JP6379132B2 - Permanent magnet synchronous machine - Google Patents

Permanent magnet synchronous machine Download PDF

Info

Publication number
JP6379132B2
JP6379132B2 JP2016084908A JP2016084908A JP6379132B2 JP 6379132 B2 JP6379132 B2 JP 6379132B2 JP 2016084908 A JP2016084908 A JP 2016084908A JP 2016084908 A JP2016084908 A JP 2016084908A JP 6379132 B2 JP6379132 B2 JP 6379132B2
Authority
JP
Japan
Prior art keywords
rib
permanent magnet
rotor core
magnet
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016084908A
Other languages
Japanese (ja)
Other versions
JP2016131491A (en
Inventor
暁史 高橋
暁史 高橋
恵理 丸山
恵理 丸山
湧井 真一
真一 湧井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Johnson Controls Air Conditioning Inc
Original Assignee
Hitachi Johnson Controls Air Conditioning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Johnson Controls Air Conditioning Inc filed Critical Hitachi Johnson Controls Air Conditioning Inc
Priority to JP2016084908A priority Critical patent/JP6379132B2/en
Publication of JP2016131491A publication Critical patent/JP2016131491A/en
Application granted granted Critical
Publication of JP6379132B2 publication Critical patent/JP6379132B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

本発明は永久磁石同期機に関するものである。   The present invention relates to a permanent magnet synchronous machine.

永久磁石同期機では、回転子に永久磁石を埋設するInterior Permanent Magnet(以下「IPM」という。)構造が広く採用されている。IPM構造の永久磁石同期機に埋設する永久磁石に、安価でかつ安定調達が可能なフェライト磁石が採用され始めている。   In the permanent magnet synchronous machine, an interior permanent magnet (hereinafter referred to as “IPM”) structure in which a permanent magnet is embedded in a rotor is widely adopted. Ferrite magnets that are inexpensive and can be stably procured have begun to be used for permanent magnets embedded in permanent magnet synchronous machines having an IPM structure.

しかしながら、永久磁石の性能は残留磁束密度と保持力という2つの物理量で表され、フェライト磁石の残留磁束密度及び保持力は、ネオジウム磁石の約1/3である。従って、現在広く使用されているネオジウム磁石をフェライト磁石に置き換えた場合、著しい性能の低下を招くことになる。   However, the performance of a permanent magnet is expressed by two physical quantities, ie, residual magnetic flux density and coercive force, and the residual magnetic flux density and coercive force of a ferrite magnet are about 1/3 of a neodymium magnet. Therefore, when a neodymium magnet that is widely used at present is replaced with a ferrite magnet, the performance is significantly reduced.

特許文献1は、記永久磁石を埋め込む収容孔が略凹字状であって、回転子外周面側を広く回転子内径側に向い狭くした収容孔を有する永久磁石埋め込み回転子を開示している。特許文献1によれば、磁石磁束の発生面積を大きくするとともに、永久磁石の径方向外周部の鉄心断面積を大きくすることで、リラクタンストルクを積極的に活用して性能の向上を図っている。   Patent Document 1 discloses a permanent magnet-embedded rotor having an accommodation hole in which the permanent magnet is embedded in a substantially concave shape, and has an accommodation hole in which the outer peripheral surface of the rotor is widened toward the inner diameter of the rotor. . According to Patent Literature 1, while increasing the magnetic flux generation area and increasing the core cross-sectional area of the radial outer periphery of the permanent magnet, the reluctance torque is actively utilized to improve performance. .

特許第4666726号公報Japanese Patent No. 4666726

IPM構造の永久磁石同期機は、回転子で永久磁石を保持するために、リブと呼ばれる継鉄部を永久磁石収容孔の外周側に設けられている。   In the permanent magnet synchronous machine having the IPM structure, a yoke portion called a rib is provided on the outer peripheral side of the permanent magnet accommodation hole in order to hold the permanent magnet by the rotor.

回転子が回転すると、永久磁石及び回転子鉄心に遠心力が働く。この遠心力が曲げモーメントとなってリブに作用する。従って、回転時に破断及び変形しない強度をリブに持たせるために、リブの幅を広くする必要がある。   When the rotor rotates, centrifugal force acts on the permanent magnet and the rotor core. This centrifugal force acts as a bending moment on the rib. Therefore, in order to give the rib strength that does not break or deform during rotation, it is necessary to widen the width of the rib.

一方、永久磁石の磁束には、リブへと漏れて、トルクを発生させない漏れ磁束が存在する。この漏れ磁束の量はリブが磁気飽和するまで増大する。言い換えると、リブが磁気飽和を引き起こす磁束が漏れ磁束となる。永久磁石にフェライト磁石のような残留磁束密度の低い磁石を採用した場合、リブが磁気飽和を引き起こすまでに比較的大きな割合の漏れ磁束が必要となり、相対的に主磁束が減少する。そのため、リブへの漏れ磁束の割合を減らすためには、リブの幅を狭くする必要がある。   On the other hand, in the magnetic flux of the permanent magnet, there exists a leakage magnetic flux that leaks to the rib and does not generate torque. The amount of leakage flux increases until the rib is magnetically saturated. In other words, the magnetic flux that causes the magnetic saturation of the rib becomes the leakage magnetic flux. When a magnet having a low residual magnetic flux density such as a ferrite magnet is adopted as the permanent magnet, a relatively large proportion of leakage magnetic flux is required before the rib causes magnetic saturation, and the main magnetic flux is relatively reduced. Therefore, in order to reduce the ratio of the leakage magnetic flux to the rib, it is necessary to narrow the width of the rib.

つまり、リブの強度を確保するためにリブの幅を広くすることと、リブへの漏れ磁束の割合を減らすためにリブの幅を狭くすることとは相反する関係にある。そのため、特許文献1の回転子の構造では、リブの強度を確保するためにリブの幅を広くしなければならず、漏れ磁束が増加する。   That is, there is a contradictory relationship between increasing the width of the rib to ensure the strength of the rib and decreasing the width of the rib to reduce the ratio of leakage magnetic flux to the rib. Therefore, in the structure of the rotor of Patent Document 1, in order to ensure the strength of the rib, the width of the rib must be widened, and the leakage magnetic flux increases.

本発明は、リブの強度を確保しつつ、漏れ磁束を低減することを目的とする。   An object of this invention is to reduce a leakage magnetic flux, ensuring the intensity | strength of a rib.

本願発明の永久磁石同期は、回転子外周面側を広く回転子内径側に向い狭くした略凹字状に構成され、永久磁石が配設される磁石収容孔と、前記磁石収容孔の径方向外周側に位置する回転子鉄心と、前記回転子鉄心の極間側、且つ、前記磁石収容孔の径方向外周側に位置するリブと、前記磁石収容孔及び前記リブの極間側に位置する連結部と、を備え、前記リブは、前記連結部側に位置する連結部側リブと、前記回転子鉄心側に位置する回転子鉄心側リブと、前記連結部側リブ及び前記回転子鉄心側リブの間に位置する中央リブと、前記回転子鉄心側リブ及び前記回転子鉄心の径方向外径側に位置する突出部と、を備えて構成され、前記連結部に繋がる部分における前記連結部側リブの幅は、中央部分における前記中央リブの幅より広く、前記回転子鉄心に繋がる部分における前記回転子鉄心側リブの幅は、前記連結部に繋がる部分における前記連結部側リブの幅よりも広く、前記永久磁石と前記回転子鉄心との間の遠心力方向における隙間は、前記永久磁石と前記リブとの間の遠心力方向における隙間より狭く、前記永久磁石は1極につき周方向に分割されることなく一体で構成され、前記中央リブにおける前記磁石収容孔側の形状は、直線状の形状を有し、前記連結部側リブにおける前記磁石収容孔側の形状は、前記磁石収容孔の外側に凸となる曲線状の形状を有し、前記回転子鉄心側リブにおける前記磁石収容孔側の形状は、前記磁石収容孔の外側に凸となる曲線状の形状を有している。 The permanent magnet synchronization of the present invention is configured in a substantially concave shape in which the rotor outer peripheral surface side is widened and narrowed toward the rotor inner diameter side, and a magnet housing hole in which the permanent magnet is disposed, and a radial direction of the magnet housing hole A rotor core positioned on the outer peripheral side, a rib positioned on the interpole side of the rotor core and on a radially outer peripheral side of the magnet receiving hole, and positioned on the interpole side of the magnet receiving hole and the rib A connecting portion, wherein the rib is a connecting portion side rib located on the connecting portion side, a rotor core side rib located on the rotor core side, the connecting portion side rib and the rotor core side. A central rib located between the ribs, and a projecting portion located on a radial outer diameter side of the rotor core side rib and the rotor core, and the connecting portion in a portion connected to the connecting portion The width of the side rib is wider than the width of the central rib at the central portion, The width of the rotor core rib in the portion leading to the rotor core, the connecting portion and the connecting portion side rib wider than the width of the portion leading to the centrifugal force direction between the permanent magnet and the rotor core gaps in the narrower than the gap in the centrifugal direction between said rib and said permanent magnet, the permanent magnet is constituted by integrally without being split in the circumferential direction per pole, the magnet containing hole in said central rib The shape on the side has a linear shape, and the shape on the magnet accommodation hole side in the connecting portion side rib has a curved shape that protrudes outside the magnet accommodation hole, and the rotor core The shape of the side rib on the side of the magnet accommodation hole has a curved shape that protrudes outward from the magnet accommodation hole.

本発明によれば、リブの強度を確保しつつ、漏れ磁束を低減することができる。   According to the present invention, it is possible to reduce the leakage magnetic flux while ensuring the strength of the rib.

本発明の第1の実施例による永久磁石同期機の全体図。1 is an overall view of a permanent magnet synchronous machine according to a first embodiment of the present invention. 本発明の第1の実施例による永久磁石同期機の1極分の部分断面図。1 is a partial cross-sectional view of one pole of a permanent magnet synchronous machine according to a first embodiment of the present invention. 本発明の第2の実施例による永久磁石同期機の1極分の部分断面図。The fragmentary sectional view for one pole of the permanent magnet synchronous machine by the 2nd example of the present invention. 永久磁石同期機の回転時の応力分布図。The stress distribution figure at the time of rotation of a permanent magnet synchronous machine.

以下、本発明の実施例について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の第1の実施例における永久磁石同期機の全体図である。永久磁石同期機は回転子1と固定子30とから構成される。回転子1は、径方向内側に凸となるよう構成された永久磁石収容孔4と、永久磁石収容孔4の径方向外周側に位置する回転子鉄心2と、回転子鉄心2の極間側で、且つ、永久磁石収容孔4の径方向外周側に位置するリブ6を有している。   FIG. 1 is an overall view of a permanent magnet synchronous machine according to a first embodiment of the present invention. The permanent magnet synchronous machine includes a rotor 1 and a stator 30. The rotor 1 includes a permanent magnet housing hole 4 configured to protrude radially inward, a rotor core 2 located on the radially outer side of the permanent magnet housing hole 4, and a pole-to-pole side of the rotor core 2. And the rib 6 located in the radial direction outer peripheral side of the permanent magnet accommodation hole 4 is provided.

図2は、本発明の第1の実施例における永久磁石同期機の1極分の部分断面図である。永久磁石収容孔4には永久磁石3が配設される。永久磁石収容孔4と隣の極の永久磁石収容孔4とは、連結部11で連結される。   FIG. 2 is a partial cross-sectional view of one pole of the permanent magnet synchronous machine in the first embodiment of the present invention. The permanent magnet 3 is disposed in the permanent magnet accommodation hole 4. The permanent magnet accommodation hole 4 and the adjacent permanent magnet accommodation hole 4 are connected by a connecting portion 11.

通常、永久磁石3から発生する磁束は、回転子鉄心2を透過し、回転子1と固定子30との間の空間(以下「ギャップ31」という。)31を介して固定子30へ透過して、トルクを発生させる。このトルクの発生に寄与する磁束は主磁束または有効磁束と呼ばれる。   Normally, the magnetic flux generated from the permanent magnet 3 passes through the rotor core 2, and passes through the space (hereinafter referred to as “gap 31”) 31 between the rotor 1 and the stator 30 to the stator 30. To generate torque. The magnetic flux that contributes to the generation of this torque is called the main magnetic flux or effective magnetic flux.

一方、リブ6に隣接する永久磁石の磁束は、ギャップ31と比較して磁気抵抗が相対的に小さいリブ6へと漏れて、トルクを発生させない。このため、トルクの発生に寄与しない磁束は漏れ磁束と呼ばれる。   On the other hand, the magnetic flux of the permanent magnet adjacent to the rib 6 leaks to the rib 6 having a relatively small magnetic resistance compared to the gap 31 and does not generate torque. For this reason, the magnetic flux that does not contribute to the generation of torque is called leakage magnetic flux.

リブ6が漏れ磁束9によって磁気飽和するとギャップ31と同程度の磁気抵抗となる。すなわち、漏れ磁束9が一定の水準に達すると残りの磁束はギャップ31を透過する主磁束10となる。   When the rib 6 is magnetically saturated by the leakage magnetic flux 9, the magnetic resistance becomes the same as the gap 31. That is, when the leakage magnetic flux 9 reaches a certain level, the remaining magnetic flux becomes the main magnetic flux 10 that passes through the gap 31.

永久磁石3は、1極につき周方向に分割されることなく一体で構成され、1極につき周方向に少なくとも2ヶ所の屈曲点42a、42bを有する。側部41a、41bは、屈曲点42a、42bを始端として磁化方向に対して垂直方向かつ極の端部側に向けて伸びる。   The permanent magnet 3 is integrally formed without being divided in the circumferential direction per pole, and has at least two bending points 42a and 42b in the circumferential direction per pole. The side portions 41a and 41b extend from the bending points 42a and 42b as the starting ends in a direction perpendicular to the magnetization direction and toward the end of the pole.

ここで、永久磁石収容孔4の極間側の端部において、極中央側の永久磁石収容孔4の外周側端部から回転子1の端までの長さ(以下「リブ6bの幅」という。)L1、極間側の永久磁石収容孔4の外周側端部から回転子1の外周側端までの長さ(以下「リブ6cの幅」という。)L2、リブ6の直線方向の中点における永久磁石収容孔4の外周側端部から回転子1の外周側端までの長さ(以下「リブ6aの幅」という。)L0とする。   Here, at the end portion between the poles of the permanent magnet housing hole 4, the length from the outer peripheral side end portion of the permanent magnet housing hole 4 on the pole center side to the end of the rotor 1 (hereinafter referred to as “the width of the rib 6 b”). .) L1, the length from the outer peripheral side end of the permanent magnet housing hole 4 on the pole-to-pole side to the outer peripheral side end of the rotor 1 (hereinafter referred to as “width of the rib 6c”) L2, in the linear direction of the rib 6 The length from the outer peripheral side end of the permanent magnet housing hole 4 to the outer peripheral side end of the rotor 1 at the point (hereinafter referred to as “the width of the rib 6a”) L0.

回転子1が回転すると、永久磁石3及び回転子鉄心2に遠心力が働く。この遠心力に対し、両端に位置する連結部11が支点、両端に位置するリブ6が梁として機能する。リブ6cはリブ6a、6bに比べて支点である連結部11に近いため、リブ6cに加わる曲げモーメントはリブ6a、6bに比べて大きい。従って、図4に示すようにリブ6cでの応力集中はリブ6aよりも大きい。   When the rotor 1 rotates, centrifugal force acts on the permanent magnet 3 and the rotor core 2. With respect to this centrifugal force, the connecting portions 11 located at both ends function as fulcrums and the ribs 6 located at both ends function as beams. Since the rib 6c is closer to the connecting portion 11 as a fulcrum than the ribs 6a and 6b, the bending moment applied to the rib 6c is larger than that of the ribs 6a and 6b. Therefore, as shown in FIG. 4, the stress concentration on the rib 6c is larger than that of the rib 6a.

本実施例では、リブ6に作用する曲げモーメントの分布に応じて、リブ6cの幅L2をリブ6aの幅L0よりも広くすることで、リブ6cの剛性をリブ6aよりも高めている。   In the present embodiment, the rigidity of the rib 6c is made higher than that of the rib 6a by making the width L2 of the rib 6c wider than the width L0 of the rib 6a according to the distribution of the bending moment acting on the rib 6.

一方、リブ6bは回転子鉄心2と連結する位置にあるため、幅が急激に変化する。そのため、リブ6b付近に応力が集中し、局所的に高い応力が加わる。従って、図4に示すようにリブ6bでの応力集中はリブ6aよりも大きい。   On the other hand, since the rib 6b is in a position where it is connected to the rotor core 2, the width changes abruptly. Therefore, stress concentrates near the rib 6b, and high stress is locally applied. Therefore, as shown in FIG. 4, the stress concentration in the rib 6b is larger than that in the rib 6a.

そこで、本実施例では、リブ6bの幅L1をリブ6aの幅L0よりも広くしているため、リブ6の形状が急激に変化することを防止し、応力集中を避けている。   Therefore, in the present embodiment, since the width L1 of the rib 6b is wider than the width L0 of the rib 6a, the shape of the rib 6 is prevented from changing suddenly and stress concentration is avoided.

このように、リブ6に作用する力に応じてリブ6の幅を調節することで、必要以上にリブ6の全体の幅を広げることを避け、リブ6の幅を一律にするよりも漏れ磁束の割合を低減することができる。   In this way, by adjusting the width of the rib 6 according to the force acting on the rib 6, it is possible to avoid widening the entire width of the rib 6 more than necessary, and to leak the magnetic flux more than to make the width of the rib 6 uniform. Can be reduced.

なお、リブ6bの幅L1をリブ6aの幅L0よりも広くすることと、リブ6cの幅L2をリブ6aの幅L0よりも広くすることのどちらか一方のみを採用してもよい。   Only one of the width L1 of the rib 6b larger than the width L0 of the rib 6a and the width L2 of the rib 6c larger than the width L0 of the rib 6a may be employed.

さらに、本実施例で採用した径方向内側に凸となる永久磁石収容孔4は、直線形状の磁石収容孔に比べて、回転子鉄心2の径方向における幅は大きい。そのため、回転子鉄心2とリブ6との間では径方向における幅が急激に変化するので、6b付近により応力が集中する。従って、本実施例では、リブ6bの幅L1をリブ6cの幅L2よりも広くし、リブ6の直線方向の中点から極中央側までのリブ6の面積A1をリブ6の直線方向の中点から極間側までのリブ6の面積A2よりも大きくしている。   Furthermore, the width of the rotor core 2 in the radial direction of the permanent magnet housing hole 4 that is convex inward in the radial direction employed in this embodiment is larger than that of the linear magnet housing hole. For this reason, since the width in the radial direction changes abruptly between the rotor core 2 and the rib 6, the stress is concentrated in the vicinity of 6b. Therefore, in this embodiment, the width L1 of the rib 6b is made larger than the width L2 of the rib 6c, and the area A1 of the rib 6 from the midpoint of the rib 6 in the linear direction to the pole center side is It is larger than the area A2 of the rib 6 from the point to the inter-electrode side.

さらに、永久磁石収容孔4の極間側の端部において、極中央側を半径R1の円弧とし、極間側を半径R2の円弧とすることで、曲げモーメント及び応力集中に応じてリブ6の幅を調節している。   Further, at the end portion between the poles of the permanent magnet housing hole 4, the pole center side is an arc having a radius R1, and the pole side is an arc having a radius R2, so that the rib 6 The width is adjusted.

また、半径R1と半径R2の合計値を磁石の磁化方向厚みT2よりも小さくすることで、リブ6に直線部分を設け、リブ6aへの応力集中を避けている。   Further, by making the total value of the radius R1 and the radius R2 smaller than the magnetization direction thickness T2 of the magnet, a straight portion is provided in the rib 6 to avoid stress concentration on the rib 6a.

また、回転子1には、回転子鉄心2の径方向外周側に突出部12が設けられている。突出部12を設けることで、リブ6bの幅L1をさらに広げることができ、応力が集中するリブ6bの剛性を高めている。突出部12の径方向外周側の幅はリブ6bの幅L1の半分以下としており、突出部12を設けたことにより、リブ6bに応力が集中するのを避けている。   Further, the rotor 1 is provided with a protruding portion 12 on the radially outer peripheral side of the rotor core 2. By providing the protruding portion 12, the width L1 of the rib 6b can be further increased, and the rigidity of the rib 6b where stress concentrates is increased. The width of the projecting portion 12 on the outer peripheral side in the radial direction is set to be equal to or less than half of the width L1 of the rib 6b.

また、突出部12を設けることで、鉄心断面積が大きくなり、リラクタンストルクを増加させることもできる。   Moreover, by providing the protrusion part 12, an iron core cross-sectional area becomes large and a reluctance torque can also be increased.

なお、さらなるリラクタンストルクの増加を図るために、突出部12の径方向外周側の幅をリブ6bの幅L1の半分以上にしてもよい。   In order to further increase the reluctance torque, the width of the protruding portion 12 on the outer peripheral side in the radial direction may be made more than half the width L1 of the rib 6b.

また、回転子鉄心2は、軸方向に積み重ねた積層鋼板、圧粉磁心、又は、アモルファス金属などで構成される。   The rotor core 2 is composed of laminated steel plates, dust cores, or amorphous metals stacked in the axial direction.

また、永久磁石3の側部41a、41bは磁化方向に対して垂直方向かつ極の端部側に向けて伸びる構造である場合について説明したが、径方向内側に凸となるよう湾曲させる湾曲構造としてもよい。又は、側部41a、41bは径方向内側に凸となるよう複数の側部で構成するようにしてもよい。   Moreover, although the side parts 41a and 41b of the permanent magnet 3 demonstrated the case where it was a structure perpendicular | vertical with respect to a magnetization direction and extended toward the edge part side of a pole, the curved structure curved so that it may become convex inside radial direction It is good. Or you may make it comprise the side parts 41a and 41b by a some side part so that it may protrude in the radial direction inner side.

また、永久磁石3の屈曲点42と回転子鉄心2との接触点45、46は、円弧で構成してもよいし、折れ線状に構成しても良い。   In addition, the contact points 45 and 46 between the bending point 42 of the permanent magnet 3 and the rotor core 2 may be formed in an arc or a polygonal line.

また、永久磁石3としてフェライト磁石を例に挙げているが、フェライト磁石のみに限定されるものではない。   Moreover, although the ferrite magnet is mentioned as an example as the permanent magnet 3, it is not limited only to a ferrite magnet.

また、内転型回転子について説明したが、外転型回転子にも適用可能である。   Moreover, although the inner rotation type rotor has been described, the present invention can also be applied to an outer rotation type rotor.

図3は、本発明の第2の実施例による永久磁石同期機の1極分の部分断面図である。   FIG. 3 is a partial cross-sectional view of one pole of a permanent magnet synchronous machine according to a second embodiment of the present invention.

極の中央部40における磁化方向クリアランス8aの幅T1は、側部41a、41bにおける磁化方向クリアランス8bの幅T2よりも広い。   The width T1 of the magnetization direction clearance 8a in the central portion 40 of the pole is wider than the width T2 of the magnetization direction clearance 8b in the side portions 41a and 41b.

永久磁石3には遠心力が働き、曲げモーメントとなってリブ6に作用する。磁化方向クリアランス8aの幅T1を磁化方向クリアランス8bの幅T2よりも広くすることで、永久磁石3の中央部40に働く遠心力は、側部41a、41bを介して回転子鉄心2に働く。   Centrifugal force acts on the permanent magnet 3 and acts on the rib 6 as a bending moment. By making the width T1 of the magnetization direction clearance 8a wider than the width T2 of the magnetization direction clearance 8b, the centrifugal force acting on the central portion 40 of the permanent magnet 3 acts on the rotor core 2 via the side portions 41a and 41b.

側部41a、41bは中央部40よりも連結部11に近い位置にある。そのため、永久磁石3の中央部40の遠心力によるリブ6に働く曲げモーメントを弱めることができる。従って、リブ6の強度に余裕ができるため、リブ幅を狭くして、リブ6への漏れ磁束の割合を低減することができる。   The side portions 41 a and 41 b are located closer to the connecting portion 11 than the central portion 40. Therefore, the bending moment acting on the rib 6 due to the centrifugal force of the central portion 40 of the permanent magnet 3 can be weakened. Therefore, since the strength of the rib 6 can be afforded, the rib width can be narrowed and the ratio of the leakage magnetic flux to the rib 6 can be reduced.

さらに、永久磁石3の側部41a、41bの直線長さW2を中央部40の直線長さW1よりも長くすることで、連結部11に近い場所に位置する永久磁石3の割合を増やすことができる。そのため、永久磁石3の遠心力によるリブ6に働く曲げモーメントを弱めることができ、リブ幅を狭くしてリブ6への漏れ磁束の割合を低減することができる。   Furthermore, by increasing the linear length W2 of the side portions 41a and 41b of the permanent magnet 3 to be longer than the linear length W1 of the central portion 40, the proportion of the permanent magnet 3 located near the connecting portion 11 can be increased. it can. Therefore, the bending moment acting on the rib 6 due to the centrifugal force of the permanent magnet 3 can be weakened, the rib width can be narrowed, and the ratio of the leakage magnetic flux to the rib 6 can be reduced.

なお、磁化方向クリアランス8aの幅T1を磁化方向クリアランス8bの幅T2よりも広くすることと、永久磁石3の側部41a、41bの直線長さW2を中央部40の直線長さW1よりも長くすることとは併用せずに、どちらかのみを採用する構造としてもよい。   The width T1 of the magnetization direction clearance 8a is made wider than the width T2 of the magnetization direction clearance 8b, and the linear length W2 of the side portions 41a and 41b of the permanent magnet 3 is longer than the linear length W1 of the central portion 40. It is good also as a structure which employ | adopts only either, without using together.

以上説明したとおり、本発明の永久磁石同期機は、径方向内側に凸となるよう構成され、永久磁石が配設される磁石収容孔と、磁石収容孔の径方向外周側に位置する回転子鉄心と、回転子鉄心の極間側、且つ、磁石収容孔の径方向外周側に位置するリブと、磁石収容孔及びリブの極間側に位置する連結部と、を備え、リブは、連結部側に位置する連結部側リブと、回転子鉄心側に位置する回転子鉄心側リブと、連結部側リブ及び回転子鉄心側リブの間に位置する中央リブと、から構成され、連結部側リブの幅は中央リブの幅より広い。   As described above, the permanent magnet synchronous machine of the present invention is configured to protrude radially inward, and includes a magnet housing hole in which the permanent magnet is disposed, and a rotor located on the radially outer side of the magnet housing hole. An iron core, a rotor core and a rib positioned on the outer peripheral side in the radial direction of the magnet housing hole, and a connecting portion positioned on the magnet housing hole and the interelectrode side of the rib, the rib being connected A connecting part side rib located on the part side, a rotor core side rib located on the rotor core side, and a central rib located between the connecting part side rib and the rotor core side rib, the connecting part The width of the side rib is wider than the width of the central rib.

また、本発明の永久磁石同期機は、回転子鉄心側リブの幅は中央リブの幅より広い。   In the permanent magnet synchronous machine of the present invention, the width of the rotor core side rib is wider than the width of the central rib.

また、本発明の永久磁石同期機は、回転子鉄心側リブの幅は連結部側リブの幅よりも広い。   In the permanent magnet synchronous machine of the present invention, the width of the rotor core side rib is wider than the width of the connecting portion side rib.

また、本発明の永久磁石同期機は、磁石収容孔の極間側端部において、極中央側の形状を半径R1の円弧とし、極間側の形状を半径R2の円弧とし、半径R1と半径R2の合計値が永久磁石の磁化方向厚みよりも小さい。   Further, in the permanent magnet synchronous machine of the present invention, at the end portion between the poles of the magnet accommodation hole, the shape at the pole center side is an arc of radius R1, the shape at the pole side is an arc of radius R2, and the radius R1 The total value of R2 is smaller than the thickness in the magnetization direction of the permanent magnet.

また、本発明の永久磁石同期機は、回転子鉄心側リブ及び回転子鉄心の径方向外径側に位置する突出部を備える。   Moreover, the permanent magnet synchronous machine of this invention is provided with the protrusion part located in the radial direction outer-diameter side of a rotor core side rib and a rotor core.

また、本発明の永久磁石同期機は、永久磁石は、中央部と、中央部の両端に位置する側部と、を有し、中央部の磁化方向のクリアランスが側部の磁化方向のクリアランスよりも大きい。   In the permanent magnet synchronous machine of the present invention, the permanent magnet has a central portion and side portions located at both ends of the central portion, and the clearance in the magnetization direction of the central portion is larger than the clearance in the magnetization direction of the side portion. Is also big.

また、本発明の永久磁石同期機は、永久磁石は、中央部と、中央部の両端に位置する側部と、を有し、側部の磁化方向と垂直方向の長さが中央部の直線長さよりも長い。   In the permanent magnet synchronous machine of the present invention, the permanent magnet has a central portion and side portions located at both ends of the central portion, and the length in the direction perpendicular to the magnetization direction of the side portion is a straight line with the central portion. Longer than the length.

1 回転子
2 回転子鉄心
3 永久磁石
4 永久磁石挿入孔
5 シャフト孔
6 リブ
6a 中央リブ
6b 回転子鉄心側リブ
6c 連結部側リブ
7 極間側端部クリアランス
8 磁化方向クリアランス
9 漏れ磁束
10 主磁束
11 連結部
30 固定子
31 ギャップ
41 側部
42 屈曲点
45、46 屈曲点42と回転子鉄心2との接触点
71 遠心力70の作用点
72 応力集中部73から作用点71までの距離
73 応力集中部
1 Rotor 2 Rotor core 3 Permanent magnet 4 Permanent magnet insertion hole 5 Shaft hole 6 Rib
6a Central rib
6b Rotor core side rib
6c Connecting portion side rib 7 Clearance between end portions 8 between magnetism direction Clearance 9 Leakage magnetic flux 10 Main magnetic flux 11 Connecting portion 30 Stator 31 Gap 41 Side portion 42 Bending point 45, 46 Contact between bending point 42 and rotor core 2 Point 71 Action point 72 of centrifugal force 70 Distance 73 from stress concentration part 73 to action point 71 Stress concentration part

Claims (4)

回転子外周面側を広く回転子内径側に向い狭くした略凹字状に構成され、永久磁石が配設される磁石収容孔と、
前記磁石収容孔の径方向外周側に位置する回転子鉄心と、
前記回転子鉄心の極間側、且つ、前記磁石収容孔の径方向外周側に位置するリブと、
前記磁石収容孔及び前記リブの極間側に位置する連結部と、を備え、
前記リブは、
前記連結部側に位置する連結部側リブと、
前記回転子鉄心側に位置する回転子鉄心側リブと、
前記連結部側リブ及び前記回転子鉄心側リブの間に位置する中央リブと、
前記回転子鉄心側リブ及び前記回転子鉄心の径方向外径側に位置する突出部と、
を備えて構成され、
前記連結部に繋がる部分における前記連結部側リブの幅は、中央部分における前記中央リブの幅より広く、
前記回転子鉄心に繋がる部分における前記回転子鉄心側リブの幅は、前記連結部に繋がる部分における前記連結部側リブの幅よりも広く、
前記永久磁石と前記回転子鉄心との間の遠心力方向における隙間は、前記永久磁石と前記リブとの間の遠心力方向における隙間より狭く、
前記永久磁石は1極につき周方向に分割されることなく一体で構成され、
前記中央リブにおける前記磁石収容孔側の形状は、直線状の形状を有し、
前記連結部側リブにおける前記磁石収容孔側の形状は、前記磁石収容孔の外側に凸となる曲線状の形状を有し、
前記回転子鉄心側リブにおける前記磁石収容孔側の形状は、前記磁石収容孔の外側に凸となる曲線状の形状を有している永久磁石同期機。
A magnet housing hole in which a permanent magnet is disposed, the rotor outer peripheral surface side being configured to be a substantially concave shape widened toward the rotor inner diameter side, and
A rotor core located on the radially outer side of the magnet housing hole;
A rib located between the poles of the rotor core and the radially outer periphery of the magnet housing hole;
A coupling portion located on the inter-electrode side of the magnet accommodation hole and the rib,
The rib is
A connecting portion side rib located on the connecting portion side;
A rotor core side rib located on the rotor core side;
A central rib located between the connecting portion side rib and the rotor core side rib;
The rotor core-side rib and the protruding portion located on the radially outer diameter side of the rotor core;
Configured with
The width of the connecting portion side rib in the portion connected to the connecting portion is wider than the width of the central rib in the central portion,
The width of the rotor core side rib in the part connected to the rotor core is wider than the width of the connection part side rib in the part connected to the connection part,
The gap in the centrifugal force direction between the permanent magnet and the rotor core is narrower than the gap in the centrifugal force direction between the permanent magnet and the rib,
The permanent magnet is integrally formed without being divided in the circumferential direction per pole,
The shape of the central rib on the magnet receiving hole side has a linear shape,
The shape on the magnet accommodation hole side in the connecting portion side rib has a curved shape that is convex to the outside of the magnet accommodation hole,
The permanent magnet synchronous machine in which the shape on the magnet accommodation hole side in the rotor core side rib has a curved shape that protrudes outward from the magnet accommodation hole.
前記永久磁石は少なくとも2箇所の屈曲点を有することを特徴とする請求項1に記載の永久磁石同期機。   The permanent magnet synchronous machine according to claim 1, wherein the permanent magnet has at least two bending points. 前記永久磁石は、前記2箇所の屈曲点の間に位置する中央部と、前記中央部の両端に位置する側部と、を有し、
前記中央部の前記永久磁石と前記回転子鉄心との間の最小の隙間は、前記側部の前記永久磁石と前記回転子鉄心との間の最小の隙間よりも広いことを特徴とする請求項2に記載の永久磁石同期機。
The permanent magnet has a central portion located between the two bending points, and side portions located at both ends of the central portion,
The minimum gap between the permanent magnet in the central portion and the rotor core is wider than the minimum gap between the permanent magnet in the side portion and the rotor core. 2. A permanent magnet synchronous machine according to 2.
前記永久磁石は、前記側部の端から近い方の屈曲点までの長さが、前記中央部の前記2箇所の屈曲点の間の長さよりも大きいことを特徴とする請求項に記載の永久磁石同期機。 The length of the said permanent magnet from the edge of the said side part to the near bending point is larger than the length between the said two bending points of the said center part, The Claim 3 characterized by the above-mentioned. Permanent magnet synchronous machine.
JP2016084908A 2016-04-21 2016-04-21 Permanent magnet synchronous machine Active JP6379132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016084908A JP6379132B2 (en) 2016-04-21 2016-04-21 Permanent magnet synchronous machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016084908A JP6379132B2 (en) 2016-04-21 2016-04-21 Permanent magnet synchronous machine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012128786A Division JP2013255326A (en) 2012-06-06 2012-06-06 Permanent magnet synchronous machine

Publications (2)

Publication Number Publication Date
JP2016131491A JP2016131491A (en) 2016-07-21
JP6379132B2 true JP6379132B2 (en) 2018-08-22

Family

ID=56415716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016084908A Active JP6379132B2 (en) 2016-04-21 2016-04-21 Permanent magnet synchronous machine

Country Status (1)

Country Link
JP (1) JP6379132B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102509696B1 (en) * 2017-12-20 2023-03-15 삼성전자주식회사 IPM BLDC Motor
KR102647099B1 (en) * 2018-06-08 2024-03-14 삼성전자주식회사 Interior permanent magnet motor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1187197A (en) * 1997-09-14 1999-03-30 Toshiba Corp Simulation method and simulation apparatus for execution of the method
JP4299391B2 (en) * 1998-12-09 2009-07-22 アイチエレック株式会社 Permanent magnet rotor
JP2004357468A (en) * 2003-05-30 2004-12-16 Matsushita Electric Ind Co Ltd Motor
JP5331761B2 (en) * 2010-08-09 2013-10-30 株式会社日立製作所 Permanent magnet rotating electric machine

Also Published As

Publication number Publication date
JP2016131491A (en) 2016-07-21

Similar Documents

Publication Publication Date Title
JP2013255326A (en) Permanent magnet synchronous machine
JP5930253B2 (en) Permanent magnet embedded rotary electric machine
JP6319973B2 (en) Permanent magnet type rotating electric machine
JP5990475B2 (en) Rotating electrical machine rotor
JP5722301B2 (en) Embedded magnet type synchronous motor rotor and embedded magnet type synchronous motor
JP2012161226A (en) Rotor for rotary electric machine
JP2012161228A (en) Rotor for rotary electric machine
JP2007068357A (en) Rotor of rotary electric machine and rotary electric machine using the same
JP6573031B2 (en) Rotor
JPWO2014091579A1 (en) Electric equipment equipped with an electric motor
US20150270750A1 (en) Permanent magnet type rotating electric machine
JP2009131070A (en) Magnet type synchronous machine
JPWO2012157056A1 (en) Permanent magnet type rotating electric machine
JP2013198303A (en) Rotor structure of permanent magnet type rotary machine
JP2016073023A (en) Permanent magnet type rotor and permanent magnet type synchronous rotary electric machine
JP2013021775A (en) Rotary electric machine
US20130207501A1 (en) Rotary electric machine
JP6379132B2 (en) Permanent magnet synchronous machine
JP6507956B2 (en) Permanent magnet type rotating electric machine
JP6116108B2 (en) Permanent magnet synchronous machine
JP6112970B2 (en) Permanent magnet rotating electric machine
JP5901436B2 (en) Permanent magnet synchronous machine
JP2014225935A (en) Permanent magnet type rotary electric machine
JP2009106001A (en) Rotary electric machine
JP7189816B2 (en) IPM motor rotor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160421

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20160421

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161222

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170111

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20170324

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180730

R150 Certificate of patent or registration of utility model

Ref document number: 6379132

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150