JP2020156192A - Rotor of ipm motor - Google Patents

Rotor of ipm motor Download PDF

Info

Publication number
JP2020156192A
JP2020156192A JP2019051991A JP2019051991A JP2020156192A JP 2020156192 A JP2020156192 A JP 2020156192A JP 2019051991 A JP2019051991 A JP 2019051991A JP 2019051991 A JP2019051991 A JP 2019051991A JP 2020156192 A JP2020156192 A JP 2020156192A
Authority
JP
Japan
Prior art keywords
rotor
region
steel plate
iron loss
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019051991A
Other languages
Japanese (ja)
Other versions
JP7189816B2 (en
Inventor
智永 岩津
Tomonaga Iwazu
智永 岩津
藤原 進
Susumu Fujiwara
進 藤原
智治 重富
Tomoharu Shigetomi
智治 重富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Nippon Steel Nisshin Co Ltd
Original Assignee
Mitsubishi Electric Corp
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Nippon Steel Nisshin Co Ltd filed Critical Mitsubishi Electric Corp
Priority to JP2019051991A priority Critical patent/JP7189816B2/en
Publication of JP2020156192A publication Critical patent/JP2020156192A/en
Application granted granted Critical
Publication of JP7189816B2 publication Critical patent/JP7189816B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a rotor of an IPM motor, capable of reducing a rotor iron loss, while using a high intensity steel plate of a yield strength of 780 MPa or more as a base steel of a rotor iron core.SOLUTION: A rotor of an IPM motor, comprises: a rotor main body 1 in which a plurality of steel plates is laminated; a plurality of pair insertion holes 2 provided to the rotor main body 1 so as to be separated in a peripheral direction 1b of the rotor main body 1; and a plurality of permanent magnets 3 inserted into each insertion hole 20. When a region divided with an outer edge of the rotor main body 1, an outer diameter long side 30 of the pair of permanent magnets 3 inserted into the pair of insertion holes 20 contained in the pair insertion holes 2 and an extension line of the outer diameter long side 30, and a line obtained by extending a short side 31 on an outer side of the pair of permanent magnets 3 to the outer edge of the rotor main body 1 is a region M, each steel plate includes a base steel plate, and a low iron loss steel plate which is provided in at least one part of the region in the region M and is integrated with the base steel plate, and has an iron loss smaller than that of the base steel plate.SELECTED DRAWING: Figure 4

Description

本発明は、鉄損特性に優れ高速回転に適したIPMモータのロータに関する。 The present invention relates to a rotor of an IPM motor having excellent iron loss characteristics and suitable for high-speed rotation.

IPMモータは、永久磁石を使用した高効率PMモータの中でも、永久磁石がロータ鉄心に埋め込まれているため高速回転が可能なモータである。IPMモータの鉄心は、ステータ鉄心とロータ鉄心とに分けられる。ステータ鉄心には巻線コイルから交流磁界が付与されるので、効率を高くするため鉄損の小さい鋼板をステータ鉄心に用いる必要がある。一方、ロータ鉄心には永久磁石が埋め込まれるため、ステータ鉄心に比べると交流磁界の影響は小さい。しかし、ロータ鉄心にも一定の鉄損が生じるため、ステータ鉄心と同様に鉄損の小さい鋼板をロータ鉄心に用いる必要がある。一般にステータ鉄心及びロータ鉄心には、極低炭素鋼にSiを添加して軟磁気特性を改善した電磁鋼板が用いられる。 The IPM motor is a high-efficiency PM motor that uses a permanent magnet and is capable of high-speed rotation because the permanent magnet is embedded in the rotor core. The iron core of the IPM motor is divided into a stator core and a rotor core. Since an alternating magnetic field is applied to the stator core from the winding coil, it is necessary to use a steel plate with a small iron loss for the stator core in order to improve efficiency. On the other hand, since a permanent magnet is embedded in the rotor core, the influence of the alternating magnetic field is smaller than that of the stator core. However, since a certain amount of iron loss also occurs in the rotor core, it is necessary to use a steel plate having a small iron loss as in the stator core. Generally, as the stator core and the rotor core, electromagnetic steel sheets having improved soft magnetic properties by adding Si to ultra-low carbon steel are used.

近年、モータサイズを維持したまま出力向上を求められている。トルクの増加には限界があるため、ロータのさらなる高速回転化が求められている。そのため、例えば特許文献1のように高速回転における遠心力で永久磁石が飛び出さないよう、ロータ鉄心の材料として電磁鋼板ではなく、高強度鋼板を用いたロータが発明されている。 In recent years, there has been a demand for improved output while maintaining the motor size. Since there is a limit to the increase in torque, further high-speed rotation of the rotor is required. Therefore, for example, as in Patent Document 1, a rotor using a high-strength steel plate instead of an electromagnetic steel plate has been invented as a material for the iron core of the rotor so that the permanent magnet does not pop out due to centrifugal force at high speed rotation.

図1は、特許文献1に示されたIPMモータのロータ(8極)の一例である。この8極のロータでは、1つの極が2つの永久磁石3から構成されているので、16個の永久磁石が用いられている。また、図2に示すように、IPMモータにおいて、1つの極をなす永久磁石の中心軸をd軸5と呼び、極と極との間の軸をq軸6と呼び、永久磁石とその外側にかかる遠心力を支える部分をブリッジ部7と呼ぶ。ロータ鉄心の材料として電磁鋼板を用いた従来設計のまま高速回転化すると、ブリッジ部7にかかる遠心力が増加してロータの破壊にいたるおそれがある。ロータの破壊を招かないための1つの手段として、ブリッジ部7の高強度化が有効である。 FIG. 1 is an example of a rotor (8 poles) of an IPM motor shown in Patent Document 1. In this 8-pole rotor, 16 permanent magnets are used because one pole is composed of two permanent magnets 3. Further, as shown in FIG. 2, in the IPM motor, the central axis of the permanent magnet forming one pole is called the d-axis 5, the axis between the poles is called the q-axis 6, and the permanent magnet and its outer side are called. The portion that supports the centrifugal force applied to the bridge portion 7 is called a bridge portion 7. If high-speed rotation is performed with the conventional design using an electromagnetic steel plate as the material of the rotor core, the centrifugal force applied to the bridge portion 7 may increase, leading to the destruction of the rotor. Increasing the strength of the bridge portion 7 is effective as one means for preventing the rotor from being destroyed.

しかし、高強度鋼板は電磁鋼板と同様に低い鉄損特性を有する材料ではないため、高強度鋼板をロータ鉄心に用いると、鉄損の増加によりモータ効率の低下を招くことが分かっている。 However, since high-strength steel sheets are not materials having low iron loss characteristics like electromagnetic steel sheets, it is known that when high-strength steel sheets are used for rotor cores, the increase in iron loss causes a decrease in motor efficiency.

特開2012−217318号公報Japanese Unexamined Patent Publication No. 2012-217318 特開平6−330255号公報Japanese Unexamined Patent Publication No. 6-330255 特開2016−29876号公報Japanese Unexamined Patent Publication No. 2016-29876

そのため、特許文献2では、ロータに用いられる鋼板の鉄損の増加を抑制しつつ、高強度化を図る試みがなされている。しかし、その降伏強度は780MPa以下に留まっている。ロータ鉄心の高強度化と低鉄損化とは相反関係にあり、同一材料での両立は困難である。 Therefore, in Patent Document 2, an attempt is made to increase the strength while suppressing an increase in iron loss of a steel sheet used for a rotor. However, its yield strength remains below 780 MPa. Higher strength and lower iron loss of the rotor core are in a contradictory relationship, and it is difficult to achieve both with the same material.

また特許文献3は、ロータ鉄心のq軸周辺の領域を非磁性の樹脂に置換えることで、風損を抑制しつつ、ロータとステータとの間の空間磁束分布を最適化し、モータの高効率化を図っている。しかし、ロータ鉄心に電磁鋼板を用いているため、ブリッジ部の強度は低く、高速回転による遠心力には耐えられない。 Further, Patent Document 3 optimizes the spatial magnetic flux distribution between the rotor and the stator by replacing the region around the q-axis of the rotor iron core with a non-magnetic resin, while suppressing wind damage, and high efficiency of the motor. I am trying to make it. However, since an electromagnetic steel plate is used for the rotor core, the strength of the bridge portion is low and it cannot withstand the centrifugal force due to high-speed rotation.

本発明は上記のような課題を解決するためになされたものであり、その目的は、降伏強度780MPa以上の高強度鋼板をロータ鉄心のベース鋼板として用いつつ、ロータ鉄損を低減できるIPMモータのロータを提供することである。 The present invention has been made to solve the above problems, and an object of the present invention is to use an IPM motor capable of reducing rotor iron loss while using a high-strength steel plate having a yield strength of 780 MPa or more as a base steel plate of a rotor core. To provide a rotor.

本発明者らは、上記課題を解決すべく、高強度鋼板をロータ鉄心に用いたモータの電磁界シミュレーションを実施した。その結果、図3に示すように、ロータにおいて鉄損が発生している主な部位は、ロータ外周部の、特にd軸からブリッジ部の間であることを見出した。この知見に基づき、高強度鋼板をロータ鉄心のベース鋼として用いつつ、この鉄損発生部位を低鉄損材と置き換えることによりロータ鉄損の発生を低減できることを新たに見出した。 In order to solve the above problems, the present inventors have carried out an electromagnetic field simulation of a motor using a high-strength steel plate for a rotor core. As a result, as shown in FIG. 3, it was found that the main portion where iron loss occurs in the rotor is the outer peripheral portion of the rotor, particularly between the d-axis and the bridge portion. Based on this knowledge, it was newly found that the occurrence of rotor iron loss can be reduced by replacing the iron loss occurrence site with a low iron loss material while using a high-strength steel plate as the base steel of the rotor core.

なお、この図3の電磁界シミュレーションは、ロータ鉄心とステータ鉄心の材料として電磁鋼板50A290を用い、IPMモータの回転速度は7,000rpm、トルク5Nmの条件で行った。 The electromagnetic field simulation of FIG. 3 was performed using an electromagnetic steel sheet 50A290 as a material for the rotor core and the stator core, and the rotation speed of the IPM motor was 7,000 rpm and the torque was 5 Nm.

そこで、IPMモータのロータに用いられているベース鋼板が降伏強度780MPa以上の鋼板であっても、鉄損発生部位の一部のベース鋼板を低鉄損鋼板と置き換え、ベース鋼板と低鉄損鋼板とを一体としたIPMモータのロータとすることにより、高強度化と低鉄損化を両立させることが可能となる。 Therefore, even if the base steel sheet used for the rotor of the IPM motor is a steel sheet with a yield strength of 780 MPa or more, a part of the base steel sheet at the iron loss occurrence site is replaced with a low iron loss steel sheet, and the base steel sheet and the low iron loss steel sheet are replaced. By making the rotor of the IPM motor integrated with the above, it is possible to achieve both high strength and low iron loss.

本発明のIPMモータのロータは、複数の鋼板が積層されたロータ本体と、一対の挿入孔をそれぞれ含み、ロータ本体の周方向に離間してロータ本体に設けられた複数の挿入孔対と、挿入孔に挿入された複数の永久磁石とを備え、挿入孔に挿入された各永久磁石をロータ本体の軸方向に沿って見たとき、各永久磁石は、長方形の外形を有するとともに、ロータ本体の外径側に位置する外径側長辺を有しており、ロータ本体の外縁と、挿入孔対に含まれる一対の挿入孔に挿入された一対の永久磁石の外径側長辺及び該外径側長辺の延長線と、一対の永久磁石の外側短辺をロータ本体の外縁に向けて延長した線とで区切られる領域を領域Mとするとき、鋼板には、ベース鋼板と、領域Mの少なくとも一部の領域に設けられるとともにベース鋼板と一体とされ、ベース鋼板よりも鉄損が低い低鉄損鋼板とが含まれている。 The rotor of the IPM motor of the present invention includes a rotor body in which a plurality of steel plates are laminated, a pair of insertion holes, and a plurality of insertion hole pairs provided in the rotor body separated in the circumferential direction of the rotor body. With a plurality of permanent magnets inserted into the insertion holes, when each permanent magnet inserted into the insertion hole is viewed along the axial direction of the rotor body, each permanent magnet has a rectangular outer shape and the rotor body. It has an outer diameter side long side located on the outer diameter side of the rotor body, and the outer diameter side long side of a pair of permanent magnets inserted into a pair of insertion holes included in a pair of insertion holes and the outer edge of the rotor body. When the region M is defined by the extension line of the long side on the outer diameter side and the line extending the outer short sides of the pair of permanent magnets toward the outer edge of the rotor body, the steel plate includes the base steel plate and the region. It includes a low iron loss steel plate which is provided in at least a part of M and is integrated with the base steel plate and has a lower iron loss than the base steel plate.

このとき、ベース鋼板が降伏強度780MPa以上であることが好ましい。また、低鉄損鋼板は、磁気特性W15/50が15W/kg以下の鋼板であることが好ましい。なお、W15/50とは、磁束密度1.5T、周波数50Hzの条件で求めた鉄損であることを示す。 At this time, it is preferable that the base steel sheet has a yield strength of 780 MPa or more. Further, the low iron loss steel sheet is preferably a steel sheet having a magnetic characteristic W 15/50 of 15 W / kg or less. Note that W 15/50 indicates an iron loss obtained under the conditions of a magnetic flux density of 1.5 T and a frequency of 50 Hz.

低鉄損鋼板が設けられた領域Mの少なくとも一部の領域は、ロータ本体の外縁を含むとともに、領域Mの総面積の1/4の領域であることが好ましく、1/2の領域であることがさらに好ましい。 At least a part of the region M provided with the low iron loss steel plate includes the outer edge of the rotor body and is preferably a region of 1/4 of the total area of the region M, which is 1/2. Is even more preferable.

また、ロータ本体の外縁において、ロータ本体の周方向に隣り合う2つの挿入孔対の中心に凹部を設けても良い。 Further, on the outer edge of the rotor body, a recess may be provided at the center of two pairs of insertion holes adjacent to each other in the circumferential direction of the rotor body.

本発明のIPMモータのロータによれば、ロータ本体を構成する鋼板に、ベース鋼板と、領域Mの少なくとも一部の領域に設けられるとともにベース鋼板と一体とされ、ベース鋼板よりも鉄損が低い低鉄損鋼板とが含まれているので、降伏強度780MPa以上の高強度鋼板をロータ鉄心のベース鋼板として用いつつ、ロータ鉄損を低減できる。 According to the rotor of the IPM motor of the present invention, the steel plate constituting the rotor body is provided with the base steel plate in at least a part of the region M and is integrated with the base steel plate, and the iron loss is lower than that of the base steel plate. Since a low iron loss steel sheet is included, the rotor iron loss can be reduced while using a high strength steel sheet having a yield strength of 780 MPa or more as the base steel sheet of the rotor core.

特許文献1の一実施形態に係る、降伏強度780MPa以上の高強度鋼板を用いたロータの平面図である。FIG. 5 is a plan view of a rotor using a high-strength steel plate having a yield strength of 780 MPa or more according to an embodiment of Patent Document 1. 図1のロータについて、ロータのd軸、q軸を示した平面図である。It is a top view which showed the d-axis and the q-axis of the rotor of FIG. 図1のロータについて、電磁界シミュレーションにより求めた鉄損分布である。It is the iron loss distribution obtained by the electromagnetic field simulation about the rotor of FIG. 本発明の実施の形態1によるIPMモータのロータを示す正面図である。It is a front view which shows the rotor of the IPM motor according to Embodiment 1 of this invention. 図4の一対の永久磁石3及びその周辺を拡大して示す正面図である。It is a front view which shows the pair of permanent magnets 3 of FIG. 4 and the periphery thereof enlarged. 図4のIPMモータのロータを示す斜視図である。It is a perspective view which shows the rotor of the IPM motor of FIG. 図4のロータを用いたモータの電磁界シミュレーションの結果を示す説明図である。It is explanatory drawing which shows the result of the electromagnetic field simulation of the motor using the rotor of FIG. 本発明の実施の形態2によるIPMモータのロータを示す正面図である。It is a front view which shows the rotor of the IPM motor according to Embodiment 2 of this invention.

以下、本発明を実施するための形態について、図面を参照して説明する。本発明は各実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、各実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施の形態に示される全構成要素からいくつかの構成要素を削除してもよい。さらに、異なる実施形態の構成要素を適宜組み合わせてもよい。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. The present invention is not limited to each embodiment, and the components can be modified and embodied without departing from the gist thereof. In addition, various inventions can be formed by appropriately combining the plurality of components disclosed in each embodiment. For example, some components may be removed from all the components shown in the embodiments. Furthermore, the components of different embodiments may be combined as appropriate.

実施の形態1.
図4は本発明の実施の形態1によるIPMモータのロータを示す正面図であり、図5は図4の一対の永久磁石3及びその周辺を拡大して示す正面図であり、図6は図4のIPMモータのロータを示す斜視図である。
Embodiment 1.
FIG. 4 is a front view showing the rotor of the IPM motor according to the first embodiment of the present invention, FIG. 5 is an enlarged front view showing the pair of permanent magnets 3 of FIG. 4 and their periphery thereof, and FIG. 6 is a view. It is a perspective view which shows the rotor of the IPM motor of 4.

図4に示すように、本実施の形態のIPMモータのロータは、ロータ本体1と、複数の挿入孔対2及び複数の永久磁石3を有している。 As shown in FIG. 4, the rotor of the IPM motor of the present embodiment has a rotor main body 1, a plurality of insertion hole pairs 2, and a plurality of permanent magnets 3.

ロータ本体1は、中央部に貫通孔10を有する円環状の部材である。図6に特に現れているように、ロータ本体1は、複数の鋼板11が積層されることで形成されている。鋼板11は、ロータ本体1の軸方向1aに互いに重ねられて一体化されている。 The rotor body 1 is an annular member having a through hole 10 in the center. As particularly shown in FIG. 6, the rotor body 1 is formed by laminating a plurality of steel plates 11. The steel plates 11 are overlapped with each other in the axial direction 1a of the rotor body 1 and integrated.

図4に特に現れているように、ロータ本体1には、ロータ本体1の周方向1bに離間して複数の挿入孔対2が設けられている。各挿入孔対2は、一対の挿入孔20をそれぞれ含んでいる。挿入孔20は、軸方向1aに係るロータ本体1の一端から他端までロータ本体1を貫通している。各挿入孔対2に含まれる一対の挿入孔20は、ロータ本体1の径方向1cの外方に向かって広がるV字をなすように配置されている。一対の挿入孔20は、ロータ本体1の径方向1cの内方において互いに離間されている。 As particularly shown in FIG. 4, the rotor main body 1 is provided with a plurality of insertion hole pairs 2 spaced apart from each other in the circumferential direction 1b of the rotor main body 1. Each insertion hole pair 2 includes a pair of insertion holes 20 respectively. The insertion hole 20 penetrates the rotor body 1 from one end to the other end of the rotor body 1 in the axial direction 1a. The pair of insertion holes 20 included in each insertion hole pair 2 are arranged so as to form a V shape that extends outward in the radial direction 1c of the rotor main body 1. The pair of insertion holes 20 are separated from each other in the radial direction 1c of the rotor body 1.

各挿入孔20には、永久磁石3が挿入されている。永久磁石3は、直方体状の外形を有しており、軸方向1aに係るロータ本体1の一端から他端まで延在されている。図4及び図5に示すように、挿入孔20に挿入された各永久磁石3をロータ本体1の軸方向1aに沿って見たとき、各永久磁石3は、長方形の外形を有しており、ロータ本体1の外径側に位置する外径側長辺30を有している。外径側長辺30の両側には短辺31が設けられている。短辺31と各挿入孔20の内壁との間には空隙21が設けられている。空隙21は、漏れ磁束の低減に寄与する。 A permanent magnet 3 is inserted into each insertion hole 20. The permanent magnet 3 has a rectangular parallelepiped outer shape, and extends from one end to the other end of the rotor body 1 in the axial direction 1a. As shown in FIGS. 4 and 5, when each permanent magnet 3 inserted into the insertion hole 20 is viewed along the axial direction 1a of the rotor body 1, each permanent magnet 3 has a rectangular outer shape. The rotor body 1 has an outer diameter side long side 30 located on the outer diameter side. Short sides 31 are provided on both sides of the outer diameter side long side 30. A gap 21 is provided between the short side 31 and the inner wall of each insertion hole 20. The void 21 contributes to the reduction of the leakage flux.

ここで、図5に示すように、ロータ本体1の外縁12と、挿入孔対2に含まれる一対の挿入孔20に挿入された一対の永久磁石3の外径側長辺30及びその外径側長辺30の延長線30aと、それら一対の永久磁石3の外側の短辺31をロータ本体1の外縁12に向けて延長した線31aとで区切られる領域を領域Mと呼ぶこととする。領域Mは、挿入孔対2ごとに定義することができる。すなわち、複数の領域Mがロータ本体1の周方向に互いに離間して存在する。 Here, as shown in FIG. 5, the outer diameter side long side 30 of the pair of permanent magnets 3 inserted into the outer edge 12 of the rotor body 1 and the pair of insertion holes 20 included in the insertion hole pair 2 and the outer diameter thereof. The region separated by the extension line 30a of the side long side 30 and the line 31a extending the outer short side 31 of the pair of permanent magnets 3 toward the outer edge 12 of the rotor body 1 is referred to as a region M. The region M can be defined for each insertion hole pair 2. That is, a plurality of regions M exist apart from each other in the circumferential direction of the rotor main body 1.

ロータ本体1には、ロータ鉄心100と、ロータ鉄心100と一体とされたヨーク101とが含まれている。ロータ鉄心100は、ロータ本体1の全体において領域Mの一部の領域(ヨーク101が占める領域)を除く部分を占めている。ヨーク101は、挿入孔対2ごとに領域Mの少なくとも一部の領域を占めている。本実施の形態のヨーク101は、ロータ本体1の外縁を含むとともに、領域Mの総面積の1/4の領域を占めている。ヨーク101の外縁は、領域Mにおけるロータ本体1の外縁を構成している。また、ヨーク101は、ロータ本体1の外縁を含むとともに、領域Mの総面積の1/2の領域を占めることがさらに好ましい。ヨーク101は、領域Mのすべてを占めてもよい。 The rotor main body 1 includes a rotor core 100 and a yoke 101 integrated with the rotor core 100. The rotor core 100 occupies a portion of the entire rotor body 1 excluding a part of the region M (the region occupied by the yoke 101). The yoke 101 occupies at least a part of the region M for each insertion hole pair 2. The yoke 101 of the present embodiment includes the outer edge of the rotor body 1 and occupies a region of 1/4 of the total area of the region M. The outer edge of the yoke 101 constitutes the outer edge of the rotor body 1 in the region M. Further, it is more preferable that the yoke 101 includes the outer edge of the rotor body 1 and occupies a region halved of the total area of the region M. The yoke 101 may occupy all of the region M.

ロータ鉄心100は、ベース鋼板110が積層されることにより作製される。ベース鋼板110は、降伏強度780MPa以上であることが好ましい。より具体的には、プレス加工にて貫通孔10及び挿入孔20が打ち抜かれたベース鋼板110が積層されることによりロータ鉄心100が作製される。各ベース鋼板110の外縁には、円形に対する欠落部が設けられている。ベース鋼板110が積層された際、欠落部は、ヨーク101が挿入されるヨーク挿入孔を形成する。欠落部は、ロータ鉄心100の外縁から離れるに従って互いに離れるように延在された一対の側壁部を有している。 The rotor core 100 is manufactured by laminating the base steel plates 110. The base steel sheet 110 preferably has a yield strength of 780 MPa or more. More specifically, the rotor iron core 100 is manufactured by laminating the base steel plate 110 in which the through hole 10 and the insertion hole 20 are punched by press working. The outer edge of each base steel plate 110 is provided with a missing portion with respect to a circle. When the base steel plates 110 are laminated, the missing portion forms a yoke insertion hole into which the yoke 101 is inserted. The missing portion has a pair of side wall portions extending away from each other as they move away from the outer edge of the rotor core 100.

ヨーク101は、ベース鋼板110よりも鉄損が低い低鉄損鋼板111が積層されることにより作製される。低鉄損鋼板111としては、磁気特性W15/50が15W/kg以下の鋼板を用いることが好ましい。W15/50は、磁束密度1.5T、周波数50Hzの条件で求めた鉄損を示す。ヨーク101は、プレス加工にて所定形状に打ち抜かれた複数の低鉄損鋼板111をロータ鉄心100と同じ積厚まで積層した後に、それら低鉄損鋼板111をかしめ等で一体化することよって作製される。ヨーク101は、ベース鋼板110が積層された際に欠落部によって形成されたヨーク挿入孔に挿入される。ヨーク101は、ロータ鉄心100の上面および下面より点付溶接102(図6参照)によりロータ鉄心100と一体とすることができる。 The yoke 101 is manufactured by laminating a low iron loss steel plate 111 having a lower iron loss than the base steel plate 110. As the low iron loss steel sheet 111, it is preferable to use a steel sheet having a magnetic characteristic W 15/50 of 15 W / kg or less. W 15/50 indicates the iron loss obtained under the conditions of a magnetic flux density of 1.5 T and a frequency of 50 Hz. The yoke 101 is manufactured by laminating a plurality of low iron loss steel plates 111 punched into a predetermined shape by press working to the same product thickness as the rotor core 100, and then integrating the low iron loss steel plates 111 by caulking or the like. Will be done. The yoke 101 is inserted into the yoke insertion hole formed by the missing portion when the base steel plates 110 are laminated. The yoke 101 can be integrated with the rotor core 100 by spot welding 102 (see FIG. 6) from the upper surface and the lower surface of the rotor core 100.

すなわち、本実施の形態のIPMモータのロータでは、ロータ本体1を構成する鋼板11に、ベース鋼板110と、領域Mの一部の領域に設けられるとともにベース鋼板110と一体とされ、ベース鋼板110よりも鉄損が低い低鉄損鋼板111とが含まれている。ベース鋼板110は、降伏強度780MPa以上であることが好ましい。 That is, in the rotor of the IPM motor of the present embodiment, the base steel plate 110 and the base steel plate 110 are provided in a part of the region M and are integrated with the base steel plate 110 on the steel plate 11 constituting the rotor main body 1. A low iron loss steel sheet 111 having a lower iron loss than that of the steel sheet 111 is included. The base steel sheet 110 preferably has a yield strength of 780 MPa or more.

次に、図7は、図4のロータを用いたモータの電磁界シミュレーションの結果を示す説明図である。図4のロータを用いたモータの電磁界シミュレーションを実施した。条件は、図3の電磁界シミュレーションと同一である。すなわち、ロータ鉄心とステータ鉄心の材料として電磁鋼板50A290を用い、IPMモータの回転速度は7,000rpm、トルク5Nmの条件で行った。図7に示すように、図3の電磁界シミュレーション(図1に示す降伏強度780MPa以上の高強度鋼板を用いたロータ)と比較して、図4に示す領域Mの1/4を低鉄損材と置換えたロータでは、ロータ外周部の、特にd軸からブリッジ部の間で発生していた鉄損が抑制された。より具体的には、回転速度7500rpm、トルク5.7Nmにおいて、図1に示す降伏強度780MPa以上の高強度鋼板を用いたロータで21W発生していたロータ鉄損が、図4に示す領域Mの1/4を低鉄損材と置換えたロータでは17Wと約20%低減した。 Next, FIG. 7 is an explanatory diagram showing the result of electromagnetic field simulation of the motor using the rotor of FIG. An electromagnetic field simulation of the motor using the rotor of FIG. 4 was carried out. The conditions are the same as the electromagnetic field simulation of FIG. That is, an electromagnetic steel plate 50A290 was used as the material for the rotor core and the stator core, and the rotation speed of the IPM motor was 7,000 rpm and the torque was 5 Nm. As shown in FIG. 7, a quarter of the region M shown in FIG. 4 has a low iron loss as compared with the electromagnetic field simulation of FIG. 3 (a rotor using a high-strength steel plate having a yield strength of 780 MPa or more shown in FIG. 1). In the rotor replaced with the material, the iron loss generated on the outer peripheral portion of the rotor, particularly between the d-axis and the bridge portion, was suppressed. More specifically, at a rotation speed of 7500 rpm and a torque of 5.7 Nm, the rotor iron loss generated at 21 W in the rotor using the high-strength steel plate having a yield strength of 780 MPa or more shown in FIG. 1 is in the region M shown in FIG. In the rotor in which 1/4 was replaced with a low iron loss material, the torque was reduced to 17 W, which was about 20%.

このようなIPMモータのロータでは、ロータ本体1を構成する鋼板11に、ベース鋼板110と、領域Mの少なくとも一部の領域に設けられるとともにベース鋼板110と一体とされ、ベース鋼板110よりも鉄損が低い低鉄損鋼板111とが含まれているので、降伏強度780MPa以上の高強度鋼板をロータ鉄心のベース鋼板110として用いつつ、ロータ鉄損を低減できる。高速回転時に遠心力により応力集中するロータのブリッジ部近傍は降伏強度780MPa以上の高強度鋼板が用いられていることから、高速回転に耐える強度を備えており、高速回転化による出力向上のメリットは確保されている。 In such a rotor of an IPM motor, the steel plate 11 constituting the rotor body 1 is provided with the base steel plate 110 in at least a part of the region M and is integrated with the base steel plate 110, and is more iron than the base steel plate 110. Since the low iron loss steel plate 111 having a low loss is included, the rotor iron loss can be reduced while using a high strength steel plate having a yield strength of 780 MPa or more as the base steel plate 110 of the rotor core. Since a high-strength steel plate with a yield strength of 780 MPa or more is used near the bridge of the rotor where stress is concentrated due to centrifugal force during high-speed rotation, it has the strength to withstand high-speed rotation, and the merit of improving output by high-speed rotation is It is secured.

実施の形態2.
図8は、本発明の実施の形態2によるIPMモータのロータを示す正面図である。図8に示すように、本実施の形態2のIPMモータのロータでは、ロータ本体1の外縁に複数の凹部4が形成されている。凹部4は、ロータ本体1の周方向1bに隣り合う2つの挿入孔対2の中心に配置されている。ここでいう中心とは、周方向1bに関する2つの挿入孔対2の中央位置を意味する。その他の構成は、実施の形態1と同様である。
Embodiment 2.
FIG. 8 is a front view showing the rotor of the IPM motor according to the second embodiment of the present invention. As shown in FIG. 8, in the rotor of the IPM motor of the second embodiment, a plurality of recesses 4 are formed on the outer edge of the rotor main body 1. The recess 4 is arranged at the center of two insertion holes pair 2 adjacent to each other in the circumferential direction 1b of the rotor body 1. The center here means the center position of two insertion holes pair 2 in the circumferential direction 1b. Other configurations are the same as those in the first embodiment.

さらに、ロータ本体の外縁において、ロータ本体の周方向に隣り合う2つの挿入孔対2の中心に凹部4が設けられているので、鉄損抑制効果が高まる。 Further, since the recess 4 is provided at the center of the pair of two insertion holes adjacent to each other in the circumferential direction of the rotor body on the outer edge of the rotor body, the iron loss suppressing effect is enhanced.

1 ロータ本体
11 鋼板
110 ベース鋼板
111 低鉄損鋼板
2 挿入孔対
20 挿入孔
3 永久磁石
30 外径側長辺
31 短辺
4 凹部
1 Rotor body 11 Steel plate 110 Base steel plate 111 Low iron loss steel plate 2 Insertion hole vs. 20 Insertion hole 3 Permanent magnet 30 Outer diameter side long side 31 Short side 4 Recession

Claims (6)

複数の鋼板が積層されたロータ本体と、
一対の挿入孔をそれぞれ含み、前記ロータ本体の周方向に離間して前記ロータ本体に設けられた複数の挿入孔対と、
前記挿入孔に挿入された複数の永久磁石と
を備え、
前記挿入孔に挿入された各永久磁石をロータ本体の軸方向に沿って見たとき、各永久磁石は、長方形の外形を有するとともに、前記ロータ本体の外径側に位置する外径側長辺を有しており、
前記ロータ本体の外縁と、前記挿入孔対に含まれる前記一対の挿入孔に挿入された一対の前記永久磁石の前記外径側長辺及び該外径側長辺の延長線と、前記一対の永久磁石の外側の短辺を前記ロータ本体の外縁に向けて延長した線とで区切られる領域を領域Mとするとき、
前記鋼板には、
ベース鋼板と、
前記領域Mの少なくとも一部の領域に設けられるとともに前記ベース鋼板と一体とされ、前記ベース鋼板よりも鉄損が低い低鉄損鋼板と
が含まれている、
IPMモータのロータ。
The rotor body with multiple steel plates laminated and
A plurality of insertion hole pairs provided in the rotor body, each including a pair of insertion holes and separated from each other in the circumferential direction of the rotor body,
With a plurality of permanent magnets inserted into the insertion hole,
When each permanent magnet inserted into the insertion hole is viewed along the axial direction of the rotor body, each permanent magnet has a rectangular outer shape and a long side on the outer diameter side located on the outer diameter side of the rotor body. Have and
The outer edge of the rotor body, the outer diameter side long side and the extension line of the outer diameter side long side of the pair of permanent magnets inserted into the pair of insertion holes included in the insertion hole pair, and the pair. When the region M is defined as a region in which the outer short side of the permanent magnet is separated by a line extending toward the outer edge of the rotor body.
The steel plate
Base steel plate and
A low iron loss steel sheet which is provided in at least a part of the region M and is integrated with the base steel sheet and has a lower iron loss than the base steel sheet is included.
IPM motor rotor.
前記ベース鋼板は、降伏強度780MPa以上である、
請求項1記載のIPMモータのロータ。
The base steel sheet has a yield strength of 780 MPa or more.
The rotor of the IPM motor according to claim 1.
前記低鉄損鋼板は、磁気特性W15/50が15W/kg以下の鋼板である、
請求項1又は請求項2に記載のIPMモータのロータ。
The low iron loss steel sheet is a steel sheet having a magnetic characteristic W 15/50 of 15 W / kg or less.
The rotor of the IPM motor according to claim 1 or 2.
前記低鉄損鋼板が設けられた前記領域Mの少なくとも一部の領域は、前記ロータ本体の外縁を含むとともに、前記領域Mの総面積の1/4の領域である、
請求項1から3までのいずれか1項に記載のIPMモータのロータ。
At least a part of the region M provided with the low iron loss steel plate includes the outer edge of the rotor body and is a region of 1/4 of the total area of the region M.
The rotor of the IPM motor according to any one of claims 1 to 3.
前記低鉄損鋼板が設けられた前記領域Mの少なくとも一部の領域は、前記ロータ本体の外縁を含むとともに、前記領域Mの総面積の1/2の領域である、
請求項1から3までのいずれか1項に記載のIPMモータのロータ。
At least a part of the region M provided with the low iron loss steel plate includes the outer edge of the rotor body and is a region halved of the total area of the region M.
The rotor of the IPM motor according to any one of claims 1 to 3.
前記ロータ本体の外縁において、前記ロータ本体の周方向に隣り合う2つの挿入孔対の中心に凹部が設けられている、
請求項1から5までのいずれか1項に記載のIPMモータのロータ。
At the outer edge of the rotor body, a recess is provided at the center of two pairs of insertion holes adjacent to each other in the circumferential direction of the rotor body.
The rotor of the IPM motor according to any one of claims 1 to 5.
JP2019051991A 2019-03-19 2019-03-19 IPM motor rotor Active JP7189816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019051991A JP7189816B2 (en) 2019-03-19 2019-03-19 IPM motor rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019051991A JP7189816B2 (en) 2019-03-19 2019-03-19 IPM motor rotor

Publications (2)

Publication Number Publication Date
JP2020156192A true JP2020156192A (en) 2020-09-24
JP7189816B2 JP7189816B2 (en) 2022-12-14

Family

ID=72560051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019051991A Active JP7189816B2 (en) 2019-03-19 2019-03-19 IPM motor rotor

Country Status (1)

Country Link
JP (1) JP7189816B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022176829A1 (en) 2021-02-16 2022-08-25 トヨタ自動車株式会社 Rotor

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06330255A (en) * 1993-05-21 1994-11-29 Nippon Steel Corp High tensile strength non-oriented silicon steel sheet and its production
JPH0919120A (en) * 1995-04-25 1997-01-17 Fuji Electric Co Ltd Permanent magnet type synchronous motor with rotor pole having judgeable polarity
JPH09308146A (en) * 1996-05-16 1997-11-28 Matsushita Electric Ind Co Ltd Permanent magnet motor
JP2011004529A (en) * 2009-06-18 2011-01-06 Toyota Motor Corp Ipm motor rotor and ipm motor
JP2012115089A (en) * 2010-11-26 2012-06-14 Toyota Motor Corp Rotor for ipm motor and ipm motor
JP2012217318A (en) * 2011-03-31 2012-11-08 Nisshin Steel Co Ltd Rotor for ipm motor and ipm motor using the same
JP2013076159A (en) * 2011-09-15 2013-04-25 Nisshin Steel Co Ltd Steel sheet for rotor core of ipm motor excellent in flatness, method for manufacturing the same, rotor core of ipm motor, and ipm motor
WO2015189938A1 (en) * 2014-06-11 2015-12-17 三菱電機株式会社 Permanent-magnet-embedded electric motor
JP2018064374A (en) * 2016-10-13 2018-04-19 三菱電機株式会社 Rotor of dynamo-electric machine and dynamo-electric machine using the same
JP2018085894A (en) * 2016-11-25 2018-05-31 トヨタ自動車株式会社 Manufacturing method of rotor core and manufacturing method of motor core
WO2018124093A1 (en) * 2016-12-28 2018-07-05 日本電産株式会社 Rotor core manufacturing method, rotor, and motor

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06330255A (en) * 1993-05-21 1994-11-29 Nippon Steel Corp High tensile strength non-oriented silicon steel sheet and its production
JPH0919120A (en) * 1995-04-25 1997-01-17 Fuji Electric Co Ltd Permanent magnet type synchronous motor with rotor pole having judgeable polarity
JPH09308146A (en) * 1996-05-16 1997-11-28 Matsushita Electric Ind Co Ltd Permanent magnet motor
JP2011004529A (en) * 2009-06-18 2011-01-06 Toyota Motor Corp Ipm motor rotor and ipm motor
JP2012115089A (en) * 2010-11-26 2012-06-14 Toyota Motor Corp Rotor for ipm motor and ipm motor
JP2012217318A (en) * 2011-03-31 2012-11-08 Nisshin Steel Co Ltd Rotor for ipm motor and ipm motor using the same
JP2013076159A (en) * 2011-09-15 2013-04-25 Nisshin Steel Co Ltd Steel sheet for rotor core of ipm motor excellent in flatness, method for manufacturing the same, rotor core of ipm motor, and ipm motor
WO2015189938A1 (en) * 2014-06-11 2015-12-17 三菱電機株式会社 Permanent-magnet-embedded electric motor
JP2018064374A (en) * 2016-10-13 2018-04-19 三菱電機株式会社 Rotor of dynamo-electric machine and dynamo-electric machine using the same
JP2018085894A (en) * 2016-11-25 2018-05-31 トヨタ自動車株式会社 Manufacturing method of rotor core and manufacturing method of motor core
WO2018124093A1 (en) * 2016-12-28 2018-07-05 日本電産株式会社 Rotor core manufacturing method, rotor, and motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022176829A1 (en) 2021-02-16 2022-08-25 トヨタ自動車株式会社 Rotor

Also Published As

Publication number Publication date
JP7189816B2 (en) 2022-12-14

Similar Documents

Publication Publication Date Title
KR101102146B1 (en) Rotator for induction electric motor, induction electric motor, compressor, blower, and air-conditioning device
JP6331506B2 (en) Rotor structure of rotating electrical machine
JP5752272B2 (en) Rotor and motor
JP6279763B2 (en) Induction motor
JP6573031B2 (en) Rotor
JP6229147B2 (en) Electric motor and compressor equipped with the same
JP2009131070A (en) Magnet type synchronous machine
US20210175786A1 (en) Permanent magnet motor
JP2013255326A (en) Permanent magnet synchronous machine
JP2009050148A (en) Permanent-magnet electric motor with constant output in wide range
JP2011120392A (en) Stator core, stator, motor, and compressor
JP2014236577A (en) Permanent magnetic rotary electric machine
JP6507956B2 (en) Permanent magnet type rotating electric machine
JP7189816B2 (en) IPM motor rotor
JP2014064427A (en) Rotor and rotary electric machine
JP2010252463A (en) Stator core and motor
JP2005051929A (en) Motor
JP2009106001A (en) Rotary electric machine
JP2011244689A (en) Manufacturing method of electric motor and split stator iron core
JP6379132B2 (en) Permanent magnet synchronous machine
JP2015133825A (en) Rotor for rotary electric machine
JP2005287262A (en) Rotor and motor
JP2000069717A (en) Motor
JP2010246301A (en) Rotor for permanent magnet type motor
JP2013074694A (en) Permanent magnet buried electric motor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200901

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221202

R150 Certificate of patent or registration of utility model

Ref document number: 7189816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150