発電機、大型発電機のロータ材として好適である。
【図面の簡単な説明】
【図1】 Cu添加量と引張強さとの関係を示す図である。
【図2】 鉄損および励磁実効電流とモータ効率との関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-oriented electrical steel sheet, particularly a non-oriented electrical steel sheet having a characteristic of high strength and low iron loss, which is suitable for a part subjected to a large stress, such as a rotor of a high-speed rotary motor. It relates to the manufacturing method.
[0002]
[Prior art]
There is a strong demand for miniaturization and high efficiency in drive motors for electric vehicles (EV) and hybrid electric vehicles (HEV). In order to meet these demands, it is directed to increase the rotational speed of the rotor from the current several thousand to several tens of thousands. Therefore, a large centrifugal force acts on the rotor used in this high rotation type motor.
[0003]
In particular, in permanent magnets (IPM) motors, in which permanent magnets, which have become the mainstream of high-efficiency motors in recent years, are embedded inside the rotor, the force of the magnets popping out in the radial direction during high-speed rotation works. When the strength of the core is low, the core is deformed in the radial direction, and in an extreme case, the rotor and the stator come into contact with each other and the magnets are scattered. In order to suppress the deformation of the rotor, a material having excellent strength is required for the core material.
[0004]
On the other hand, when the motor rotates at high speed, the excitation frequency of the core material becomes high. Therefore, a material with low high-frequency iron loss is strongly demanded for the core material from the viewpoint of preventing heat generation of the motor. Has been. Therefore, there is a demand for a high strength magnetic steel sheet having high-frequency magnetic properties and a high strength as a motor material.
[0005]
As a high-strength electrical steel sheet used for such a high-speed rotating machine, for example, in Patent Document 1, 0.1 to 6% Mn and 0.3 to 6% Ni are added to steel containing Si: 2 to 3.5%, A technique for setting the crystal grain size to 30 μm or less is disclosed. However, although this technique has high strength, it has a problem that the iron loss W 15/50 is as high as about 6 W / kg due to the refinement of crystal grains.
[0006]
Patent Document 2 discloses a technique for increasing strength by adding Ti and V to steel of Si: 0.05 to 3.2% and using Ti and V-based carbonitrides. Although this technique has a tensile strength of 590 MPa or more, it has a problem that the iron loss is high because carbonitride precipitates relatively coarsely.
[0007]
On the other hand, as a low iron loss material for high frequency applications, for example, Patent Document 3 discloses a technique of a thin electromagnetic steel sheet containing Si: 1 to 4% and having a plate thickness of 0.1 to 0.25 mm. In this technique, although high-frequency iron loss is low, strength is not taken into consideration, and the application of the core material of a high-speed rotating machine is limited in terms of strength.
[0008]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 64-226 [Patent Document 2]
JP 10-18005 A [Patent Document 3]
Japanese Patent Laid-Open No. 8-60311
[Problems to be solved by the invention]
As described above, none of the conventional techniques is satisfactory from the viewpoint of achieving both high strength and low iron loss.
Accordingly, an object of the present invention is to propose a non-oriented electrical steel sheet that has both good magnetic properties, particularly high-frequency magnetic properties and high strength.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, the inventors have conducted various studies focusing on the age hardening phenomenon of Cu-containing steel, and as a result, have found a means for achieving both good iron loss and high strength. It came to establish. In other words, the precipitates in steel contribute to high strength, and at the same time, increase the iron loss by suppressing the domain wall movement, contrary to the conventional knowledge, adding an appropriate amount of Cu to the steel and performing an aging treatment Thus, it was newly found that when Cu is deposited very finely, the iron loss (historical loss) hardly deteriorates although the increase in strength is large. Furthermore, after adding Cu to precipitate Cu-based fine precipitates, by reducing the plate thickness, it is found that high strength can be achieved without impairing magnetic properties, and the present invention is completed. I reached.
[0011]
The gist configuration of the present invention is as follows.
(1) In mass%,
C: 0.02% or less,
P: 0.2% or less,
Si: 4.5% or less,
Mn: 3% or less,
Al: 3% or less and
Cu: 0.5-4%
, Balance Fe and inevitable impurity composition, plate thickness in the range of 0.05 to 0.27 mm , tensile strength of 550 MPa or more, iron loss W 5 / 1k of 20 W / kg or less, and frequency Non-oriented electrical steel sheet characterized in that the excitation effective current I at 50 Hz and magnetic flux density 1.7T is 4500 A / m or less, and further, the iron loss W 5 / 1k and the excitation effective current I satisfy the relationship of the following formula: .
I × W 5 / 1k ≦ 5.5 × 10 4
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Next, the experimental results that led to the present invention will be described in detail. In the present specification, “%” representing a steel composition means “% by mass” unless otherwise specified.
First, in order to investigate the relationship between the strength and magnetic properties of a high-strength electrical steel sheet, the following four types of steel sheets were prepared.
Steel type 1: As a solid solution strengthened type electrical steel sheet, steel containing C: 0.002%, Si: 4.5%, Mn: 1%, P: 0.01%, Al: 0.6% and Mo: 1.5% is melted and heated. It was hot-rolled and annealed at 900 ° C. for 30 s, then hot-rolled at 400 ° C. and finished to 0.20 mm thickness, and 950 ° C. × 30 s finish annealing was performed.
[0015]
Steel type 2: As a grain refinement type electromagnetic steel sheet, steel containing C: 0.005%, Si: 3.5%, Mn: 1% and P: 0.05% is melted and hot-rolled and heated at 850 ° C for 30 s. After performing hot-rolled sheet annealing, it was cold-rolled to 0.20 mm thickness, and then subjected to finish annealing at 800 ° C. for 30 s.
[0016]
Steel type 3: Precipitation strengthened electrical steel sheet: C: 0.031%, Si: 2.6%, Mn: 0.2%, P: 0.02%, Al: 0.65%, N: 0.003%, Nb: 0.018% and Zr: 0.022% The steel containing was melted, hot-rolled and cold-rolled to a thickness of 0.20 mm, and subjected to finish annealing at 750 ° C. × 30 s.
About the above steel types 1-3, the aging treatment was not performed.
[0017]
Steel type 4: As an electrical steel sheet using precipitation strengthening of Cu, steel containing C: 0.002%, Si: 3.2%, Mn: 0.18%, P: 0.01%, Al: 0.55% and Cu: 1.1% is melted. After hot rolling, hot-rolled sheet annealing was performed at 900 ° C. for 30 s, cold-rolled to 0.20 mm thickness, subjected to finish annealing at 900 ° C. × 30 s, and further subjected to 550 ° C. × 1 h aging treatment.
[0018]
Table 1 shows the results of investigation on the magnetic properties and mechanical properties of the materials thus obtained. The magnetic characteristics were evaluated by a 25 cm Epstein method for iron loss W 5 / 1k at a magnetic flux density of 0.5 T and a frequency of 1 kHz, and an excitation effective current I at 1.7 T and 50 Hz. Moreover, the tensile test was done using the JIS 13 B test piece.
[0019]
Here, the reason for evaluating W 5 / 1k and the excitation effective current of 1.7 T and 50 Hz is as follows.
That is, the above-described high-frequency motors such as EV and HEV are driven in a wide frequency range from a low frequency range of about 50 Hz to a high frequency range. In the low frequency range, the magnetic flux is used at a high magnetic flux density particularly from the viewpoint of high torque. On the other hand, in the high frequency range, it is driven in a relatively low magnetic field range in order to suppress the induced voltage. This is because a large excitation current is required in the high torque region, so that a material having a high excitation effective current has a large copper loss, while a material having a high W 5 / 1k has a large iron loss in a high frequency region. For this reason, as a material for high frequency motors, a material with a low both is preferable.
[0020]
[Table 1]
Figure 0004670230
[0021]
From Table 1, steel types 1 to 3 using conventional solid solution strengthening, fine grain strengthening and precipitation strengthening have obtained a high strength of 700 MPa or more, but iron loss W 5 / 1k at a frequency of 1 kHz. Is over 20 W / kg, and the excitation effective current is also high.
On the other hand, materials using Cu precipitation strengthening show good values for iron loss, excitation effective current and strength. The reason for this is that very fine Cu precipitates of several nanometers to several tens of nanometers deposited through aging treatment contribute to high strength by pinning dislocations, but the movement of the domain wall is hardly hindered. It is considered that good iron loss was obtained.
That is, in the present invention using Cu precipitation, it can be seen that a strength-magnetic property balance at a level that could not be achieved with a conventional high-strength electrical steel sheet can be obtained.
[0022]
Next, an experiment was conducted to investigate the amount of Cu added to increase the strength. That is, a steel slab containing C: 0.0020%, Si: 3.0%, Mn: 0.18%, P: 0.01% and Al: 0.60% and changing Cu in the range of 0.01 to 5% is obtained after hot rolling to 900%. Hot-rolled sheet annealing was performed at 30 ° C. for 30 s, cold-rolled to a thickness of 0.20 mm, finish-annealed at 900 ° C. × 30 s, and further subjected to aging treatment at 550 ° C. × 1 h. The steel sheet thus obtained was examined for tensile strength by a tensile test based on JIS Z2241.
[0023]
The result of the investigation is shown in FIG. 1 as the relationship between the Cu addition amount and the tensile strength. From FIG. 1, it is understood that the Cu addition amount needs to be 0.5% or more in order to improve the strength. That is, if Cu is less than 0.5%, sufficient Cu precipitation cannot be obtained even if aging treatment is performed. On the other hand, when Cu is added exceeding 4%, the strength decreases. This is because coarse precipitates are formed. Therefore, the addition amount of Cu is 0.5% or more and 4% or less.
[0024]
Here, in the present invention, Cu is characterized in that it is finely precipitated in the state of the motor core, and from this point, it is completely different from the electromagnetic steel sheet to which Cu is added for the purpose of conventional texture control, etc. It is.
[0025]
The aging treatment for precipitating Cu is recommended to be 10 min to 1000 h at 400 ° C. to 650 ° C.
[0026]
The thickness of the product plate shall be 0.05-0.27 mm . This is because by setting the plate thickness to 0.27 mm or less, the high-frequency iron loss is reduced and I × W 5 / 1k ≦ 5.5 × 10 4 and the motor efficiency is improved. However, if the plate thickness is less than 0.05 mm, the number of laminated layers increases and the number of work steps increases, so the lower limit is made 0.05 mm.
[0027]
In addition, an 8-pole IPM motor was prototyped to investigate the relationship between excitation effective current and iron loss and motor efficiency in high-strength materials. The motor had a rotor outer diameter of 110 mm, a stator outer diameter of 160 mm and a stator slot number of 24, and a permanent magnet was a NeFeB magnet. Then, we prototyped motors using various high-strength materials (TS> 550MPa) as core materials, and investigated the efficiency of these prototype motors. Here, the motor efficiency was measured at a tooth magnetic flux density of 1.7 T at a frequency requiring a torque of 50 Hz, and the efficiency at a tooth magnetic flux density of 0.5 T was evaluated at a frequency of 1 kHz at which the torque is not so required, and the average value was obtained.
[0028]
FIG. 2 shows the relationship between the motor efficiency and the effective excitation current and iron loss in the steel sheet. FIG. 2 shows that an efficiency of 90% or more is obtained when the excitation effective current is 4500 A / m or less, the iron loss is 20 W / kg or less, and I × W 5 / 1k ≦ 5.5 × 10 4 . In other words, when the excitation effective current I exceeds 4500 A / m, the efficiency decreases due to the large increase in copper loss when driven in a high torque range, while the iron loss during high frequency driving increases when the iron loss exceeds 20 W / kg. It is thought that the efficiency was lowered due to the large loss. Furthermore, in the region where I × W 5 / 1k exceeds 5.5 × 10 4 , it is considered that the efficiency has decreased due to an increase in both iron loss and copper loss.
[0029]
Therefore, the consideration of the efficiency in the application of the electromagnetic steel plates in the motor, iron loss W 5 / 1k in the frequency 1kHz is 20W / kg or less, exciting effective current I at 1.7T and 50Hz is less 4500A / m, Further, I × W 5 / 1k ≦ 5.5 × 10 4 is set.
[0030]
Below, this invention is explained in full detail for every constituent requirement.
(Component composition of steel sheet)
First, the component composition range and the reason for limitation will be described.
C: 0.02% or less C has a problem of magnetic aging, so it was made 0.02% or less.
P: 0.2% or less,
P is an element effective for increasing the strength of a steel sheet, but if added over 0.2%, central segregation is likely to occur during casting, and the steel sheet becomes brittle and cold rollability is significantly reduced. It was.
[0031]
Si: 4.5% or less,
Si is an effective element for increasing the specific resistance of the steel sheet. However, if it exceeds 4.5%, the cold rolling property and the warm rolling property are remarkably lowered, so the upper limit is 4.5%, preferably from the viewpoint of saturation magnetization. Less than 4.0%.
[0032]
Mn: 3% or less,
Mn is an effective element for preventing red hot brittleness during hot rolling, and is preferably contained at 0.05% or more. However, if it exceeds 3%, the magnetic flux density is lowered, so the upper limit was made 3%.
[0033]
Al: 3% or less
Al is an element effective for increasing the specific resistance like Si, and is preferably contained in an amount of 0.1% or more. However, if it exceeds 3%, the saturation magnetization is lowered and the castability is significantly lowered. Was 3%.
[0034]
Cu: 0.5-4%
Cu is a component added to increase the strength without impairing the magnetic properties, and the reason for setting the lower limit is as described above.
[0035]
The basic composition of the non-oriented electrical steel sheet according to the present invention is as described above. In addition to the above components, Sb, Sn, B, Ni, Cr, Co and REM, which are known as elements for improving magnetic properties, are used alone or Can be added in combination. However, the amount added should be such that the object of the present invention is not impaired. In particular,
Sb: 0.005 to 0.05%,
Sn: 0.005 to 0.1%,
B: 0.0002 to 0.002%,
Ni: 0.1-5%
Co: 0.2-3% and
REM: 0.001 to 0.01%
It is. In addition, regarding Cr, in order to lower the saturation magnetization, when added, it is desirable to be 0.8% or less.
[0036]
The tensile strength is 550 MPa or more, more preferably 600 MPa or more. This is because the rotor is deformed at high speed when the strength is less than 550 MPa.
[0037]
(Production method)
In order to produce a high-strength non-oriented electrical steel sheet excellent in iron loss according to the present invention, first, a steel melted in the above-mentioned predetermined components in a converter or an electric furnace is continuously cast or ingoted A steel slab is formed by subsequent rolling. Next, the obtained slab is hot-rolled, subjected to hot rolling hill annealing as necessary, and subjected to cold rolling or warm rolling twice or more sandwiching one or intermediate annealing to obtain a product sheet thickness and finishing. Annealing and then aging treatment. Furthermore, at any stage after finish annealing, an insulating coating is applied and baked as necessary.
[0038]
The subsequent aging treatment is preferably performed at a temperature of 400 ° C. or higher and 650 ° C. or lower. That is, when the temperature is lower than 400 ° C., the precipitation of fine Cu becomes insufficient, and high strength may not be obtained. On the other hand, when the temperature exceeds 650 ° C., Cu precipitates are coarsened, the iron loss is deteriorated, and the amount of increase in strength is also reduced. Furthermore, the appropriate aging time is preferably 10 min to 1000 h, although it depends on the processing temperature.
The aging treatment may be carried out at any time before the insulating film is applied and baked, after baking, after processing such as press punching, etc., but it prevents deflection when punching thin materials. For this purpose, aging before punching is preferred.
[0039]
【Example】
Example 1
A steel slab is cast from molten steel adjusted to the composition shown in Table 2 by degassing after blowing in the converter, and this slab is heated at 1140 ° C for 1 h, then hot to a thickness of 2.0 mm. Rolled. The hot rolling finishing temperature was 800 ° C. The coiling temperature was 600 ° C., and hot-rolled sheet annealing at 900 ° C. × 30 s was performed. Thereafter, it was cold-rolled to a thickness of 0.18 mm, subjected to finish annealing at 950 ° C. × 30 s, and an aging treatment was performed under various conditions.
[0040]
Magnetic measurements were performed using 25 cm Epstein test pieces collected from the steel plates thus obtained, and tensile tests were performed using JIS 13 B test pieces. Table 2 shows the magnetic properties and tensile strength of each steel sheet.
[0041]
[Table 2]
Figure 0004670230
[0042]
From Table 2, it can be seen that the components and aging treatment conditions within the appropriate ranges are excellent in iron loss and strength.
On the other hand, when Cu is not added (steel plates 1 and 2), it turns out that an intensity | strength does not raise by an aging treatment. Further, when the aging treatment time is short (steel plate 3) or when the aging treatment temperature is low (steel plate 9), Cu is not sufficiently precipitated, and a necessary strength level is not obtained. Furthermore, when the precipitation time is too long (steel plate 8) or when the aging temperature is too high (steel plate 12), the precipitate size of Cu is coarse, and the iron loss increases and the strength increase also decreases. ing.
[0043]
Example 2
After degassing after blowing in the converter, the steel slab obtained by casting after adjusting to the composition shown in Table 3 is heated at 1140 ° C for 1 h, and then hot rolled to a thickness of 2.0 mm. went. The hot rolling finishing temperature was 800 ° C. The coiling temperature was 600 ° C., and hot-rolled sheet annealing at 900 ° C. × 30 s was performed. Thereafter, cold rolling or warm rolling to various plate thicknesses shown in Table 3 was performed, annealing was performed under the finish annealing conditions shown in Table 3, and an aging treatment at 550 ° C. × 1 h was performed.
[0044]
Magnetic measurements were performed using 25 cm Epstein test pieces collected from the steel plates thus obtained, and tensile tests were performed using JIS 13 B test pieces. Table 3 shows the magnetic properties and tensile strength of each steel sheet.
[0045]
[Table 3]
Figure 0004670230
[0046]
From Table 3, it can be seen that an electromagnetic steel sheet excellent in high-frequency magnetic characteristics and strength can be obtained when the component composition and thickness are in accordance with the present invention.
On the other hand, when Cu is not added (steel plate 13), the strength is low, and when the strength is increased by refining (steel plate 14), the iron loss is high although the strength is high. Further, when the strength is increased by solid solution strengthening (steel plate 15), the excitation effective current is high. In the steel plate 20 in which the Cu is within the range of the present invention, since the Cu is coarsened, the iron loss increases and the strength decreases.
[0047]
On the other hand, in the steel plate 24 whose plate thickness is out of the scope of the present invention, the iron loss is high. Furthermore, the steel sheet 29 with Si out of the scope of the present invention had a high excitation effective current, and the steel sheet 30 with P out of the scope of the present invention was broken during rolling and a product could not be obtained. Further, in the steel plates 32 and 33 in which Al and Mn deviate from the present invention, the excitation effective current was high.
[0048]
【The invention's effect】
As described above, according to the present invention, a material having an excellent iron loss and strength balance and a low excitation effective current can be obtained. Therefore, the non-oriented electrical steel sheet of the present invention is suitable as a rotor material for EVs, HEV motors, high speed generators, and large generators.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between Cu addition amount and tensile strength.
FIG. 2 is a diagram showing a relationship among iron loss, excitation effective current, and motor efficiency.

Claims (1)

質量%で、
C:0.02%以下、
P:0.2%以下、
Si:4.5%以下、
Mn:3%以下、
Al:3%以下および
Cu:0.5〜4%
を含み、残部Feおよび不可避不純物の成分組成を有し、板厚が0.05〜0.27mmの範囲にあり、引張強さが550MPa以上であり、鉄損W5/1kが20W/kg以下、そして周波数50Hzおよび磁束密度1.7Tにおける励磁実効電流Iが4500A/m以下であり、さらに鉄損W5/1kと励磁実効電流Iとが下記式の関係を満足することを特徴とする無方向性電磁鋼板。

I×W5/1k≦5.5×10
% By mass
C: 0.02% or less,
P: 0.2% or less,
Si: 4.5% or less,
Mn: 3% or less,
Al: 3% or less and
Cu: 0.5-4%
, Balance Fe and inevitable impurity composition, plate thickness in the range of 0.05 to 0.27 mm , tensile strength of 550 MPa or more, iron loss W 5 / 1k of 20 W / kg or less, and frequency Non-oriented electrical steel sheet characterized in that the excitation effective current I at 50 Hz and magnetic flux density 1.7T is 4500 A / m or less, and further, the iron loss W 5 / 1k and the excitation effective current I satisfy the relationship of the following formula: .
I × W 5 / 1k ≦ 5.5 × 10 4
JP2003171031A 2003-06-16 2003-06-16 Non-oriented electrical steel sheet Expired - Lifetime JP4670230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003171031A JP4670230B2 (en) 2003-06-16 2003-06-16 Non-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003171031A JP4670230B2 (en) 2003-06-16 2003-06-16 Non-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2005008906A JP2005008906A (en) 2005-01-13
JP4670230B2 true JP4670230B2 (en) 2011-04-13

Family

ID=34095659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003171031A Expired - Lifetime JP4670230B2 (en) 2003-06-16 2003-06-16 Non-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP4670230B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4696750B2 (en) * 2005-07-25 2011-06-08 住友金属工業株式会社 Method for producing non-oriented electrical steel sheet for aging heat treatment
JP4349340B2 (en) * 2005-08-04 2009-10-21 住友金属工業株式会社 Method for producing Cu-containing non-oriented electrical steel sheet
JP5423175B2 (en) * 2009-06-23 2014-02-19 新日鐵住金株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
JP5418469B2 (en) * 2010-11-08 2014-02-19 新日鐵住金株式会社 Method for producing non-oriented electrical steel sheet for aging heat treatment
CN110484762B (en) * 2019-09-04 2021-04-09 陕西斯瑞新材料股份有限公司 Method for preparing copper-iron alloy material for motor rotor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004084053A (en) * 2002-06-26 2004-03-18 Nippon Steel Corp Electromagnetic steel sheet having remarkably superior magnetic property, and manufacturing method therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004084053A (en) * 2002-06-26 2004-03-18 Nippon Steel Corp Electromagnetic steel sheet having remarkably superior magnetic property, and manufacturing method therefor

Also Published As

Publication number Publication date
JP2005008906A (en) 2005-01-13

Similar Documents

Publication Publication Date Title
TWI674322B (en) Method for manufacturing non-oriented electrical steel sheet, method for manufacturing motor core, and motor core
TW201837200A (en) Method for manufacturing non-oriented electromagnetic steel plate, method for manufacturing motor core, and motor core
JP5825494B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5321764B2 (en) Non-oriented electrical steel sheet, method for producing the same, laminated body for motor core and method for producing the same
JP5028992B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP6497180B2 (en) Induction heating method and induction heating apparatus for rotor of IPM motor
JP4380199B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5713100B2 (en) Non-oriented electrical steel sheet, method for producing the same, laminated body for motor core and method for producing the same
JP4352691B2 (en) Age-hardening non-oriented electrical steel sheet excellent in punchability and iron loss, method for producing the same, and method for producing a rotor using the same
JP6319574B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties
JP4670230B2 (en) Non-oriented electrical steel sheet
JP6852966B2 (en) High-strength members for motors using non-oriented electrical steel sheets and their manufacturing methods
JP5876210B2 (en) Motor core with low iron loss degradation under compressive stress
JP2005120403A (en) Non-oriented electrical steel sheet with low core loss in high-frequency region
JP4265400B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP4341386B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP4341476B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP4424075B2 (en) Non-oriented electrical steel sheet, non-oriented electrical steel sheet for aging heat treatment, and production method thereof
JP2004353037A (en) High-strength non-oriented electromagnetic steel sheet superior in magnetic property, and manufacturing method therefor
JP2005126748A (en) High fatigue strength non-oriented magnetic steel sheet superior in magnetic properties, and manufacturing method therefor
JP4356580B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2005120431A (en) Method for manufacturing high-strength nonoriented silicon steel sheet having excellent magnetic characteristic
JP6658150B2 (en) Magnetic steel sheet
JP5825479B2 (en) Manufacturing method of high strength non-oriented electrical steel sheet
CN117377787A (en) Non-oriented electrical steel sheet and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090722

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110103

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4670230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term