JP2013198303A - Rotor structure of permanent magnet type rotary machine - Google Patents

Rotor structure of permanent magnet type rotary machine Download PDF

Info

Publication number
JP2013198303A
JP2013198303A JP2012063087A JP2012063087A JP2013198303A JP 2013198303 A JP2013198303 A JP 2013198303A JP 2012063087 A JP2012063087 A JP 2012063087A JP 2012063087 A JP2012063087 A JP 2012063087A JP 2013198303 A JP2013198303 A JP 2013198303A
Authority
JP
Japan
Prior art keywords
permanent magnet
rotor core
rotor
magnetic flux
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012063087A
Other languages
Japanese (ja)
Other versions
JP6083059B2 (en
Inventor
Keisuke Matsuo
圭祐 松尾
Daiki Matsuhashi
大器 松橋
Takashi Okitsu
隆志 沖津
Takeshi Akiyama
剛 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2012063087A priority Critical patent/JP6083059B2/en
Publication of JP2013198303A publication Critical patent/JP2013198303A/en
Application granted granted Critical
Publication of JP6083059B2 publication Critical patent/JP6083059B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rotor structure of a permanent magnet type rotary machine that prevents leakage magnetic flux and increase magnetic flux density in a gap even when a rotor core is structured in one body and when a permanent magnet having low remanent flux density is used as a permanent magnet generating main magnetic flux.SOLUTION: A rotor 1 comprises a rotor core 11 in which a shaft 2 is fitted, a plurality of ferrite magnets 12 embedded radially at positions part from the shaft 2 of the rotor core 11, and a plurality of neodymium magnets 13 embedded between the shaft 2 of the rotor core 11 and the ferrite magnets 12. The rotor core 11 is provided with a connection portion 115 connecting rotor core pieces 114, and the neodymium magnets 13 are arranged having the same magnetization direction with the ferrite magnets 12 arranged opposite in radial directions, and also preventing magnetic flux of the ferrite magnets 12 from short-circuiting between the rotor core pieces 114 adjacent in a peripheral direction.

Description

本発明は、永久磁石式回転機の回転子構造に関し、とくに回転軸に対し放射線状に永久磁石を配置した永久磁石式回転機の回転子構造に関する。   The present invention relates to a rotor structure of a permanent magnet type rotating machine, and more particularly to a rotor structure of a permanent magnet type rotating machine in which permanent magnets are arranged radially with respect to a rotating shaft.

従来、回転軸に対し放射状に永久磁石を配置することで、永久磁石式回転機のギャップ中の磁束密度を高めた永久磁石式回転機の回転子構造が知られている。このような回転子構造としては、回転子コアに永久磁石を埋め込むための貫通孔を設けることにより回転子コアを完全に一体で構成したもの(例えば、下記特許文献1,2等参照)と、回転子コアを一磁極ごとに分離させたもの(例えば、下記特許文献3,4等参照)の二種類の構造が公知となっている。   2. Description of the Related Art Conventionally, a rotor structure of a permanent magnet type rotating machine is known in which permanent magnets are arranged radially with respect to a rotating shaft to increase the magnetic flux density in the gap of the permanent magnet type rotating machine. As such a rotor structure, a rotor core that is completely integrated by providing a through hole for embedding a permanent magnet in the rotor core (for example, see Patent Documents 1 and 2 below), Two types of structures are known in which the rotor core is separated for each magnetic pole (see, for example, Patent Documents 3 and 4 below).

特開2000−152534号公報JP 2000-152534 A 特開2010−4722号公報JP 2010-4722 A 特開2009−77469号公報JP 2009-77469 A 特開2011−78298号公報JP 2011-78298 A

ここで、上述した従来の回転子コアを完全に一体で構成した回転子構造においては、回転子コアの上述した貫通孔の径方向外側又は径方向内側に該貫通孔の周方向両側に位置する回転子コア同士を連結する連結部が存在することとなる。   Here, in the rotor structure in which the above-described conventional rotor core is completely integrated, the rotor core is positioned on both sides in the circumferential direction of the through hole on the radially outer side or radially inner side of the through hole. There will be a connecting portion connecting the rotor cores.

連結部が存在しても、主磁束を発生する永久磁石にネオジム磁石のような残留磁束密度の高い磁石を使用する場合は、連結部が磁気飽和することで漏れ磁束を抑えることができ、ギャップ中の磁束密度が大きい回転機とすることができる。   Even if there is a connecting part, when using a magnet with a high residual magnetic flux density, such as a neodymium magnet, as the permanent magnet that generates the main magnetic flux, the connecting part can be magnetically saturated, so that the leakage flux can be suppressed. A rotating machine having a high magnetic flux density can be obtained.

しかしながら、主磁束を発生する永久磁石がフェライト磁石のような残留磁束密度が低い永久磁石の場合、連結部が磁気飽和せず、磁束のN極−S極間短絡により、電気特性が悪化してしまうおそれがある。   However, when the permanent magnet that generates the main magnetic flux is a permanent magnet having a low residual magnetic flux density such as a ferrite magnet, the connecting portion is not magnetically saturated, and the electrical characteristics deteriorate due to a short circuit between the N pole and the S pole of the magnetic flux. There is a risk that.

ここで連結部の径方向の幅を限りなく小さくすれば、その部分の磁気抵抗は大きくなり、残留磁束密度の低い磁石でも連結部を磁気飽和させることが可能であるが、遠心力に対する回転子コアの強度が不足するといった問題が生じてくる。   Here, if the radial width of the connecting portion is made as small as possible, the magnetic resistance at that portion increases, and even with a magnet having a low residual magnetic flux density, the connecting portion can be magnetically saturated. There arises a problem that the strength of the core is insufficient.

また、上述した従来の回転子コアを一磁極ごとに分離させた回転子構造においては、上述した連結部を構造的に切り離し、非磁性体のリングを設ける等によりシャフト、回転子コア及び永久磁石を一体的に固定する構造とすることで、回転子コアを一磁極ごとに分離することができる。   Further, in the rotor structure in which the above-described conventional rotor core is separated for each magnetic pole, the shaft, the rotor core, and the permanent magnet are separated by structurally separating the above-described connecting portion and providing a non-magnetic ring. By adopting a structure that integrally fixes the rotor core, the rotor core can be separated for each magnetic pole.

このように回転子コアを一磁極ごとに分離すれば、フェライト磁石のような残留磁束密度が低い永久磁石でも、磁束がN極−S極間で短絡するのを防ぎ、主磁束量を大きくすることができる回転子構造を得ることができる。   If the rotor core is separated for each magnetic pole in this way, even with a permanent magnet having a low residual magnetic flux density such as a ferrite magnet, the magnetic flux is prevented from being short-circuited between the N pole and the S pole, and the main magnetic flux amount is increased. A rotor structure that can be obtained can be obtained.

しかしながら、回転子コアを分離する場合、分離されたコアをシャフトと精度よく組付けるためには多くの部材と工数を要するといった問題があった。また、特許文献3のように、分離された複数のコアをシャフトと永久磁石と共に樹脂で一体化して回転子を構成するような場合、回転子コアの外周面を覆うように樹脂で固定させるため、結果的にギャップ面が拡大して電気特性が悪化するおそれがある、という問題があった。   However, when the rotor core is separated, there is a problem that many members and man-hours are required to assemble the separated core with the shaft with high accuracy. Further, as in Patent Document 3, when a rotor is formed by integrating a plurality of separated cores with a shaft and permanent magnets with a resin, the rotor is fixed with a resin so as to cover the outer peripheral surface of the rotor core. As a result, there is a problem that the gap surface is enlarged and the electrical characteristics may be deteriorated.

このようなことから本発明は、回転子コアを一体構造とした場合であって、主磁束を発生する永久磁石として残留磁束密度が低い永久磁石を用いた場合であっても、漏れ磁束を防止し、ギャップ中の磁束密度を大きくすることができる永久磁石式回転機の回転子構造を提供することを目的とする。   For this reason, the present invention prevents leakage magnetic flux even when the rotor core has an integral structure and a permanent magnet having a low residual magnetic flux density is used as the permanent magnet for generating the main magnetic flux. And it aims at providing the rotor structure of the permanent-magnet-type rotary machine which can enlarge the magnetic flux density in a gap.

上記の課題を解決するための第1の発明に係る永久磁石式回転機の回転子構造は、回転軸に対し、放射状に永久磁石を配してなる永久磁石式回転機の回転子構造において、回転子が、シャフトを嵌入して該シャフトと一体的に回転する回転子コアと、前記回転子コアの前記シャフトとは離間した位置に放射状に埋設され主磁束を発生する複数の主永久磁石と、前記主永久磁石に対して残留磁束密度が高く前記回転子コアの前記シャフトと前記主永久磁石との間に埋設される複数の補助永久磁石とを備え、前記回転子コアは、前記主永久磁石の周方向両側に位置する回転子コア片間を連結する連結部を備え、前記補助永久磁石は、径方向に対して対向配置される前記主永久磁石と磁化方向が同一となるように、且つ、周方向に対して隣接する前記回転子コア片間で前記主永久磁石の磁束が短絡するのを防止するように配設されることを特徴とする。   The rotor structure of the permanent magnet type rotating machine according to the first invention for solving the above-mentioned problems is a rotor structure of a permanent magnet type rotating machine in which permanent magnets are arranged radially with respect to the rotating shaft. A rotor core in which a shaft is inserted and rotates integrally with the shaft; and a plurality of main permanent magnets that are radially embedded at positions separated from the shaft of the rotor core to generate a main magnetic flux. A plurality of auxiliary permanent magnets embedded between the main permanent magnet and the shaft of the rotor core, the residual magnetic flux density being high with respect to the main permanent magnet. It is provided with a connecting portion that connects between the rotor core pieces located on both sides of the magnet in the circumferential direction, and the auxiliary permanent magnet has the same magnetization direction as that of the main permanent magnet arranged to face the radial direction. And before adjoining in the circumferential direction Flux of the main permanent magnet in the rotor core pieces is characterized in that it is arranged to prevent a short-circuit.

上記の課題を解決するための第2の発明に係る永久磁石式回転機の回転子構造は、第1の発明に係る永久磁石式回転機の回転子構造において、前記補助永久磁石が、前記シャフトと前記主永久磁石との間であって前記シャフト側に配設され、前記連結部の前記主永久磁石と前記補助永久磁石との間を磁気飽和させることにより、周方向に対して隣接する前記回転子コア片間で前記主永久磁石の磁束が短絡するのを防止することを特徴とする。   The rotor structure of a permanent magnet type rotating machine according to a second aspect of the present invention for solving the above problem is the rotor structure of the permanent magnet type rotating machine according to the first aspect of the present invention, wherein the auxiliary permanent magnet is the shaft. And the main permanent magnet between the main permanent magnet and the auxiliary permanent magnet of the connecting portion, and are adjacent to each other in the circumferential direction. The magnetic flux of the main permanent magnet is prevented from being short-circuited between the rotor core pieces.

上記の課題を解決するための第3の発明に係る永久磁石式回転機の回転子構造は、第1の発明に係る永久磁石式回転機の回転子構造において、前記補助永久磁石が前記シャフトと前記主永久磁石との間であって前記主永久磁石側に配設され、前記連結部の前記回転子コア片を挟んで対向する前記補助永久磁石間を磁気飽和させることにより、周方向に対して隣接する前記回転子コア片間で前記主永久磁石の磁束が短絡するのを防止することを特徴とする。   A rotor structure of a permanent magnet type rotating machine according to a third aspect of the present invention for solving the above-described problems is the rotor structure of the permanent magnet type rotating machine according to the first aspect of the present invention, wherein the auxiliary permanent magnet is connected to the shaft. By magnetically saturating between the auxiliary permanent magnets disposed between the main permanent magnets and on the side of the main permanent magnets and facing the rotor core piece of the connecting portion, Further, the magnetic flux of the main permanent magnet is prevented from being short-circuited between the adjacent rotor core pieces.

上述した本発明に係る永久磁石式回転機の回転子構造によれば、回転子コアが一体構造で、主磁束を発生する永久磁石がフェライト磁石のように残留磁束密度が低い永久磁石であっても漏れ磁束を防ぎ、ギャップ中の磁束密度が高い回転機を提供することができる。   According to the rotor structure of the permanent magnet type rotating machine according to the present invention described above, the rotor core is an integral structure, and the permanent magnet generating the main magnetic flux is a permanent magnet having a low residual magnetic flux density such as a ferrite magnet. Can prevent leakage magnetic flux and provide a rotating machine with high magnetic flux density in the gap.

本発明の実施例1に係る永久磁石式回転機の回転子構造を示す断面図である。It is sectional drawing which shows the rotor structure of the permanent magnet type rotary machine which concerns on Example 1 of this invention. 本発明の実施例1に係る永久磁石式回転機の回転子構造の回転子鉄心を示す断面図である。It is sectional drawing which shows the rotor core of the rotor structure of the permanent magnet type rotary machine which concerns on Example 1 of this invention. 本発明の実施例2に係る永久磁石式回転機の回転子構造を示す断面図である。It is sectional drawing which shows the rotor structure of the permanent magnet type rotary machine which concerns on Example 2 of this invention. 本発明の実施例2に係る永久磁石式回転機の回転子構造の回転子鉄心を示す断面図である。It is sectional drawing which shows the rotor core of the rotor structure of the permanent magnet type rotary machine which concerns on Example 2 of this invention.

以下、図面を参照しつつ本発明に係る永久磁石式回転機の回転子構造について説明する。   Hereinafter, a rotor structure of a permanent magnet type rotating machine according to the present invention will be described with reference to the drawings.

図1及び図2を用いて本発明の実施例1に係る永久磁石式回転機の回転子構造を詳細に説明する。   The rotor structure of the permanent magnet type rotating machine according to the first embodiment of the present invention will be described in detail with reference to FIGS.

図1に示すように、本実施例に係る永久磁石式回転機の回転子構造において、回転子1は、非磁性体からなるシャフト2を嵌入して該シャフト2と一体的に回転する回転子コア11と、回転子コア11に放射状に埋設され主磁束を発生する複数(図1では8個)の主永久磁石としてのフェライト磁石12と、同じく回転子コア11に埋設されフェライト磁石12に比較して残留磁束密度が高い複数(図1では8個)の補助永久磁石としてのネオジム磁石13とを備えて構成されている。   As shown in FIG. 1, in the rotor structure of the permanent magnet type rotating machine according to the present embodiment, the rotor 1 is inserted into a shaft 2 made of a non-magnetic material and rotates integrally with the shaft 2. Compared with the core 11, the ferrite magnets 12 as a plurality of (8 in FIG. 1) main permanent magnets that are radially embedded in the rotor core 11 and generate the main magnetic flux, and the ferrite magnets 12 that are also embedded in the rotor core 11 Thus, a plurality of (eight in FIG. 1) auxiliary permanent magnets 13 having high residual magnetic flux density are provided.

図2に示すように、回転子コア11は軸心部に形成されシャフト2が嵌入されるシャフト孔111と、シャフト孔111の径方向外側に該シャフト孔111とは間隙を置いて放射状に配設される複数(フェライト磁石12と同数。図2では8個)の第一磁石孔112と、シャフト孔111と第一磁石孔112との間の間隙に配設された複数(ネオジム磁石と同数。図2では8個)の第二磁石孔113とを備えている。   As shown in FIG. 2, the rotor core 11 has a shaft hole 111 formed in the axial center and into which the shaft 2 is fitted, and is radially arranged with a gap between the shaft hole 111 and the shaft hole 111 on the radially outer side of the shaft hole 111. A plurality of (the same number as the ferrite magnet 12; eight in FIG. 2) first magnet holes 112 and a plurality (the same number as the neodymium magnets) disposed in the gap between the shaft hole 111 and the first magnet hole 112. 2 in FIG. 2) second magnet holes 113.

第一磁石孔112は断面視概ね矩形状の貫通孔であり、周方向に対して等間隔に配置されてフェライト磁石12が挿入される。本実施例において第一磁石孔112は回転子コア11を外周面側から切り欠いた形状となっており、その径方向外端部はフェライト磁石12の径方向の位置を拘束するために周方向の幅が狭くなっている。   The first magnet hole 112 is a through hole having a substantially rectangular shape in cross-section, and is arranged at equal intervals in the circumferential direction, and the ferrite magnet 12 is inserted therein. In the present embodiment, the first magnet hole 112 has a shape in which the rotor core 11 is cut out from the outer peripheral surface side, and its radially outer end portion is circumferential in order to constrain the radial position of the ferrite magnet 12. The width of is narrow.

これにより、フェライト磁石13は回転子コア11の外径に対して所定距離だけ径方向内側に配設されることとなり、また、周方向に相互に隣接する第一磁石孔112間に位置する回転子コア片114はその径方向外端部が周方向に隣接する回転子コア片114の径方向外端部と離間した状態となっている。   As a result, the ferrite magnet 13 is disposed radially inward by a predetermined distance with respect to the outer diameter of the rotor core 11, and the rotation located between the first magnet holes 112 adjacent to each other in the circumferential direction. The child core piece 114 has a radially outer end portion that is separated from a radially outer end portion of the rotor core piece 114 adjacent in the circumferential direction.

また、第二磁石孔113は断面視概ね矩形状の貫通孔であり、第一磁石孔112と同様に周方向に等間隔に配置されてネオジム磁石13が挿入される。本実施例において第二磁石孔113は回転子コア11をシャフト孔111側から切り欠いた形状となっている一方、第一磁石孔112との間に間隙を有している。そして、この間隙が、周方向に相互に隣接する回転子コア片114を連結する連結部115となっている。   Further, the second magnet hole 113 is a through hole having a substantially rectangular shape in cross section, and similarly to the first magnet hole 112, the second magnet hole 113 is arranged at equal intervals in the circumferential direction, and the neodymium magnet 13 is inserted therein. In the present embodiment, the second magnet hole 113 has a shape in which the rotor core 11 is cut out from the shaft hole 111 side, and has a gap with the first magnet hole 112. The gap serves as a connecting portion 115 that connects the rotor core pieces 114 adjacent to each other in the circumferential direction.

なお、図1に太線で示す矢印はフェライト磁石12の磁化方向、細線で示す矢印はネオジム磁石13の磁化方向を表している。図1に示すように、連結部115を挟んで対向配置されるフェライト磁石12とネオジム磁石13とは、磁化方向が等しくなるように、それぞれ第一磁石孔112、第二磁石孔113に挿入されている。   In FIG. 1, an arrow indicated by a thick line indicates the magnetization direction of the ferrite magnet 12, and an arrow indicated by a thin line indicates the magnetization direction of the neodymium magnet 13. As shown in FIG. 1, the ferrite magnet 12 and the neodymium magnet 13 that are opposed to each other with the coupling portion 115 interposed therebetween are inserted into the first magnet hole 112 and the second magnet hole 113 so that the magnetization directions are equal to each other. ing.

ここで、回転子コア11の図示しないステータ側表面に現れる磁極は、一磁極当たり図1中に矢印で示す向きに着磁された二つのフェライト磁石12が発生する主磁束によって構成される。   Here, the magnetic pole appearing on the stator-side surface (not shown) of the rotor core 11 is constituted by the main magnetic flux generated by the two ferrite magnets 12 magnetized in the direction indicated by the arrows in FIG. 1 per magnetic pole.

このとき、本実施例に係る永久磁石式回転機の回転子構造においては、フェライト磁石12とネオジム磁石13との間に位置する連結部115を図1中に矢印で示す向きに着磁されたネオジム磁石13の磁束によって磁気飽和させることで、フェライト磁石12の磁束がN極−S極間で短絡するのを防ぎ、磁極を構成する主磁束量を大きくしてギャップ中の磁束密度を高めることができる。   At this time, in the rotor structure of the permanent magnet type rotating machine according to the present embodiment, the connecting portion 115 positioned between the ferrite magnet 12 and the neodymium magnet 13 was magnetized in the direction indicated by the arrow in FIG. By magnetically saturating with the magnetic flux of the neodymium magnet 13, the magnetic flux of the ferrite magnet 12 is prevented from being short-circuited between the N pole and the S pole, and the amount of main magnetic flux constituting the magnetic pole is increased to increase the magnetic flux density in the gap. Can do.

また、回転子コア11は一体なので、上述した特許文献3のように分割された回転子コアを永久磁石、シャフトと共に樹脂で一体化するといった工程は不要であり、回転子1と図示しない固定子間のエアギャップを小さくかつ回転子1を高精度に一体化させることができる。なお、ネオジム磁石13の使用量は上述した本実施例に限定されるものではなく、連結部115に働く応力と、ギャップ中の磁束密度の大きさを基にその使用量が最小になるように磁石形状を決めれば好適である。   Further, since the rotor core 11 is integrated, there is no need for a process of integrating the divided rotor core with a permanent magnet and a shaft as in Patent Document 3 described above, and the rotor 1 and a stator (not shown) The air gap between them can be made small and the rotor 1 can be integrated with high accuracy. The amount of the neodymium magnet 13 used is not limited to the above-described embodiment, and the amount used is minimized based on the stress acting on the connecting portion 115 and the magnitude of the magnetic flux density in the gap. It is preferable to determine the magnet shape.

上述した本実施例に係る永久磁石式回転機の回転子構造によれば、回転子コア1が一体構造で、主磁束を発生する永久磁石としてフェライト磁石12のように残留磁束密度が低い永久磁石を用いる場合であっても漏れ磁束を防ぎ、ギャップ中の磁束密度が高い回転機を提供することができる。   According to the rotor structure of the permanent magnet type rotating machine according to the above-described embodiment, the rotor core 1 has an integral structure, and a permanent magnet having a low residual magnetic flux density such as a ferrite magnet 12 as a permanent magnet that generates a main magnetic flux. Even in the case of using a rotating machine, leakage magnetic flux can be prevented and a rotating machine having a high magnetic flux density in the gap can be provided.

また、回転軸に対し放射状に永久磁石が配置された永久磁石式回転機におけるトルク脈動を抑制させる手段として、回転子コア11の外径を磁極の中心で大きく、極と極との間では小さくするといったような回転子コアのステータ側表面の曲率を変更したい場合、回転子コアが分離された構造だと精度よくギャップを保持するには多くの部材と工数を要し、この際にギャップの精度が悪いと、トルク脈動が大きくなってしまうなどモータ特性を悪化させてしまうおそれがあるのに対し、本実施例に係る永久磁石式回転機の回転子構造においては回転子コア11が一体構造であり、ギャップの精度は回転子コア11の加工精度にのみ依存するため、圧入、焼き嵌めにより容易に回転子1を組み立てることができる。   Further, as a means for suppressing torque pulsation in a permanent magnet type rotating machine in which permanent magnets are arranged radially with respect to the rotating shaft, the outer diameter of the rotor core 11 is large at the center of the magnetic pole and small between the poles. If you want to change the curvature of the stator side surface of the rotor core, for example, if the rotor core is separated, it takes many members and man-hours to maintain the gap accurately. If the accuracy is poor, the motor characteristics may be deteriorated such as an increase in torque pulsation. On the other hand, in the rotor structure of the permanent magnet type rotating machine according to this embodiment, the rotor core 11 is integrated. Since the gap accuracy depends only on the machining accuracy of the rotor core 11, the rotor 1 can be easily assembled by press fitting and shrink fitting.

図3及び図4を用いて本発明の実施例2に係る永久磁石式回転機の回転子構造を詳細に説明する。   The rotor structure of the permanent magnet type rotating machine according to the second embodiment of the present invention will be described in detail with reference to FIGS.

図3及び図4に示すように、本実施例に係る永久磁石式回転機の回転子構造は、図1及び図2に示し上述した実施例1に係る永久磁石式回転機の回転子構造に対してネオジム磁石の数および配置が異なるものである。その他の構造は実施例1に係る永久磁石式回転機の回転子構造とおおむね同様であり、以下、実施例1において説明した部材と同様の作用を奏する部材には同一の名称を付し、詳しい説明は省略する。   As shown in FIGS. 3 and 4, the rotor structure of the permanent magnet type rotating machine according to the present embodiment is the same as the rotor structure of the permanent magnet type rotating machine according to the first embodiment shown in FIGS. On the other hand, the number and arrangement of neodymium magnets are different. The other structure is substantially the same as the rotor structure of the permanent magnet type rotating machine according to the first embodiment. Hereinafter, the members having the same functions as those described in the first embodiment are given the same names, and are described in detail. Description is omitted.

図3に示すように、本実施例に係る永久磁石式回転機の回転子構造において、回転子3は、非磁性体からなるシャフト2を嵌入して該シャフト2と一体的に回転する回転子コア31と、回転子コア31に放射状に埋設され主磁束を発生する複数(図3では8個)のフェライト磁石32と、同じく回転子コア31に埋設されフェライト磁石32に比較して残留磁束密度が高い複数(図3では16個)のネオジム磁石33とを備えて構成されている。   As shown in FIG. 3, in the rotor structure of the permanent magnet type rotating machine according to the present embodiment, the rotor 3 is inserted into a shaft 2 made of a non-magnetic material and rotates integrally with the shaft 2. The core 31, a plurality of (8 in FIG. 3) ferrite magnets 32 that are radially embedded in the rotor core 31 and generate main magnetic flux, and the residual magnetic flux density that is also embedded in the rotor core 31 compared to the ferrite magnet 32. And a plurality of (16 in FIG. 3) neodymium magnets 33.

図4に示すように、回転子コア31は軸心部に形成されシャフト2が嵌入されるシャフト孔311と、シャフト孔311の径方向外側に該シャフト孔311とは間隙を置いて放射状に配設される複数(フェライト磁石32と同数。図4では8個)の第一磁石孔312と、シャフト孔311と第一磁石孔312との間の間隙に配設される複数(ネオジム磁石と同数。図4では16個)の第二磁石孔313とを備えている。   As shown in FIG. 4, the rotor core 31 is arranged radially with a shaft hole 311 formed in an axial center portion into which the shaft 2 is inserted, and the shaft hole 311 radially outside the shaft hole 311. A plurality of (the same number as the ferrite magnet 32; eight in FIG. 4) first magnet holes 312 and a plurality (the same number as the neodymium magnets) disposed in the gap between the shaft hole 311 and the first magnet hole 312. (16 in FIG. 4) second magnet holes 313.

第一磁石孔312は断面視概ね矩形状の貫通孔であり、周方向に対して等間隔に配置されてフェライト磁石32が挿入される。   The first magnet hole 312 is a substantially rectangular through hole in cross section, and is disposed at equal intervals in the circumferential direction, and the ferrite magnet 32 is inserted therein.

また、第二磁石孔313は断面視概ね矩形状の貫通孔であり、周方向に間隙を置いて配置されネオジム磁石33が挿入される。本実施例において第二磁石孔313は、一つの第一磁石孔312に対し、該第一磁石孔312の径方向内側面に対し周方向両端部をそれぞれ径方向内側に切り欠いて形成された二つの小磁石孔313a,313bから構成されている。換言すると、一つの回転子コア片314に対し、該回転子コア片314の径方向内側の基端部(以下、ジョイントという)316の周方向両側に小磁石孔313a,313bをそれぞれ配した構成となっている。   The second magnet hole 313 is a substantially rectangular through hole in a sectional view, and is disposed with a gap in the circumferential direction, into which the neodymium magnet 33 is inserted. In the present embodiment, the second magnet hole 313 is formed by cutting out both ends in the circumferential direction with respect to the inner surface in the radial direction of the first magnet hole 312 with respect to one first magnet hole 312. It consists of two small magnet holes 313a and 313b. In other words, a configuration in which small magnet holes 313a and 313b are respectively arranged on both sides in the circumferential direction of a radially inner base end portion (hereinafter referred to as a joint) 316 of the rotor core piece 314 with respect to one rotor core piece 314. It has become.

これにより、第二磁石孔313は、周方向に対して小磁石孔313aと小磁石孔313bとが交互に配置された状態となっているとともに、小磁石孔313a、小磁石孔313bがそれぞれ周方向に対して等間隔に配置された状態となっている。   Thereby, the second magnet hole 313 is in a state in which the small magnet holes 313a and the small magnet holes 313b are alternately arranged with respect to the circumferential direction, and the small magnet holes 313a and the small magnet holes 313b are respectively surrounded. It is in the state arrange | positioned at equal intervals with respect to the direction.

なお、図3に太線で示す矢印はフェライト磁石32の磁化方向、細線で示す矢印はネオジム磁石33の磁化方向を表している。図3に示すように、それぞれのフェライト磁石32とその径方向内側に配置されるネオジム磁石33とは、磁化方向が等しくなるように、それぞれ第一磁石孔312、第二磁石孔313に挿入されている。これにより、ジョイント316の周方向両側に位置するネオジム磁石33はN極同士またはS極同士が対向した状態となっている。   In FIG. 3, an arrow indicated by a thick line indicates the magnetization direction of the ferrite magnet 32, and an arrow indicated by a thin line indicates the magnetization direction of the neodymium magnet 33. As shown in FIG. 3, the ferrite magnets 32 and the neodymium magnets 33 arranged radially inside are inserted into the first magnet hole 312 and the second magnet hole 313, respectively, so that the magnetization directions are equal. ing. Thereby, the neodymium magnets 33 located on both sides in the circumferential direction of the joint 316 are in a state where the N poles or the S poles face each other.

この第二磁石孔313は、シャフト孔311との間に間隙を有しており、この間隙とシャフト孔311と第一磁石孔312との間の間隙とにより、周方向に相互に隣接する回転子コア片314を連結する連結部315が形成されている。   The second magnet hole 313 has a gap with the shaft hole 311, and the gap between the shaft hole 311 and the first magnet hole 312 causes the rotation adjacent to each other in the circumferential direction. A connecting portion 315 that connects the child core pieces 314 is formed.

ここで、回転子コア31の図示しないステータ側表面に現れる磁極は、一磁極当たり図1中に矢印で示す向きに着磁された二つのフェライト磁石32が発生する主磁束によって構成される。   Here, the magnetic pole that appears on the stator-side surface (not shown) of the rotor core 31 is constituted by a main magnetic flux generated by two ferrite magnets 32 that are magnetized in the direction indicated by the arrows in FIG.

このとき、本実施例に係る永久磁石式回転機の回転子構造においては、ジョイント316を該ジョイント316を挟んで対向配置され図3中に矢印で示す向きに着磁されたネオジム磁石33の磁束によって磁気飽和させることで、フェライト磁石32の磁束がN極−S極間で短絡するのを防ぎ、磁極を構成する主磁束量を大きくしてギャップ中の磁束密度を高めることができる。   At this time, in the rotor structure of the permanent magnet type rotating machine according to the present embodiment, the magnetic flux of the neodymium magnet 33 which is disposed so as to face the joint 316 across the joint 316 and is magnetized in the direction indicated by the arrow in FIG. By magnetic saturation, the magnetic flux of the ferrite magnet 32 can be prevented from being short-circuited between the N pole and the S pole, the amount of main magnetic flux constituting the magnetic pole can be increased, and the magnetic flux density in the gap can be increased.

また、回転子コア31は一体なので、上述した特許文献3のように分割された回転子コアを永久磁石、シャフトと共に樹脂で一体化するといった工程は不要であり、回転子3と図示しない固定子間のエアギャップを小さくかつ回転子1を高精度に一体化させることができる。なお、ネオジム磁石33の使用量は上述した本実施例に限定されるものではなく、連結部315に働く応力と、ギャップ中の磁束密度の大きさを基にその使用量及び磁石形状を決めれば好適である。   Further, since the rotor core 31 is integral, there is no need for a process of integrating the divided rotor core with a permanent magnet and a shaft as in Patent Document 3 described above, and the rotor 3 and a stator (not shown) The air gap between them can be made small and the rotor 1 can be integrated with high accuracy. In addition, the usage-amount of the neodymium magnet 33 is not limited to this Example mentioned above, If the usage-amount and magnet shape are determined based on the stress which acts on the connection part 315, and the magnitude | size of the magnetic flux density in a gap. Is preferred.

上述した本実施例に係る永久磁石式回転機の回転子構造によれば、上述した実施例1に係る永久磁石式回転機の回転子構造と同様に、回転子コア3が一体構造で、主磁束を発生する永久磁石としてフェライト磁石12のように残留磁束密度が低い永久磁石を用いる場合であっても漏れ磁束を防ぎ、ギャップ中の磁束密度が高い回転機を提供することができる。   According to the rotor structure of the permanent magnet type rotating machine according to the present embodiment described above, the rotor core 3 has an integral structure, like the rotor structure of the permanent magnet type rotating machine according to the first embodiment described above. Even when a permanent magnet having a low residual magnetic flux density such as a ferrite magnet 12 is used as a permanent magnet for generating magnetic flux, leakage magnetic flux can be prevented and a rotating machine having a high magnetic flux density in the gap can be provided.

また、回転軸に対し放射状に永久磁石が配置された永久磁石式回転機におけるトルク脈動を抑制させる手段として、回転子コア31の外径を磁極の中心で大きく、極と極との間では小さくするといったような回転子コアのステータ側表面の曲率を変更したい場合、回転子コアが分離された構造だと精度よくギャップを保持するには多くの部材と工数を要し、この際にギャップの精度が悪いと、トルク脈動が大きくなってしまうなどモータ特性を悪化させてしまうおそれがあるのに対し、本実施例に係る永久磁石式回転機の回転子構造においては回転子コア31が一体構造であり、ギャップの精度は元の回転子コア31の加工精度にのみ依存し、圧入、焼き嵌めにより容易に回転子1を組み立てることができる。   Further, as a means for suppressing torque pulsation in a permanent magnet type rotating machine in which permanent magnets are arranged radially with respect to the rotating shaft, the outer diameter of the rotor core 31 is large at the center of the magnetic pole and small between the poles. If you want to change the curvature of the stator side surface of the rotor core, for example, if the rotor core is separated, it takes many members and man-hours to maintain the gap accurately. If the accuracy is poor, the motor characteristics may be deteriorated such as an increase in torque pulsation. On the other hand, in the rotor structure of the permanent magnet type rotating machine according to this embodiment, the rotor core 31 is integrated. The accuracy of the gap depends only on the processing accuracy of the original rotor core 31, and the rotor 1 can be easily assembled by press fitting and shrink fitting.

本発明は、永久磁石式回転機の回転子構造に関し、とくに回転軸に対し放射線状に永久磁石を配置した永久磁石式回転機の回転子構造に適用して好適なものである。   The present invention relates to a rotor structure of a permanent magnet type rotating machine, and is particularly suitable for application to a rotor structure of a permanent magnet type rotating machine in which permanent magnets are arranged radially with respect to a rotating shaft.

1,3 回転子
2 シャフト
11,31 回転子コア
12,32 フェライト磁石
13,33 ネオジム磁石
111,311 シャフト孔
112,312 第一磁石孔
113,313 第二磁石孔
114,314 回転子コア片
115,315 連結部
316 ジョイント
DESCRIPTION OF SYMBOLS 1,3 Rotor 2 Shaft 11,31 Rotor core 12,32 Ferrite magnet 13,33 Neodymium magnet 111,311 Shaft hole 112,312 First magnet hole 113,313 Second magnet hole 114,314 Rotor core piece 115 , 315 Connection part 316 Joint

Claims (3)

回転軸に対し、放射状に永久磁石を配してなる永久磁石式回転機の回転子構造において、
回転子が、
シャフトを嵌入して該シャフトと一体的に回転する回転子コアと、
前記回転子コアの前記シャフトとは離間した位置に放射状に埋設され主磁束を発生する複数の主永久磁石と、
前記主永久磁石に対して残留磁束密度が高く前記回転子コアの前記シャフトと前記主永久磁石との間に埋設される複数の補助永久磁石と
を備え、
前記回転子コアは、前記主永久磁石の周方向両側に位置する回転子コア片間を連結する連結部を備え、
前記補助永久磁石は、径方向に対して対向配置される前記主永久磁石と磁化方向が同一となるように、且つ、周方向に対して隣接する前記回転子コア片間で前記主永久磁石の磁束が短絡するのを防止するように配設される
ことを特徴とする永久磁石式回転機の回転子構造。
In the rotor structure of a permanent magnet type rotating machine in which permanent magnets are arranged radially with respect to the rotating shaft,
The rotor is
A rotor core that engages with the shaft and rotates integrally with the shaft;
A plurality of main permanent magnets that are radially embedded in positions separated from the shaft of the rotor core and generate a main magnetic flux;
A plurality of auxiliary permanent magnets embedded between the main permanent magnet and the shaft of the rotor core having a high residual magnetic flux density with respect to the main permanent magnet;
The rotor core includes a connecting portion that connects between rotor core pieces located on both sides in the circumferential direction of the main permanent magnet,
The auxiliary permanent magnet has a magnetization direction that is the same as that of the main permanent magnet arranged opposite to the radial direction and between the rotor core pieces adjacent to the circumferential direction. A rotor structure for a permanent magnet type rotating machine, wherein the rotor structure is arranged to prevent magnetic flux from being short-circuited.
前記補助永久磁石が、前記シャフトと前記主永久磁石との間であって前記シャフト側に配設され、前記連結部の前記主永久磁石と前記補助永久磁石との間を磁気飽和させることにより、周方向に対して隣接する前記回転子コア片間で前記主永久磁石の磁束が短絡するのを防止する
ことを特徴とする請求項1記載の永久磁石式回転機の回転子構造。
The auxiliary permanent magnet is disposed between the shaft and the main permanent magnet and on the shaft side, and magnetically saturates between the main permanent magnet and the auxiliary permanent magnet of the connecting portion, The rotor structure of the permanent magnet type rotating machine according to claim 1, wherein the magnetic flux of the main permanent magnet is prevented from being short-circuited between the rotor core pieces adjacent to each other in the circumferential direction.
前記補助永久磁石が前記シャフトと前記主永久磁石との間であって前記主永久磁石側に配設され、前記連結部の前記回転子コア片を挟んで対向する前記補助永久磁石間を磁気飽和させることにより、周方向に対して隣接する前記回転子コア片間で前記主永久磁石の磁束が短絡するのを防止する
ことを特徴とする請求項1記載の永久磁石式回転機の回転子構造。
The auxiliary permanent magnet is disposed between the shaft and the main permanent magnet and on the main permanent magnet side, and magnetic saturation occurs between the auxiliary permanent magnets facing each other across the rotor core piece of the connecting portion. The rotor structure of the permanent magnet type rotating machine according to claim 1, wherein the magnetic flux of the main permanent magnet is prevented from being short-circuited between the rotor core pieces adjacent to each other in the circumferential direction. .
JP2012063087A 2012-03-21 2012-03-21 Rotor structure of permanent magnet rotating machine Expired - Fee Related JP6083059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012063087A JP6083059B2 (en) 2012-03-21 2012-03-21 Rotor structure of permanent magnet rotating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012063087A JP6083059B2 (en) 2012-03-21 2012-03-21 Rotor structure of permanent magnet rotating machine

Publications (2)

Publication Number Publication Date
JP2013198303A true JP2013198303A (en) 2013-09-30
JP6083059B2 JP6083059B2 (en) 2017-02-22

Family

ID=49396613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012063087A Expired - Fee Related JP6083059B2 (en) 2012-03-21 2012-03-21 Rotor structure of permanent magnet rotating machine

Country Status (1)

Country Link
JP (1) JP6083059B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014045609A (en) * 2012-08-28 2014-03-13 Mitsubishi Electric Corp Rotor of rotary electric machine
CN103647422A (en) * 2013-12-09 2014-03-19 江苏大学 Series-connection hybrid magnetic material motor
CN104079092A (en) * 2014-06-24 2014-10-01 广东威灵电机制造有限公司 Rotor core and motor with same
JP2016092974A (en) * 2014-11-05 2016-05-23 多摩川精機株式会社 Rotor structure of ipm motor
CN105811614A (en) * 2016-03-17 2016-07-27 重庆大学 Rotor structure for high speed permanent magnet synchronous machine
CN106100180A (en) * 2016-07-07 2016-11-09 珠海格力节能环保制冷技术研究中心有限公司 Built-in tangential formula rotor core, built-in tangential formula rotor and motor
CN106300729A (en) * 2015-05-29 2017-01-04 珠海格力节能环保制冷技术研究中心有限公司 Permanent magnet machine rotor and permagnetic synchronous motor
CN108711980A (en) * 2018-07-13 2018-10-26 卧龙电气集团股份有限公司 A kind of sectional type iron core IPM plastic packaging forming rotors
KR20190062983A (en) * 2017-11-29 2019-06-07 엘지이노텍 주식회사 Rotor and motor having the same
KR102058872B1 (en) * 2019-06-17 2019-12-26 (주) 코모텍 Rotor of Spoke Type Motor
CN110768418A (en) * 2018-07-25 2020-02-07 广东美芝制冷设备有限公司 Motor, compressor and refrigeration plant
KR20200089455A (en) * 2019-01-17 2020-07-27 엘지이노텍 주식회사 Rotor and motor having the same
KR20230115703A (en) * 2022-01-27 2023-08-03 엘지전자 주식회사 Electric motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6048371U (en) * 1983-09-09 1985-04-05 株式会社日立製作所 rotor
JPH0560148U (en) * 1992-01-09 1993-08-06 株式会社明電舎 Permanent magnet synchronous motor
JP2005130689A (en) * 2003-08-02 2005-05-19 Yukio Kinoshita Rotating electric machine
JP2013183510A (en) * 2012-03-01 2013-09-12 Hitachi Industrial Equipment Systems Co Ltd Permanent magnet type dynamoelectric machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6048371U (en) * 1983-09-09 1985-04-05 株式会社日立製作所 rotor
JPH0560148U (en) * 1992-01-09 1993-08-06 株式会社明電舎 Permanent magnet synchronous motor
JP2005130689A (en) * 2003-08-02 2005-05-19 Yukio Kinoshita Rotating electric machine
JP2013183510A (en) * 2012-03-01 2013-09-12 Hitachi Industrial Equipment Systems Co Ltd Permanent magnet type dynamoelectric machine

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014045609A (en) * 2012-08-28 2014-03-13 Mitsubishi Electric Corp Rotor of rotary electric machine
CN103647422A (en) * 2013-12-09 2014-03-19 江苏大学 Series-connection hybrid magnetic material motor
CN104079092A (en) * 2014-06-24 2014-10-01 广东威灵电机制造有限公司 Rotor core and motor with same
JP2016092974A (en) * 2014-11-05 2016-05-23 多摩川精機株式会社 Rotor structure of ipm motor
CN106300729A (en) * 2015-05-29 2017-01-04 珠海格力节能环保制冷技术研究中心有限公司 Permanent magnet machine rotor and permagnetic synchronous motor
CN105811614A (en) * 2016-03-17 2016-07-27 重庆大学 Rotor structure for high speed permanent magnet synchronous machine
CN106100180A (en) * 2016-07-07 2016-11-09 珠海格力节能环保制冷技术研究中心有限公司 Built-in tangential formula rotor core, built-in tangential formula rotor and motor
KR20190062983A (en) * 2017-11-29 2019-06-07 엘지이노텍 주식회사 Rotor and motor having the same
KR102554171B1 (en) * 2017-11-29 2023-07-12 엘지이노텍 주식회사 Rotor and motor having the same
CN108711980A (en) * 2018-07-13 2018-10-26 卧龙电气集团股份有限公司 A kind of sectional type iron core IPM plastic packaging forming rotors
CN108711980B (en) * 2018-07-13 2023-12-05 卧龙电气集团股份有限公司 Block type iron core IPM plastic package forming rotor
CN110768418A (en) * 2018-07-25 2020-02-07 广东美芝制冷设备有限公司 Motor, compressor and refrigeration plant
KR20200089455A (en) * 2019-01-17 2020-07-27 엘지이노텍 주식회사 Rotor and motor having the same
KR102635352B1 (en) * 2019-01-17 2024-02-08 엘지이노텍 주식회사 Rotor and motor having the same
KR102058872B1 (en) * 2019-06-17 2019-12-26 (주) 코모텍 Rotor of Spoke Type Motor
KR20230115703A (en) * 2022-01-27 2023-08-03 엘지전자 주식회사 Electric motor
KR102701864B1 (en) * 2022-01-27 2024-09-02 엘지전자 주식회사 Electric motor

Also Published As

Publication number Publication date
JP6083059B2 (en) 2017-02-22

Similar Documents

Publication Publication Date Title
JP6083059B2 (en) Rotor structure of permanent magnet rotating machine
JP6280970B2 (en) Rotor and motor
US9923436B2 (en) Rotor for a rotary electric machine
US10141800B2 (en) Magnet-embedded rotor, method for manufacturing magnet-embedded rotor, and orientation and magnetization device
US10312755B2 (en) Motor
JP2012161226A (en) Rotor for rotary electric machine
JP6421926B2 (en) Permanent magnet synchronous machine
US20140077650A1 (en) Rotor for rotating electric machine
US9490669B2 (en) Rotor and motor
JP2013021776A (en) Rotary electric machine
CN104716760A (en) Rotary motor
JP2008167520A (en) Rotary electric machine
JP6065568B2 (en) Magnetizer
JP2014155415A (en) Embedded magnet rotor and method of manufacturing embedded magnet rotor
JP2016072995A (en) Embedded magnet type rotor and electric motor including the same
JP2013021775A (en) Rotary electric machine
JPWO2016208031A1 (en) Electric motor and air conditioner
JP2012239327A (en) Permanent magnet motor
WO2020100675A1 (en) Rotor, and rotary electric machine provided with same
JP5194984B2 (en) Permanent magnet rotor
JP6112970B2 (en) Permanent magnet rotating electric machine
JP6079132B2 (en) Embedded magnet rotor
JP5917193B2 (en) Rotor, motor and method of manufacturing rotor
JP6747064B2 (en) Permanent magnet type rotating electric machine
JP2007116850A (en) Permanent-magnet rotating electric machine and cylindrical linear motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20161220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170102

R150 Certificate of patent or registration of utility model

Ref document number: 6083059

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees