JP4352691B2 - Age-hardening non-oriented electrical steel sheet excellent in punchability and iron loss, method for producing the same, and method for producing a rotor using the same - Google Patents
Age-hardening non-oriented electrical steel sheet excellent in punchability and iron loss, method for producing the same, and method for producing a rotor using the same Download PDFInfo
- Publication number
- JP4352691B2 JP4352691B2 JP2002353250A JP2002353250A JP4352691B2 JP 4352691 B2 JP4352691 B2 JP 4352691B2 JP 2002353250 A JP2002353250 A JP 2002353250A JP 2002353250 A JP2002353250 A JP 2002353250A JP 4352691 B2 JP4352691 B2 JP 4352691B2
- Authority
- JP
- Japan
- Prior art keywords
- electrical steel
- less
- oriented electrical
- steel sheet
- hot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Description
【0001】
本発明は、無方向性電磁鋼板とその製造方法さらに当該無方向性電磁鋼板を利用してローターを製造する方法に係り、特に高速回転モーターのローターのように大きな応力の掛かる部材の製造に好適な打ち抜き性及び鉄損の優れた時効硬化性無方向性電磁鋼板、その製造方法及びそれを利用したローターの製造方法に関する。本発明によって製造された無方向性電磁鋼板は、製造時にはその降伏強度が低く、打ち抜き加工が容易であるが、打ち抜き加工後の時効処理によりその降伏強度が上昇し、組み立てられたローターの強度を大にするという特徴を有する。
【0002】
【従来の技術】
近年では、モーターの駆動システムが高度化され、駆動電源の周波数制御により、可変速運転や商用周波数以上での高速回転が可能となっている。そのような高速回転を行うモーターでは、高速回転に耐えうるローターが必要になっている。一般に回転体に作用する遠心力は回転半径に比例し、回転速度の2乗に比例し、中・大型の高速モーターでは、ローターに作用する遠心力が600MPaをこえる場合がある。また、近年モーター効率向上の観点から増加した、ローターに永久磁石を埋め込んだ磁石埋設型DCインバーター制御モーターでは、遠心力でローターから磁石が飛び出そうとするが、これを抑える際に、使用される電磁鋼板には大きな力が掛かる。このため、モーター、特にローターに使用される電磁鋼板には、従来にも増して降伏強度が高いことが必要とされている。
【0003】
金属学的には、降伏強度を高める手段として固溶強化、析出強化及び結晶粒微細化の3つの方法が知られており、電磁鋼板にも適用されている。固溶強化を利用した方法としては、特許文献1にはSi含有量を3.5〜7.0%と高めるとともに固溶硬化の大きい元素を添加する方法が、特許文献2にはSi含有量を2.0〜3.5%とし、NiあるいはNiとMnの含有量を高める方法が開示されている。析出強化を利用した方法としては、特許文献3にSi含有量を2.0〜4.0%とし、Nb、Zr、Ti、Vの炭化物、窒化物を微細析出させる方法が開示されている。
【0004】
【特許文献1】
特開昭60-238421号公報
【特許文献2】
特開昭62-256917号公報
【特許文献3】
特開平6-330255号公報
【0005】
【発明が解決しようとする課題】
これらの方法により高い降伏強度を有する電磁鋼板が得られる。しかし、これらの手段によって製造される電磁鋼板は硬度が高く、そのため打ち抜き性が悪い。すなわち、積層材を打ち抜くときの金型の磨耗が激しく、早期に大きなかえりが発生するようになる。また、特許文献1に記載の技術のようにSiを多く含むと、磁束密度が低下するという問題がある。さらに、特許文献3に記載の方法では、炭化物、窒化物が無方向性電磁鋼板に必要な結晶粒成長を妨げるために、鉄損が劣るという問題点がある。結晶粒微細化による手段も同様に鉄損を劣化させる。
【0006】
このように従来の手段は、高い打ち抜き性と良好な鉄損を維持しながら、ローターの降伏強度を十分高めるという課題を解決していない。特に、打ち抜き性は、降伏強度が高くなるほど劣化するため、良好な打ち抜き性と高い降伏強度を両立させることは不可能と考えられていた。
【0007】
本発明は、高い打ち抜き性と良好な鉄損を維持しながら、ローターの降伏強度を十分高めるという課題を解決することができる無方向性電磁鋼板、その製造方法及びそれを利用したローターの製造方法を提案するものである。
【0008】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために種々の検討を行った結果、Cuを含んだ電磁鋼板の時効硬化現象に着目し、良好な打ち抜き性を持ちながら組み立て後のローターには高い降伏強度を付与できる手段を確立した。すなわち、Cuを含んだ無方向性電磁鋼板の時効硬化特性を利用して、ローター等の組み立てに使用される電磁鋼板の降伏強度を打ち抜き工程前においては低くしておき、打ち抜き後直ちに、あるいはローターに組み立て後に時効硬化により積層材の降伏強度を高めるのである。
【0009】
具体的には、本発明の無方向性電磁鋼板は、質量比で、C:0.02%以下、Si:4.5%以下、Mn:2.0%以下、Al:4.0%以下、S:0.02%以下、Cu:0.5%以上3.0%以下を含有し、残部Fe及び不可避不純物からなり、500℃で10hrの時効処理による降伏強度上昇が100MPa以上であるとともに、鉄損値W 15/50 の劣化が1.5W/kg以下であるものである。
【0010】
上記各発明においては、Ni、Zr、V、Sb、Sn、Ge、B、Ca及び希土類元素から選んだ元素を、Ni、Zr、Vについては0.1〜3.0%、Sb、Sn、Geについては0.01〜0.5%、B、Ca及び希土類元素については0.001〜0.01%を単独で又はこれらを複合して含有することができる。また、Pを0.5%以下の範囲で含有させることができる。
【0011】
上記無方向性電磁鋼板は、前記各発明のいずれかに記載の組成を有する鋼スラブに巻取温度を600℃以下とする熱間圧延を施して熱延板を得、該熱延板に冷間圧延を施して最終板厚の冷延板とした後、Cu固溶温度(Ts)+10℃以上に加熱した後Cu固溶温度から400℃まで10℃/s以上の速度で冷却する仕上焼純を施すことにより製造できる。この冷間圧延に当たっては、中間焼鈍を挟む2回以上の冷間圧延とすることができ、この中間焼鈍をCu固溶温度+10℃以上に加熱した後該Cu固溶温度から400℃まで5℃/s以上の速度で冷却するものとすることもできる。
【0012】
上記無方向性電磁鋼板は、また、前記組成を有する鋼スラブに熱間圧延を施して熱延板を得、Cu固溶温度+10℃以上に加熱した後該Cu固溶温度から400℃まで5℃/s以上の速度で冷却する熱延板焼鈍を施した後、冷間圧延を施して最終板厚の冷延板とし、Cu固溶温度(Ts)+10℃以上に加熱した後Cu固溶温度から400℃まで10℃/s以上の速度で冷却する仕上焼純を施すことにより製造することができる。
【0013】
本発明に係る無方向性電磁鋼板を用いてローターの組み立てるに当たっては、無方向性電磁鋼板からローター用積層材を打ち抜いた後、直ちに又はローター組み立てた後に時効処理を行う工程を付加すればよい。
【0014】
【発明の実施の形態】
(鋼板の組成)
本発明に係る無方向性電磁鋼板の基本組成は、質量比で、C:0.02%以下、Si:4.5%以下、Mn:2.0%以下、Al:4.0%以下、S:0.02%以下、Cu:0.5%以上3.0%以下を含有し、残部Fe及び不可避不純物からなる。
【0015】
C量を0.02%以下とするのは、C量が0.02%を超えると磁気時効により、鉄損が著しく劣化するためである。Siは、鉄損の低減、降伏強度を増加させるのに有効な元素であるが、4.5%を超えると鋼板の冷間圧延性を著しく低下させ、また、降伏強度が高くなりすぎて打ち抜き性を低下させるので、4.5%以下に制限する。
【0016】
Mnは、熱間圧延性を改善する効果があるが、多量の添加は鉄損を劣化させるので2.0%以下とする。Alは、鉄損改善に有用な元素であるが、過度の添加は冷延性を劣化させるので、その添加量は4.0%以下とする。Sは無方向性電磁鋼板の製造過程で不可避的に混入元素であるが、その残留量が多いとCuS析出物を形成し、仕上焼鈍における粒成長を抑制し、鉄損を劣化させる。したがってS量の制御は重要であり0.02%以下とする。
【0017】
Cuの添加は、本発明の最も特徴的な事項である。その含有量が0.5%未満であると鋼板の打ち抜き後に時効処理したときの降伏強度の向上が少なく、一方3.0%超となると打ち抜き前の素材電磁鋼板(以下、「製品板」という)中に微細なCu析出物とともに粗大なCuの析出物が残留し、打ち抜き性が劣化するとともに、電磁鋼板を打ち抜き後時効処理したとき降伏強度の十分な上昇が得られなくなる。また、鉄損も劣化する。そのため、Cuは0.5〜3.0%、好ましくは0.8%〜2.0%の範囲で含有させる。
【0018】
上記元素のほかは、Fe(鉄)及び不可避不純物である。不可避不純物としてのNは0.01%以下とするのがよい。
【0019】
本発明に係る無方向性電磁鋼板の基本組成は以上のとおりであるが、上記成分に加えて磁気特性の改善元素として知られているNi、Sb、Sn、Ge、B、Ca、Zr、希土類元素、Vなどを単独又は複合して添加することができる。しかし、その添加量は本発明の目的を害さない程度とすべきである。具体的には、これら元素の望ましい添加範囲は、Ni、Zr、Vについては0.1〜3.0%、Sb、Sn、Geについては0.01〜0.5%、B、Ca、希土類元素についてはは、0.001〜0.01%である。なお、Niは熱延工程で発生するヘゲ疵を減少させる効果があるので積極的に添加するのが好ましい。
【0020】
また、Pを降伏強度向上のために添加することもできる。しかし、その過剰な添加は打ち抜き性、また冷延性を害するので0.5%以下とすべきである。
【0021】
(鋼板の組織、特性値)
本発明に係る無方向性電磁鋼板では、鋼板中のCuが鋼中に固溶状態で存在していることが重要である。製品板の組織中に微細なCu析出物が多量に存在していると、その硬度が高くなって打ち抜き性が劣化するばかりでなく、打ち抜き後の時効処理による降伏強度の上昇が小さくなる。一方、製品板の組織中に粗大なCu析出物が存在していると、その鉄損が劣化するばかりか、Cuの時効処理中の析出は、すでに析出している粗大なCu析出物の上に重なるようにして起こり、Cu析出物が更に粗大化して鉄損が著しく劣化する原因となる。
【0022】
製品板におけるCuの鋼中固溶量は0.5〜3.0%、好ましくは0.8〜2.0%である。この範囲のCuを固溶させた鋼では500℃×10hの時効焼鈍により、鋼中に平均粒径5nm程度のCu析出物を1020個/mm3程度析出させることができ、その結果、150MPa以上の降伏強度上昇を得ることができ、ローター積層板の降伏強度を大きく向上させることができる。特に、Cu量が最適量である0.8%以下、2.0%以下であるときには、降伏強度の上昇は150MPaから250MPaとなり、ローター積層板の降伏強度を450MPa以上とすることができる。上記機構による降伏強度の上昇は大きな鉄損値の劣化(鉄損値の増大)を伴わない。後に実施例で明らかになるように、鉄損の劣化量は1.5W/kg以下に留まる。
【0023】
(製造方法)
本発明に係る打ち抜き性及び鉄損の優れた時効硬化性を有する無方向性電磁鋼板を製造するには、まず、転炉、あるいは電気炉などで溶製された鋼を、連続鋳造あるいは造塊後の分塊圧延により鋼スラブとする。鋼スラブの組成は目的とする製品板の組成と同一でよい。得られた鋼スラブを熱延し、1回又は必要に応じて中間焼鈍を挟む最終冷延を行って製品板厚とし、仕上焼鈍を施す。
【0024】
上記一連の工程において、本発明では以下のとおり少なくとも最終冷間圧延前に粗大Cu析出物が残留するのを防止する措置をとる。最終冷間圧延前に粗大Cu析出物が残留していると、その後の冷間圧延および仕上焼鈍を適正に行っても、粗大Cu析出物が再固溶せず、製品板中の固溶Cu量が低下し、時効処理による降伏強度の上昇が小さくなるからである。
【0025】
その第一は熱延における巻取り温度を600℃以下、望ましくは550℃以下とすることである。第二は、熱延後、冷延までの間に、Cu固溶温度(Ts)+10℃以上に加熱して粗大Cu析出物を固溶せしめた後、Cu固溶温度から400℃までの間を冷却速度5℃/s以上で冷却する熱延板焼鈍を施すことである。後者の場合には熱延における巻取り温度は特に問わない。また、これらに手段は併用することもできる。なお、Cu固溶温度(Ts)は
Ts(℃)=3351/(3.279-log10(Cu質量%))-273
により求められる。
【0026】
このようにして得られた熱延板は、1回の又は中間焼鈍を挟む2回以上の冷間圧延を行って最終板厚の冷延板とする。この中間焼鈍の条件を上記熱延板焼鈍と同様の条件として粗大なCu析出物の固溶を確実にすることもできる。
【0027】
得られた最終板厚の冷延板は、次いで仕上焼鈍に付される。仕上焼鈍は加熱温度をCu固溶温度(Ts)+10℃以上とし、該加熱温度で1〜300s保定した後、前記Cu固溶温度から400℃までを10℃/s以上の速度で冷却することによって行う。
【0028】
加熱温度がCu固溶温度+10℃に満たないと、仕上焼鈍の過程で析出した微細なCu析出物が製品板中に残留して、鉄損を劣化させるとともに、固溶Cu量が減少するため、時効処理によっても十分な降伏強度の上昇が得られなくなる。また、Cu固溶温度から400℃までの冷却速度が10℃/s未満のときには、一旦固溶したCuが再析出して製品板中に存在するようになるため、製品板の降伏強度が高くなり、打ち抜き性が劣化する。また、製品板中の固溶Cu量が減少するため、時効処理によって十分な降伏強度の上昇が得られなくなる。
【0029】
仕上焼鈍を経た後は通常のとおり絶縁被膜の塗布乾燥焼付けがなされ、ローター等を製造するための素材無方向性電磁鋼板(製品板)となる。製品板はこの状態では降伏強度が低く(主としてSi含有量に依存し、0.3%Siの場合でほぼ200MPa、3.5%Siの場合約450MPa)であり、打ち抜き性が優れている。
【0030】
製品板にはそのエンドユーザーにおいてローターの積層材に打ち抜き加工後500℃×10h程度の時効処理が施される。これにより、積層材はCuの析出により硬化し、降伏強度が150〜250MPa程度向上する。なお、上記時効処理温度は高すぎると、Cu析出物が粗大になり、降伏強度の上昇が小さくなるとともに、鉄損が劣化する。一方、時効処理温度が低すぎると、十分な降伏強度の上昇が得られるまでに時間がかかり、不経済である。最適な時効処理温度は400℃から650℃の間である。
【0031】
【実施例】
(実施例1)
表1に示す成分およびCu固溶温度(Ts)を有する鋼を転炉で溶製し、連続鋳造によりスラブとした。得られたスラブを熱間圧延により板厚2.0mmの熱延板とした。熱間圧延時の巻取温度は500℃であった。得られた熱延板を冷間圧延により最終板厚0.5mmの冷延板としたのち、表1に示す焼鈍条件で仕上焼鈍を行った。Cu固溶温度から400℃までの冷却速度は10℃/sとした。得られた仕上焼鈍板に絶縁被膜を被成し製品板とした。
【0032】
上記製品板の特性を鉄損W15/50(W1)、打ち抜き性、降伏強度(YP1)により評価し、ついで、該製品板に500℃×10hの時効処理を行い、時効処理後の特性を鉄損W15/50(W2)および降伏強度(YP2)により評価した。なお、鉄損はエプスタイン試験片にて測定し、打ち抜き性は製品板からリング試料(外径20mm×外径30mm)を打ち抜くときのかえり高さが30μmとなる打ち抜き回数によって測定した。また、降伏強度は製品板の圧延方向とその直角方向について下降伏強度を測定し,その平均値によって決定した。結果は表2に示す。
【0033】
表2に示すように、組成および仕上焼鈍条件を本発明範囲内に制御したものは、いずれも製品板において優れた打ち抜き性を示し、また時効処理後において高い降伏強度を示した。また、製品板と時効処理後の鉄損の差は1.5W/kg以下であって、ローター組み立て後の鉄損も十分低くなる。
【0034】
これに対し、低Si成分系の従来鋼(比較例:No.4)および高Si成分系の従来鋼(比較例:No.8)では、良好な打ち抜き性、鉄損が得られるものの、Cuが低いため、時効処理にによる降伏強度の上昇がほとんど認められない。また、Cuを過剰に含有する鋼(比較例:No.9)は、製品板の打ち抜き性、鉄損がともに悪く、かつ時効処理による降伏強度の上昇も小さかった。
【0035】
【表1】
【0036】
【表2】
【0037】
(実施例2)
C:0.003%、Si:0.1%、Mn:0.2%、Al:0.4%、S:0.002%、Cu:1.5%の組成を有する鋼AおよびC:0.003%、Si:0.1%、Mn:0.2%、Al:0.4%、S:0.002%、Cu:0.01%の組成を有する鋼Bを転炉により溶製し連続鋳造によりスラブとなした。これら鋼A、BのCu固溶温度(Ts)はともに807℃であった。得られたスラブを熱間圧延により板厚1.8mmの熱延板とした。得られた熱延板に対し表3に示す条件で熱延板焼鈍を施した後、1回冷延法により板厚0.35mmの冷延板とした。得られた冷延板に、同じく表3に示す条件で仕上焼鈍を行った。得られた仕上焼鈍板に絶縁被膜を被成して製品板とした。
【0038】
実施例1の場合と同様にして製品板の鉄損W15/50(Wl)、打ち抜き性、降伏強度(YPl)および時効処理後の鉄損W15/50〈W2)および降伏強度(YP2)を評価した。結果は表4に示す。表4から分かるように、鋼組成、熱延板焼鈍条件、仕上焼鈍条件を本発明範囲内に制御したものは、製品板において優れた打ち抜き性、低い鉄損値を示し、また時効処理後において高い降伏強度を示した。また、時効処理による鉄損劣化は1.5W/kg以下であった。
【0039】
しかしながら、Cuを添加しない従来鋼B(比較例:No.39)では、製品板において優れた打ち抜き性、低い鉄損値を示すが、時効処理により降伏強度は上昇しなかった。また、熱延板焼鈍温度が低すぎる場合(比較例:No.31)、熱延板焼鈍の冷却速度が小さすぎる場合(比較例No.35)、仕上焼鈍温度が低すぎる場合(比較例No.37)は、ともに製品板および時効処理後の鉄損が悪く、時効によっても十分な降伏強度の上昇が得られなかった。さらに、仕上焼鈍の冷却速度が小さすぎる場合(比較例:No.38)は、製品板の打ち抜き性、鉄損が劣っているのみならず、時効処理によっても降伏強度の上昇が得られなかった。
【0040】
【表3】
【0041】
【表4】
【0042】
(実施例3)
C:0.003%、Si:0.4%、Mn:0.2%、Al:0.2%、S:0.002%、Cu:1.5%、P:0.08%の組成を有する鋼C(Ts:807℃)を転炉により溶製し、連続鋳造によりスラブとし、熱間圧延により板厚2.5mmの熱延板とした。得られた熱延板を中間焼鈍を挟む2回冷延法により板厚0.65mmとした。その際、上記冷間圧延における第1回目の冷間圧延による板厚は1.5mmとし、これに対して900℃に加熱後、Cu固溶温度から400℃までを20℃/sで冷却した。得られた冷延板に対し、加熱温度850℃、Cu固溶温度(Ts)から400℃までの冷却速度を25℃/sとする仕上焼鈍を行った。得られた仕上焼鈍板に絶縁被膜を被成して製品板とした。
【0043】
実施例1の場合と同様にして得られた製品板の鉄損W15/50(Wl)、打ち抜き性、降伏強度(YPl)および時効処理後の鉄損W15/50〈W2)および降伏強度(YP2)を評価した。熱延条件、仕上焼鈍条件を表5に、特性値を表6に示す。
【0044】
表6から分かるように熱延巻き取り温度600℃以下のとき(実施例:No.41、42)では、製品板および時効処理後において良好な諸特性値を得たが、巻き取り温度が600℃を超える場合(比較例No.43)では、製品板および時効処理後の鉄損値が低く、かつ時効処理による降伏強度の上昇が小さかった。
【0045】
【表5】
【0046】
【表6】
【0047】
【発明の効果】
本発明によれば、優れた打ち抜き性と鉄損を兼備し、かつ時効処理により降伏強度が大きく上昇する時効硬化性の無方向性電磁鋼板が得られる。これにより強度が高くかつ信頼性の高い高速モーターや、磁石埋設型モーターのローターを効率よく経済的に製造し得る。[0001]
The present invention relates to a non-oriented electrical steel sheet and a method for manufacturing the non-oriented electrical steel sheet, and a method for manufacturing a rotor using the non-oriented electrical steel sheet, and particularly suitable for manufacturing a member subjected to a large stress such as a rotor of a high-speed rotating motor. The present invention relates to an age-hardening non-oriented electrical steel sheet having excellent punchability and iron loss, a method for producing the same, and a method for producing a rotor using the same. The non-oriented electrical steel sheet manufactured according to the present invention has a low yield strength at the time of manufacture and is easy to punch, but the yield strength is increased by the aging treatment after the punching, and the strength of the assembled rotor is increased. It has the feature of making it large.
[0002]
[Prior art]
In recent years, motor drive systems have become sophisticated, and variable speed operation and high-speed rotation at commercial frequencies or higher are possible by controlling the frequency of the drive power supply. In such a motor that performs high-speed rotation, a rotor that can withstand high-speed rotation is required. In general, the centrifugal force acting on a rotating body is proportional to the radius of rotation and proportional to the square of the rotational speed. In medium and large high-speed motors, the centrifugal force acting on the rotor may exceed 600 MPa. In addition, the magnet-embedded DC inverter control motor with permanent magnets embedded in the rotor, which has been increasing from the viewpoint of improving motor efficiency in recent years, uses the centrifugal force to cause the magnets to jump out of the rotor. A large force is applied to the electrical steel sheet. For this reason, electrical steel sheets used for motors, particularly rotors, are required to have higher yield strength than ever before.
[0003]
In metallurgy, three methods of solid solution strengthening, precipitation strengthening and grain refinement are known as means for increasing the yield strength, and are also applied to electrical steel sheets. As a method utilizing solid solution strengthening, Patent Document 1 discloses a method in which the Si content is increased to 3.5 to 7.0% and an element having a large solid solution hardening is added, and Patent Document 2 includes a Si content of 2.0 to 3.5. %, And a method for increasing the content of Ni or Ni and Mn is disclosed. As a method using precipitation strengthening, Patent Document 3 discloses a method in which the Si content is set to 2.0 to 4.0% and carbides and nitrides of Nb, Zr, Ti, and V are finely precipitated.
[0004]
[Patent Document 1]
JP-A-60-238421 [Patent Document 2]
JP 62-256917 A [Patent Document 3]
JP-A-6-330255
[Problems to be solved by the invention]
By these methods, an electrical steel sheet having a high yield strength can be obtained. However, the electrical steel sheet produced by these means has high hardness and therefore has poor punchability. That is, the mold is severely worn when the laminated material is punched, and a large burr is generated at an early stage. Moreover, when Si is contained much like the technique of patent document 1, there exists a problem that magnetic flux density falls. Furthermore, the method described in Patent Document 3 has a problem that iron loss is inferior because carbides and nitrides hinder crystal grain growth necessary for non-oriented electrical steel sheets. The means by crystal grain refinement also deteriorates the iron loss.
[0006]
Thus, the conventional means does not solve the problem of sufficiently increasing the yield strength of the rotor while maintaining high punchability and good iron loss. In particular, since punchability deteriorates as the yield strength increases, it has been considered impossible to achieve both good punchability and high yield strength.
[0007]
The present invention relates to a non-oriented electrical steel sheet that can solve the problem of sufficiently increasing the yield strength of a rotor while maintaining high punchability and good iron loss, a manufacturing method thereof, and a rotor manufacturing method using the same This is a proposal.
[0008]
[Means for Solving the Problems]
As a result of various investigations to solve the above problems, the present inventors have focused on the age hardening phenomenon of the electromagnetic steel sheet containing Cu, and the rotor after assembly has high yield while having good punchability. Established a means to give strength. In other words, by utilizing the age hardening characteristics of non-oriented electrical steel sheets containing Cu, the yield strength of electrical steel sheets used for assembly of rotors, etc. is lowered before the punching process, and immediately after punching or the rotor In addition, the yield strength of the laminated material is increased by age hardening after assembly.
[0009]
Specifically, the non-oriented electrical steel sheet of the present invention has a mass ratio of C: 0.02% or less, Si: 4.5% or less, Mn: 2.0% or less, Al: 4.0% or less, S: 0.02% or less, Cu : Containing 0.5% to 3.0%, balance Fe and inevitable impurities, increase in yield strength by aging treatment at 500 ° C for 10 hours is 100 MPa or more, and deterioration of iron loss value W 15/50 is 1.5 W / kg or less.
[0010]
In each of the above inventions, elements selected from Ni, Zr, V, Sb, Sn, Ge, B, Ca and rare earth elements are 0.1 to 3.0% for Ni, Zr and V, and 0.01 for Sb, Sn and Ge. About 0.5%, B, Ca, and rare earth elements may be contained 0.001 to 0.01% alone or in combination. Further, P can be contained in a range of 0.5% or less.
[0011]
The non-oriented electrical steel sheet is obtained by subjecting a steel slab having the composition described in any of the above inventions to hot rolling at a coiling temperature of 600 ° C. or less to obtain a hot rolled sheet, and cooling the hot rolled sheet to the hot rolled sheet. Finished by cold rolling to a cold-rolled sheet with the final thickness, then heating to a Cu solid solution temperature (Ts) + 10 ° C or higher and then cooling from the Cu solid solution temperature to 400 ° C at a rate of 10 ° C / s or higher It can be manufactured by applying sinter. In this cold rolling, it can be cold rolling more than twice with intermediate annealing, and after heating this intermediate annealing to a Cu solid solution temperature + 10 ° C. or higher, the Cu solid solution temperature to 400 ° C. It can also be cooled at a rate of at least ° C / s.
[0012]
The non-oriented electrical steel sheet is also subjected to hot rolling on a steel slab having the above composition to obtain a hot-rolled sheet, heated to a Cu solid solution temperature + 10 ° C. or higher, and then from the Cu solid solution temperature to 400 ° C. After performing hot-rolled sheet annealing that cools at a rate of 5 ° C / s or higher, cold-rolled into a cold-rolled sheet with the final thickness, heated to a Cu solid solution temperature (Ts) + 10 ° C or higher, and then Cu It can be produced by applying a finish refrigeration cooling from the solid solution temperature to 400 ° C. at a rate of 10 ° C./s or more.
[0013]
In assembling the rotor using the non-oriented electrical steel sheet according to the present invention, a step of performing an aging treatment immediately after punching the rotor laminate from the non-oriented electrical steel sheet or after assembling the rotor may be added.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
(Composition of steel sheet)
The basic composition of the non-oriented electrical steel sheet according to the present invention is, by mass ratio, C: 0.02% or less, Si: 4.5% or less, Mn: 2.0% or less, Al: 4.0% or less, S: 0.02% or less, Cu: It contains 0.5% or more and 3.0% or less, and consists of the balance Fe and inevitable impurities.
[0015]
The reason why the C content is 0.02% or less is that when the C content exceeds 0.02%, the iron loss is remarkably deteriorated due to magnetic aging. Si is an effective element for reducing iron loss and increasing yield strength.However, if it exceeds 4.5%, the cold rolling property of the steel sheet is remarkably deteriorated, and the yield strength becomes too high, resulting in a punching property. Since it is reduced, it is limited to 4.5% or less.
[0016]
Mn has an effect of improving the hot rolling property, but if added in a large amount, the iron loss is deteriorated, so the content is made 2.0% or less. Al is an element useful for iron loss improvement, but excessive addition deteriorates cold rolling properties, so the addition amount is 4.0% or less. S is an inevitably mixed element in the manufacturing process of non-oriented electrical steel sheets, but if the residual amount is large, CuS precipitates are formed, which suppresses grain growth in finish annealing and degrades iron loss. Therefore, the control of the amount of S is important and should be 0.02% or less.
[0017]
The addition of Cu is the most characteristic feature of the present invention. If its content is less than 0.5%, there is little improvement in yield strength when aging treatment is performed after the steel sheet is punched. On the other hand, if it exceeds 3.0%, it is fine in the material electrical steel sheet (hereinafter referred to as “product sheet”) before punching. Coarse Cu precipitates remain together with the Cu precipitates, and the punchability deteriorates, and when the electrical steel sheet is subjected to aging treatment after punching, a sufficient increase in yield strength cannot be obtained. Moreover, iron loss also deteriorates. Therefore, Cu is contained in the range of 0.5 to 3.0%, preferably 0.8% to 2.0%.
[0018]
In addition to the above elements, they are Fe (iron) and inevitable impurities. N as an inevitable impurity is preferably 0.01% or less.
[0019]
The basic composition of the non-oriented electrical steel sheet according to the present invention is as described above. In addition to the above components, Ni, Sb, Sn, Ge, B, Ca, Zr, rare earths known as elements for improving magnetic properties are known. Elements, V and the like can be added alone or in combination. However, the amount added should be such that the object of the present invention is not impaired. Specifically, desirable addition ranges of these elements are 0.1 to 3.0% for Ni, Zr, and V, 0.01 to 0.5% for Sb, Sn, and Ge, and 0.001 to 0.01 for B, Ca, and rare earth elements. %. Note that Ni is preferably added positively because it has the effect of reducing the whipping generated in the hot rolling process.
[0020]
Further, P can be added to improve the yield strength. However, the excessive addition impairs the punchability and cold rolling property, so it should be 0.5% or less.
[0021]
(Structure and characteristic values of steel sheet)
In the non-oriented electrical steel sheet according to the present invention, it is important that Cu in the steel sheet exists in a solid solution state in the steel. If a large amount of fine Cu precipitates are present in the structure of the product plate, not only does the hardness increase and the punchability deteriorates, but the increase in yield strength due to the aging treatment after punching becomes small. On the other hand, if coarse Cu precipitates are present in the structure of the product plate, not only the iron loss is deteriorated, but also the precipitation during Cu aging treatment is based on the coarse Cu precipitates already deposited. The Cu precipitates are further coarsened and cause a significant deterioration of iron loss.
[0022]
The solid solution amount of Cu in the product plate is 0.5 to 3.0%, preferably 0.8 to 2.0%. In steels in which Cu in this range is dissolved, it is possible to precipitate about 10 20 pieces / mm 3 of Cu precipitates having an average particle size of about 5 nm in the steel by aging annealing at 500 ° C. × 10 h. As a result, 150 MPa The above yield strength increase can be obtained, and the yield strength of the rotor laminate can be greatly improved. In particular, when the Cu amount is 0.8% or less, which is the optimum amount, or 2.0% or less, the yield strength increases from 150 MPa to 250 MPa, and the yield strength of the rotor laminate can be made 450 MPa or more. The increase in yield strength by the above mechanism is not accompanied by a large deterioration in iron loss value (increase in iron loss value). As will become apparent later in the examples, the deterioration amount of the iron loss remains below 1.5 W / kg.
[0023]
(Production method)
In order to produce a non-oriented electrical steel sheet having age-hardening with excellent punchability and iron loss according to the present invention, first, steel that is melted in a converter or an electric furnace is continuously cast or ingot-made. A steel slab is formed by subsequent rolling. The composition of the steel slab may be the same as that of the intended product plate. The obtained steel slab is hot-rolled and subjected to final cold-rolling once or as necessary, with intermediate annealing to obtain a product sheet thickness, and finish annealing is performed.
[0024]
In the above series of steps, the present invention takes measures to prevent coarse Cu precipitates from remaining at least before the final cold rolling as follows. If coarse Cu precipitates remain before the final cold rolling, the coarse Cu precipitates do not re-dissolve even if the subsequent cold rolling and finish annealing are properly performed, and the solid solution Cu in the product plate This is because the amount decreases and the increase in yield strength due to aging treatment is reduced.
[0025]
The first is to set the coiling temperature in hot rolling to 600 ° C or lower, desirably 550 ° C or lower. Second, between hot rolling and cold rolling, the Cu solid solution temperature (Ts) is heated to + 10 ° C or higher to dissolve the coarse Cu precipitates, and then from the Cu solid solution temperature to 400 ° C. The hot-rolled sheet annealing is performed at a cooling rate of 5 ° C / s or more. In the latter case, the coiling temperature in hot rolling is not particularly limited. In addition, these can be used in combination. The Cu solid solution temperature (Ts) is
Ts (℃) = 3351 / (3.279-log 10 (Cu mass%))-273
It is calculated by.
[0026]
The hot-rolled sheet thus obtained is cold-rolled to the final thickness by performing cold rolling once or more than twice with intermediate annealing. It is also possible to ensure solid solution of coarse Cu precipitates by setting the intermediate annealing conditions to the same conditions as the hot-rolled sheet annealing.
[0027]
The obtained cold-rolled sheet having the final thickness is then subjected to finish annealing. In the finish annealing, the heating temperature is set to the Cu solid solution temperature (Ts) + 10 ° C or higher, and after holding at the heating temperature for 1 to 300 seconds, the Cu solid solution temperature to 400 ° C is cooled at a rate of 10 ° C / s or higher By doing.
[0028]
If the heating temperature is less than the Cu solid solution temperature + 10 ° C, fine Cu precipitates deposited during the finish annealing process will remain in the product plate, deteriorating iron loss and reducing the amount of solid solution Cu. Therefore, a sufficient increase in yield strength cannot be obtained even by aging treatment. In addition, when the cooling rate from the Cu solid solution temperature to 400 ° C is less than 10 ° C / s, since the solid solution of Cu re-deposits and exists in the product plate, the yield strength of the product plate is high. As a result, the punchability deteriorates. In addition, since the amount of dissolved Cu in the product plate is reduced, the yield strength cannot be sufficiently increased by the aging treatment.
[0029]
After finishing annealing, the insulating coating is applied and dried and baked as usual, and a non-oriented electrical steel sheet (product plate) for producing a rotor or the like is obtained. The product plate has a low yield strength in this state (mainly depending on the Si content, approximately 200 MPa for 0.3% Si, approximately 450 MPa for 3.5% Si), and excellent punchability.
[0030]
The end plate of the product plate is subjected to aging treatment of about 500 ° C x 10h after punching the rotor laminate. Thereby, a laminated material hardens | cures by precipitation of Cu and yield strength improves about 150-250 MPa. If the aging treatment temperature is too high, Cu precipitates become coarse, the increase in yield strength is reduced, and the iron loss is degraded. On the other hand, if the aging temperature is too low, it takes time to obtain a sufficient increase in yield strength, which is uneconomical. The optimum aging temperature is between 400 ℃ and 650 ℃.
[0031]
【Example】
(Example 1)
Steels having the components and Cu solid solution temperature (Ts) shown in Table 1 were melted in a converter and made into slabs by continuous casting. The obtained slab was hot rolled into a hot rolled sheet having a thickness of 2.0 mm. The coiling temperature during hot rolling was 500 ° C. The obtained hot-rolled sheet was made into a cold-rolled sheet having a final sheet thickness of 0.5 mm by cold rolling, and then subjected to finish annealing under the annealing conditions shown in Table 1. The cooling rate from the Cu solid solution temperature to 400 ° C was 10 ° C / s. The finished finish plate was coated with an insulating film to obtain a product plate.
[0032]
The characteristics of the above product plate are evaluated by iron loss W 15/50 (W 1 ), punchability, yield strength (YP 1 ), and then the product plate is subjected to aging treatment at 500 ° C. × 10 h. The characteristics were evaluated by iron loss W 15/50 (W 2 ) and yield strength (YP 2 ). The iron loss was measured with an Epstein test piece, and the punchability was measured by the number of punches that yielded a burr height of 30 μm when a ring sample (outer diameter 20 mm × outer diameter 30 mm) was punched from the product plate. Yield strength was determined by measuring the yield strength in the rolling direction of the product plate and its perpendicular direction, and determining the average value. The results are shown in Table 2.
[0033]
As shown in Table 2, all the compositions and finish annealing conditions controlled within the scope of the present invention exhibited excellent punchability in the product plate, and exhibited high yield strength after the aging treatment. In addition, the difference between the iron loss after the product plate and the aging treatment is 1.5 W / kg or less, and the iron loss after the rotor assembly is sufficiently low.
[0034]
On the other hand, the conventional steel with a low Si component (Comparative Example: No. 4) and the conventional steel with a high Si Component (Comparative Example: No. 8) have good punchability and iron loss. , The yield strength is hardly increased by aging treatment. In addition, the steel containing excessive Cu (Comparative Example: No. 9) had poor punchability and iron loss of the product plate, and the increase in yield strength due to aging treatment was small.
[0035]
[Table 1]
[0036]
[Table 2]
[0037]
(Example 2)
C: 0.003%, Si: 0.1%, Mn: 0.2%, Al: 0.4%, S: 0.002%, Cu: Steels A and C having a composition of 1.5%: 0.003%, Si: 0.1%, Mn: 0.2% Steel B having a composition of Al: 0.4%, S: 0.002%, Cu: 0.01% was melted by a converter and formed into a slab by continuous casting. The Cu solid solution temperature (Ts) of these steels A and B was 807 ° C. The obtained slab was hot rolled into a hot rolled sheet having a thickness of 1.8 mm. The obtained hot-rolled sheet was subjected to hot-rolled sheet annealing under the conditions shown in Table 3, and then a cold-rolled sheet having a thickness of 0.35 mm was formed by a single cold-rolling method. The obtained cold-rolled sheet was similarly subjected to finish annealing under the conditions shown in Table 3. The finished annealed plate was coated with an insulating film to obtain a product plate.
[0038]
In the same manner as in Example 1, iron loss W 15/50 (W l ), punchability, yield strength (YP l ), iron loss after aging treatment W 15/50 <W 2 ), and yield strength (YP 2 ) was evaluated. The results are shown in Table 4. As can be seen from Table 4, the steel composition, hot-rolled sheet annealing conditions, and finish annealing conditions controlled within the scope of the present invention exhibit excellent punchability and low iron loss values in the product sheet, and after aging treatment It showed high yield strength. Moreover, the iron loss deterioration due to the aging treatment was 1.5 W / kg or less.
[0039]
However, the conventional steel B to which Cu is not added (Comparative Example: No. 39) shows excellent punchability and low iron loss value in the product plate, but the yield strength was not increased by the aging treatment. Moreover, when the hot-rolled sheet annealing temperature is too low (Comparative Example: No. 31), when the cooling rate of the hot-rolled sheet annealing is too small (Comparative Example No. 35), or when the finish annealing temperature is too low (Comparative Example No. In (37), both the product plate and the iron loss after aging treatment were poor, and a sufficient increase in yield strength was not obtained even by aging. Furthermore, when the cooling rate of finish annealing is too low (Comparative Example: No. 38), not only the punching property and iron loss of the product plate are inferior, but also the aging treatment did not increase the yield strength. .
[0040]
[Table 3]
[0041]
[Table 4]
[0042]
(Example 3)
Steel C (Ts: 807 ° C) with a composition of C: 0.003%, Si: 0.4%, Mn: 0.2%, Al: 0.2%, S: 0.002%, Cu: 1.5%, P: 0.08% by a converter The slab was melted and formed into a slab by continuous casting, and a hot rolled sheet having a thickness of 2.5 mm was formed by hot rolling. The obtained hot-rolled sheet was made to have a thickness of 0.65 mm by a cold-rolling method twice with intermediate annealing. At that time, the plate thickness by the first cold rolling in the cold rolling was 1.5 mm, and after heating to 900 ° C., the Cu solid solution temperature to 400 ° C. was cooled at 20 ° C./s. The resulting cold-rolled sheet was subjected to finish annealing at a heating temperature of 850 ° C. and a cooling rate from a Cu solid solution temperature (Ts) to 400 ° C. of 25 ° C./s. The finished annealed plate was coated with an insulating film to obtain a product plate.
[0043]
Iron loss W 15/50 (W l ), punchability, yield strength (YP l ), and iron loss after aging treatment W 15/50 <W 2 ) of the product plate obtained in the same manner as in Example 1. And the yield strength (YP 2 ) was evaluated. Table 5 shows the hot rolling conditions and finish annealing conditions, and Table 6 shows the characteristic values.
[0044]
As can be seen from Table 6, when the hot rolling coiling temperature was 600 ° C. or less (Examples: No. 41 and 42), good characteristic values were obtained after the product plate and aging treatment, but the coiling temperature was 600. When it exceeded ℃ (Comparative Example No. 43), the iron loss value after product plate and aging treatment was low, and the increase in yield strength by aging treatment was small.
[0045]
[Table 5]
[0046]
[Table 6]
[0047]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the age-hardening non-oriented electrical steel sheet which has the outstanding punchability and iron loss, and a yield strength raises greatly by an aging treatment is obtained. This makes it possible to efficiently and economically manufacture a high-speed motor with high strength and high reliability and a rotor of a magnet-embedded motor.
Claims (7)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002353250A JP4352691B2 (en) | 2002-12-05 | 2002-12-05 | Age-hardening non-oriented electrical steel sheet excellent in punchability and iron loss, method for producing the same, and method for producing a rotor using the same |
EP03777194.6A EP1580289B1 (en) | 2002-12-05 | 2003-12-03 | Non-oriented magnetic steel sheet and method for production thereof |
US10/537,194 US7513959B2 (en) | 2002-12-05 | 2003-12-03 | Non-oriented electrical steel sheet and method for manufacturing the same |
KR1020057010094A KR100709056B1 (en) | 2002-12-05 | 2003-12-03 | Non-oriented magnetic steel sheet and method for production thereof |
PCT/JP2003/015462 WO2004050934A1 (en) | 2002-12-05 | 2003-12-03 | Non-oriented magnetic steel sheet and method for production thereof |
CNB2003801049405A CN100354445C (en) | 2002-12-05 | 2003-12-03 | Non-oriented electromagnetic steel sheet and method for producing same |
EP12002344.5A EP2489753B1 (en) | 2002-12-05 | 2003-12-03 | Non-oriented magnetic steel sheet and method for production thereof |
TW092134160A TWI257430B (en) | 2002-12-05 | 2003-12-04 | Non-oriented electrical steel sheet and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002353250A JP4352691B2 (en) | 2002-12-05 | 2002-12-05 | Age-hardening non-oriented electrical steel sheet excellent in punchability and iron loss, method for producing the same, and method for producing a rotor using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004183066A JP2004183066A (en) | 2004-07-02 |
JP4352691B2 true JP4352691B2 (en) | 2009-10-28 |
Family
ID=32754578
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002353250A Expired - Fee Related JP4352691B2 (en) | 2002-12-05 | 2002-12-05 | Age-hardening non-oriented electrical steel sheet excellent in punchability and iron loss, method for producing the same, and method for producing a rotor using the same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4352691B2 (en) |
CN (1) | CN100354445C (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101485036B1 (en) | 2012-10-29 | 2015-01-21 | 주식회사 포스코 | Steel and manufacturing method of it |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PL1679386T3 (en) * | 2003-10-06 | 2020-06-01 | Nippon Steel Corporation | High-strength magnetic steel sheet and worked part therefrom, and process for producing them |
CN101321883B (en) * | 2005-11-30 | 2010-12-08 | 住友金属工业株式会社 | Non-directional electromagnetic steel plate and manufacturing method thereof |
JP5186781B2 (en) * | 2007-03-08 | 2013-04-24 | 新日鐵住金株式会社 | Non-oriented electrical steel sheet for aging heat treatment, non-oriented electrical steel sheet and method for producing the same |
JP5088144B2 (en) * | 2008-01-10 | 2012-12-05 | 住友金属工業株式会社 | Non-oriented electrical steel sheet for aging heat treatment, non-oriented electrical steel sheet and method for producing the same |
WO2013024894A1 (en) | 2011-08-18 | 2013-02-21 | 新日鐵住金株式会社 | Non-oriented electromagnetic steel sheet, method for producing same, laminate for motor iron core, and method for producing said laminate |
JP5321764B2 (en) | 2011-08-18 | 2013-10-23 | 新日鐵住金株式会社 | Non-oriented electrical steel sheet, method for producing the same, laminated body for motor core and method for producing the same |
KR101628193B1 (en) * | 2012-08-08 | 2016-06-08 | 제이에프이 스틸 가부시키가이샤 | High-strength electrical steel sheet and method of producing the same |
JP5648661B2 (en) * | 2012-09-13 | 2015-01-07 | 新日鐵住金株式会社 | Non-oriented electrical steel sheet for aging heat treatment, non-oriented electrical steel sheet and method for producing the same |
TWI613299B (en) * | 2015-04-27 | 2018-02-01 | 新日鐵住金股份有限公司 | Non-oriented electromagnetic steel sheet |
KR101884428B1 (en) * | 2016-10-26 | 2018-08-01 | 주식회사 포스코 | Grain oriented electrical steel sheet and method for manufacturing the same |
KR101901313B1 (en) * | 2016-12-19 | 2018-09-21 | 주식회사 포스코 | Non-oriented electrical steel sheet and method for manufacturing the same |
CN108081705A (en) * | 2018-02-09 | 2018-05-29 | 河南工学院 | A kind of Anti-corrosion composite metal material |
JP7256362B2 (en) * | 2018-12-14 | 2023-04-12 | 日本製鉄株式会社 | Non-oriented electrical steel sheet and manufacturing method thereof, rotor core core of IPM motor |
JP7256361B2 (en) * | 2018-12-14 | 2023-04-12 | 日本製鉄株式会社 | Non-oriented electrical steel sheet and manufacturing method thereof, rotor core core of IPM motor |
JP7323762B2 (en) * | 2018-12-14 | 2023-08-09 | 日本製鉄株式会社 | High-strength non-oriented electrical steel sheet with excellent caulking properties |
CN110373612A (en) * | 2019-08-30 | 2019-10-25 | 马鞍山钢铁股份有限公司 | A kind of high-intensitive non-oriented electrical steel preparation method of rare earth treatment |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09209039A (en) * | 1996-02-08 | 1997-08-12 | Nisshin Steel Co Ltd | Production of high strength cold rolled steel sheet excellent in deep drawability |
JP2004084053A (en) * | 2002-06-26 | 2004-03-18 | Nippon Steel Corp | Electromagnetic steel sheet having remarkably superior magnetic property, and manufacturing method therefor |
-
2002
- 2002-12-05 JP JP2002353250A patent/JP4352691B2/en not_active Expired - Fee Related
-
2003
- 2003-12-03 CN CNB2003801049405A patent/CN100354445C/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101485036B1 (en) | 2012-10-29 | 2015-01-21 | 주식회사 포스코 | Steel and manufacturing method of it |
Also Published As
Publication number | Publication date |
---|---|
CN100354445C (en) | 2007-12-12 |
CN1720344A (en) | 2006-01-11 |
JP2004183066A (en) | 2004-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4352691B2 (en) | Age-hardening non-oriented electrical steel sheet excellent in punchability and iron loss, method for producing the same, and method for producing a rotor using the same | |
TWI674322B (en) | Method for manufacturing non-oriented electrical steel sheet, method for manufacturing motor core, and motor core | |
JP5228379B2 (en) | Non-oriented electrical steel sheet with excellent strength and magnetic properties and manufacturing method thereof | |
EP2489753B1 (en) | Non-oriented magnetic steel sheet and method for production thereof | |
JP5273235B2 (en) | Method for producing non-oriented electrical steel sheet | |
JP4586669B2 (en) | Method for producing non-oriented electrical steel sheet for rotor | |
JP4380199B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JPH06330255A (en) | High tensile strength non-oriented silicon steel sheet and its production | |
JPH0425346B2 (en) | ||
JP4341386B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JP6852966B2 (en) | High-strength members for motors using non-oriented electrical steel sheets and their manufacturing methods | |
JP7119519B2 (en) | Non-oriented electrical steel sheet, stator core, rotor core and manufacturing method thereof | |
JP4696750B2 (en) | Method for producing non-oriented electrical steel sheet for aging heat treatment | |
JP4424075B2 (en) | Non-oriented electrical steel sheet, non-oriented electrical steel sheet for aging heat treatment, and production method thereof | |
JP4670230B2 (en) | Non-oriented electrical steel sheet | |
JP2011099163A (en) | Method for manufacturing non-oriented electromagnetic steel sheet for aging heat treatment | |
JP5186781B2 (en) | Non-oriented electrical steel sheet for aging heat treatment, non-oriented electrical steel sheet and method for producing the same | |
JP4356580B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JP2004353037A (en) | High-strength non-oriented electromagnetic steel sheet superior in magnetic property, and manufacturing method therefor | |
JP5648661B2 (en) | Non-oriented electrical steel sheet for aging heat treatment, non-oriented electrical steel sheet and method for producing the same | |
JP5825479B2 (en) | Manufacturing method of high strength non-oriented electrical steel sheet | |
JP3845871B2 (en) | Method for producing non-oriented electrical steel sheet with high magnetic flux density | |
JP2005120431A (en) | Method for manufacturing high-strength nonoriented silicon steel sheet having excellent magnetic characteristic | |
JP2006077305A (en) | Nonoriented silicon steel sheet, nonoriented silicon steel sheet for aging heat treatment, and method for producing them | |
CN117651785A (en) | Non-oriented electromagnetic steel sheet and method for producing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051026 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090120 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090318 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090707 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090720 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4352691 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120807 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120807 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130807 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |