JP2013183510A - Permanent magnet type dynamoelectric machine - Google Patents

Permanent magnet type dynamoelectric machine Download PDF

Info

Publication number
JP2013183510A
JP2013183510A JP2012044927A JP2012044927A JP2013183510A JP 2013183510 A JP2013183510 A JP 2013183510A JP 2012044927 A JP2012044927 A JP 2012044927A JP 2012044927 A JP2012044927 A JP 2012044927A JP 2013183510 A JP2013183510 A JP 2013183510A
Authority
JP
Japan
Prior art keywords
permanent magnet
rotor
type rotating
magnet
electrical machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012044927A
Other languages
Japanese (ja)
Other versions
JP6055189B2 (en
Inventor
Eri Maruyama
恵理 丸山
Akifumi Takahashi
暁史 高橋
Shinichi Wakui
真一 湧井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2012044927A priority Critical patent/JP6055189B2/en
Priority to CN2013200769715U priority patent/CN203278582U/en
Publication of JP2013183510A publication Critical patent/JP2013183510A/en
Application granted granted Critical
Publication of JP6055189B2 publication Critical patent/JP6055189B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a permanent magnet type dynamoelectric machine having a rotor of I-shaped magnet arrangement, in which the permanent magnet end on the inner peripheral side of the rotor is less likely to be demagnetized.SOLUTION: The permanent magnet type dynamoelectric machine includes a magnetic body 31 having magnet insertion holes 4 arranged radially from the rotating shaft side, and a rotor 10 consisting of permanent magnets 5, 6 placed in the magnet insertion holes 4 and magnetized in the circumferential direction. The width direction dimension of the permanent magnet on the inner peripheral side of the rotor is set smaller than that on the outer peripheral side of the rotor, and the area between the magnetic poles of the permanent magnet 6 held on the inner peripheral side of the rotor is widened, thus reducing magnetic flux density of the magnetic poles and enhancing demagnetization resistance of the permanent magnet 6 on the inner peripheral side of the rotor.

Description

本発明は、永久磁石式回転電機に係り、特に、回転子にシャフト側から放射状に配置された磁石挿入孔を有するI字磁石配置の永久磁石式回転電機に関するものである。   The present invention relates to a permanent magnet type rotating electrical machine, and more particularly to a permanent magnet type rotating electrical machine having an I-shaped magnet arrangement having magnet insertion holes radially arranged on a rotor from a shaft side.

近年、地球環境保全や省エネに対する認識が高まり、エア・コンディショナーや冷蔵庫に用いられる圧縮機をはじめ電気自動車(EV)、ハイブリッド電気自動車(HEV)、燃料電池自動車に搭載される電動機(永久磁石同期機)も小型高効率が求められている。   In recent years, awareness of global environmental conservation and energy conservation has increased, and electric motors (permanent magnet synchronous machines) mounted on electric vehicles (EV), hybrid electric vehicles (HEV), and fuel cell vehicles, including compressors used in air conditioners and refrigerators. ) Is also required to be small and highly efficient.

永久磁石同期機の出力密度向上の手段として、磁石表面積を増加させ、磁石の磁束量を増加することが挙げられる。限られた回転子断面において、磁石の磁束量を増加するためには磁石配置を工夫する必要があり、代表的な配置方法として、平板、V字、I字磁石配置などがある。なかでもI字磁石配置は回転子外径から内径に向けて磁石を配置する構成であり、径方向長さに応じて磁石長を得ることができるため、他の磁石配置に比べ磁石表面積の確保が容易である。   As a means for improving the output density of the permanent magnet synchronous machine, increasing the magnet surface area and increasing the amount of magnetic flux of the magnet can be mentioned. In order to increase the amount of magnetic flux of the magnet in a limited rotor cross section, it is necessary to devise a magnet arrangement, and typical arrangement methods include flat plate, V-shaped, and I-shaped magnet arrangement. Above all, the I-shaped magnet arrangement is a configuration in which the magnet is arranged from the rotor outer diameter toward the inner diameter, and the magnet length can be obtained according to the length in the radial direction, so that the magnet surface area is secured compared to other magnet arrangements. Is easy.

永久磁石から発生する磁束はいくつかの経路を持つ。1つは磁性体で構成された磁極部を通り、ギャップを通過し、固定子を通過したのち回転子に戻る循環経路を通る磁束である。この磁束は回転に寄与する有効磁束である。他の経路を持つ磁束は回転に寄与しない漏れ磁束となる。例えば、回転子内径側および外径側の永久磁石端部に配置された磁性体部分を通る経路があげられる。これらの漏れ磁束を低減できれば、同一磁石量で有効磁束の増加が可能となる。   The magnetic flux generated from the permanent magnet has several paths. One is a magnetic flux that passes through a magnetic pole portion made of a magnetic material, passes through a gap, passes through a stator, and then returns to the rotor. This magnetic flux is an effective magnetic flux that contributes to rotation. Magnetic flux having other paths becomes leakage magnetic flux that does not contribute to rotation. For example, the path | route which passes along the magnetic body part arrange | positioned at the permanent magnet edge part of a rotor inner diameter side and an outer diameter side is mention | raise | lifted. If these leakage magnetic fluxes can be reduced, the effective magnetic flux can be increased with the same magnet amount.

I字磁石配置の永久磁石式回転電機において、漏れ磁束を低減する構造として、例えば、特許文献1に記載されたものがある。特許文献1では、回転軸を囲む環状の連結部と扇形の磁極部とが一体に形成された積層鉄心と、磁極部相互間に配置された永久磁石とを備え、連結部のうち永久磁石の内側の部分には中空部を形成し、永久磁石と中空部の間には内つばを積層鉄心により形成し、隣合う中空部の間のつなぎ部が径方向に伸びて扇形の磁極部と連結部を連結するようにした回転子が提案されている。   In a permanent magnet type rotating electrical machine having an I-shaped magnet arrangement, for example, there is one described in Patent Document 1 as a structure for reducing leakage magnetic flux. Patent Document 1 includes a laminated iron core in which an annular connecting portion surrounding a rotating shaft and a fan-shaped magnetic pole portion are integrally formed, and a permanent magnet disposed between the magnetic pole portions, and the permanent magnet of the connecting portion is provided. A hollow part is formed in the inner part, an inner collar is formed by a laminated iron core between the permanent magnet and the hollow part, and a connecting part between adjacent hollow parts extends in the radial direction and is connected to the fan-shaped magnetic pole part. There has been proposed a rotor that connects the parts.

この構造によれば、有効磁束は、扇形の磁極部‐回転子・固定子間のエアギャップ‐固定子で形成される循環経路を通る。一方、漏れ磁束は、扇形の磁極部‐つなぎ部‐連結部で形成される循環経路、扇形の磁極部‐内つば‐中空部で形成される循環経路、扇形の磁極部‐外つば‐永久磁石の外側の空隙で形成される循環経路を通る。後者の2つの循環経路は空隙により磁気抵抗が大きいため漏れ磁束が小さい。扇形の磁極部‐つなぎ部‐連結部で形成される循環経路には空隙部がないが、つなぎ部の幅を小さくすることにより磁気抵抗を大きくすることができ、この循環経路の漏れ磁束を小さく抑えることができ、その結果、有効磁束が増加する。   According to this structure, the effective magnetic flux passes through a circulation path formed by a fan-shaped magnetic pole portion-rotor / stator air gap-stator. On the other hand, the leakage flux is a circulation path formed by a fan-shaped magnetic pole part-connecting part-connecting part, a circulation path formed by a fan-shaped magnetic pole part-inner collar-hollow part, and a fan-shaped magnetic pole part-outer collar-permanent magnet. It passes through the circulation path formed by the void outside. Since the latter two circulation paths have a large magnetic resistance due to the air gap, the leakage magnetic flux is small. There is no gap in the circulation path formed by the fan-shaped magnetic pole part-connecting part-connecting part, but the magnetic resistance can be increased by reducing the width of the connecting part, and the leakage flux of this circulating path is reduced. As a result, the effective magnetic flux increases.

特開2000-156946号公報Japanese Unexamined Patent Publication No. 2000-156946 特開2010-11640号公報JP 2010-11640 特開2011-91911号公報JP 2011-91911 A

I字磁石配置の回転子では、回転子内径側に向かうにつれ隣接する永久磁石間の距離が短くなることから、磁束密度は高くなる傾向にある。このため、永久磁石の回転子内径側の周方向両端部では反磁界が加わった場合に減磁しやすいという課題がある。また、特許文献1のように、回転子内径側に中空部を設けた場合にはさらに回転子内周側の磁性体の量が少なくなるので、より減磁しやすくなる。特許文献1では、この回転子内周側の永久磁石端部における減磁については考慮されていない。   In a rotor with an I-shaped magnet arrangement, the distance between adjacent permanent magnets becomes shorter toward the inner diameter side of the rotor, so that the magnetic flux density tends to increase. For this reason, there exists a subject that it is easy to demagnetize, when a demagnetizing field is added in the circumferential direction both ends of the rotor inner diameter side of a permanent magnet. Further, when a hollow portion is provided on the inner diameter side of the rotor as in Patent Document 1, the amount of magnetic material on the inner peripheral side of the rotor is further reduced, so that it is easier to demagnetize. In Patent Document 1, demagnetization at the end portion of the permanent magnet on the inner peripheral side of the rotor is not considered.

本発明の目的は、I字磁石配置の回転子を有する永久磁石式回転電機において回転子内周側の永久磁石端部が減磁しにくい永久磁石式回転電機を提供することにある。   An object of the present invention is to provide a permanent magnet type rotating electrical machine in which a permanent magnet end portion on the inner peripheral side of the rotor is hard to demagnetize in a permanent magnet type rotating electrical machine having a rotor with an I-shaped magnet arrangement.

本発明の他の目的は、I字磁石配置の回転子を有する永久磁石式回転電機において、回転子内周側の磁石端部で発生する漏れ磁束を低減し、かつ回転子内周側の永久磁石端部が減磁しにくい永久磁石式回転電機を提供することにある。   Another object of the present invention is to reduce leakage magnetic flux generated at the magnet end portion on the rotor inner peripheral side and to make permanent on the rotor inner peripheral side in a permanent magnet type rotating electric machine having a rotor with an I-shaped magnet arrangement. An object of the present invention is to provide a permanent magnet type rotating electrical machine in which a magnet end portion is not easily demagnetized.

本発明は、回転軸側から放射状に配置された磁石挿入孔を有する磁性体と、磁石挿入孔に配置され周方向に磁化された永久磁石から構成された回転子を有する永久磁石式回転電機において、永久磁石の回転子外周側における幅方向寸法に対して、回転子内周側における幅方向寸法を小さくしたことを特徴とする。   The present invention relates to a permanent magnet type rotating electrical machine having a rotor composed of a magnetic body having magnet insertion holes arranged radially from the rotating shaft side and a permanent magnet arranged in the magnet insertion hole and magnetized in the circumferential direction. The width direction dimension on the rotor inner periphery side is made smaller than the width direction dimension on the rotor outer periphery side of the permanent magnet.

また、本発明は、回転軸側から放射状に配置された磁石挿入孔を有する磁性体と、磁石挿入孔に配置され周方向に磁化された永久磁石から構成された回転子を有する永久磁石式回転電機において、回転軸と永久磁石との間に空孔又は非磁性体を設け、かつ永久磁石の回転子外周側における幅方向寸法に対して、回転子内周側における幅方向寸法を小さくしたことを特徴とする。   Further, the present invention provides a permanent magnet type rotation having a rotor composed of a magnetic body having magnet insertion holes arranged radially from the rotating shaft side and a permanent magnet arranged in the magnet insertion holes and magnetized in the circumferential direction. In an electric machine, a hole or a non-magnetic material is provided between the rotating shaft and the permanent magnet, and the width direction dimension on the rotor inner periphery side is made smaller than the width direction dimension on the rotor outer periphery side of the permanent magnet. It is characterized by.

本発明によれば、永久磁石の回転子内周側の幅を回転子外周側の幅より小さくしているので、永久磁石の回転子内周側に挟まれた磁極間部の面積が広くなり、これによりその磁極間部の磁束密度が低下し、回転子内周側の永久磁石の減磁耐力が向上し、減磁しにくい永久磁石式回転電機を得ることができる。   According to the present invention, since the width of the inner periphery of the rotor of the permanent magnet is smaller than the width of the outer periphery of the rotor, the area between the magnetic poles sandwiched between the inner periphery of the rotor of the permanent magnet is increased. As a result, the magnetic flux density between the magnetic poles is reduced, the demagnetization resistance of the permanent magnet on the inner peripheral side of the rotor is improved, and a permanent magnet type rotating electrical machine that is difficult to demagnetize can be obtained.

また、本発明によれば、回転軸と永久磁石との間に空孔又は非磁性体を設けているので回転子内周側の永久磁石端部で発生する漏れ磁束を低減でき、永久磁石の回転子内周側の幅を回転子外周側の幅より小さくしているので、回転子内周側の永久磁石の回転子内周側に挟まれた磁極間部の面積が広くなり、これによりその磁極間部の磁束密度が低下し、回転子内周側の永久磁石の減磁耐力が向上し、減磁しにくい永久磁石式回転電機を得ることができる。   In addition, according to the present invention, since a hole or a non-magnetic material is provided between the rotating shaft and the permanent magnet, leakage magnetic flux generated at the end of the permanent magnet on the inner peripheral side of the rotor can be reduced. Since the width on the rotor inner peripheral side is smaller than the width on the rotor outer peripheral side, the area of the magnetic pole part sandwiched between the rotor inner peripheral side of the permanent magnet on the rotor inner peripheral side is increased, thereby The magnetic flux density between the magnetic poles is reduced, the demagnetization resistance of the permanent magnet on the inner peripheral side of the rotor is improved, and a permanent magnet type rotating electrical machine that is difficult to demagnetize can be obtained.

本発明の第1の実施例による永久磁石式回転電機の回転子の軸方向断面図。1 is an axial sectional view of a rotor of a permanent magnet type rotating electric machine according to a first embodiment of the present invention. 本発明の第2の実施例による永久磁石式回転電機の回転子の軸方向断面図Axial sectional view of a rotor of a permanent magnet type rotating electrical machine according to a second embodiment of the present invention. 磁性体における磁束密度と透磁率の関係を示す図。The figure which shows the relationship between the magnetic flux density and magnetic permeability in a magnetic body. 本発明の第3の実施例による永久磁石式回転電機の回転子の径方向断面図。The radial direction sectional view of the rotor of the permanent magnet type rotating electrical machine by the 3rd example of the present invention. 本発明の第3の実施例におけるシャフト固定冶具の斜視図。The perspective view of the shaft fixing jig in the 3rd Example of this invention. 本発明の第4の実施例による永久磁石式回転電機の回転子の軸方向断面図。The axial direction sectional view of the rotor of the permanent magnet type rotating electrical machine by the 4th example of the present invention. 本発明の永久磁石式回転電機を圧縮機に適用した図。The figure which applied the permanent-magnet-type rotary electric machine of this invention to the compressor.

以下、本発明の実施例について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の第1の実施例による永久磁石式回転電機(永久磁石同期機)の回転子軸方向に垂直な断面図の一部を示す。永久磁石同期機は、回転子鉄心に永久磁石を軸方向に装着した回転子10と、この回転子10の外周に所定の隙間を介して対向配置され電機子巻線を施した固定子(図示省略)と、回転子10のシャフト挿入孔に装着されたシャフト(回転軸)13とから構成されている。   FIG. 1 shows a part of a sectional view perpendicular to the rotor axial direction of a permanent magnet type rotating electrical machine (permanent magnet synchronous machine) according to a first embodiment of the present invention. The permanent magnet synchronous machine includes a rotor 10 in which a permanent magnet is attached to a rotor core in the axial direction, and a stator (not shown) that is disposed opposite to the outer periphery of the rotor 10 with a predetermined gap and armature windings. And a shaft (rotating shaft) 13 mounted in the shaft insertion hole of the rotor 10.

磁性体31には、回転子外径側から回転子内径側に向かって凸形状となる複数の磁石挿入孔4がシャフト側から放射状に形成されている。回転子10は、磁性体31で構成された回転子鉄心と、磁石挿入孔4に装着され周方向に磁化された永久磁石5,6とから構成される。周方向に磁化された永久磁石がシャフト側から放射状に配置される構造をI字磁石配置という。本実施例では、1極の永久磁石を、回転子外径側に配置された第一の永久磁石5と回転子内径側に配置された第二の永久磁石6の二つの磁石(フェライト磁石)で構成している。第一の永久磁石5と第二の永久磁石6は周方向に着磁され、周方向の永久磁石面5aは向かい合う永久磁石の周方向の永久磁石面5bと同一の極を持ち、永久磁石に挟まれた磁性体は永久磁石面5a,5bと同一の極性を持つ磁極部30となる。   In the magnetic body 31, a plurality of magnet insertion holes 4 that are convex from the rotor outer diameter side toward the rotor inner diameter side are formed radially from the shaft side. The rotor 10 is composed of a rotor core made of a magnetic material 31 and permanent magnets 5 and 6 that are mounted in the magnet insertion hole 4 and are magnetized in the circumferential direction. A structure in which permanent magnets magnetized in the circumferential direction are arranged radially from the shaft side is called I-shaped magnet arrangement. In this embodiment, one permanent magnet is divided into two magnets (ferrite magnets): a first permanent magnet 5 disposed on the rotor outer diameter side and a second permanent magnet 6 disposed on the rotor inner diameter side. It consists of. The first permanent magnet 5 and the second permanent magnet 6 are magnetized in the circumferential direction, and the circumferential permanent magnet surface 5a has the same pole as the circumferential permanent magnet surface 5b of the opposing permanent magnet. The sandwiched magnetic body becomes the magnetic pole portion 30 having the same polarity as the permanent magnet surfaces 5a and 5b.

磁性体31には、爪形状の外つば36が形成され、永久磁石は爪形状の外つば36で回転子外周側が保持されている。対向する外つば36の間には、第一の永久磁石5の回転子外周側端部における周方向の磁気抵抗となる空隙29が形成されている。また、磁性体31には、第二の永久磁石6の径方向内側(第2の永久磁石6とシャフト13との間)に丸みの付いた長方形の空孔3が形成されている。第二の永久磁石6の中央部は空孔3に露出している。空孔3の両端に内つば37が形成され、内つば37により永久磁石6の回転子内周側が保持されている。   A claw-shaped outer collar 36 is formed on the magnetic body 31, and the outer peripheral side of the rotor is held on the permanent magnet by the claw-shaped outer collar 36. A gap 29 serving as a magnetic resistance in the circumferential direction is formed between the opposing outer collars 36 at the outer circumferential end of the rotor of the first permanent magnet 5. In addition, the magnetic body 31 is formed with a rectangular hole 3 that is rounded inside the second permanent magnet 6 in the radial direction (between the second permanent magnet 6 and the shaft 13). The central portion of the second permanent magnet 6 is exposed in the hole 3. Inner collars 37 are formed at both ends of the air holes 3, and the inner peripheral side of the rotor of the permanent magnet 6 is held by the inner collars 37.

特許文献1も含め、従来のI字磁石配置の回転子では、回転子内径側に近づくにつれ、隣接する磁石間の距離は短くなる。すなわち、回転子内径側の磁極間面積が小さくなることから、当該部の磁束密度が高くなるため永久磁石6の回転子内径側の周方向両端部は反磁界が生じた場合に減磁しやすい。   In a conventional rotor including an I-shaped magnet arrangement including Patent Document 1, the distance between adjacent magnets decreases as the rotor inner diameter side is approached. In other words, since the area between the magnetic poles on the inner diameter side of the rotor is reduced, the magnetic flux density of the portion is increased. .

これに対し、本実施例では、永久磁石6の幅方向厚さ(磁化方向厚さ)を永久磁石5の幅方向厚さ(磁化方向厚さ)より小さくすることで、永久磁石6に挟まれた磁極間部の面積が広くなるようにしている。これによって、当該部の磁束密度が低下し、永久磁石6の減磁耐力向上が可能となる。なお、V字磁石配置においては、従来、特許文献2や3に記載のように、V字型中央の回転子鉄心の内径側となる磁石端部厚さがV字型左右端部となる回転子鉄心の外径側に向かって磁石厚さが増すようにしたものが提案されている。しかし、V字磁石配置では、減磁の要因があるのは外径側のみなので、外径側の磁石厚さを増して外径側の永久磁石が減磁しにくくするものである。一方、I字磁石配置では、回転子外周側の隣接する永久磁石間の距離は長く、回転子外周側の磁極間面積が大きいので、回転子外周側の減磁の問題は殆どない。即ち、V字磁石配置の特許文献2や3に開示された技術的思想は、本発明が対象とするI字磁石配置では参考とならない。そして、V字磁石配置では、その構造上、シャフト近傍の磁性体の量が多くなり、I字磁石配置において問題となる永久磁石の内径側の減磁は殆ど生じない。即ち、本発明は、I字磁石配置において生ずる永久磁石の回転子内周側の減磁という特有の課題を見出して解決するものであり、V字磁石配置の特許文献2や3とは異なる技術的思想である。   On the other hand, in this embodiment, the permanent magnet 6 is sandwiched between the permanent magnets 6 by making the thickness in the width direction (magnetization direction thickness) smaller than the thickness in the width direction (magnetization direction thickness) of the permanent magnet 5. The area between the magnetic poles is increased. As a result, the magnetic flux density of the part decreases, and the demagnetization resistance of the permanent magnet 6 can be improved. In addition, in the V-shaped magnet arrangement, as described in Patent Documents 2 and 3, conventionally, the rotation of the magnet end portion that is the inner diameter side of the V-shaped central rotor core becomes the V-shaped left and right end portions. There has been proposed a magnet whose thickness increases toward the outer diameter side of the core. However, in the V-shaped magnet arrangement, since the demagnetization factor is only on the outer diameter side, the thickness of the outer diameter side magnet is increased to make it difficult for the outer diameter side permanent magnet to be demagnetized. On the other hand, in the I-shaped magnet arrangement, the distance between adjacent permanent magnets on the outer periphery side of the rotor is long and the area between the magnetic poles on the outer periphery side of the rotor is large, so there is almost no problem of demagnetization on the outer periphery side of the rotor. That is, the technical idea disclosed in Patent Documents 2 and 3 of the V-shaped magnet arrangement is not helpful in the I-shaped magnet arrangement targeted by the present invention. In the V-shaped magnet arrangement, the amount of magnetic material in the vicinity of the shaft increases due to the structure, and almost no demagnetization occurs on the inner diameter side of the permanent magnet, which is a problem in the I-shaped magnet arrangement. That is, the present invention finds and solves a specific problem of demagnetization on the rotor inner circumference side of a permanent magnet that occurs in an I-shaped magnet arrangement, and is a technique different from Patent Documents 2 and 3 of a V-shaped magnet arrangement. Is an ideal thought.

また、本実施例によれば、I字磁石配置における永久磁石の着磁の困難さを解消することができる。すなわち、磁界強度はアンペールの法則により距離に反比例する。I字磁石配置において、永久磁石を回転子に組み込んだ状態で着磁する場合、回転子内径側に向かうにつれ磁界強度が低下し、着磁性が悪化する。回転子外周側に着磁ヨークなどを配置して、永久磁石5および6を着磁する場合、永久磁石6の着磁性は永久磁石5より低い。永久磁石の着磁特性は磁石厚さ、すなわち磁石のパーミアンスの影響を受ける。磁石が磁化方向に対して薄くなり、パーミアンスが大きくなる、すなわち、磁束を通しやすくなるほど着磁が容易となる。したがって、I字磁石配置の場合、内径側に配置された磁石ほど着磁性が低下するが、本実施例のように永久磁石6の磁化方向厚さを永久磁石5の磁化方向厚さより小さくすることで、従来構造よりも着磁性を向上することができる。   Further, according to the present embodiment, it is possible to eliminate the difficulty of magnetizing the permanent magnet in the I-shaped magnet arrangement. That is, the magnetic field strength is inversely proportional to the distance according to Ampere's law. In the I-shaped magnet arrangement, when the magnet is magnetized with the permanent magnet incorporated in the rotor, the magnetic field strength decreases and the magnetism deteriorates toward the inner diameter of the rotor. When a magnetizing yoke or the like is disposed on the outer peripheral side of the rotor and the permanent magnets 5 and 6 are magnetized, the magnetization of the permanent magnet 6 is lower than that of the permanent magnet 5. The magnetizing characteristics of the permanent magnet are affected by the magnet thickness, that is, the permeance of the magnet. Magnetization becomes easier as the magnet becomes thinner with respect to the magnetization direction and permeance increases, that is, the easier the magnetic flux is passed. Therefore, in the case of the I-shaped magnet arrangement, the magnetism is reduced as the magnet is arranged on the inner diameter side, but the magnetization direction thickness of the permanent magnet 6 is made smaller than the magnetization direction thickness of the permanent magnet 5 as in this embodiment. Thus, the magnetization can be improved as compared with the conventional structure.

本実施例では、第一の永久磁石5及び第二の永久磁石6としてフェライト磁石を用いているが、希土類を主成分とした焼結磁石を用いても良い。また、アルニコ磁石やボンド磁石などで形成しても良い。また、本実施例では、第一の永久磁石5と第二の永久磁石6は、別体構成としているが、同一種類の一体構成の永久磁石としても良い。フェライト磁石で形成する場合には、別体で構成した方が製造しやすい。また、第二の永久磁石6を第一の永久磁石5より残留磁束密度の高い材料で構成した場合(例えば、第一の永久磁石5をフェライト磁石で構成し、第二の永久磁石6をネオジム磁石で構成した場合)、同一の磁石サイズでつなぎ部35が磁気飽和しやすくなることから、出力が向上する。また、複数枚に分割した永久磁石を軸方向、または周方向に配置して、第一の永久磁石5または第二の永久磁石6を構成しても良い。また、第一の永久磁石5と第二の永久磁石6はそれぞれ同一種類の1枚の磁石で形成しても良いし、異なる種類の磁石で形成しても良い。   In this embodiment, ferrite magnets are used as the first permanent magnet 5 and the second permanent magnet 6, but sintered magnets containing rare earth as a main component may be used. Moreover, you may form with an Alnico magnet, a bond magnet, etc. Moreover, in the present Example, although the 1st permanent magnet 5 and the 2nd permanent magnet 6 are made into the separate body structure, it is good also as a permanent magnet of the same kind of integral structure. In the case of forming with a ferrite magnet, it is easier to manufacture if it is configured separately. When the second permanent magnet 6 is made of a material having a higher residual magnetic flux density than the first permanent magnet 5 (for example, the first permanent magnet 5 is made of a ferrite magnet, and the second permanent magnet 6 is made of neodymium. In the case of a magnet, the connecting portion 35 is likely to be magnetically saturated with the same magnet size, so that the output is improved. Further, the first permanent magnet 5 or the second permanent magnet 6 may be configured by arranging the permanent magnets divided into a plurality of sheets in the axial direction or the circumferential direction. Further, the first permanent magnet 5 and the second permanent magnet 6 may be formed of one magnet of the same type, or may be formed of different types of magnets.

また、本実施例では、磁石挿入孔を回転子外径側から回転子内径側に向かって凸形状となるように形成しているが、内径側に向かうにつれ段階的に幅を狭めて形成してもいいし、台形形状(または扇状)に形成しても良い。また、回転子の構成材料として磁性体としているが、積層鋼板で構成しても良いし、圧粉磁心で構成しても良い。   In this embodiment, the magnet insertion hole is formed so as to have a convex shape from the rotor outer diameter side toward the rotor inner diameter side, but the width is gradually reduced toward the inner diameter side. Alternatively, it may be formed in a trapezoidal shape (or fan shape). Moreover, although it is set as the magnetic body as a constituent material of a rotor, you may comprise with a laminated steel plate and may comprise with a dust core.

また、本実施例では、磁性体31に外つば36を形成し、外つばで永久磁石の回転子外周側を保持しているので、永久磁石の外周端部に空隙29が形成される。その結果、固定子・回転子間のエアギャップ部分の磁気抵抗が空隙29の磁気抵抗に対し相対的に小さくなる。これにより、回転子外周側の永久磁石端部で発生する磁束は固定子・回転子間のエアギャップを通り固定子を通過する有効磁束となる。また、空隙29の部分(溝)に非磁性体を設けても良い。なお、減磁抑制の効果を得るという観点では、漏れ磁束低減という効果は得られないが、空隙29をなくして磁性体で永久磁石を保持するようにしても良い。   In the present embodiment, the outer collar 36 is formed on the magnetic body 31 and the outer peripheral side of the rotor of the permanent magnet is held by the outer collar. Therefore, the air gap 29 is formed at the outer peripheral end of the permanent magnet. As a result, the magnetic resistance of the air gap portion between the stator and the rotor becomes relatively smaller than the magnetic resistance of the air gap 29. Thereby, the magnetic flux generated at the end of the permanent magnet on the outer periphery side of the rotor becomes an effective magnetic flux passing through the stator through the air gap between the stator and the rotor. Further, a nonmagnetic material may be provided in the space 29 (groove). Note that, from the viewpoint of obtaining the effect of suppressing demagnetization, the effect of reducing leakage magnetic flux cannot be obtained, but the air gap 29 may be eliminated and the permanent magnet may be held by a magnetic material.

また、本実施例では、回転子内径側の磁石挿入孔に隣接して空孔3を設けているので、永久磁石6の回転子内周側の端部で発生する漏れ磁束を低減できる。また、連結部32およびつなぎ部35を通る漏れ磁束がつなぎ部35によって制限されることから、つなぎ部35を磁気飽和させ透磁率を下げることで有効磁束が増加する。すなわち、つなぎ部35の幅を細くすることで有効磁束の増加につながる。また、空孔3を大きくすることによりつなぎ部35の幅が小さくなって有効磁束の増加につながり、空孔3を小さくすることによりつなぎ部35の幅が大きくなって回転子の機械的強度向上につながる(つなぎ部35は外つば36で受ける永久磁石の遠心力を磁極部30を介して磁極部30の遠心力とともに受けるのでつなぎ部35の幅を広くすることによって機械的強度が向上する。)。したがって、漏れ磁束の低減と機械的強度向上の両方の観点から空孔3の大きさが決められる。なお、減磁抑制の効果を得るという観点では、漏れ磁束低減という効果は得られないが、空孔3をなくしても良い。   Further, in this embodiment, since the air holes 3 are provided adjacent to the magnet insertion holes on the rotor inner diameter side, the leakage magnetic flux generated at the end portion of the permanent magnet 6 on the rotor inner peripheral side can be reduced. Moreover, since the leakage magnetic flux which passes through the connection part 32 and the connection part 35 is restrict | limited by the connection part 35, an effective magnetic flux increases by magnetically saturating the connection part 35 and reducing a magnetic permeability. In other words, reducing the width of the connecting portion 35 leads to an increase in effective magnetic flux. Further, increasing the hole 3 reduces the width of the connecting portion 35 and leads to an increase in effective magnetic flux, and reducing the hole 3 increases the width of the connecting portion 35 and improves the mechanical strength of the rotor. (The connecting portion 35 receives the centrifugal force of the permanent magnet received by the outer collar 36 together with the centrifugal force of the magnetic pole portion 30 via the magnetic pole portion 30, so that the mechanical strength is improved by increasing the width of the connecting portion 35. ). Therefore, the size of the hole 3 is determined from the viewpoint of both the reduction of the leakage magnetic flux and the improvement of the mechanical strength. Note that, from the viewpoint of obtaining the effect of suppressing demagnetization, the effect of reducing leakage magnetic flux cannot be obtained, but the holes 3 may be eliminated.

図2は、本発明の第2の実施例による永久磁石式回転電機(永久磁石同期機)の回転子軸方向に垂直な断面図を示す。図2では固定子とシャフトの図示を省略している。また、本実施例における回転子の基本構成および第一,第二の永久磁石5,6の形状と配置は、上述の第1の実施例に準ずるので説明を省略する。   FIG. 2 is a cross-sectional view perpendicular to the rotor axial direction of a permanent magnet type rotating electrical machine (permanent magnet synchronous machine) according to a second embodiment of the present invention. In FIG. 2, the stator and the shaft are not shown. In addition, the basic configuration of the rotor and the shapes and arrangements of the first and second permanent magnets 5 and 6 in the present embodiment are the same as those in the first embodiment described above, and thus the description thereof is omitted.

第1の実施例では、固定子内径側の漏れ磁束を低減するには、上述したように、つなぎ部35の幅を細くすることが有効である。しかし、上述したように、つなぎ部35は径方向の遠心力を受け、第2の永久磁石6の内側の角と空孔3の角の部分に応力が集中することから、応力集中部を円弧で形成するとともに、つなぎ部35の幅を広くすることが求められる。すなわち、漏れ磁束の低減と強度向上の両立が難しい。本実施例では、永久磁石の内周側の減磁耐力向上に加えて、機械的強度を向上するとともに、漏れ磁束を低減するものである。   In the first embodiment, to reduce the leakage magnetic flux on the inner diameter side of the stator, it is effective to reduce the width of the connecting portion 35 as described above. However, as described above, the joint portion 35 receives a centrifugal force in the radial direction, and stress concentrates on the inner corner of the second permanent magnet 6 and the corner of the hole 3. And the width of the connecting portion 35 is required to be wide. That is, it is difficult to achieve both reduction of leakage magnetic flux and improvement of strength. In this embodiment, in addition to improving the demagnetization resistance on the inner peripheral side of the permanent magnet, the mechanical strength is improved and the leakage magnetic flux is reduced.

本実施例では、回転子内径側の永久磁石端部を周方向に延びるリブ39により保持している。リブ39は円環状の連結部32から径方向に延びるヨーク11に連結されている。ヨーク11のリブと反対側(回転子内側)端部は円環状の連結部32に連結され、ヨーク11は回転子中心側から放射状に配置されている。ヨーク11の両側には空孔3が形成され、ヨーク11が周方向に空孔3を介して放射状に配置されたようになっている。円環状の連結部32の内側にはシャフト13が挿入されるシャフト挿入孔12が設けられている。   In this embodiment, the end of the permanent magnet on the inner diameter side of the rotor is held by the rib 39 extending in the circumferential direction. The rib 39 is connected to the yoke 11 extending in the radial direction from the annular connecting portion 32. The end of the yoke 11 opposite to the rib (inner side of the rotor) is connected to an annular connecting part 32, and the yoke 11 is arranged radially from the rotor center side. Holes 3 are formed on both sides of the yoke 11, and the yokes 11 are arranged radially through the holes 3 in the circumferential direction. A shaft insertion hole 12 into which the shaft 13 is inserted is provided inside the annular coupling portion 32.

磁束は磁路長が短く透磁率が高い方向、すなわち磁気抵抗が低い方向に経路を決定する。有効磁束を増加するためには漏れ磁束の経路を低減する必要がある。主な漏れ磁束の経路として、本実施例では、磁極部30、リブ39を通る経路(1)と、外つば36、空隙29を通る経路(2)がある。経路(2)を通る漏れ磁束は上述したように空隙29による磁気抵抗が大きいため漏れ磁束が低減される。   The path of the magnetic flux is determined so that the magnetic path length is short and the magnetic permeability is high, that is, the magnetic resistance is low. In order to increase the effective magnetic flux, it is necessary to reduce the path of the leakage magnetic flux. In this embodiment, there are a path (1) passing through the magnetic pole portion 30 and the rib 39 and a path (2) passing through the outer collar 36 and the air gap 29 as main leakage flux paths. As described above, the leakage magnetic flux passing through the path (2) has a large magnetic resistance due to the air gap 29, so that the leakage magnetic flux is reduced.

経路(1)を通る漏れ磁束の低減には、磁気飽和によりリブ39の透磁率を下げることが有効である。図3に電磁鋼板の汎用品の磁気特性を示す。磁気飽和は磁性体の特性で決定され、図3では、磁束密度が1.6Tを超えると、透磁率は空気とほぼ同じになる。したがって、リブの透磁率の低下策としては、リブの幅(径方向の厚さ)を小さくすることで磁束密度を高め、磁気飽和させることが挙げられる。   In order to reduce the leakage magnetic flux passing through the path (1), it is effective to lower the magnetic permeability of the rib 39 by magnetic saturation. FIG. 3 shows the magnetic properties of a general-purpose electromagnetic steel sheet. Magnetic saturation is determined by the characteristics of the magnetic material. In FIG. 3, when the magnetic flux density exceeds 1.6T, the magnetic permeability is almost the same as that of air. Therefore, as a measure for reducing the magnetic permeability of the rib, it is possible to increase the magnetic flux density and reduce the magnetic saturation by reducing the rib width (the thickness in the radial direction).

リブを細くすることで回転子の機械的強度が低下するが、本実施例では、図2に示すようにヨーク11を設け、かつ内径側に配置される永久磁石6の磁化方向厚さを小さくすることにより、図2に示すように応力集中部38を分散させ、機械的強度を向上するようにしている。   Although the mechanical strength of the rotor is reduced by making the ribs thinner, in this embodiment, the yoke 11 is provided as shown in FIG. 2, and the thickness of the permanent magnet 6 disposed on the inner diameter side is reduced. By doing so, the stress concentration portions 38 are dispersed as shown in FIG. 2 to improve the mechanical strength.

本実施例によれば、第1の実施例の効果に加えて、回転子の機械的強度を向上するとともに、漏れ磁束を低減することが可能となる。   According to this embodiment, in addition to the effects of the first embodiment, it is possible to improve the mechanical strength of the rotor and reduce the leakage magnetic flux.

なお、第一,第二の永久磁石5,6の構成や、磁石挿入孔の構成、回転子の構成、およびそれら変形例は、第1の実施例と同様である。   The configuration of the first and second permanent magnets 5 and 6, the configuration of the magnet insertion hole, the configuration of the rotor, and their modifications are the same as those in the first embodiment.

また、本実施例では、空孔3を5角形としているが他の形状でも良い。例えば、3角形、円形、円弧、かまぼこ状などでも良い。また、空孔3の各頂点に円弧を設けても良い。また、空孔3内に非磁性体や磁極部より透磁率の低い材料を設けても良い。また、本実施例では、回転子は6極で構成されているが2極以上であれば何極でも良い。   In this embodiment, the holes 3 are pentagonal, but other shapes may be used. For example, a triangular shape, a circular shape, an arc shape, or a kamaboko shape may be used. An arc may be provided at each apex of the hole 3. Further, a material having a lower magnetic permeability than the nonmagnetic material or the magnetic pole portion may be provided in the hole 3. In this embodiment, the rotor is composed of 6 poles, but any number of poles may be used as long as it is 2 poles or more.

図4は、本発明の第3の実施例による永久磁石式回転電機(永久磁石同期機)の回転子径方向断面図(回転子軸方向に沿って切断した断面図)を示し、図5は、第3の実施例で用いられているシャフト固定冶具の斜視図を示す。図4では固定子の図示を省略している。また、本実施例における回転子の基本構成および第一,第二の永久磁石5,6の形状と配置は、上述の第1,第2の実施例に準ずるので説明を省略する。   FIG. 4 shows a rotor radial direction cross-sectional view (cross-sectional view cut along the rotor axial direction) of a permanent magnet type rotating electrical machine (permanent magnet synchronous machine) according to a third embodiment of the present invention, and FIG. The perspective view of the shaft fixing jig used in the 3rd Example is shown. In FIG. 4, illustration of the stator is omitted. In addition, the basic configuration of the rotor and the shapes and arrangements of the first and second permanent magnets 5 and 6 in the present embodiment are the same as those in the first and second embodiments described above, and thus the description thereof is omitted.

本実施例で用いられるシャフト固定冶具7は、図5に示すように、円筒部9と円筒部9の中央に一体に設けられた中空軸8により構成されている。図4に示すように、円筒部9の中央には貫通孔が形成されており、中空軸8の内側に位置する回転子の連結部32の内側と円筒部9の貫通孔とでシャフト挿入孔12が形成されている。中空軸8は、図5に示すように、回転子10の磁性体31に形成された空孔3に入る大きさの複数の円弧片で形成されている。円筒部9には複数のネジ挿入穴20が形成されている。また、シャフト固定冶具7は非磁性体(アルミニウム)で構成されている。シャフト固定冶具7は、図4に示すように、回転子10の軸方向の両側から回転子を挟み込むように配置され、ボルト21とナット22によって回転子と締結している。シャフト固定冶具7の円筒部9とシャフト13とは焼きばめなどにより締結されており、回転子で発生するトルクはシャフト固定冶具7およびシャフト13を介して負荷(コンプレッサの回転部材や自動車の動力伝達機構など)に伝えられる。   As shown in FIG. 5, the shaft fixing jig 7 used in this embodiment includes a cylindrical portion 9 and a hollow shaft 8 that is integrally provided at the center of the cylindrical portion 9. As shown in FIG. 4, a through hole is formed in the center of the cylindrical portion 9, and a shaft insertion hole is formed by the inner side of the rotor connecting portion 32 located inside the hollow shaft 8 and the through hole of the cylindrical portion 9. 12 is formed. As shown in FIG. 5, the hollow shaft 8 is formed of a plurality of arc pieces having a size that can enter the air holes 3 formed in the magnetic body 31 of the rotor 10. A plurality of screw insertion holes 20 are formed in the cylindrical portion 9. The shaft fixing jig 7 is made of a non-magnetic material (aluminum). As shown in FIG. 4, the shaft fixing jig 7 is disposed so as to sandwich the rotor from both axial sides of the rotor 10, and is fastened to the rotor by bolts 21 and nuts 22. The cylindrical portion 9 and the shaft 13 of the shaft fixing jig 7 are fastened by shrink fitting or the like, and the torque generated by the rotor is loaded via the shaft fixing jig 7 and the shaft 13 (the rotating member of the compressor or the power of the automobile). To the transmission mechanism).

本実施例により回転子10とシャフト13の一体化が容易となる。即ち、シャフト13と回転子鉄心の締結を焼きばめにより実施した場合、実施例1,2では、空孔3を設けることで焼きばめ時の応力により回転子の連結部32の内側に形成されるシャフト挿入孔12が変形したり、締結に必要なしめ代を確保できないという問題がある。これに対し、本実施例では、回転子(鉄心)とシャフトとの連結をシャフト固定冶具7を介して行うようにしているので、回転子の連結部32の内側に形成されるシャフト挿入孔12の内径をシャフト13の外径より大きくでき、そして、シャフト焼きばめ時に発生する応力は回転子(鉄心)に加わらなくなり、さらに回転子のしめ代も必要なくなる。また、シャフト固定冶具7はバランスウェイトを兼ねるようにすることもできる。   According to this embodiment, the rotor 10 and the shaft 13 can be easily integrated. That is, when the shaft 13 and the rotor core are fastened by shrink fitting, in the first and second embodiments, the air holes 3 are provided to form inside the rotor connecting portion 32 due to stress during shrink fitting. There is a problem that the shaft insertion hole 12 to be deformed is not able to be secured, and a margin required for fastening cannot be secured. On the other hand, in this embodiment, since the rotor (iron core) and the shaft are connected via the shaft fixing jig 7, the shaft insertion hole 12 formed inside the rotor connecting portion 32 is used. The inner diameter of the shaft 13 can be made larger than the outer diameter of the shaft 13, and the stress generated at the time of shaft shrink fitting is not applied to the rotor (iron core), and further, the interference of the rotor is not required. Moreover, the shaft fixing jig 7 can also serve as a balance weight.

本実施例では、シャフト固定冶具を回転子の軸方向両側に設け、回転子の両側で保持するようにしているが、シャフト固定冶具を回転子の片側にのみ設け、回転子の片側で保持するようにしても良い。また、本実施例では、シャフト固定冶具と回転子の締結に際しては、回転子にもネジ挿入穴20を設けることになるが、空孔3の一部をネジ挿入穴として用いても良い。シャフト固定冶具と回転子の締結は、その他に、樹脂による一体構成としても良いし、シャフト固定冶具に設けた中空軸8を介して固定するようにしても良い。なお、シャフト固定冶具をボルト21とナット22によってネジ留めする場合には、中空軸8は必須ではない。   In this embodiment, the shaft fixing jig is provided on both sides of the rotor in the axial direction and is held on both sides of the rotor. However, the shaft fixing jig is provided only on one side of the rotor and is held on one side of the rotor. You may do it. In this embodiment, when the shaft fixing jig and the rotor are fastened, the screw insertion hole 20 is also provided in the rotor. However, a part of the hole 3 may be used as the screw insertion hole. In addition, the shaft fixing jig and the rotor may be fastened together with a resin, or may be fixed via a hollow shaft 8 provided in the shaft fixing jig. Note that the hollow shaft 8 is not essential when the shaft fixing jig is screwed with the bolt 21 and the nut 22.

本実施例では、シャフト固定冶具7の材料としてアルミニウムを用いているが、非磁性体であれば、ステンレス、銅、真鍮などの金属でも良いし、樹脂でも良い。   In this embodiment, aluminum is used as the material of the shaft fixing jig 7, but a metal such as stainless steel, copper, brass or the like may be used as long as it is a non-magnetic material.

図6は、本発明の第4の実施例による永久磁石式回転電機(永久磁石同期機)の回転子軸方向に垂直な断面図を示す。図6では固定子とシャフトの図示を省略している。また、本実施例における回転子の基本構成および第一,第二の永久磁石5,6の形状と配置は、上述の第1〜第3の実施例に準ずるので説明を省略する。   FIG. 6 is a cross-sectional view perpendicular to the rotor axial direction of a permanent magnet type rotating electrical machine (permanent magnet synchronous machine) according to a fourth embodiment of the present invention. In FIG. 6, the stator and the shaft are not shown. In addition, the basic configuration of the rotor and the shapes and arrangements of the first and second permanent magnets 5 and 6 in this embodiment are the same as those in the first to third embodiments described above, and thus the description thereof is omitted.

本実施例では、第2の実施例において、空孔3のかわりに、第三の永久磁石40を設けている。なお、本実施例では、永久磁石の外周端部に空隙を形成することなく永久磁石の回転子外周側を保持しているが、第1,第2の実施例のように磁性体31に外つばを形成し、外つばで永久磁石の回転子外周側を保持するようにしても良い。   In this embodiment, a third permanent magnet 40 is provided in place of the hole 3 in the second embodiment. In this embodiment, the rotor outer peripheral side of the permanent magnet is held without forming a gap at the outer peripheral end of the permanent magnet. However, as in the first and second embodiments, the outer periphery of the magnetic body 31 is not attached. You may make it form a collar and hold | maintain the rotor outer peripheral side of a permanent magnet with an outer collar.

本実施例では、ヨーク11は周方向に第三の永久磁石40を介して放射状に配置されている。第三の永久磁石40は、回転子がもつ磁極部31と同数に分割され、第三の永久磁石の径方向面41は対向する磁極部と同一の極に径方向に磁化している。第三の永久磁石40の磁束と第一,第二の永久磁石5,6の磁束によりリブ39を磁気飽和させ、磁極部30、リブ39を通る経路(1)を通る漏れ磁束を低減するようにしている。また、第三の永久磁石40を配置する構成により、磁石量増加に伴う出力向上効果が得られる。   In the present embodiment, the yokes 11 are arranged radially through the third permanent magnet 40 in the circumferential direction. The third permanent magnet 40 is divided into the same number as the magnetic pole portions 31 of the rotor, and the radial surface 41 of the third permanent magnet is radially magnetized to the same pole as the opposing magnetic pole portion. The rib 39 is magnetically saturated by the magnetic flux of the third permanent magnet 40 and the magnetic flux of the first and second permanent magnets 5 and 6 so as to reduce the leakage magnetic flux passing through the magnetic pole portion 30 and the path (1) passing through the rib 39. I have to. Moreover, the structure which arrange | positions the 3rd permanent magnet 40 provides the output improvement effect accompanying the magnet amount increase.

第三の永久磁石40は、希土類を主成分とした焼結磁石でも良いし、ボンド磁石で形成しても良いし、フェライト磁石、アニルコ磁石で形成しても良い。また、第三の永久磁石40は、一枚の永久磁石で構成しても良いし、複数枚に分割した永久磁石を軸方向、または周方向に配置してもよい。第三の永久磁石40は同一種類の一体構成の永久磁石としても良いし、異なる種類の永久磁石でも良い。回転子は6極で構成されているが2極以上であれば何極でも良い。第三の永久磁石30は円弧であるが、磁化方向が磁極部と同じ方向なら、3角形でも良いし円でも良いし、多角形でも良いし、かまぼこ状でも良い。また、実施例3と組み合わせ、シャフトにリング磁石を張り付けたものでも同様の効果が得られる。即ち、実施例3ではシャフトと回転子鉄心とは焼きばめする必要がないので、シャフト13の外周に第三の永久磁石と同じように径方向に磁化した永久磁石を張り付けた構成でも同様に漏れ磁束の低減や出力向上の効果が得られる。   The third permanent magnet 40 may be a sintered magnet whose main component is a rare earth, may be formed of a bonded magnet, or may be formed of a ferrite magnet or an anilco magnet. The third permanent magnet 40 may be composed of a single permanent magnet, or a plurality of permanent magnets may be arranged in the axial direction or the circumferential direction. The third permanent magnet 40 may be the same type of integrated permanent magnet, or may be a different type of permanent magnet. The rotor is composed of 6 poles, but any number of poles may be used as long as it is 2 poles or more. The third permanent magnet 30 is a circular arc. However, if the magnetization direction is the same as that of the magnetic pole portion, it may be a triangle, a circle, a polygon, or a kamaboko shape. The same effect can be obtained by combining the third embodiment and attaching a ring magnet to the shaft. That is, in Example 3, since it is not necessary to shrink fit the shaft and the rotor core, the configuration in which the permanent magnet magnetized in the radial direction is attached to the outer periphery of the shaft 13 in the same manner as the third permanent magnet is similarly applied. The effect of reducing leakage magnetic flux and improving output can be obtained.

上述した本発明の各実施例の永久磁石式回転電機は、エア・コンディショナーや冷蔵庫に用いられる圧縮機をはじめEV、HEV、燃料電池自動車に搭載される電動機に適用できる。これらの製品のうち、本発明の永久磁石式回転電機を圧縮機に適用した例を図7に示す。   The above-described permanent magnet type rotating electrical machine of each embodiment of the present invention can be applied to electric motors mounted on EVs, HEVs, and fuel cell vehicles, including compressors used in air conditioners and refrigerators. Among these products, FIG. 7 shows an example in which the permanent magnet type rotating electrical machine of the present invention is applied to a compressor.

圧縮機100は、円筒状の密封圧縮容器200と、この密封圧縮容器200内に設置され駆動電動機となる永久磁石式回転電機300と、この永久磁石式回転電機300により駆動され密封圧縮容器200内に設置される圧縮部400とを備えている。永久磁石式回転電機300として上述した実施例1〜4の永久磁石式回転電機が用いられる。   The compressor 100 includes a cylindrical sealed compression container 200, a permanent magnet type rotating electrical machine 300 that is installed in the sealed compression container 200 and serves as a drive motor, and is driven by the permanent magnet type rotating electrical machine 300 and is contained in the sealed compression container 200. And a compressing unit 400 installed in the apparatus. As the permanent magnet type rotating electrical machine 300, the permanent magnet type rotating electrical machine of the first to fourth embodiments described above is used.

永久磁石式回転電機300は、密封圧縮容器200内に軸受500A,500Bを介して回転自在に支承された回転軸600に固定された回転子700と、この回転子700に周方向の空隙を介して対向する固定子800とを備えている。   The permanent magnet type rotating electrical machine 300 includes a rotor 700 fixed to a rotary shaft 600 rotatably supported in a sealed compression container 200 via bearings 500A and 500B, and a circumferential gap in the rotor 700. And a stator 800 facing each other.

圧縮機100の圧縮部400は、回転軸600の上端に形成されたクランク軸230によって旋回する旋回スクロール部材240と、この旋回スクロール部材240と噛合う固定スクロール部材250とを備え、旋回スクロール部材240は、端板260に直立する可動渦巻状ラップ270を有し、固定スクロール部材250は、可動渦巻状ラップ270と噛合う固定渦巻状ラップ280と、この固定渦巻状ラップ280を直立支持する端板290を有する。   The compression unit 400 of the compressor 100 includes a turning scroll member 240 that turns by a crankshaft 230 formed at the upper end of the rotating shaft 600 and a fixed scroll member 250 that meshes with the turning scroll member 240, and the turning scroll member 240. Has a movable spiral wrap 270 standing upright on the end plate 260, and the fixed scroll member 250 includes a fixed spiral wrap 280 that meshes with the movable spiral wrap 270, and an end plate that supports the fixed spiral wrap 280 upright. 290.

このように構成された圧縮部400の可動渦巻状ラップ270をクランク軸230によって旋回運動させると、可動渦巻状ラップ270と固定渦巻状ラップ280とによって形成された圧縮室300が外径側から中心に向かって移動する過程で次第に容積を縮小し、圧縮動作を行なうのである。   When the movable spiral wrap 270 of the compression unit 400 configured as described above is swung by the crankshaft 230, the compression chamber 300 formed by the movable spiral wrap 270 and the fixed spiral wrap 280 is centered from the outer diameter side. In the process of moving toward, the volume is gradually reduced and the compression operation is performed.

ガス供給口310から外径側に位置する圧縮室300に供給されたガスは、圧縮されながら中心側の圧縮室300に至り、ここに設けた吐出口320から密封圧縮容器200内に吐出され、吐出された圧縮ガスは、密封圧縮容器200の側壁に設けた吐出パイプ330から圧縮機100外に排出される。   The gas supplied from the gas supply port 310 to the compression chamber 300 located on the outer diameter side reaches the compression chamber 300 on the center side while being compressed, and is discharged into the sealed compression container 200 from the discharge port 320 provided here, The discharged compressed gas is discharged out of the compressor 100 through a discharge pipe 330 provided on the side wall of the sealed compression container 200.

本発明は、回転電機の出力密度向上の手段として、限られた回転子断面において、磁石表面積を増加させ、磁石の磁束量を増加するのが比較的容易なI字磁石配置の永久磁石回転電機の永久磁石の減磁耐力を向上させることができるので、小型高効率の永久磁石式回転電機の性能を長期に維持することができる。これはエア・コンディショナーや冷蔵庫に用いられる圧縮機や、EV、HEV、燃料電池自動車のように長期に渡って使用される製品に好適であり、言い換えれば、本発明の回転電機をこれらの製品に適用することによってこれらの製品の性能を長期に維持することができる。   The present invention provides a permanent magnet rotating electric machine having an I-shaped magnet arrangement that is relatively easy to increase the magnet surface area and increase the amount of magnetic flux of the magnet in a limited rotor cross section as means for improving the output density of the rotating electric machine. Since the demagnetization resistance of the permanent magnet can be improved, the performance of the small and highly efficient permanent magnet type rotating electrical machine can be maintained for a long time. This is suitable for compressors used in air conditioners and refrigerators, and products used for a long time such as EVs, HEVs, and fuel cell vehicles. In other words, the rotating electrical machine of the present invention is applied to these products. By applying, the performance of these products can be maintained for a long time.

3:空孔、4:磁石挿入孔、5:第一の永久磁石、5a,5b:永久磁石面、6:第二の永久磁石、7:シャフト固定冶具、8:中空軸、9:円筒部、10:回転子、11:ヨーク、12:シャフト挿入孔、13:シャフト、20:ネジ挿入穴、21:ボルト、22:ナット、29:空隙、30:磁極部、31:磁性体、32:連結部、35:つなぎ部、36:外つば、37:内つば、38:応力集中部、39:リブ、40:第三の永久磁石、41:第三の永久磁石の径方向面 3: hole, 4: magnet insertion hole, 5: first permanent magnet, 5a, 5b: permanent magnet surface, 6: second permanent magnet, 7: shaft fixing jig, 8: hollow shaft, 9: cylindrical part , 10: rotor, 11: yoke, 12: shaft insertion hole, 13: shaft, 20: screw insertion hole, 21: bolt, 22: nut, 29: air gap, 30: magnetic pole part, 31: magnetic body, 32: Connecting part, 35: bridging part, 36: outer brim, 37: inner brim, 38: stress concentration part, 39: rib, 40: third permanent magnet, 41: radial surface of the third permanent magnet

Claims (13)

電機子巻線を施した固定子と、永久磁石を備え前記固定子と所定のギャップを介して配置された回転子とで構成される永久磁石式回転電機であって、
前記回転子は、回転軸側から放射状に配置された磁石挿入孔を有する磁性体と、前記磁石挿入孔に配置され前記回転子の周方向に磁化された永久磁石とから構成され、
前記永久磁石は、前記回転子の外周部側における幅方向寸法に対して、前記回転子の内周部側における幅方向寸法が小さいことを特徴とする永久磁石式回転電機。
A permanent magnet type rotating electrical machine composed of a stator provided with armature windings, and a stator provided with a permanent magnet and a rotor arranged via a predetermined gap,
The rotor is composed of a magnetic body having magnet insertion holes arranged radially from the rotating shaft side, and a permanent magnet which is arranged in the magnet insertion hole and is magnetized in the circumferential direction of the rotor,
The permanent magnet type rotating electrical machine, wherein the permanent magnet has a smaller size in the width direction on the inner peripheral side of the rotor than the width direction size on the outer peripheral side of the rotor.
請求項1において、前記永久磁石の回転子内周側と前記回転軸との間に空孔又は非磁性体を設けたことを特徴とする永久磁石式回転電機。   2. The permanent magnet type rotating electrical machine according to claim 1, wherein a hole or a nonmagnetic material is provided between a rotor inner peripheral side of the permanent magnet and the rotating shaft. 請求項1において、前記磁性体には、内周に前記回転軸が配置される円環状の連結部と、前記円環状の連結部の外周と前記永久磁石の回転子内周側との間に形成された複数の空孔と、前記磁石挿入孔と前記空孔との間に形成され前記永久磁石の回転子内周側の周方向に延びるリブと、前記リブ及び前記円環状の連結部とそれぞれ連結し周方向に前記空孔を介して放射状に配置されたヨークとが設けられていることを特徴とする永久磁石式回転電機。   2. The magnetic body according to claim 1, wherein the magnetic body includes an annular coupling portion in which the rotation shaft is disposed on an inner circumference, and an outer circumference of the annular coupling portion and a rotor inner circumference side of the permanent magnet. A plurality of formed holes, a rib formed between the magnet insertion hole and the hole and extending in a circumferential direction on the inner peripheral side of the rotor of the permanent magnet, the rib and the annular connecting portion, A permanent magnet type rotating electrical machine, characterized in that it is provided with yokes that are connected to each other and radially arranged through the air holes in the circumferential direction. 請求項3において、前記空孔には非磁性体が配置されていることを特徴とする永久磁石式回転電機。   4. The permanent magnet type rotating electrical machine according to claim 3, wherein a nonmagnetic material is disposed in the hole. 請求項1〜4の何れかにおいて、前記磁石挿入孔は、前記回転子の内周側に向けて凸形状に形成されていることを特徴とする永久磁石式回転電機。   The permanent magnet type rotating electrical machine according to any one of claims 1 to 4, wherein the magnet insertion hole is formed in a convex shape toward an inner peripheral side of the rotor. 請求項5において、前記永久磁石は複数個に分割されて前記磁石挿入孔に配置されていることを特徴とする永久磁石式回転電機。   6. The permanent magnet type rotating electric machine according to claim 5, wherein the permanent magnet is divided into a plurality of parts and arranged in the magnet insertion hole. 請求項6において、前記永久磁石はフェライト磁石で構成されていることを特徴とする永久磁石式回転電機。   7. The permanent magnet type rotating electric machine according to claim 6, wherein the permanent magnet is composed of a ferrite magnet. 請求項1〜4の何れかにおいて、1極を構成する前記永久磁石は2個以上からなり、前記磁石挿入孔の回転子内周部側に、前記磁石挿入孔の回転子外周部側より残留磁束密度の高い永久磁石を備えることを特徴とする永久磁石式回転電機。   5. The permanent magnet according to claim 1, wherein the permanent magnet comprises two or more permanent magnets, and remains on the rotor inner peripheral side of the magnet insertion hole from the rotor outer peripheral side of the magnet insertion hole. A permanent magnet type rotating electrical machine comprising a permanent magnet having a high magnetic flux density. 請求項3において、前記空孔には前記永久磁石とは別の永久磁石が配置されており、前記別の永久磁石は、前記放射状に配置された永久磁石の周方向の間に形成された磁極部と同数備えられており、前記磁極部に対向する位置の前記別の永久磁石の径方向面の極が当該磁極部の極と同一になるように径方向に磁化されていることを特徴とする永久磁石式回転電機。   4. The permanent magnet according to claim 3, wherein a permanent magnet different from the permanent magnet is disposed in the hole, and the another permanent magnet is a magnetic pole formed between circumferential directions of the radially disposed permanent magnets. The poles of the other permanent magnet at the position facing the magnetic pole part are magnetized in the radial direction so as to be the same as the poles of the magnetic pole part. Permanent magnet type rotating electric machine. 請求項1〜8の何れかにおいて、前記回転軸は前記回転子の回転軸挿入孔と対向する外周囲に永久磁石が張り付けられていることを特徴とする永久磁石式回転電機。   The permanent magnet type rotating electrical machine according to any one of claims 1 to 8, wherein a permanent magnet is attached to an outer periphery of the rotating shaft facing a rotating shaft insertion hole of the rotor. 請求項1〜10の何れかにおいて、非磁性体で構成され前記回転軸の挿入孔を有する回転軸固定冶具を備え、前記回転軸固定冶具と前記回転軸が固定され、前記回転軸固定冶具と前記回転子が固定されていることを特徴とする永久磁石式回転電機。   The rotary shaft fixing jig according to any one of claims 1 to 10, comprising a rotary shaft fixing jig made of a non-magnetic material and having an insertion hole for the rotary shaft, wherein the rotary shaft fixing jig and the rotary shaft are fixed, A permanent magnet type rotating electrical machine, wherein the rotor is fixed. 請求項11において、前記回転軸固定冶具はバランスウェイトを兼ねていることを特徴とする永久磁石式回転電機。   The permanent magnet type rotating electric machine according to claim 11, wherein the rotary shaft fixing jig also serves as a balance weight. 駆動電動機として請求項1〜12の何れかに記載の永久磁石式回転電機を用いたことを特徴とする圧縮機。   A compressor using the permanent magnet type rotating electrical machine according to any one of claims 1 to 12 as a drive motor.
JP2012044927A 2012-03-01 2012-03-01 Permanent magnet rotating electric machine Expired - Fee Related JP6055189B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012044927A JP6055189B2 (en) 2012-03-01 2012-03-01 Permanent magnet rotating electric machine
CN2013200769715U CN203278582U (en) 2012-03-01 2013-02-19 Permanent magnet type rotating electrical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012044927A JP6055189B2 (en) 2012-03-01 2012-03-01 Permanent magnet rotating electric machine

Publications (2)

Publication Number Publication Date
JP2013183510A true JP2013183510A (en) 2013-09-12
JP6055189B2 JP6055189B2 (en) 2016-12-27

Family

ID=49273819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012044927A Expired - Fee Related JP6055189B2 (en) 2012-03-01 2012-03-01 Permanent magnet rotating electric machine

Country Status (2)

Country Link
JP (1) JP6055189B2 (en)
CN (1) CN203278582U (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013198303A (en) * 2012-03-21 2013-09-30 Meidensha Corp Rotor structure of permanent magnet type rotary machine
CN106300729A (en) * 2015-05-29 2017-01-04 珠海格力节能环保制冷技术研究中心有限公司 Permanent magnet machine rotor and permagnetic synchronous motor
KR20190062983A (en) * 2017-11-29 2019-06-07 엘지이노텍 주식회사 Rotor and motor having the same
KR20200089455A (en) * 2019-01-17 2020-07-27 엘지이노텍 주식회사 Rotor and motor having the same
CN114530960A (en) * 2020-11-04 2022-05-24 丰田自动车株式会社 Motor
JP2022177812A (en) * 2021-05-18 2022-12-01 ニデック・モーター・コーポレイション Rotor assembly having divided large-capacity magnet

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112015006260T5 (en) * 2015-03-06 2017-11-23 Mitsubishi Electric Corporation Rotor for a rotary electric machine and method of manufacturing a rotor of a rotary electric machine
CN106300728B (en) * 2015-05-29 2019-09-03 珠海格力电器股份有限公司 Permanent magnet machine rotor and permanent magnet synchronous motor
KR102521284B1 (en) * 2017-02-03 2023-04-13 엘지전자 주식회사 motor
JP2021007275A (en) * 2017-09-27 2021-01-21 日本電産株式会社 Spork-type motor, motor for vehicle, unmanned flying body and electric assist device
CN110768418A (en) * 2018-07-25 2020-02-07 广东美芝制冷设备有限公司 Motor, compressor and refrigeration plant
CN112583152B (en) * 2019-09-30 2022-01-04 安徽威灵汽车部件有限公司 Rotor of motor, driving motor and vehicle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0397353U (en) * 1990-01-23 1991-10-07
JPH0397354U (en) * 1990-01-23 1991-10-07
JPH11113199A (en) * 1997-10-06 1999-04-23 Fujitsu General Ltd Permanent magneto motor
JP2004304943A (en) * 2003-03-31 2004-10-28 Shinko Electric Co Ltd Rotor mechanism in permanent magnet type synchronous rotary electric machine
JP2008130781A (en) * 2006-11-21 2008-06-05 Hitachi Ltd Magnet, motor using magnet, and manufacturing method of magnet
JP2008154309A (en) * 2006-12-14 2008-07-03 Daikin Ind Ltd Rotor for motor, motor, and compressor
JP2009201300A (en) * 2008-02-22 2009-09-03 Toshiba Corp Permanent magnet type rotary electric machine, method for assembling permanent magnet type rotary electric machine, method for disassembling permanent magnet type rotary electric machine and drive system for permanent magnet type rotary electric machine
US20100277028A1 (en) * 2009-04-30 2010-11-04 General Electric Company High speed internal permanent magnet machine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0397353U (en) * 1990-01-23 1991-10-07
JPH0397354U (en) * 1990-01-23 1991-10-07
JPH11113199A (en) * 1997-10-06 1999-04-23 Fujitsu General Ltd Permanent magneto motor
JP2004304943A (en) * 2003-03-31 2004-10-28 Shinko Electric Co Ltd Rotor mechanism in permanent magnet type synchronous rotary electric machine
JP2008130781A (en) * 2006-11-21 2008-06-05 Hitachi Ltd Magnet, motor using magnet, and manufacturing method of magnet
JP2008154309A (en) * 2006-12-14 2008-07-03 Daikin Ind Ltd Rotor for motor, motor, and compressor
JP2009201300A (en) * 2008-02-22 2009-09-03 Toshiba Corp Permanent magnet type rotary electric machine, method for assembling permanent magnet type rotary electric machine, method for disassembling permanent magnet type rotary electric machine and drive system for permanent magnet type rotary electric machine
US20100277028A1 (en) * 2009-04-30 2010-11-04 General Electric Company High speed internal permanent magnet machine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013198303A (en) * 2012-03-21 2013-09-30 Meidensha Corp Rotor structure of permanent magnet type rotary machine
CN106300729A (en) * 2015-05-29 2017-01-04 珠海格力节能环保制冷技术研究中心有限公司 Permanent magnet machine rotor and permagnetic synchronous motor
KR20190062983A (en) * 2017-11-29 2019-06-07 엘지이노텍 주식회사 Rotor and motor having the same
KR102554171B1 (en) * 2017-11-29 2023-07-12 엘지이노텍 주식회사 Rotor and motor having the same
KR20200089455A (en) * 2019-01-17 2020-07-27 엘지이노텍 주식회사 Rotor and motor having the same
KR102635352B1 (en) 2019-01-17 2024-02-08 엘지이노텍 주식회사 Rotor and motor having the same
CN114530960A (en) * 2020-11-04 2022-05-24 丰田自动车株式会社 Motor
CN114530960B (en) * 2020-11-04 2024-05-17 丰田自动车株式会社 Motor with a motor housing
JP2022177812A (en) * 2021-05-18 2022-12-01 ニデック・モーター・コーポレイション Rotor assembly having divided large-capacity magnet

Also Published As

Publication number Publication date
CN203278582U (en) 2013-11-06
JP6055189B2 (en) 2016-12-27

Similar Documents

Publication Publication Date Title
JP6055189B2 (en) Permanent magnet rotating electric machine
JP5961344B2 (en) Magnetic flux concentrating type synchronous rotating electrical machine with permanent magnet
US9030072B2 (en) Rotor configured to be rotateably disposed in an electric rotating machine with a circumferential surface of a rotor core facing a stator of the electric rotating machine
EP2490319B1 (en) Axial gap motor
JP5332082B2 (en) motor
JP5363520B2 (en) Permanent magnet synchronous machine
US9899897B2 (en) Permanent magnet buried type electric motor and compressor
US7777391B2 (en) Armature, motor and compressor and methods of manufacturing the same
WO2014188628A1 (en) Rotor and motor
WO2015163229A1 (en) Embedded permanent magnet-type electric motor, compressor, and refrigeration/air-conditioning device
JP2011217601A (en) Flux concentration type synchronous rotating electric machine with permanent magnet
US9806569B2 (en) Hybrid excitation rotating electrical machine
MXPA04010610A (en) Spoke permanent magnet rotors for electrical machines and methods of manufacturing same.
CN103430430A (en) Rotor and rotating electrical mechanism using same
US10277101B2 (en) Rotor for rotating electric machine
WO2019215865A1 (en) Rotor, motor, compressor, and air conditioning device
JP2019030208A (en) Soft magnetic core
JP2013132124A (en) Core for field element
JP5677212B2 (en) Rotating electric machine
CN109417320B (en) Rotor, motor, blower, compressor, and air conditioner
JP2014233100A (en) Permanent magnet type rotation electric machine
US8008824B2 (en) Electric motor
JP6261672B2 (en) Neodymium permanent magnet type motor and hermetic compressor equipped with the neodymium permanent magnet type motor
JP2010110096A (en) Rotor, rotating electric machine and method for manufacturing the rotor
JP2008219993A (en) Axial gap type rotary electric machine and compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160912

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161202

R150 Certificate of patent or registration of utility model

Ref document number: 6055189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees