JPH06330255A - High tensile strength non-oriented silicon steel sheet and its production - Google Patents

High tensile strength non-oriented silicon steel sheet and its production

Info

Publication number
JPH06330255A
JPH06330255A JP12026993A JP12026993A JPH06330255A JP H06330255 A JPH06330255 A JP H06330255A JP 12026993 A JP12026993 A JP 12026993A JP 12026993 A JP12026993 A JP 12026993A JP H06330255 A JPH06330255 A JP H06330255A
Authority
JP
Japan
Prior art keywords
less
steel sheet
hot
kinds
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12026993A
Other languages
Japanese (ja)
Other versions
JP3305806B2 (en
Inventor
Takeshi Kubota
猛 久保田
Ichiro Tateno
一郎 立野
Seiichi Senoo
聖一 妹尾
Takeaki Takeshita
武章 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12026993A priority Critical patent/JP3305806B2/en
Publication of JPH06330255A publication Critical patent/JPH06330255A/en
Application granted granted Critical
Publication of JP3305806B2 publication Critical patent/JP3305806B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To produce a non-oriented silicon steel sheet combining excellent mechanical properties and magnetic properties so as to withstand stress at the time of rotation or a change in stress at the time of acceleration-deceleration and used as an iron core material for the rotar of a rotary machine. CONSTITUTION:In the production of a non-oriented silicon steel sheet, steel contg. <=0.05% C, 2.0 to <4.0% Si, <=2.0% Al and <=0.2% P and contg. one or two kinds of Nb and Zr or one or two kinds of Ti and V in the range of 0.1<(Nb+Zr)/8(C+N)<1.0 and 0.4<(Ti+V)/4(C+N)<4.0 is subjected to hot rolling and in thereafter coiled at <=550 deg.C to regulate the ratio of the unrecrystallized part into >=40% and the average grain size in the unrecrystallized part into <=60mum. After cold rolling, the steel sheet is subjected to finish annealing at 700 to 900 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、回転機のローター用鉄
心素材として用いられる無方向性電磁鋼板、特に、回転
時の応力あるいは加減速時の応力変動に耐え得る、優れ
た機械特性と磁気特性を兼備した降伏強度の高い回転機
用無方向性電磁鋼板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-oriented electrical steel sheet used as an iron core material for a rotor of a rotating machine, and particularly to excellent mechanical properties and magnetic properties that can withstand stress during rotation or stress fluctuation during acceleration / deceleration. The present invention relates to a non-oriented electrical steel sheet for a rotating machine, which has high yield strength and also has characteristics.

【0002】[0002]

【従来の技術】最近のエレクトロニクスの発達は目覚ま
しく、回転機の駆動システムの高度化により、さまざま
な回転駆動制御が可能になりつつある。すなわち、駆動
電源の周波数制御により、可変速運転、商用周波数以上
での高速運転を可能とした回転機が増加してきている。
一方、メカトロニクスの発展は、回転機の高速化を促
し、さらに、従来、高速回転機は比較的小容量に限られ
ていたが、中・大型の回転機にも広がりつつある。
2. Description of the Related Art Recent advances in electronics have been remarkable, and various types of rotary drive control are becoming possible due to the sophistication of drive systems for rotating machines. That is, an increasing number of rotating machines are capable of variable speed operation and high speed operation at a commercial frequency or higher by controlling the frequency of the drive power source.
On the other hand, the development of mechatronics has accelerated the speeding up of rotating machines, and in the past, high-speed rotating machines have been limited to relatively small capacities, but are now expanding to medium and large-sized rotating machines.

【0003】このような高速回転機の実現には、高速回
転に耐え得る構造の回転子とする必要がある。ところ
で、一般に、回転体に作用する遠心力は回転半径に比例
し、回転速度の2乗に比例する。このため、中・大型の
高速回転機では、その回転子に作用する力が例えば60
kgf/mm2 を超える場合もある。また、超大型の回転機の
場合、回転数が比較的低くても、回転子の直径が大きい
ために、結果的に非常に大きな応力が作用する場合があ
り、回転子には高張力の素材が必要となる。さらに、可
変速運動が必要な回転機では、加減速が頻繁に行われる
ため、素材として単に張力が高いだけでなく、繰り返し
応力に対して疲労破壊する限度応力(疲労限)も高い素
材でなければならない。
In order to realize such a high-speed rotating machine, it is necessary to use a rotor having a structure capable of withstanding high-speed rotation. By the way, generally, the centrifugal force acting on the rotating body is proportional to the radius of rotation and is proportional to the square of the rotation speed. For this reason, in medium and large-sized high-speed rotating machines, the force acting on the rotor is, for example, 60
It may exceed kgf / mm 2 . In addition, in the case of an ultra-large rotating machine, even if the number of rotations is relatively low, a very large stress may be applied as a result of the large diameter of the rotor. Is required. Furthermore, in rotating machines that require variable speed motion, acceleration and deceleration are frequently performed, so the material must not only have high tension, but must also have high limit stress (fatigue limit) for fatigue fracture against repeated stress. I have to.

【0004】通常、回転機の回転子には、積層した無方
向性電磁鋼板が使用されるが、前記のような回転機では
所要の機械強度を満足できない場合があり、その際には
中実の鋳鋼製の回転子などが用いられている。しかし、
回転機の回転子は、電磁気現象を利用するものであるか
ら、その素材としては、前述のように、機械特性と同時
に磁気特性が優れていることが要求される。すなわち、
中実鋳鋼製の回転子では、一体物であるために、渦電流
損が非常に大きくなり、電磁鋼板を積層してから成る回
転子を用いた場合に比べ、回転機としての効率が数%も
低くなる。また、回転子鉄心素材の磁束密度が低いと、
所要のトルクを発生させるために必要な磁束を回転子に
流すためには、励磁アンペアターンを大きくしなければ
ならない。これは、励磁コイルでの銅損の増加につなが
るため、回転機の総合的な効率を低下させることにな
る。
Usually, laminated non-oriented electrical steel sheets are used for the rotor of a rotating machine. However, the rotating machine as described above may not satisfy the required mechanical strength. The cast steel rotor is used. But,
Since the rotor of the rotating machine utilizes an electromagnetic phenomenon, its material is required to have excellent mechanical properties as well as magnetic properties as described above. That is,
Since the rotor made of solid cast steel is an integral body, the eddy current loss is very large, and the efficiency as a rotating machine is several% compared to the case of using a rotor made by laminating electromagnetic steel sheets. Will also be lower. Also, if the magnetic flux density of the rotor core material is low,
The excitation ampere-turn must be increased in order to flow the magnetic flux required to generate the required torque to the rotor. This leads to an increase in copper loss in the exciting coil, which reduces the overall efficiency of the rotating machine.

【0005】このように、前記のような回転機の回転子
鉄心素材としては、機械的には高い張力と疲労強度を有
し、かつ磁気的には低鉄損高磁束密度を同時に有するも
のでなければならない。鋼板の機械強度を高める手段と
して、冷延鋼板の分野では一般に、固溶硬化、析出硬
化、細粒化硬化、変態組織硬化などの方法が用いられる
が、高い機械強度と低鉄損高磁束密度という優れた磁気
特性とは相反する関係にあり、これらを同時に満足させ
ることは極めて困難であった。
As described above, the rotor core material of the rotating machine as described above has mechanically high tension and fatigue strength, and magnetically has low iron loss and high magnetic flux density at the same time. There must be. In the field of cold-rolled steel sheets, methods such as solid solution hardening, precipitation hardening, grain refining hardening, and transformation structure hardening are generally used as means for increasing the mechanical strength of steel sheets, but they have high mechanical strength and low iron loss and high magnetic flux density. However, it is extremely difficult to satisfy these requirements at the same time.

【0006】しかし、最近では、高張力を有する無方向
性電磁鋼板についてのいくつかの提案がなされてきてい
る。例えば、特開昭60−238421号公報のよう
に、Si含有量を3.5〜7.0%と高め、これに固溶
硬化の大きい元素を添加し、張力を高める方法が提案さ
れているが、この方法では、Si含有量に依存している
割合が高いために、熱延板から最終冷延厚みに圧延する
に際して、100〜600℃での温間圧延が必要である
という問題がある。また、特開昭61−9520号公報
では、Si含有量を2.5〜7.0%と高め、これに固
溶硬化の大きい元素を添加した溶鋼を急冷凝固法により
鋼帯となし、これを温間または冷間圧延し、焼鈍を施し
て高張力無方向性電磁鋼板を製造する方法が提案されて
いる。この方法によれば、Si含有量を高めても、急冷
凝固法であるため、圧延時の脆化問題は緩和されるもの
の、急冷凝固法という特殊な鋳造法を用いねばならず、
工業的に広く用いられている通常の圧延法には適用でき
ないという大きな問題がある。
However, recently, some proposals have been made for a non-oriented electrical steel sheet having a high tensile strength. For example, as in JP-A-60-238421, a method has been proposed in which the Si content is increased to 3.5 to 7.0% and an element having a large solid solution hardening is added to this to increase the tension. However, in this method, there is a problem in that warm rolling at 100 to 600 ° C. is necessary when rolling from the hot rolled sheet to the final cold rolled thickness, because the proportion that depends on the Si content is high. . Further, in Japanese Patent Application Laid-Open No. 61-9520, a molten steel obtained by increasing the Si content to 2.5 to 7.0% and adding an element having a large solid solution hardening to the steel is formed into a steel strip by a rapid solidification method. A method for manufacturing a high-strength non-oriented electrical steel sheet by hot or cold rolling and annealing is proposed. According to this method, even if the Si content is increased, since it is a rapid solidification method, the problem of embrittlement during rolling is mitigated, but a special casting method called rapid solidification method must be used,
There is a big problem that it cannot be applied to the ordinary rolling method widely used in industry.

【0007】さらに、特開昭62−256917号公報
では、Si含有量は2.0〜3.5%とし、Niあるい
はNiとMn含有量を高め、通常の冷間圧延を施し、焼
鈍条件を制御することにより、高張力無方向性電磁鋼板
を製造する方法が提案されている。しかし、この方法で
は、高価なNi含有量を高めねばならず、コストアップ
になるという問題がある。
Further, in Japanese Patent Laid-Open No. 62-256917, the Si content is 2.0 to 3.5%, the Ni content or the Ni and Mn content is increased, and ordinary cold rolling is performed and annealing conditions are applied. A method of manufacturing a high-strength non-oriented electrical steel sheet by controlling is proposed. However, this method has a problem in that the expensive Ni content must be increased, resulting in an increase in cost.

【0008】[0008]

【発明が解決しようとする課題】上記に鑑み本発明は、
機械特性および磁気特性ともに優れた、降伏強度の高い
回転機用無方向性電磁鋼板およびその製造方法を安価に
提供しようとするものである。
In view of the above, the present invention is
It is intended to provide a non-oriented electrical steel sheet for a rotating machine, which is excellent in both mechanical properties and magnetic properties and has a high yield strength, and a manufacturing method thereof at low cost.

【0009】[0009]

【課題を解決するための手段】本発明者らは、珪素鋼に
おいて、固溶硬化、析出硬化、細粒化硬化、変態組織に
よる硬化、加工硬化などの強化方法を用いて、機械特性
および磁気特性を両立させることはできないかとの観点
から鋭意研究を積み重ねてきた。その結果、通常の無方
向性電磁鋼板ハイグレード程度にSiを含有させると同
時に、Nb,Zrの1種または2種、もしくはTi,V
の1種または2種の炭窒化物を活用し、さらには熱延条
件および仕上焼鈍条件を制御することにより、機械特性
と磁気特性を兼備した降伏強度の高い無方向性電磁鋼板
が得られることを見出した。
Means for Solving the Problems In the silicon steel, the present inventors have used solid solution hardening, precipitation hardening, grain hardening, transformation structure hardening, work hardening, and other strengthening methods to improve mechanical properties and magnetic properties. I have been earnestly researching from the viewpoint that it is not possible to make the characteristics compatible. As a result, at the same time as containing Si in a high grade of a general non-oriented electrical steel sheet, at least one of Nb and Zr or Ti and V
By utilizing one or two types of carbonitrides and controlling hot rolling conditions and finish annealing conditions, it is possible to obtain non-oriented electrical steel sheets having high mechanical strength and magnetic properties and high yield strength. Found.

【0010】本発明は上記の知見に基づきなされたもの
であり、その要旨は、重量%で、C:0.05%以下、
Si:2.0%以上4.0%未満、Al:2.0%以
下、P:0.2%以下を含み、かつNb,Zrのうち1
種または2種を、もしくは、Ti,Vのうち1種または
2種を、0.1<(Nb+Zr)/8(C+N)<1.
0、0.4<(Ti+V)/4(C+N)<4.0の範
囲で含有し、残部Feおよび不可避不純物元素より成る
ことを特徴とする機械特性、磁気特性ともに優れた高張
力無方向性電磁鋼板にある。また、他の要旨は、重量%
で、C:0.05%以下、Si:2.0%以上4.0%
未満、Al:2.0%以下、P:0.2%以下を含み、
かつ、Nb,Zrのうち1種または2種を、もしくは、
Ti,Vのうち1種または2種を、0.1<(Nb+Z
r)/8(C+N)<1.0、0.4<(Ti+V)/
4(C+N)<4.0の範囲で含有し、残部Feおよび
不可避不純物元素より成る鋼を、熱間圧延し、550℃
以下の温度で捲き取り、熱延板の未再結晶部分の比率を
40%以上、再結晶部分の平均結晶粒径を60μm以下
とし、その後、冷間圧延し、700℃以上900℃以下
の温度で仕上焼鈍するところにある。
The present invention has been made based on the above findings, and the gist thereof is, in weight%, C: 0.05% or less,
Si: 2.0% or more and less than 4.0%, Al: 2.0% or less, P: 0.2% or less, and 1 out of Nb and Zr
1 or 2 kinds, or 1 or 2 kinds of Ti and V, 0.1 <(Nb + Zr) / 8 (C + N) <1.
0, 0.4 <(Ti + V) / 4 (C + N) <4.0, with the balance being Fe and unavoidable impurity elements, which are excellent in mechanical and magnetic properties It is found in electrical steel sheets. In addition, other gist is weight%
C: 0.05% or less, Si: 2.0% or more, 4.0%
Less than, including Al: 2.0% or less, P: 0.2% or less,
And one or two of Nb and Zr, or
One or two of Ti and V can be used as 0.1 <(Nb + Z
r) / 8 (C + N) <1.0, 0.4 <(Ti + V) /
Steel containing 4 (C + N) <4.0 with the balance Fe and unavoidable impurity elements is hot-rolled at 550 ° C.
Winding at the following temperature, the ratio of the unrecrystallized portion of the hot-rolled sheet is 40% or more, the average crystal grain size of the recrystallized portion is 60 μm or less, and then cold rolling is performed, and the temperature is 700 ° C. or more and 900 ° C. or less. It is in the place of finish annealing.

【0011】以下、本発明を詳細に説明する。Siは電
気抵抗を増大させて渦電流損を低減することにより鉄損
を低下させる作用を有すると同時に、固溶硬化により鋼
の張力を高める作用も有する成分であり、これらの作用
を奏するためには2.0%以上含有させる必要がある。
一方、その含有量が増えると磁束密度が低下し、また冷
延などの作業性の劣化、さらにはコスト高ともなるので
4.0%未満とする。Alも電気抵抗を増大させて渦電
流損を低減することにより鉄損を低下させる作用を有す
るので、さらに優れた磁気特性、特に低鉄損化を図る場
合には2.0%以下の範囲で添加する。その含有量が
2.0%を超えると、磁束密度が低下し、またコスト高
ともなる。Pは鋼の張力を高める効果が非常に大きい元
素であるが、粒界に偏析することから鋼の粒界脆性をも
たらす場合がある。この粒界脆性の問題を避けて、通常
の工業的規模での連続鋳造、熱間圧延、冷間圧延を可能
にするため、0.2%以下の範囲で添加する。
The present invention will be described in detail below. Si has a function of decreasing iron loss by increasing eddy current loss by increasing electrical resistance, and at the same time, is a component that also has a function of increasing the tension of steel by solution hardening, and in order to exert these functions. Must be contained at 2.0% or more.
On the other hand, if the content thereof increases, the magnetic flux density decreases, workability such as cold rolling deteriorates, and the cost increases, so the content is made less than 4.0%. Since Al also has an effect of reducing iron loss by increasing electrical resistance and reducing eddy current loss, in the case of achieving further excellent magnetic characteristics, especially low iron loss, the range is 2.0% or less. Added. If the content exceeds 2.0%, the magnetic flux density is lowered and the cost is increased. P is an element that has a very large effect of increasing the tension of steel, but it may cause grain boundary brittleness of steel because it segregates at grain boundaries. In order to avoid the problem of grain boundary brittleness and to enable continuous casting, hot rolling, and cold rolling on a normal industrial scale, it is added in a range of 0.2% or less.

【0012】NbおよびZrは、微細な炭窒化物を形成
し、析出硬化および細粒化硬化により鋼の張力を高める
作用を有する。この作用を奏するためには、(Nb+Z
r)/8(C+N)が0.1超である必要があり、ま
た、その含有量が増えても、再結晶温度の上昇さらには
コスト高をも招くので、(Nb+Zr)/8(C+N)
で1.0未満とする。TiおよびVも、微細な炭窒化物
を形成し、析出硬化および細粒化硬化により鋼の張力を
高める作用を有する。この作用を奏するためには、(T
i+V)/4(C+N)が0.4超である必要があり、
またその含有量が増えても、再結晶温度の上昇、さらに
はコスト高をも招くので、(Ti+V)/4(C+N)
で4.0未満とする。上述のNb,Zr,Ti,Vなど
の炭窒化物形成元素を活用する場合のCは0.05%以
下とする。その含有量が0.05%を超えると、磁気時
効などにより磁性、特に鉄損の劣化が著しくなる。
Nb and Zr form fine carbonitrides and have the action of increasing the tension of steel by precipitation hardening and grain refining hardening. In order to achieve this effect, (Nb + Z
r) / 8 (C + N) must be more than 0.1, and even if the content thereof increases, the recrystallization temperature rises and the cost also increases, so (Nb + Zr) / 8 (C + N).
And less than 1.0. Ti and V also form fine carbonitrides, and have the action of increasing the tension of steel by precipitation hardening and grain refining hardening. In order to achieve this effect, (T
i + V) / 4 (C + N) must be greater than 0.4,
Moreover, since the recrystallization temperature rises and the cost increases even if the content increases, (Ti + V) / 4 (C + N)
And less than 4.0. When utilizing the above carbonitride forming elements such as Nb, Zr, Ti and V, C is set to 0.05% or less. If its content exceeds 0.05%, the deterioration of magnetism, particularly iron loss, becomes remarkable due to magnetic aging.

【0013】上述の成分以外は鉄および不可避不純物元
素であるが、Pによる粒界脆性を軽減する目的で、必要
に応じてBを添加してもよい。この場合、Bは0.00
10%以上含有させる必要があり、一方、その含有量が
増えても、磁束密度の低下や熱間脆性などを招くので、
0.0070%以下とする。また、鋼の電気抵抗を増大
させて鉄損を低下させ、かつ固溶硬化により張力を高め
る目的で、必要に応じてMnを添加してもよい。この場
合、Mnは0.1%以上含有させる必要があり、一方、
その含有量が増えると磁束密度が低下し、またコスト高
ともなるので2.0%以下とする。
Iron and unavoidable impurity elements other than the above-mentioned components are included, but B may be added if necessary for the purpose of reducing the grain boundary brittleness due to P. In this case, B is 0.00
It is necessary to contain 10% or more. On the other hand, even if the content increases, it causes a decrease in magnetic flux density and hot brittleness.
It is 0.0070% or less. Further, Mn may be added, if necessary, for the purpose of increasing the electric resistance of steel to reduce the iron loss and increasing the tension by solid solution hardening. In this case, Mn must be contained by 0.1% or more, while
If the content thereof increases, the magnetic flux density will decrease and the cost will increase, so the content is made 2.0% or less.

【0014】前記成分から成る鋼は、転炉あるいは電気
炉などで溶製し、連続鋳造あるいは造塊後の分塊圧延に
より鋼スラブとする。次いで、この鋼スラブは所望温度
に加熱後、熱間圧延する。熱間圧延後、550℃以下の
温度で捲き取り、熱延板の未再結晶部分の比率を40%
以上、再結晶部分の平均結晶粒径を60μm以下とす
る。捲取温度が550℃を超えると、Pの粒界偏析によ
り、熱延板の粒界脆化を引き起こす場合があり、その後
の通板に支障をきたすことになる。また、熱延板の未再
結晶部分の比率が40%未満であったり、あるいは再結
晶部分の平均結晶粒径が60μmを超えると、Pの粒界
偏析が顕著となり、熱延板の粒界脆化が生じやすくな
る。
The steel composed of the above components is melted in a converter or an electric furnace, and cast into a steel slab by continuous casting or slab rolling after ingot casting. The steel slab is then heated to the desired temperature and hot rolled. After hot rolling, it is wound up at a temperature of 550 ° C or less, and the ratio of the unrecrystallized portion of the hot rolled sheet is 40%.
As described above, the average crystal grain size of the recrystallized portion is set to 60 μm or less. If the winding temperature exceeds 550 ° C., grain boundary segregation of P may cause grain boundary embrittlement of the hot-rolled sheet, which will impede subsequent threading. When the ratio of the non-recrystallized portion of the hot-rolled sheet is less than 40% or the average crystal grain size of the recrystallized portion exceeds 60 μm, the grain boundary segregation of P becomes remarkable and the grain boundary of the hot-rolled sheet becomes large. Brittleness is likely to occur.

【0015】熱延板は、その後、冷間圧延により所定の
板厚とされ、再結晶のための連続仕上焼鈍を施す。仕上
焼鈍は700℃以上900℃以下の温度で行う必要があ
る。仕上焼鈍温度が700℃未満では、未再結晶部分が
残存するため磁性が劣化し、また形状も悪化する。一
方、900℃を超えると、結晶粒成長により結晶粒が粗
大化し、張力が低下する。
The hot-rolled sheet is then cold-rolled to a predetermined sheet thickness and subjected to continuous finish annealing for recrystallization. The finish annealing needs to be performed at a temperature of 700 ° C. or higher and 900 ° C. or lower. If the finish annealing temperature is less than 700 ° C., unrecrystallized portions remain, resulting in deterioration of magnetism and deterioration of shape. On the other hand, when the temperature exceeds 900 ° C., the crystal grains grow due to the crystal grain growth and the tension decreases.

【0016】[0016]

【実施例】次に本発明の実施例を示す。 (実施例1)表1に示した成分の鋼を、熱間圧延により
2.0mm厚とし、500℃で捲き取った。この場合、熱
延板の未再結晶部分の比率は45%、また、再結晶部分
の平均結晶粒径は48μmであった。この熱延板を酸洗
した後、0.50mm厚に冷間圧延し、750℃で30秒
間の連続仕上焼鈍を施した。得られた製品板からエプス
タイン試料およびJIS6号引張試験片を採取し、磁気
特性および機械特性を測定した。その測定結果も併せて
同表に示した。表1から明らかなように、本発明によれ
ば、優れた機械特性と磁気特性を兼備した、降伏強度の
高い無方向性電磁鋼板が得られることがわかる。
EXAMPLES Examples of the present invention will be described below. (Example 1) Steels having the components shown in Table 1 were hot-rolled to a thickness of 2.0 mm and wound at 500 ° C. In this case, the proportion of the non-recrystallized portion of the hot rolled sheet was 45%, and the average crystal grain size of the recrystallized portion was 48 μm. The hot rolled sheet was pickled, cold rolled to a thickness of 0.50 mm, and subjected to continuous finish annealing at 750 ° C. for 30 seconds. Epstein samples and JIS No. 6 tensile test pieces were sampled from the obtained product plates, and magnetic properties and mechanical properties were measured. The measurement results are also shown in the table. As is clear from Table 1, according to the present invention, it is possible to obtain a non-oriented electrical steel sheet having a high yield strength and having both excellent mechanical properties and magnetic properties.

【0017】[0017]

【表1】 [Table 1]

【0018】(実施例2)C:0.0302%、Si:
3.08%、Mn:0.18%、P:0.04%、A
l:0.71%、N:0.0010%、B:0.003
2%、Ti:0.021%を含有する鋼〔(Ti+V)
/(C+N)=0.673〕を、熱間圧延により2.3
mm厚とし、表2に示す条件で捲き取った。この熱延板を
酸洗した後、0.50mm厚に冷間圧延し、770℃で3
0秒間の連続仕上焼鈍を施した。得られた製品板からエ
プスタイン試料およびJIS6号引張試験片を採取し、
磁気特性および機械特性を測定した。その測定結果も併
せて同表に示した。表2から明らかなように、本発明に
より、優れた機械特性と磁気特性を有する高張力無方向
性電磁鋼板が得られることがわかる。
(Example 2) C: 0.0302%, Si:
3.08%, Mn: 0.18%, P: 0.04%, A
1: 0.71%, N: 0.0010%, B: 0.003
Steel containing 2% and Ti: 0.021% [(Ti + V)
/(C+N)=0.673] by hot rolling to 2.3
It was made into a thickness of mm and wound up under the conditions shown in Table 2. This hot-rolled sheet is pickled, then cold-rolled to a thickness of 0.50 mm, and then rolled at 770 ° C for 3 hours.
A continuous finish annealing for 0 seconds was performed. Epstein samples and JIS No. 6 tensile test pieces were taken from the obtained product plate,
The magnetic and mechanical properties were measured. The measurement results are also shown in the table. As is clear from Table 2, the present invention provides a high-strength non-oriented electrical steel sheet having excellent mechanical properties and magnetic properties.

【0019】[0019]

【表2】 [Table 2]

【0020】(実施例3)C:0.0252%、Si:
3.16%、Mn:0.25%、P:0.03%、A
l:0.58%、N:0.0012%、B:0.003
6%、V:0.019%を含有する鋼〔(Ti+V)/
(C+N)=0.72〕を、熱間圧延により2.2mm厚
とし、520℃で捲き取った。この場合、熱延板の未再
結晶部分の比率は45%、また再結晶部分の平均結晶粒
径は、52μmであった。この熱延板を酸洗後、0.5
0mm厚に冷間圧延し、表3に示す条件で連続仕上焼鈍を
施した。得られた製品板からエプスタイン試料およびJ
IS6号引張試験片を採取し、磁気特性および機械特性
を測定した。その測定結果も併せて同表に示した。表3
によれば、機械特性、磁気特性ともに優れた高張力無方
向性電磁鋼板が本発明により得られることがわかる。
(Example 3) C: 0.0252%, Si:
3.16%, Mn: 0.25%, P: 0.03%, A
1: 0.58%, N: 0.0012%, B: 0.003
Steel containing 6%, V: 0.019% [(Ti + V) /
(C + N) = 0.72] was hot-rolled to a thickness of 2.2 mm and wound at 520 ° C. In this case, the ratio of the non-recrystallized portion of the hot-rolled sheet was 45%, and the average crystal grain size of the recrystallized portion was 52 μm. After pickling the hot rolled sheet, 0.5
It was cold rolled to a thickness of 0 mm and subjected to continuous finish annealing under the conditions shown in Table 3. Epstein samples and J
An IS6 tensile test piece was sampled and its magnetic properties and mechanical properties were measured. The measurement results are also shown in the table. Table 3
According to the above, it is understood that the present invention provides a high-strength non-oriented electrical steel sheet having excellent mechanical properties and magnetic properties.

【0021】[0021]

【表3】 [Table 3]

【0022】[0022]

【発明の効果】以上のように本発明によれば、優れた機
械特性と磁気特性を兼備した降伏強度の高い回転機用高
張力電磁鋼板およびその製造方法が提供され、回転機の
高速回転化の動きの中で、そのローター用鉄心材料であ
る無方向性電磁鋼板に対してなされる要請に十分に応え
ることができ、その工業的価値は極めて高いものであ
る。
As described above, according to the present invention, there are provided a high tensile strength electromagnetic steel sheet for a rotating machine having excellent mechanical properties and magnetic properties and having a high yield strength, and a method for producing the same. In this movement, it is possible to sufficiently meet the demands made on the non-oriented electrical steel sheet that is the iron core material for the rotor, and its industrial value is extremely high.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹下 武章 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takeaki Takeshita 1-1 No. 1 Tobita-cho, Tobata-ku, Kitakyushu-shi, Fukuoka New Nippon Steel Corporation Yawata Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.05%以下、 Si:2.0%以上4.0%
未満、 Al:2.0%以下、 P :0.2%以下を含み、
かつ、 Nb,Zrのうち1種または2種を、もしくは、 Ti,Vのうち1種または2種を、 0.1<(Nb+Zr)/8(C+N)<1.0、 0.4<(Ti+V)/4(C+N)<4.0 の範囲で含有し、残部Feおよび不可避不純物元素より
成ることを特徴とする機械特性、磁気特性ともに優れた
高張力無方向性電磁鋼板。
1. By weight%, C: 0.05% or less, Si: 2.0% or more and 4.0%
Less than, Al: 2.0% or less, P: including 0.2% or less,
And, one or two kinds of Nb and Zr, or one or two kinds of Ti and V, 0.1 <(Nb + Zr) / 8 (C + N) <1.0, 0.4 <( Ti + V) / 4 (C + N) <4.0, a high-strength non-oriented electrical steel sheet excellent in both mechanical and magnetic properties, characterized by being composed of the balance Fe and unavoidable impurity elements.
【請求項2】 重量%で、 C :0.05%以下、 Si:2.0%以上4.0%
未満、 Al:2.0%以下、 P :0.2%以下を含み、
かつ、 Nb,Zrのうち1種または2種を、もしくは、 Ti,Vのうち1種または2種を、 0.1<(Nb+Zr)/8(C+N)<1.0 0.4<(Ti+V)/4(C+N)<4.0 の範囲で含有し、残部Feおよび不可避不純物元素より
成る鋼を、熱間圧延し、550℃以下の温度で捲き取
り、熱延板の未再結晶部分の比率を40%以上、再結晶
部分の平均結晶粒径を60μm以下とし、その後、冷間
圧延し、700℃以上900℃以下の温度で仕上焼鈍す
ることを特徴とする機械特性、磁気特性ともに優れた高
張力無方向性電磁鋼板の製造方法。
2. In% by weight, C: 0.05% or less, Si: 2.0% or more and 4.0%
Less than, Al: 2.0% or less, P: including 0.2% or less,
And, one or two kinds of Nb and Zr, or one or two kinds of Ti and V, 0.1 <(Nb + Zr) / 8 (C + N) <1.0 0.4 <(Ti + V ) / 4 (C + N) <4.0, with the balance Fe and unavoidable impurity elements, hot-rolled and rolled up at a temperature of 550 ° C. or lower to remove unrecrystallized portions of the hot-rolled sheet. Excellent mechanical and magnetic properties characterized by a ratio of 40% or more and an average crystal grain size of the recrystallized portion of 60 μm or less, followed by cold rolling and finish annealing at a temperature of 700 ° C. to 900 ° C. High strength non-oriented electrical steel sheet manufacturing method.
JP12026993A 1993-05-21 1993-05-21 Manufacturing method of high tensile non-oriented electrical steel sheet Expired - Fee Related JP3305806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12026993A JP3305806B2 (en) 1993-05-21 1993-05-21 Manufacturing method of high tensile non-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12026993A JP3305806B2 (en) 1993-05-21 1993-05-21 Manufacturing method of high tensile non-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JPH06330255A true JPH06330255A (en) 1994-11-29
JP3305806B2 JP3305806B2 (en) 2002-07-24

Family

ID=14782044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12026993A Expired - Fee Related JP3305806B2 (en) 1993-05-21 1993-05-21 Manufacturing method of high tensile non-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP3305806B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186791A (en) * 2005-12-15 2007-07-26 Jfe Steel Kk High strength non-oriented electrical steel sheet and method for manufacture the same
JP2007186790A (en) * 2005-12-15 2007-07-26 Jfe Steel Kk High strength non-oriented electrical steel sheet and method for manufacture the same
WO2008013015A1 (en) 2006-07-26 2008-01-31 Nippon Steel Corporation Non-oriented magnetic steel sheet with high strength
US7513959B2 (en) 2002-12-05 2009-04-07 Jfe Steel Corporation Non-oriented electrical steel sheet and method for manufacturing the same
WO2009128428A1 (en) 2008-04-14 2009-10-22 新日本製鐵株式会社 High-strength non-oriented magnetic steel sheet and process for producing the high-strength non-oriented magnetic steel sheet
JP2010159494A (en) * 2010-02-09 2010-07-22 Nippon Steel Corp High strength magnetic steel sheet, and production method and working method therefor
US7922834B2 (en) * 2005-07-07 2011-04-12 Sumitomo Metal Industries, Ltd. Non-oriented electrical steel sheet and production process thereof
JP2011099163A (en) * 2010-11-08 2011-05-19 Sumitomo Metal Ind Ltd Method for manufacturing non-oriented electromagnetic steel sheet for aging heat treatment
EP2390376A1 (en) * 2009-01-26 2011-11-30 Nippon Steel Corporation Non-oriented electromagnetic steel sheet
WO2012114383A1 (en) 2011-02-24 2012-08-30 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing same
WO2012087045A3 (en) * 2010-12-23 2012-10-04 주식회사 포스코 Low iron loss high strength non-oriented electromagnetic steel sheet and method for manufacturing same
WO2013024899A1 (en) 2011-08-18 2013-02-21 新日鐵住金株式会社 Non-oriented electromagnetic steel sheet, method for producing same, laminate for motor iron core, and method for producing said laminate
WO2013024894A1 (en) 2011-08-18 2013-02-21 新日鐵住金株式会社 Non-oriented electromagnetic steel sheet, method for producing same, laminate for motor iron core, and method for producing said laminate
WO2014024222A1 (en) 2012-08-08 2014-02-13 Jfeスチール株式会社 High-strength electromagnetic steel sheet and method for producing same
US9362032B2 (en) 2011-04-13 2016-06-07 Nippon Steel & Sumitomo Metal Corporation High-strength non-oriented electrical steel sheet
JP2020147842A (en) * 2019-03-05 2020-09-17 住友重機械工業株式会社 Magnetic field heat treatment apparatus, electromagnetic steel sheet, motor, and manufacturing method of motor
JP2020156192A (en) * 2019-03-19 2020-09-24 日鉄日新製鋼株式会社 Rotor of ipm motor
WO2022210530A1 (en) 2021-03-31 2022-10-06 日本製鉄株式会社 Non-oriented electromagnetic steel sheet, motor core, production method for non-oriented electromagnetic steel sheet, and production method for motor core

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7513959B2 (en) 2002-12-05 2009-04-07 Jfe Steel Corporation Non-oriented electrical steel sheet and method for manufacturing the same
EP2489753A1 (en) 2002-12-05 2012-08-22 JFE Steel Corporation Non-oriented magnetic steel sheet and method for production thereof
US8157928B2 (en) 2005-07-07 2012-04-17 Sumitomo Metal Industries, Ltd. Non-oriented electrical steel sheet and production process thereof
US7922834B2 (en) * 2005-07-07 2011-04-12 Sumitomo Metal Industries, Ltd. Non-oriented electrical steel sheet and production process thereof
JP2007186790A (en) * 2005-12-15 2007-07-26 Jfe Steel Kk High strength non-oriented electrical steel sheet and method for manufacture the same
JP2007186791A (en) * 2005-12-15 2007-07-26 Jfe Steel Kk High strength non-oriented electrical steel sheet and method for manufacture the same
WO2008013015A1 (en) 2006-07-26 2008-01-31 Nippon Steel Corporation Non-oriented magnetic steel sheet with high strength
JP2008050685A (en) * 2006-07-26 2008-03-06 Nippon Steel Corp Non-oriented magnetic steel sheet with high strength
US8557058B2 (en) 2006-07-26 2013-10-15 Nippon Steel & Sumitomo Metal Corporation High-strength non-oriented electrical steel sheet
WO2009128428A1 (en) 2008-04-14 2009-10-22 新日本製鐵株式会社 High-strength non-oriented magnetic steel sheet and process for producing the high-strength non-oriented magnetic steel sheet
EP2390376A4 (en) * 2009-01-26 2017-04-26 Nippon Steel & Sumitomo Metal Corporation Non-oriented electromagnetic steel sheet
EP2390376A1 (en) * 2009-01-26 2011-11-30 Nippon Steel Corporation Non-oriented electromagnetic steel sheet
JP2010159494A (en) * 2010-02-09 2010-07-22 Nippon Steel Corp High strength magnetic steel sheet, and production method and working method therefor
JP2011099163A (en) * 2010-11-08 2011-05-19 Sumitomo Metal Ind Ltd Method for manufacturing non-oriented electromagnetic steel sheet for aging heat treatment
US9260764B2 (en) 2010-12-23 2016-02-16 Posco Low iron loss high strength non-oriented electromagnetic steel sheet and method for manufacturing same
WO2012087045A3 (en) * 2010-12-23 2012-10-04 주식회사 포스코 Low iron loss high strength non-oriented electromagnetic steel sheet and method for manufacturing same
WO2012114383A1 (en) 2011-02-24 2012-08-30 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing same
US9362032B2 (en) 2011-04-13 2016-06-07 Nippon Steel & Sumitomo Metal Corporation High-strength non-oriented electrical steel sheet
WO2013024899A1 (en) 2011-08-18 2013-02-21 新日鐵住金株式会社 Non-oriented electromagnetic steel sheet, method for producing same, laminate for motor iron core, and method for producing said laminate
US9721706B2 (en) 2011-08-18 2017-08-01 Nippon Steel & Sumitomo Metal Corporation Non-oriented electrical steel sheet, manufacturing method thereof, laminate for motor iron core, and manufacturing method thereof
JP5321764B2 (en) * 2011-08-18 2013-10-23 新日鐵住金株式会社 Non-oriented electrical steel sheet, method for producing the same, laminated body for motor core and method for producing the same
WO2013024894A1 (en) 2011-08-18 2013-02-21 新日鐵住金株式会社 Non-oriented electromagnetic steel sheet, method for producing same, laminate for motor iron core, and method for producing said laminate
US9512500B2 (en) 2011-08-18 2016-12-06 Nippon Steel & Sumitomo Metal Corporation Non-oriented electrical steel sheet, method of manufacturing the same, laminate for motor iron core, and method of manufacturing the same
KR20170005517A (en) 2011-08-18 2017-01-13 신닛테츠스미킨 카부시키카이샤 Non-oriented electromagnetic steel sheet, method for producing same, laminate for motor iron core, and method for producing said laminate
EP3173503A1 (en) 2011-08-18 2017-05-31 Nippon Steel & Sumitomo Metal Corporation Non-oriented electrical steel sheet and manufacturing method thereof
WO2014024222A1 (en) 2012-08-08 2014-02-13 Jfeスチール株式会社 High-strength electromagnetic steel sheet and method for producing same
US10242782B2 (en) 2012-08-08 2019-03-26 Jfe Steel Corporation High-strength electrical steel sheet and method of producing the same
KR20150038420A (en) 2012-08-08 2015-04-08 제이에프이 스틸 가부시키가이샤 High-strength electrical steel sheet and method of producing the same
JP2020147842A (en) * 2019-03-05 2020-09-17 住友重機械工業株式会社 Magnetic field heat treatment apparatus, electromagnetic steel sheet, motor, and manufacturing method of motor
JP2020156192A (en) * 2019-03-19 2020-09-24 日鉄日新製鋼株式会社 Rotor of ipm motor
WO2022210530A1 (en) 2021-03-31 2022-10-06 日本製鉄株式会社 Non-oriented electromagnetic steel sheet, motor core, production method for non-oriented electromagnetic steel sheet, and production method for motor core
KR20230134148A (en) 2021-03-31 2023-09-20 닛폰세이테츠 가부시키가이샤 Non-oriented electrical steel sheet, motor core, manufacturing method of non-oriented electrical steel sheet, and manufacturing method of motor core

Also Published As

Publication number Publication date
JP3305806B2 (en) 2002-07-24

Similar Documents

Publication Publication Date Title
JP5228379B2 (en) Non-oriented electrical steel sheet with excellent strength and magnetic properties and manufacturing method thereof
JP4586669B2 (en) Method for producing non-oriented electrical steel sheet for rotor
CN101218362B (en) Non-oriented electromagnetic steel sheet and its manufacturing method
JP3305806B2 (en) Manufacturing method of high tensile non-oriented electrical steel sheet
JP2021036075A (en) Non-oriented electromagnetic steel sheet, motor core and method for manufacturing the same
JP5076510B2 (en) Non-oriented electrical steel sheet for rotor and manufacturing method thereof
WO2012114383A1 (en) Non-oriented electromagnetic steel sheet and method for manufacturing same
JPWO2003002777A1 (en) Non-oriented electrical steel sheet and manufacturing method thereof
EP2385147A2 (en) An electrical steel, a motor, and a method for manufacture of electrical steel with high strenght and low electrical losses
JP7401729B2 (en) Non-oriented electrical steel sheet
JP2007186791A (en) High strength non-oriented electrical steel sheet and method for manufacture the same
WO2017056383A1 (en) Non-oriented electromagnetic steel sheet and manufacturing method of same
JPH028346A (en) High tensile electrical steel sheet and its manufacture
US5084112A (en) High strength non-oriented electrical steel sheet and method of manufacturing same
JP4696750B2 (en) Method for producing non-oriented electrical steel sheet for aging heat treatment
WO2007063581A1 (en) Nonoriented electromagnetic steel sheet and process for producing the same
JPH0425346B2 (en)
JP3835227B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP4349340B2 (en) Method for producing Cu-containing non-oriented electrical steel sheet
JP5614063B2 (en) High tension non-oriented electrical steel sheet with excellent high-frequency iron loss
JP4506664B2 (en) Non-oriented electrical steel sheet for rotor and manufacturing method thereof
JPH0456109B2 (en)
JP4424075B2 (en) Non-oriented electrical steel sheet, non-oriented electrical steel sheet for aging heat treatment, and production method thereof
JP3870725B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP4356580B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020326

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080510

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110510

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120510

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130510

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees