JP6079132B2 - Embedded magnet rotor - Google Patents

Embedded magnet rotor Download PDF

Info

Publication number
JP6079132B2
JP6079132B2 JP2012236491A JP2012236491A JP6079132B2 JP 6079132 B2 JP6079132 B2 JP 6079132B2 JP 2012236491 A JP2012236491 A JP 2012236491A JP 2012236491 A JP2012236491 A JP 2012236491A JP 6079132 B2 JP6079132 B2 JP 6079132B2
Authority
JP
Japan
Prior art keywords
magnet
rotor core
pair
outer peripheral
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012236491A
Other languages
Japanese (ja)
Other versions
JP2014087229A (en
Inventor
柴田 由之
由之 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2012236491A priority Critical patent/JP6079132B2/en
Publication of JP2014087229A publication Critical patent/JP2014087229A/en
Application granted granted Critical
Publication of JP6079132B2 publication Critical patent/JP6079132B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

本発明は、磁石埋込型ロータに関する。   The present invention relates to a magnet embedded rotor.

近年、ロータの内部に永久磁石を埋め込んだ構造からなるモータ(Interior Permanent Magnet Motor、IPMモータ)が知られている。このIPMモータに用いられるロータとしては、特許文献1に記載のロータがある。   In recent years, a motor (Internal Permanent Magnet Motor, IPM motor) having a structure in which a permanent magnet is embedded in a rotor is known. As a rotor used in this IPM motor, there is a rotor described in Patent Document 1.

図8に示すように、特許文献1に記載のロータ6は、その軸方向に複数枚の電磁鋼板を積層した構造からなる円筒状のロータコア60を備えている。ロータコア60の外周側には、ブリッジ部63を介して隔てられた一対の磁石挿入孔61,62が等角度間隔で複数形成されている。そして、複数対の磁石挿入孔61,62には一対の永久磁石70,71がそれぞれ挿入されている。   As shown in FIG. 8, the rotor 6 described in Patent Document 1 includes a cylindrical rotor core 60 having a structure in which a plurality of electromagnetic steel plates are laminated in the axial direction. On the outer peripheral side of the rotor core 60, a plurality of pairs of magnet insertion holes 61 and 62 separated by a bridge portion 63 are formed at equal angular intervals. A pair of permanent magnets 70 and 71 are inserted into the plurality of pairs of magnet insertion holes 61 and 62, respectively.

特開2001−286110号公報JP 2001-286110 A

ところで、図8に示したロータコア60のように、一対の磁石挿入孔61,62間にブリッジ部63が存在する場合、一対の永久磁石70,71においてブリッジ部63の近傍から発せられる磁束が、図中に矢印で示すようにロータコア60の外周側、すなわちステータ側に向かわずにブリッジ部63を通ってしまう。すなわち、ブリッジ部63に漏れ磁束が生じるため、ロータコア60の外周面における磁束密度が減少してしまう。これによりステータコイルと鎖交する有効磁束量が減少し、これがモータの高出力化を阻害する要因となっている。   By the way, when the bridge part 63 exists between a pair of magnet insertion holes 61 and 62 like the rotor core 60 shown in FIG. 8, the magnetic flux emitted from the vicinity of the bridge part 63 in a pair of permanent magnets 70 and 71 is As indicated by the arrows in the figure, the bridge portion 63 passes through the outer periphery of the rotor core 60, that is, toward the stator. That is, since a leakage magnetic flux is generated in the bridge portion 63, the magnetic flux density on the outer peripheral surface of the rotor core 60 is reduced. As a result, the amount of effective magnetic flux interlinking with the stator coil is reduced, which is a factor that hinders the high output of the motor.

本発明は、こうした実情に鑑みてなされたものであり、その目的は、モータの出力トルクを高めることのできる磁石埋込型ロータを提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a magnet-embedded rotor capable of increasing the output torque of a motor.

上記課題を解決するために、ブリッジ部を介して隔てられた一対の磁石挿入孔が周方向に複数形成されるロータコアと、各磁石挿入孔に挿入される永久磁石と、を備え、複数対の磁石挿入孔にそれぞれ挿入される一対の永久磁石が前記ロータコアの外周部分に一磁極を形成する磁石埋込型ロータにおいて、前記ロータコアには、前記一対の永久磁石の間であって前記ブリッジ部よりも前記ロータコアの外周側に補助永久磁石が設けられ、前記補助永久磁石には、前記ロータコアの周方向の幅が前記ブリッジ部に向かって徐々に細くなるテーパ部が形成され、前記補助永久磁石の前記ロータコアの外周側の磁極を、前記補助永久磁石と対向する前記一対の永久磁石が前記ロータコアの外周側に形成する磁極と同一とするとともに、前記補助永久磁石の前記テーパ部の磁極を、前記補助永久磁石と対向する前記一対の永久磁石が前記ロータコアの外周側に形成する磁極と異なり、前記一対の永久磁石は、前記ブリッジ部を中心に前記ロータコアの外周側に向けて開くV字をなすように配置され、前記テーパ部は、そのテーパ角を「θ1」、前記一対の永久磁石が前記ロータコアの外周側でなす角を「θ2」とするとき、「θ1<θ2」なる関係を満たすように形成することとした。 In order to solve the above problems, a rotor core in which a plurality of pairs of magnet insertion holes separated by a bridge portion are formed in the circumferential direction and a permanent magnet inserted into each magnet insertion hole are provided, and a plurality of pairs In a magnet embedded rotor in which a pair of permanent magnets respectively inserted into the magnet insertion holes form one magnetic pole on the outer peripheral portion of the rotor core, the rotor core is between the pair of permanent magnets and from the bridge portion. Also, an auxiliary permanent magnet is provided on the outer peripheral side of the rotor core, and the auxiliary permanent magnet is formed with a tapered portion in which the circumferential width of the rotor core gradually decreases toward the bridge portion. The magnetic pole on the outer peripheral side of the rotor core is the same as the magnetic pole formed on the outer peripheral side of the rotor core by the pair of permanent magnets facing the auxiliary permanent magnet. The pole of the tapered portion of the stone, Unlike pole pair of the permanent magnets facing the auxiliary permanent magnet is formed on the outer peripheral side of the rotor core, the pair of permanent magnets, the rotor core around the bridge portion When the taper portion has a taper angle of “θ1” and the angle between the pair of permanent magnets on the outer periphery side of the rotor core is “θ2”. , it was Rukoto be formed so as to satisfy the relation of "θ1 <θ2".

この構成によれば、一対の永久磁石においてブリッジ部の近傍から発せられる磁束は、補助永久磁石のテーパ部により吸収されるため、ブリッジ部を通る漏れ磁束を低減できる。そして補助永久磁石で吸収された磁束は補助永久磁石を介してロータコアの外周側に放射されるため、ロータコアの外周面における磁束密度が増加する。これによりステータコイルと鎖交する有効磁束量が増加するため、モータの出力トルクを高めることができる。また、一対の永久磁石においてブリッジ部側に位置する部分ほど補助永久磁石のテーパ部との距離が近くなるため、ブリッジ部を通る磁束を効果的に吸収できる。これにより漏れ磁束の低減効果を高めることができる。 According to this configuration, since the magnetic flux generated from the vicinity of the bridge portion in the pair of permanent magnets is absorbed by the tapered portion of the auxiliary permanent magnet, the leakage magnetic flux passing through the bridge portion can be reduced. Since the magnetic flux absorbed by the auxiliary permanent magnet is radiated to the outer peripheral side of the rotor core via the auxiliary permanent magnet, the magnetic flux density on the outer peripheral surface of the rotor core increases. As a result, the amount of effective magnetic flux interlinking with the stator coil increases, so that the output torque of the motor can be increased. Further, since the distance between the pair of permanent magnets located on the bridge portion side and the taper portion of the auxiliary permanent magnet is closer, the magnetic flux passing through the bridge portion can be effectively absorbed. Thereby, the reduction effect of leakage magnetic flux can be heightened.

上記磁石埋込型ロータについて、前記補助永久磁石がボンド磁石からなることが好ましい。
この構成によれば、補助永久磁石の製造の際に、その形状的な制約を受け難くなるため、上記のような形状からなる補助永久磁石を容易に製造できる。
In the magnet embedded rotor, the auxiliary permanent magnet is preferably a bonded magnet.
According to this configuration, the auxiliary permanent magnet having the shape as described above can be easily manufactured because the auxiliary permanent magnet is less likely to be restricted in shape.

この磁石埋込型ロータによれば、モータの出力トルクを高めることができる。   According to the magnet-embedded rotor, the output torque of the motor can be increased.

磁石埋込型ロータの一実施形態について同ロータを用いたIPMモータの断面構造を示す断面図。Sectional drawing which shows the cross-section of the IPM motor using the rotor about one Embodiment of a magnet embedded type rotor. 実施形態の磁石埋込型ロータの断面構造を示す断面図。Sectional drawing which shows the cross-section of the magnet embedded rotor of embodiment. 実施形態の磁石埋込型ロータについてその外周部分の断面構造を示す断面図。Sectional drawing which shows the cross-section of the outer peripheral part about the magnet embedded type rotor of embodiment. 図3の領域Aの拡大断面構造を示す断面図。Sectional drawing which shows the expanded sectional structure of the area | region A of FIG. 磁石埋込型ロータの変形例についてその外周部分の断面構造を示す断面図。Sectional drawing which shows the cross-section of the outer peripheral part about the modification of a magnet embedded type rotor. 磁石埋込型ロータの他の変形例についてその外周部分の断面構造を示す断面図。Sectional drawing which shows the cross-section of the outer peripheral part about the other modification of a magnet embedded type rotor. 磁石埋込型ロータの他の変形例についてその外周部分の断面構造を示す断面図。Sectional drawing which shows the cross-section of the outer peripheral part about the other modification of a magnet embedded type rotor. 従来の磁石埋込型ロータの断面構造を示す断面図。Sectional drawing which shows the cross-section of the conventional magnet embedded type rotor.

以下、磁石埋込型ロータの一実施形態について説明する。はじめに、図1及び図2を参照して、本実施形態の磁石埋込型ロータを用いたIPMモータの構造について説明する。
図1に示すように、このIPMモータは、ハウジング1の内周面に固定された円筒状のステータ2、図示しない軸受けを介してハウジング1により回転可能に支持される出力軸3、及び出力軸3の外周面に一体的に取り付けられるロータ4を備えている。
Hereinafter, an embodiment of an embedded magnet rotor will be described. First, the structure of an IPM motor using the magnet-embedded rotor of this embodiment will be described with reference to FIGS. 1 and 2.
As shown in FIG. 1, this IPM motor includes a cylindrical stator 2 fixed to the inner peripheral surface of a housing 1, an output shaft 3 rotatably supported by the housing 1 via a bearing (not shown), and an output shaft. 3 is provided with a rotor 4 that is integrally attached to the outer peripheral surface of 3.

ステータ2は、その軸方向に複数枚の電磁鋼板を積層した構造からなる。ステータ2の内周面には、径方向内側に向かって延びる12個のティース20が形成されている。各ティース20にはステータコイル21が巻回されている。   The stator 2 has a structure in which a plurality of electromagnetic steel plates are laminated in the axial direction. Twelve teeth 20 extending radially inward are formed on the inner peripheral surface of the stator 2. A stator coil 21 is wound around each tooth 20.

図2に示すように、ロータ4は、その軸方向に複数枚の電磁鋼板を積層した構造からなる円筒状のロータコア40を備えている。ロータコア40の外周側には、3つの永久磁石50〜52で一組をなす磁石群5が周方向に等角度間隔で10組埋め込まれている。一組の磁石群5は、ロータコア40の外周部分にN極及びS極のいずれか一方の磁極を形成する。これらN極を形成する磁石群5、及びS極を形成する磁石群5がロータコア40の周方向に沿って交互に配置されることにより、ロータ4には10極の磁極が形成される。   As shown in FIG. 2, the rotor 4 includes a cylindrical rotor core 40 having a structure in which a plurality of electromagnetic steel plates are laminated in the axial direction. On the outer peripheral side of the rotor core 40, 10 sets of magnet groups 5 forming a set of three permanent magnets 50 to 52 are embedded at equal angular intervals in the circumferential direction. The set of magnet groups 5 forms one of the magnetic poles of the N pole and the S pole on the outer peripheral portion of the rotor core 40. The magnet group 5 that forms the N poles and the magnet group 5 that forms the S poles are alternately arranged along the circumferential direction of the rotor core 40, whereby 10 poles are formed on the rotor 4.

このように構成されたモータでは、図1に示すステータコイル21に三相の電流が供給されると、ステータ2により回転磁界が形成される。この回転磁界に基づいてロータ4の各磁石群5が吸引されることによりロータ4にトルクが付与され、出力軸3が回転する。   In the motor configured as described above, when a three-phase current is supplied to the stator coil 21 shown in FIG. 1, a rotating magnetic field is formed by the stator 2. Torque is applied to the rotor 4 by attracting each magnet group 5 of the rotor 4 based on this rotating magnetic field, and the output shaft 3 rotates.

次に、一組の磁石群5の構造について詳述する。
図3に示すように、ロータコア40の外周側には、ブリッジ部41を介して隔てられた一対の磁石挿入孔42,43が軸方向に貫通するように形成されるとともに、それらの間に磁石挿入孔44が形成されている。そして一対の磁石挿入孔42,43に挿入される一対の永久磁石50,51、及び磁石挿入孔44に挿入される補助永久磁石52により一組の磁石群5が構成されている。
Next, the structure of the set of magnet groups 5 will be described in detail.
As shown in FIG. 3, on the outer peripheral side of the rotor core 40, a pair of magnet insertion holes 42 and 43 separated by a bridge portion 41 are formed so as to penetrate in the axial direction, and a magnet is interposed between them. An insertion hole 44 is formed. The pair of permanent magnets 50 and 51 inserted into the pair of magnet insertion holes 42 and 43 and the auxiliary permanent magnet 52 inserted into the magnet insertion hole 44 constitute a set of magnet groups 5.

一対の永久磁石50,51は焼結磁石からなり、対応する一対の磁石挿入孔42,43に軸方向から挿入される。一対の永久磁石50,51は、ロータコア40の軸方向(紙面に垂直な方向)に直交する断面形状が矩形状をなしている。一対の永久磁石50,51は、ブリッジ部41を中心にロータコア40の外周側に向けて開くV字をなすように配置されている。一組の磁石群5によりロータコア外周部分にN極を形成する場合、一対の永久磁石50,51は、図中に示すようにロータコア外周側がN極に着磁され、ロータコア内周側がS極に着磁されている。   The pair of permanent magnets 50 and 51 are made of sintered magnets and inserted into the corresponding pair of magnet insertion holes 42 and 43 from the axial direction. The pair of permanent magnets 50 and 51 has a rectangular cross-sectional shape orthogonal to the axial direction of the rotor core 40 (the direction perpendicular to the paper surface). The pair of permanent magnets 50 and 51 are arranged so as to form a V shape that opens toward the outer peripheral side of the rotor core 40 around the bridge portion 41. When an N pole is formed on the outer periphery of the rotor core by a set of magnet groups 5, the pair of permanent magnets 50 and 51 are magnetized on the N pole on the outer periphery of the rotor core and on the S pole on the inner periphery of the rotor core as shown in the figure. Magnetized.

補助永久磁石52も焼結磁石からなり、対応する磁石挿入孔44に軸方向から挿入される。補助永久磁石52は、一対の永久磁石50,51の間であってブリッジ部41よりもロータコア外周側に配置されている。図4に示すように、補助永久磁石52は、ロータコア40の軸方向に直交する断面形状が五角形状をなし、そのロータコア内周側の部分に、ロータコア周方向の幅がブリッジ部41に向けて徐々に細くなるテーパ部52aを有している。テーパ部52aは、そのテーパ角を「θ1」、一対の永久磁石50,51がロータコア外周側でなす角を「θ2」とするとき、「θ1<θ2」なる関係を満たすように形成されている。なお図中の一点鎖線は一対の永久磁石50,51のそれぞれの中心線を示している。一組の磁石群5によりロータコア40の外周部分にN極を形成する場合、補助永久磁石52は、図中に示すようにテーパ部52aがS極に着磁され、ロータコア外周側がN極に着磁されている。すなわち補助永久磁石52のロータコア外周側の磁極は、補助永久磁石52と対向する一対の永久磁石50,51がロータコア外周側に形成する磁極と同一の磁極となっている。また補助永久磁石52のテーパ部52aの磁極は、補助永久磁石52と対向する一対の永久磁石50,51がロータコア外周側に形成する磁極と異なる磁極となっている。   The auxiliary permanent magnet 52 is also made of a sintered magnet and is inserted into the corresponding magnet insertion hole 44 from the axial direction. The auxiliary permanent magnet 52 is disposed between the pair of permanent magnets 50 and 51 and on the outer periphery side of the rotor core with respect to the bridge portion 41. As shown in FIG. 4, the auxiliary permanent magnet 52 has a pentagonal cross-sectional shape orthogonal to the axial direction of the rotor core 40, and the rotor core circumferential direction width is directed toward the bridge portion 41 at the inner peripheral side portion of the rotor core. It has a tapered portion 52a that becomes gradually thinner. The taper portion 52a is formed so as to satisfy the relationship of “θ1 <θ2” when the taper angle is “θ1” and the angle between the pair of permanent magnets 50 and 51 on the outer periphery side of the rotor core is “θ2”. . In addition, the dashed-dotted line in a figure has shown the centerline of each of a pair of permanent magnets 50 and 51. FIG. When N poles are formed on the outer peripheral portion of the rotor core 40 by the set of magnet groups 5, the auxiliary permanent magnet 52 has the tapered portion 52a magnetized to the S pole and the rotor core outer peripheral side to the N pole as shown in the figure. It is magnetized. That is, the magnetic pole on the outer periphery side of the rotor core of the auxiliary permanent magnet 52 is the same magnetic pole as the magnetic pole formed on the outer peripheral side of the rotor core by the pair of permanent magnets 50 and 51 facing the auxiliary permanent magnet 52. The magnetic pole of the taper portion 52a of the auxiliary permanent magnet 52 is different from the magnetic pole formed on the rotor core outer peripheral side by the pair of permanent magnets 50, 51 facing the auxiliary permanent magnet 52.

なお、ロータコア40の外周部分にS極を形成する一組の磁石群5は、図3及び図4に例示した一対の永久磁石50,51及び補助永久磁石52のそれぞれのN極及びS極をそれぞれ反転させた構成からなる。   The pair of magnet groups 5 forming the south pole on the outer peripheral portion of the rotor core 40 has the north pole and south pole of the pair of permanent magnets 50 and 51 and the auxiliary permanent magnet 52 illustrated in FIGS. Each of the structures is inverted.

ロータコア40の磁石挿入孔42,43には、永久磁石50,51の短辺両側面の外側に、空隙G1,G2がそれぞれ形成されている。またロータコア40の磁石挿入孔42,43には、永久磁石50,51のロータコア内周側の長辺側面の両端部外側に、空隙G3,G4がそれぞれ形成されている。さらにロータコア40の磁石挿入孔44には、補助永久磁石52のロータコア周方向の両端部外側に、空隙G5が形成されている。これらの空隙G1〜G5は、ロータコア40の外周面での磁束密度を増加させるために、一対の永久磁石50,51及び補助永久磁石52における磁束の回り込みを防ぐ、いわゆるフラックスバリアとして機能する。   In the magnet insertion holes 42 and 43 of the rotor core 40, gaps G1 and G2 are formed outside the both sides of the short sides of the permanent magnets 50 and 51, respectively. Further, in the magnet insertion holes 42 and 43 of the rotor core 40, gaps G3 and G4 are formed on both outer sides of the long side surfaces of the permanent magnets 50 and 51 on the inner periphery side of the rotor core, respectively. Further, in the magnet insertion hole 44 of the rotor core 40, a gap G <b> 5 is formed outside both ends of the auxiliary permanent magnet 52 in the circumferential direction of the rotor core. These gaps G <b> 1 to G <b> 5 function as so-called flux barriers that prevent the magnetic flux from flowing around the pair of permanent magnets 50 and 51 and the auxiliary permanent magnet 52 in order to increase the magnetic flux density on the outer peripheral surface of the rotor core 40.

次に、本実施形態のロータ4の作用について説明する。
図3に示すように、一対の永久磁石50,51においてブリッジ部41の近傍から発せられる磁束は、図中に矢印で示すように、補助永久磁石52のテーパ部52aにより吸収されるため、ブリッジ部41を通る漏れ磁束を低減できる。しかも本実施形態では、一対の永久磁石50,51においてブリッジ部41側に位置する部分ほど補助永久磁石52のテーパ部52aとの距離が近くなっている。ここで図4に示すように、テーパ部52aの一対の永久磁石50,51側の両側面のそれぞれの長さをL1とする。また、ロータコア40の外周側から内周側に向けて補助永久磁石52を一対の永久磁石50,51に投影させた場合、永久磁石50,51の長辺側面の補助永久磁石52が投影される部分のそれぞれの長さをL2とする。すると、本実施形態では「θ1<θ2」なる関係が満たされているため、長さL1が長さL2よりも長くなっている。これにより一対の永久磁石50,51の長さL2に対応する部分から発せられる磁束の大部分は、より表面積が大きいテーパ部52aの長さL1に対応する部分に吸収されるため、漏れ磁束の低減効果を高めることができる。そして図3に示すように、補助永久磁石52で吸収された磁束は、そこからロータコア40の外周側に放射されるため、ロータコア40の外周面での磁束密度が増加する。その結果、モータの出力トルクを高めることができる。
Next, the operation of the rotor 4 of this embodiment will be described.
As shown in FIG. 3, the magnetic flux generated from the vicinity of the bridge portion 41 in the pair of permanent magnets 50 and 51 is absorbed by the taper portion 52a of the auxiliary permanent magnet 52, as shown by the arrows in the drawing, so that the bridge The leakage magnetic flux passing through the portion 41 can be reduced. Moreover, in the present embodiment, the distance between the pair of permanent magnets 50 and 51 and the taper portion 52a of the auxiliary permanent magnet 52 is closer to the portion located on the bridge portion 41 side. Here, as shown in FIG. 4, the lengths of both side surfaces of the tapered portion 52a on the pair of permanent magnets 50 and 51 side are L1. Further, when the auxiliary permanent magnet 52 is projected onto the pair of permanent magnets 50 and 51 from the outer peripheral side to the inner peripheral side of the rotor core 40, the auxiliary permanent magnet 52 on the long side surface of the permanent magnets 50 and 51 is projected. Let L2 be the length of each part. Then, in this embodiment, since the relationship “θ1 <θ2” is satisfied, the length L1 is longer than the length L2. As a result, most of the magnetic flux emitted from the portion corresponding to the length L2 of the pair of permanent magnets 50 and 51 is absorbed by the portion corresponding to the length L1 of the tapered portion 52a having a larger surface area. The reduction effect can be enhanced. As shown in FIG. 3, since the magnetic flux absorbed by the auxiliary permanent magnet 52 is radiated from there to the outer peripheral side of the rotor core 40, the magnetic flux density on the outer peripheral surface of the rotor core 40 increases. As a result, the output torque of the motor can be increased.

またこのように、ブリッジ部41に漏れ磁束が通り難い構造であれば、図4に示すブリッジ部41のロータコア周方向の幅Hを厚くできるため、ロータコア40の強度を確保できる。これにより、例えばロータ4の回転時にロータコア40の磁石挿入孔42,43よりも外周側の部位に遠心力が加わった場合でも、そこが外側に広がるように変形し難くなる。   Further, in this way, if the leakage flux does not easily pass through the bridge portion 41, the width H of the bridge portion 41 in the circumferential direction of the rotor core shown in FIG. 4 can be increased, so that the strength of the rotor core 40 can be ensured. Thereby, for example, even when a centrifugal force is applied to a portion on the outer peripheral side of the magnet insertion holes 42 and 43 of the rotor core 40 when the rotor 4 rotates, it is difficult to be deformed so as to spread outward.

以上説明したように、本実施形態の磁石埋込型ロータによれば以下の効果が得られる。
(1)ロータコア40には、一対の永久磁石50,51の間であってブリッジ部41よりもロータコア外周側に補助永久磁石52を設けた。そして補助永久磁石52には、ロータコア周方向の幅がブリッジ部41に向かって徐々に細くなるテーパ部52aを設けた。また補助永久磁石52のロータコア外周側の磁極を、補助永久磁石52と対向する一対の永久磁石50,51がロータコア外周側に形成する磁極と同一の磁極とした。また補助永久磁石52のテーパ部52aの磁極を、補助永久磁石52と対向する一対の永久磁石50,51がロータコア外周側に形成する磁極と異なる磁極とした。これによりロータコア40の外周面での磁束密度が増加するため、モータの出力トルクを高めることができる。また、モータを小型化することもできる。
As described above, according to the magnet-embedded rotor of this embodiment, the following effects can be obtained.
(1) The rotor core 40 is provided with an auxiliary permanent magnet 52 between the pair of permanent magnets 50 and 51 and on the outer periphery side of the rotor core from the bridge portion 41. The auxiliary permanent magnet 52 is provided with a tapered portion 52a whose width in the circumferential direction of the rotor core gradually decreases toward the bridge portion 41. The magnetic poles on the outer periphery side of the rotor core of the auxiliary permanent magnet 52 are the same as the magnetic poles formed on the outer peripheral side of the rotor core by the pair of permanent magnets 50 and 51 facing the auxiliary permanent magnet 52. The magnetic pole of the taper portion 52a of the auxiliary permanent magnet 52 is different from the magnetic pole formed by the pair of permanent magnets 50 and 51 facing the auxiliary permanent magnet 52 on the outer periphery side of the rotor core. As a result, the magnetic flux density on the outer peripheral surface of the rotor core 40 increases, so that the output torque of the motor can be increased. In addition, the motor can be reduced in size.

(2)補助永久磁石52のテーパ部52aを、そのテーパ角を「θ1」、一対の永久磁石50,51がロータコア外周側でなす角を「θ2」とするとき、「θ1<θ2」なる関係を満たすように形成することとした。これによりブリッジ部41を通る磁束を効果的に吸収できるため、漏れ磁束の低減効果を高めることができ、ひいてはモータの出力トルクを更に高めることができる。   (2) When the taper angle of the auxiliary permanent magnet 52 is “θ1” and the angle between the pair of permanent magnets 50 and 51 on the outer periphery side of the rotor core is “θ2”, the relationship “θ1 <θ2” is established. It was decided to form so as to satisfy. As a result, the magnetic flux passing through the bridge portion 41 can be effectively absorbed, so that the effect of reducing the leakage magnetic flux can be increased, and the output torque of the motor can be further increased.

なお、上記実施形態は、これを適宜変更した以下の形態にて実施することもできる。
・上記実施形態では、補助永久磁石52のロータコア40の軸方向に直交する断面形状を五角形状に形成したが、これに代えて、例えば図5に示すような三角形状や、図6に示すようなV字状に形成してもよい。補助永久磁石52が図5及び図6に示すような形状からなる場合でも、ブリッジ部41を通る漏れ磁束を低減できるため、その分だけステータコイル21と鎖交する有効磁束量が増加し、モータの出力トルクを高めることができる。要は、補助永久磁石52に、ロータコア40の周方向の幅がブリッジ部に向かって徐々に細くなるテーパ部52aが形成されていればよい。
In addition, the said embodiment can also be implemented with the following forms which changed this suitably.
In the above embodiment, the cross-sectional shape perpendicular to the axial direction of the rotor core 40 of the auxiliary permanent magnet 52 is formed in a pentagonal shape, but instead, for example, a triangular shape as shown in FIG. 5 or as shown in FIG. You may form in a V shape. Even when the auxiliary permanent magnet 52 has a shape as shown in FIGS. 5 and 6, since the leakage magnetic flux passing through the bridge portion 41 can be reduced, the effective magnetic flux amount interlinked with the stator coil 21 is increased accordingly, and the motor The output torque can be increased. In short, the auxiliary permanent magnet 52 only needs to be formed with a tapered portion 52a in which the circumferential width of the rotor core 40 gradually decreases toward the bridge portion.

・図7に示すように、テーパ部52aのテーパ角θ1を、一対の永久磁石50,51がロータコア外周側でなす角θ2よりも大きく設定してもよい。補助永久磁石52が図7に示すような形状からなる場合でも、ブリッジ部41を通る漏れ磁束を低減できるため、モータの出力トルクを高めることは可能である。   -As shown in FIG. 7, you may set taper angle (theta) 1 of the taper part 52a larger than angle (theta) 2 which a pair of permanent magnets 50 and 51 make on the rotor core outer peripheral side. Even when the auxiliary permanent magnet 52 has a shape as shown in FIG. 7, the leakage magnetic flux passing through the bridge portion 41 can be reduced, so that the output torque of the motor can be increased.

・ロータコア40の磁石挿入孔42〜44にそれぞれ形成された空隙G1〜G5の形状は適宜変更可能である。またロータコア40の磁石挿入孔42〜44に空隙G1〜G5を設けなくてもよい。   The shapes of the gaps G1 to G5 formed in the magnet insertion holes 42 to 44 of the rotor core 40 can be appropriately changed. The gaps G1 to G5 may not be provided in the magnet insertion holes 42 to 44 of the rotor core 40.

・上記実施形態では、一対の永久磁石50,51及び補助永久磁石52のそれぞれの材質として焼結磁石を採用したが、例えばボンド磁石などを採用してもよい。これにより形状的な制約を受け難くなるため、特に上記のような形状からなる補助永久磁石52を容易に製造できる。また、例えば一対の磁石挿入孔42,43に射出成形でボンド磁石を埋め込む際に、その射出圧力によりロータコア40の磁石挿入孔42,43よりも外側の部位に応力が加わったとしても、ブリッジ部41により外側への変形が抑制される。   In the above embodiment, the sintered magnet is used as the material for each of the pair of permanent magnets 50 and 51 and the auxiliary permanent magnet 52. However, for example, a bonded magnet may be used. Since it becomes difficult to receive shape restrictions by this, especially the auxiliary | assistant permanent magnet 52 which consists of the above shapes can be manufactured easily. Further, for example, when a bond magnet is embedded in the pair of magnet insertion holes 42 and 43 by injection molding, even if stress is applied to a portion outside the magnet insertion holes 42 and 43 of the rotor core 40 due to the injection pressure, the bridge portion The outward deformation is suppressed by 41.

・上記実施形態では、一対の永久磁石50,51をブリッジ部41を中心にV字状をなすように配置したが、これに代えて、例えばブリッジ部41を中心にU字状をなすように配置してもよい。要は、ブリッジ部を介して隔てられた一対の磁石挿入孔が周方向に複数形成されたロータコアと、各磁石挿入孔に挿入される永久磁石とを備えるロータコアであれば、本発明を適用可能である。   In the above embodiment, the pair of permanent magnets 50 and 51 are arranged so as to form a V shape with the bridge portion 41 as the center, but instead, for example, a U shape is formed with the bridge portion 41 as the center. You may arrange. In short, the present invention can be applied to any rotor core that includes a rotor core in which a plurality of pairs of magnet insertion holes separated by a bridge portion are formed in the circumferential direction and a permanent magnet that is inserted into each magnet insertion hole. It is.

4…磁石埋込型ロータ、40…ロータコア、41…ブリッジ部、42,43…磁石挿入孔、50,51…永久磁石、52…補助永久磁石、52a…テーパ部、60…ロータコア。   DESCRIPTION OF SYMBOLS 4 ... Magnet embedded type rotor, 40 ... Rotor core, 41 ... Bridge part, 42, 43 ... Magnet insertion hole, 50, 51 ... Permanent magnet, 52 ... Auxiliary permanent magnet, 52a ... Tapered part, 60 ... Rotor core.

Claims (2)

ブリッジ部を介して隔てられた一対の磁石挿入孔が周方向に複数形成されるロータコアと、
各磁石挿入孔に挿入される永久磁石と、を備え、
複数対の磁石挿入孔にそれぞれ挿入される一対の永久磁石が前記ロータコアの外周部分に一磁極を形成する磁石埋込型ロータにおいて、
前記ロータコアには、前記一対の永久磁石の間であって前記ブリッジ部よりも前記ロータコアの外周側に補助永久磁石が設けられ、
前記補助永久磁石には、前記ロータコアの周方向の幅が前記ブリッジ部に向かって徐々に細くなるテーパ部が形成され、
前記補助永久磁石の前記ロータコアの外周側の磁極は、前記補助永久磁石と対向する前記一対の永久磁石が前記ロータコアの外周側に形成する磁極と同一であるとともに、前記補助永久磁石の前記テーパ部の磁極は、前記補助永久磁石と対向する前記一対の永久磁石が前記ロータコアの外周側に形成する磁極と異なり、
前記一対の永久磁石は、前記ブリッジ部を中心に前記ロータコアの外周側に向けて開くV字をなすように配置され、
前記テーパ部は、そのテーパ角を「θ1」、前記一対の永久磁石が前記ロータコアの外周側でなす角を「θ2」とするとき、次式
θ1<θ2
なる関係を満たすように形成されることを特徴とする磁石埋込型ロータ。
A rotor core in which a plurality of pairs of magnet insertion holes separated by a bridge portion are formed in the circumferential direction;
A permanent magnet inserted into each magnet insertion hole,
In a magnet-embedded rotor in which a pair of permanent magnets respectively inserted into a plurality of pairs of magnet insertion holes forms one magnetic pole on the outer peripheral portion of the rotor core,
The rotor core is provided with an auxiliary permanent magnet between the pair of permanent magnets and on the outer peripheral side of the rotor core from the bridge portion,
The auxiliary permanent magnet is formed with a tapered portion in which the circumferential width of the rotor core gradually decreases toward the bridge portion,
The magnetic pole on the outer peripheral side of the rotor core of the auxiliary permanent magnet is the same as the magnetic pole formed on the outer peripheral side of the rotor core by the pair of permanent magnets facing the auxiliary permanent magnet, and the tapered portion of the auxiliary permanent magnet poles, Unlike pole pair of the permanent magnets facing the auxiliary permanent magnet is formed on the outer peripheral side of the rotor core,
The pair of permanent magnets are arranged so as to form a V shape that opens toward the outer peripheral side of the rotor core around the bridge portion,
When the taper portion has a taper angle “θ1” and an angle formed by the pair of permanent magnets on the outer peripheral side of the rotor core is “θ2”,
θ1 <θ2
Magnet-embedded rotor is formed to satisfy the relationship: characterized Rukoto.
請求項1に記載の磁石埋込型ロータにおいて、
前記補助永久磁石がボンド磁石からなることを特徴とする磁石埋込型ロータ。
The embedded magnet rotor according to claim 1,
A magnet embedded rotor, wherein the auxiliary permanent magnet is a bonded magnet.
JP2012236491A 2012-10-26 2012-10-26 Embedded magnet rotor Expired - Fee Related JP6079132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012236491A JP6079132B2 (en) 2012-10-26 2012-10-26 Embedded magnet rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012236491A JP6079132B2 (en) 2012-10-26 2012-10-26 Embedded magnet rotor

Publications (2)

Publication Number Publication Date
JP2014087229A JP2014087229A (en) 2014-05-12
JP6079132B2 true JP6079132B2 (en) 2017-02-15

Family

ID=50789806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012236491A Expired - Fee Related JP6079132B2 (en) 2012-10-26 2012-10-26 Embedded magnet rotor

Country Status (1)

Country Link
JP (1) JP6079132B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11705766B2 (en) 2020-09-17 2023-07-18 Hl Mando Corporation Electric motor having permanent magnet rotor and stator

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110326191B (en) * 2017-02-28 2022-02-08 日立安斯泰莫株式会社 Rotor of rotating electrical machine and rotating electrical machine provided with same
DE102019135896A1 (en) * 2019-12-30 2021-07-01 Hiwin Mikrosystem Corp. Permanent magnet spindle motor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11103546A (en) * 1997-09-29 1999-04-13 Fujitsu General Ltd Permanent magnet motor
JP2008067474A (en) * 2006-09-06 2008-03-21 Mitsui High Tec Inc Rotor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11705766B2 (en) 2020-09-17 2023-07-18 Hl Mando Corporation Electric motor having permanent magnet rotor and stator

Also Published As

Publication number Publication date
JP2014087229A (en) 2014-05-12

Similar Documents

Publication Publication Date Title
CN109510347B (en) Rotating electrical machine
US11431213B2 (en) Rotary electric machine
JP5806073B2 (en) Brushless motor
JP5370433B2 (en) Permanent magnet embedded electric motor
US9923436B2 (en) Rotor for a rotary electric machine
JP5813254B2 (en) Permanent magnet rotating electric machine
JP5855680B2 (en) Electric equipment equipped with an electric motor
JP6331506B2 (en) Rotor structure of rotating electrical machine
JP5684542B2 (en) Rotor and motor
WO2013098940A1 (en) Electric motor
US20140210296A1 (en) Rotor for permanent magnet type motor, method of manufacturing rotor for permanent magnet type motor, and permanent magnet type motor
JP2014093859A (en) Rotor of rotary electric machine
JP2006314152A (en) Permanent-magnet motor
US9912204B2 (en) Permanent magnet type rotating electric machine
JP2007104819A (en) Rotating electric machine
WO2016047078A1 (en) Permanent magnet type rotor and permanent magnet type synchronous rotary electric machine
JP2011229395A (en) Permanent magnet type motor
JP2013198303A (en) Rotor structure of permanent magnet type rotary machine
JP5240592B2 (en) Rotating electric machine
US9559555B2 (en) Rotor and motor
JP6748852B2 (en) Brushless motor
JP6079132B2 (en) Embedded magnet rotor
JP5954279B2 (en) Rotating electric machine
JP2010200480A (en) Embedded magnetic motor
JP6112970B2 (en) Permanent magnet rotating electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170102

R150 Certificate of patent or registration of utility model

Ref document number: 6079132

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees